JP2016126257A - toner - Google Patents

toner Download PDF

Info

Publication number
JP2016126257A
JP2016126257A JP2015001937A JP2015001937A JP2016126257A JP 2016126257 A JP2016126257 A JP 2016126257A JP 2015001937 A JP2015001937 A JP 2015001937A JP 2015001937 A JP2015001937 A JP 2015001937A JP 2016126257 A JP2016126257 A JP 2016126257A
Authority
JP
Japan
Prior art keywords
fine particles
organic
inorganic composite
composite fine
toner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015001937A
Other languages
Japanese (ja)
Other versions
JP6410611B2 (en
Inventor
弘貴 秋山
Hiroki Akiyama
弘貴 秋山
西川 浩司
Koji Nishikawa
浩司 西川
森部 修平
Shuhei Moribe
修平 森部
大輔 吉羽
Daisuke Yoshiba
大輔 吉羽
航助 福留
Kosuke Fukutome
航助 福留
祥太郎 野村
Shotaro Nomura
祥太郎 野村
山▲崎▼ 克久
Katsuhisa Yamazaki
克久 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015001937A priority Critical patent/JP6410611B2/en
Publication of JP2016126257A publication Critical patent/JP2016126257A/en
Application granted granted Critical
Publication of JP6410611B2 publication Critical patent/JP6410611B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a toner that can prevent the problem of fixation tailing even in a high temperature and high humidity and when used in a high-speed machine.SOLUTION: There is provided a toner including toner particles and an external additive, where the external additive contains organic-inorganic composite fine particles A and organic-inorganic composite fine particles B; the organic-inorganic composite fine particles A (i) each have a structure in which inorganic fine particles A are embedded in the surface of a resin fine particle A, (ii) each include a plurality of projections derived from the inorganic fine particles A on the surface of the organic-inorganic composite fine particles A, (iii) have a specific shape factor, and (iv) have 95 mass% or more of a THF insoluble; and the organic-inorganic composite fine particles B have specific visco-elasticity.SELECTED DRAWING: None

Description

本発明は、電子写真法、静電記録法、磁気記録法などに用いられるトナーに関する。   The present invention relates to a toner used for electrophotography, electrostatic recording, magnetic recording, and the like.

電子写真装置の高速化、長寿命化に伴い、トナーには、物理的負荷に対する耐性が求められている。トナーの物理的負荷に対する耐性を高める観点で、大粒径外添剤を使用する試みが多くなされている。   With the increase in speed and life of electrophotographic apparatuses, toners are required to have resistance against physical loads. Many attempts have been made to use external additives having a large particle diameter from the viewpoint of enhancing the resistance to the physical load of the toner.

また、電子写真装置の普及により、東南アジアなどの高温高湿環境下での使用も増加している。このような環境下において、印刷速度の速い高速機を使用する際、定着尾引きが問題となる。   In addition, the use in high-temperature and high-humidity environments such as Southeast Asia is increasing due to the spread of electrophotographic apparatuses. Under such circumstances, when using a high-speed machine with a high printing speed, fixing tailing becomes a problem.

特許文献1、2では耐久性向上のために有機無機複合微粒子を外添剤として用いる例が開示されているが、高温高湿下において高速印刷する際に定着尾引きに課題があった。   Patent Documents 1 and 2 disclose examples in which organic-inorganic composite fine particles are used as external additives for improving durability, but there is a problem in fixing tailing when high-speed printing is performed under high temperature and high humidity.

特許文献3ではコア部とそのコア部を覆うシェル部の2層構造の重合トナーを用いる例が開示されているが、高速印刷時の定着尾引きに関して改善の余地があった。   Patent Document 3 discloses an example using a polymer toner having a two-layer structure of a core portion and a shell portion covering the core portion, but there is room for improvement regarding fixing tailing during high-speed printing.

WO2013/063291号公報WO2013 / 066291 特開2013−92748号公報JP 2013-92748 A 特開2006−154244号公報JP 2006-154244 A

本発明はかかる事情に鑑みてなされたものであり、高温高湿下において高速印刷を行っても定着尾引きの問題を防ぐことのできるトナーを供給することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to supply toner capable of preventing the problem of fixing tail even when high-speed printing is performed under high temperature and high humidity.

本発明は、トナー粒子及び外添剤を有するトナーであって、
該外添剤は、有機無機複合微粒子A及び有機無機複合微粒子Bを含有し、
該有機無機複合微粒子Aは
i)樹脂微粒子Aの表面に無機微粒子Aが埋め込まれた構造を有し、
ii)有機無機複合微粒子Aの表面に、該無機微粒子Aに由来する凸部を複数有し、
iii)走査型電子顕微鏡を用いて20万倍に拡大して撮影した該有機無機複合微粒子Aの拡大画像を用いて形状係数SF−2を測定した場合、該SF−2を測定した場合、該SF−2が103以上120以下であり、
iv)THF不溶分が95質量%以上であり、
該有機無機複合微粒子Bは、
回転平板型レオメータを用いて周波数6.28rad/secで測定される粘弾性特性に関し、温度(T)[℃]における損失弾性率をG”T[dN/m2]としたとき、
i)常用対数Log(G”T)の温度に対する変化率d(Log(G”T))/dTが、温度60℃以上150℃以下の範囲において最小値を示し、前記最小値が−0.05未満であり、
ii)温度180℃における損失弾性率(G”180)が、1.0×104dN/m2以上1.0×107dN/m2以下である、
ことを特徴とするトナーに関する。
The present invention is a toner having toner particles and an external additive,
The external additive contains organic-inorganic composite fine particles A and organic-inorganic composite fine particles B,
The organic-inorganic composite fine particles A have a structure in which i) inorganic fine particles A are embedded on the surface of the resin fine particles A;
ii) The surface of the organic / inorganic composite fine particle A has a plurality of convex portions derived from the inorganic fine particle A,
iii) When the shape factor SF-2 is measured using an enlarged image of the organic-inorganic composite fine particles A photographed at 200,000 times using a scanning electron microscope, and when SF-2 is measured, SF-2 is 103 or more and 120 or less,
iv) THF insoluble content is 95% by mass or more,
The organic-inorganic composite fine particles B are:
Regarding the viscoelastic property measured at a frequency of 6.28 rad / sec using a rotating plate rheometer, when the loss elastic modulus at temperature (T) [° C.] is G ″ T [dN / m 2 ],
i) The rate of change d (Log (G "T)) / dT with respect to the temperature of the common logarithm Log (G" T) shows a minimum value in the temperature range of 60 ° C to 150 ° C, and the minimum value is -0. Less than 05,
ii) Loss elastic modulus (G ″ 180) at a temperature of 180 ° C. is 1.0 × 10 4 dN / m 2 or more and 1.0 × 10 7 dN / m 2 or less.
This invention relates to a toner.

本発明によれば、高温高湿下、高速機においても定着尾引きの問題を防ぐことのできるトナーを供給することが可能である。   According to the present invention, it is possible to supply toner capable of preventing the problem of fixing tailing even in a high-speed machine under high temperature and high humidity.

有機無機複合微粒子B1の損失弾性率(G”)のグラフを示す図である。It is a figure which shows the graph of the loss elastic modulus (G ") of organic inorganic composite fine particle B1.

本発明のトナーは、トナー粒子及び外添剤を有し、外添剤は、有機無機複合微粒子A及び有機無機複合微粒子Bを含有している。このうち、有機無機複合微粒子Aは
i)樹脂微粒子Aの表面に無機微粒子Aが埋め込まれた構造を有し、
ii)有機無機複合微粒子Aの表面に、無機微粒子Aに由来する凸部を複数有し、
iii)走査型電子顕微鏡を用いて20万倍に拡大して撮影した有機無機複合微粒子Aの拡大画像を用いて形状係数SF−2を測定した場合、該SF−2を測定した場合、該SF−2が103以上120以下であり、
iv)THF不溶分が95質量%以上であり、
有機無機複合微粒子Bは、
回転平板型レオメータを用いて周波数6.28rad/secで測定される粘弾性特性に関し、温度(T)[℃]における損失弾性率をG”T[dN/m2]としたとき、
i)常用対数Log(G”T)の温度に対する変化率d(Log(G”T))/dTが、温度60℃以上150℃以下の範囲において最小値を示し、前記最小値が−0.05未満であり、
ii)温度180℃における損失弾性率(G”180)が、1.0×104dN/m2以上1.0×107dN/m2以下である、
ことを特徴としている。
The toner of the present invention has toner particles and an external additive, and the external additive contains organic-inorganic composite fine particles A and organic-inorganic composite fine particles B. Among these, the organic / inorganic composite fine particles A have i) a structure in which the inorganic fine particles A are embedded on the surface of the resin fine particles A,
ii) The surface of the organic / inorganic composite fine particle A has a plurality of convex portions derived from the inorganic fine particle A,
iii) When the shape factor SF-2 is measured using an enlarged image of the organic-inorganic composite fine particles A photographed at a magnification of 200,000 using a scanning electron microscope, and when the SF-2 is measured, the SF -2 is 103 or more and 120 or less,
iv) THF insoluble content is 95% by mass or more,
Organic-inorganic composite fine particle B is
Regarding the viscoelastic property measured at a frequency of 6.28 rad / sec using a rotating plate rheometer, when the loss elastic modulus at temperature (T) [° C.] is G ″ T [dN / m 2 ],
i) The rate of change d (Log (G "T)) / dT with respect to the temperature of the common logarithm Log (G" T) shows a minimum value in the temperature range of 60 ° C to 150 ° C, and the minimum value is -0. Less than 05,
ii) Loss elastic modulus (G ″ 180) at a temperature of 180 ° C. is 1.0 × 10 4 dN / m 2 or more and 1.0 × 10 7 dN / m 2 or less.
It is characterized by that.

本発明者らの検討によれば、本発明のトナーを用いることにより、高温高湿環境下において高速印刷を行っても、定着尾引きの問題を防ぐことが出来る。先述の通り、電子写真装置の高速化、使用環境の多様化により定着尾引きが問題となっている。定着尾引きとは、ライン像が転写された紙が、定着ニップ部に突入する際に、紙に含まれる水蒸気が紙の凹部で爆発し、続くライン像を吹き飛ばし、尾引いてしまう現象である。即ち、トナー・トナー間の付着力に対し、水蒸気が爆発する際のエネルギーが高いためにトナーが飛散し起きる現象である。当該現象は、大気中の水分量が多い高温高湿環境下では水蒸気量が多いため水蒸気の爆発のエネルギーが大きくなるため顕著であり、高温高湿環境に放置された紙ではさらに顕著となる。また、高速印刷時には定着器を通過する時間が短くなるため、トナーへの熱の伝わりが不十分となり、トナーの粘度が十分に低下せず、定着時のトナー・トナー間の付着力が低下してしまうため定着尾引きが悪化する傾向がある。   According to the study by the present inventors, the use of the toner of the present invention can prevent the problem of fixing tail even when high-speed printing is performed in a high-temperature and high-humidity environment. As described above, fixing tailing has become a problem due to the speedup of electrophotographic apparatuses and diversification of usage environments. Fixing tailing is a phenomenon in which when the paper on which the line image is transferred enters the fixing nip, water vapor contained in the paper explodes in the concave portion of the paper and blows off the subsequent line image to cause tailing. . In other words, the toner is scattered due to high energy when the water vapor explodes with respect to the adhesion between the toner and the toner. This phenomenon is remarkable in a high-temperature and high-humidity environment where there is a large amount of moisture in the atmosphere, so that the energy of explosion of the water vapor increases because of the large amount of water vapor, and even more noticeable in paper left in a high-temperature and high-humidity environment. In addition, since the time for passing through the fixing device is shortened during high-speed printing, the transfer of heat to the toner becomes insufficient, the viscosity of the toner does not sufficiently decrease, and the adhesion between the toner and the toner during fixing decreases. Therefore, there is a tendency for the fixing tail to deteriorate.

また、高速印刷に対応するには外添剤の被覆率を増加させることが一般的であり、定着性が悪化し、定着尾引きが悪化する方向であった。   Further, in order to cope with high-speed printing, it is general to increase the coverage of the external additive, and the fixability is deteriorated and the fixing tailing is deteriorated.

このように高温高湿環境下において高速印刷時の定着尾引きを良化することは困難であった。   Thus, it has been difficult to improve the fixing tail during high-speed printing in a high-temperature and high-humidity environment.

本発明者らは鋭意検討を行った結果、異なる特性を持つ二種類の有機無機複合微粒子を併用することにより、上記課題を解決できることを見出した。以下に詳細を記述する。   As a result of intensive studies, the present inventors have found that the above problem can be solved by using two types of organic-inorganic composite fine particles having different characteristics. Details are described below.

検討の結果、定着前のトナー・トナー間の付着力を向上させる有機無機複合微粒子A、定着時のトナー・トナー間の付着力を向上させる有機無機複合微粒子Bを併用することでこの問題を改善できることを発見した。これにより定着前にトナー・トナー間の付着力を向上することで、トナー・トナー間への水蒸気の進入を防ぎ、定着時にトナー・トナー間の付着力を向上することで、定着による加熱時にも、水蒸気の爆発のエネルギーを上回る付着力を得ることが出来る。   As a result of investigation, this problem is improved by using organic / inorganic composite fine particles A that improve the adhesion between toner and toner before fixing and organic / inorganic composite fine particles B that improve the adhesion between toner and toner during fixing. I found it possible. This improves the adhesion between the toner and the toner before fixing, thereby preventing water vapor from entering between the toner and the toner, and improving the adhesion between the toner and the toner at the time of fixing. Adhesive force exceeding the energy of explosion of water vapor can be obtained.

具体的には、有機無機複合微粒子Aは樹脂微粒子Aに無機微粒子Aが埋め込まれた構造を有し、有機無機複合微粒子Aの表面に、無機微粒子Aの凸部を複数有し、有機無機複合微粒子AのSF−2が103以上120以下でありTHF不溶分が95質量%以上であることが重要である。   Specifically, the organic / inorganic composite fine particle A has a structure in which the inorganic fine particle A is embedded in the resin fine particle A, and has a plurality of convex portions of the inorganic fine particle A on the surface of the organic / inorganic composite fine particle A. It is important that the SF-2 of the fine particles A is 103 or more and 120 or less and the THF insoluble content is 95% by mass or more.

有機無機複合微粒子Aが樹脂微粒子Aに無機微粒子Aが埋め込まれた構造を有し、有機無機複合微粒子Aの表面に、該無機微粒子の凸部を複数有し、有機無機複合微粒子AのSF−2が103以上120以下であることで無機微粒子の凸部によりトナー粒子に有機無機複合微粒子Aが密着しやすくなり、定着前のトナー・トナー間の付着力が上昇することで、水蒸気の進入が少なくなり定着尾引きが良化する。なお、樹脂微粒子Aに無機微粒子Aが埋め込まれた構造や、有機無機複合微粒子Aの表面に形成された無機微粒子Aの凸部は、走査型電子顕微鏡により確認することができる。トナーに樹脂微粒子Aだけが外添された状態で、さらに無機微粒子Aを外添する場合や、樹脂微粒子Aと無機微粒子Aを同時に外添する場合は、樹脂微粒子A上へ無機微粒子Aが付着する程度にとどまり、樹脂微粒子への埋め込みが不十分である場合が多いため、本発明の効果を得られにくい。   The organic-inorganic composite fine particle A has a structure in which the inorganic fine particle A is embedded in the resin fine particle A, and has a plurality of convex portions of the inorganic fine particle on the surface of the organic-inorganic composite fine particle A. 2 is 103 or more and 120 or less, the organic-inorganic composite fine particles A are easily adhered to the toner particles by the convex portions of the inorganic fine particles, and the adhesion between the toner and the toner before fixing is increased, so that water vapor enters. It becomes less and the fixing tail is improved. The structure in which the inorganic fine particles A are embedded in the resin fine particles A and the convex portions of the inorganic fine particles A formed on the surface of the organic / inorganic composite fine particles A can be confirmed by a scanning electron microscope. When the inorganic fine particles A are added externally with only the resin fine particles A added to the toner, or when the resin fine particles A and the inorganic fine particles A are added simultaneously, the inorganic fine particles A adhere to the resin fine particles A. However, since the embedding in the resin fine particles is often insufficient, it is difficult to obtain the effects of the present invention.

SF−2が103未満であるとトナー粒子への有機無機複合微粒子Aの密着力が低下し定着尾引きが悪化する傾向がある。   When SF-2 is less than 103, the adhesion of the organic / inorganic composite fine particles A to the toner particles tends to be lowered, and the fixing tailing tends to be deteriorated.

THF不溶分が95質量%以上であることで有機無機複合微粒子Aの強度が向上し、トナーへの食い込みが良くなり、定着前のトナー・トナー間の付着力が増大する。   When the THF-insoluble content is 95% by mass or more, the strength of the organic-inorganic composite fine particles A is improved, the biting into the toner is improved, and the adhesion between the toner and the toner before fixing is increased.

有機無機複合微粒子Bは、定着時のトナー・トナー間の付着力を増大させるため、定着時に粘度が低下し、トナー粒子・トナー粒子間を接着剤のようにつなげる働きが求められる。特に高速印刷時には速やかに低粘度化することが重要である。そこで、粘度の指標である損失弾性率(G”180)とその温度に対する傾きd(Log(G”T))/dTに着目した。   Since the organic / inorganic composite fine particles B increase the adhesion force between the toner and the toner at the time of fixing, the viscosity is lowered at the time of fixing and the function of connecting the toner particles and the toner particles like an adhesive is required. In particular, it is important to quickly reduce the viscosity during high-speed printing. Therefore, attention was paid to the loss elastic modulus (G ″ 180), which is an index of viscosity, and the gradient d (Log (G ″ T)) / dT with respect to the temperature.

具体的には、常用対数Log(G”T)の温度に対する変化率d(Log(G”T))/dTが、温度60℃以上150℃以下の範囲において最小値を示し、前記最小値が−0.05未満であり、温度180℃における損失弾性率(G”180)が、1.0×104dN/m2以上1.0×107dN/m2以下であることが重要である。 Specifically, the rate of change d (Log (G ″ T)) / dT with respect to the temperature of the common logarithm Log (G ″ T) exhibits a minimum value in the temperature range of 60 ° C. to 150 ° C., and the minimum value is It is important that the loss elastic modulus (G ″ 180) at a temperature of 180 ° C. is less than −0.05 and is 1.0 × 10 4 dN / m 2 or more and 1.0 × 10 7 dN / m 2 or less. is there.

損失弾性率(G”180)とその温度に対する傾きd(Log(G”T))/dTが上記範囲であることで定着温度領域において、有機無機複合微粒子Bの粘度が定着時に低下し、トナー粒子と有機無機複合微粒子Bが強く接着することによりトナー・トナー間の密着力が上昇し、水蒸気の爆発のエネルギーに対してトナー・トナー間の付着力が上回り定着尾引きが良化する。   When the loss elastic modulus (G ″ 180) and the gradient d (Log (G ″ T)) / dT with respect to the temperature are in the above range, the viscosity of the organic / inorganic composite fine particles B decreases during fixing in the fixing temperature range, and the toner When the particles and the organic / inorganic composite fine particles B are strongly adhered, the adhesion between the toner and the toner is increased, and the adhesion between the toner and the toner is increased with respect to the energy of explosion of the water vapor, and the fixing tailing is improved.

有機無機複合微粒子Bにおいて常用対数Log(G”T)の温度に対する変化率d(Log(G”T))/dTが、温度60℃以上150℃以下の範囲において最小値を示すことで、定着温度領域において、有機無機複合微粒子Bの粘度が低下し、定着尾引きが良化する。上記範囲外であると定着時に粘度が低下せず定着尾引きへの効果がない。また、変化率d(Log(G”T))/dTの最小値が−0.05未満であることにより定着時に素早く粘度が低下し、高速印刷時にも定着尾引きへの効果を発揮する。−0.05以上であると高速印刷時に十分粘度が低下せず、定着尾引きへの効果がない。損失弾性率(G”180)が大きいほど、熱が受けた時にも弾性を有することを示している。温度180℃における損失弾性率(G”180)が、1.0×104dN/m2以上1.0×107dN/m2以下あることによって定着性と定着尾引き良化の両立が可能である。1.0×104dN/m2より小さい場合、粘度が低下しすぎてしまい印刷後の紙が、他の印刷紙と張り付く排紙接着が発生してしまう。1.0×107dN/m2より大きい場合、粘度の低下が十分でなく、定着尾引きへの効果を示さない。 In organic / inorganic composite fine particle B, the change rate d (Log (G ″ T)) / dT with respect to the temperature of the common logarithm Log (G ″ T) exhibits a minimum value in the temperature range of 60 ° C. or more and 150 ° C. or less, thereby fixing In the temperature range, the viscosity of the organic-inorganic composite fine particles B is reduced, and the fixing tailing is improved. If it is outside the above range, the viscosity does not decrease during fixing, and there is no effect on fixing tailing. In addition, since the minimum value of the change rate d (Log (G "T)) / dT is less than -0.05, the viscosity is quickly reduced at the time of fixing, and the effect on fixing tailing is exhibited even at high speed printing. When it is −0.05 or more, the viscosity is not sufficiently lowered during high-speed printing, and there is no effect on fixing tailing. The larger the loss elastic modulus (G ″ 180), the more elastic it is when it receives heat. Show. Since the loss elastic modulus (G ″ 180) at a temperature of 180 ° C. is 1.0 × 10 4 dN / m 2 or more and 1.0 × 10 7 dN / m 2 or less, both the fixing property and the fixing tailing can be improved. If the density is less than 1.0 × 10 4 dN / m 2 , the viscosity is too low and the paper after printing sticks to other printing paper, resulting in paper discharge adhesion. When it is larger than 10 7 dN / m 2 , the viscosity is not sufficiently lowered and no effect on fixing tailing is shown.

有機無機複合微粒子Aの個数平均粒径は60nm以上500nm以下が好ましく、有機無機複合微粒子Bの個数平均粒径は30nm以上500nm以下が好ましい。上記範囲において、もっともトナー粒子・有機無機複合微粒子A・トナー粒子間の密着力もしくはトナー粒子・有機無機複合微粒子B・トナー粒子間の密着力が上昇し定着尾引きが良化する。   The number average particle size of the organic / inorganic composite fine particles A is preferably 60 nm to 500 nm, and the number average particle size of the organic / inorganic composite fine particles B is preferably 30 nm to 500 nm. Within the above range, the adhesion force between the toner particles / organic / inorganic composite fine particles A / toner particles or the adhesion force between the toner particles / organic / inorganic composite fine particles B / toner particles is increased to improve the fixing tailing.

有機無機複合微粒子Aは、WO2013/063291の実施例の記載に従って製造することができる。有機無機複合微粒子Aの個数平均粒径やSF−2は無機微粒子Aの粒径や、無機微粒子の添加量を変化させることで制御が可能である。   The organic-inorganic composite fine particles A can be produced according to the description in the examples of WO2013 / 066291. The number average particle size and SF-2 of the organic-inorganic composite fine particles A can be controlled by changing the particle size of the inorganic fine particles A and the addition amount of the inorganic fine particles.

有機無機複合微粒子Bを得る方法としては、公知の方法を用いることができる。   As a method for obtaining the organic-inorganic composite fine particles B, a known method can be used.

例えば、無機微粒子の存在下で樹脂微粒子を乳化重合で作製して、有機無機複合微粒子Bを作製することができる。また、樹脂を有機溶媒に溶解させ、その溶液中に無機微粒子Bを添加しておき、この状態で転相乳化を行なう方法でも、有機無機複合微粒子をB作製することができる。   For example, the organic / inorganic composite fine particles B can be prepared by preparing resin fine particles by emulsion polymerization in the presence of the inorganic fine particles. Alternatively, organic / inorganic composite fine particles B can also be produced by a method in which a resin is dissolved in an organic solvent, inorganic fine particles B are added to the solution, and phase inversion emulsification is performed in this state.

樹脂を溶解させる有機溶媒としては、テトラヒドロフラン(THF)、トルエン、酢酸エチル、アセトン、メチルエチルケトン、ヘキサン等が使用できる。   As the organic solvent for dissolving the resin, tetrahydrofuran (THF), toluene, ethyl acetate, acetone, methyl ethyl ketone, hexane and the like can be used.

本発明に係る有機無機複合微粒子Bは、所定の損失弾性率を有することができれば、樹脂微粒子Bの樹脂の種類は特に限定されない。しかしながら、より一層の低温定着性の改善を図る上では、樹脂微粒子Bに結晶性樹脂を含有させることも可能であり、定着性の観点からシャープメルト性に優れる結晶性ポリエステルが好ましい。   If the organic-inorganic composite fine particle B according to the present invention can have a predetermined loss elastic modulus, the type of resin of the resin fine particle B is not particularly limited. However, in order to further improve the low-temperature fixability, it is possible to contain a crystalline resin in the resin fine particles B, and a crystalline polyester excellent in sharp melt property is preferable from the viewpoint of fixability.

有機無機複合微粒子A及び有機無機複合微粒子Bに使用される無機微粒子A及び無機微粒子Bはシリカ微粒子、アルミナ微粒子、チタニア微粒子、酸化亜鉛微粒子、チタン酸ストロンチウム微粒子、酸化セリウム微粒子及び炭酸カルシウム微粒子などを用いることが出来る。これらの微粒子群の中から任意の組み合わせで選択される2種以上を用いることもできる。無機微粒子A及び無機微粒子Bは同一であっても、異なっていてもかまわない。無機微粒子A及び無機微粒子Bは、一次粒子の個数平均粒径が5nm以上100nm以下であることが好ましい。無機微粒子A及び無機微粒子Bの一次粒子の個数平均粒径が5nm以上100nm以下であると、無機微粒子A及び無機微粒子Bの凸部が多く表面に存在し、トナー・トナー間の付着力が大きくなる。   The inorganic fine particles A and B used for the organic / inorganic composite fine particles A and B are silica fine particles, alumina fine particles, titania fine particles, zinc oxide fine particles, strontium titanate fine particles, cerium oxide fine particles and calcium carbonate fine particles. Can be used. Two or more selected from any combination of these fine particle groups can also be used. The inorganic fine particles A and the inorganic fine particles B may be the same or different. In the inorganic fine particles A and the inorganic fine particles B, the number average particle size of the primary particles is preferably 5 nm or more and 100 nm or less. When the number average particle diameter of the primary particles of the inorganic fine particles A and B is 5 nm or more and 100 nm or less, there are many convex portions of the inorganic fine particles A and inorganic fine particles B, and the adhesion between the toner and the toner is large. Become.

以上のように定着前後のトナーの付着性を上記発明のごとき有機無機複合微粒子A及び有機無機複合微粒子Bを併用することで制御し、従来は達成が困難であった、高温高湿環境下において高速印刷をした際の定着尾引きを改善することが可能となる。   As described above, the adhesion of the toner before and after fixing is controlled by using the organic / inorganic composite fine particles A and the organic / inorganic composite fine particles B together as in the above-mentioned invention. It becomes possible to improve the fixing tail at the time of high-speed printing.

本発明のトナー粒子に用いられる結着樹脂について記載する。   The binder resin used for the toner particles of the present invention will be described.

結着樹脂としては、ポリエステル系樹脂、ビニル系樹脂、エポキシ樹脂、ポリウレタン樹脂が挙げられるが、特に限定されず従来公知の樹脂を用いることが出来る。   Examples of the binder resin include polyester resins, vinyl resins, epoxy resins, and polyurethane resins. However, the binder resins are not particularly limited, and conventionally known resins can be used.

本発明のトナーは更に磁性体もしくは着色剤を含有してもよい。   The toner of the present invention may further contain a magnetic material or a colorant.

磁性体としては以下のものを例示できる。   The following can be illustrated as a magnetic body.

マグネタイト、ヘマタイト、フェライトのような酸化鉄、鉄、コバルト、ニッケルのような金属あるいはこれらの金属とアルミニウム、コバルト、銅、鉛、マグネシウム、スズ、亜鉛、アンチモン、ビスマス、カルシウム、マンガン、チタン、タングステン、バナジウムのような金属の合金およびその混合物が挙げられる。   Iron oxides such as magnetite, hematite, ferrite, metals such as iron, cobalt, nickel or these metals and aluminum, cobalt, copper, lead, magnesium, tin, zinc, antimony, bismuth, calcium, manganese, titanium, tungsten And alloys of metals such as vanadium and mixtures thereof.

本発明に用いられる着色剤の例を以下に挙げる。   Examples of the colorant used in the present invention are listed below.

黒色着色剤としては、例えば、カーボンブラック,グラフト化カーボンや以下に示すイエロー/マゼンタ/シアン着色剤を用い黒色に調色されたものが利用可能である。イエロー着色剤としては、縮合アゾ化合物、イソインドリノン化合物、アンスラキノン化合物、アゾ金属錯体、メチン化合物、アリルアミド化合物に代表される化合物が挙げられる。マゼンタ着色剤としては、縮合アゾ化合物、ジケトピロロピロール化合物、アントラキノン、キナクリドン化合物、塩基染料レーキ化合物、ナフトール化合物、ベンズイミダゾロン化合物、チオインジゴ化合物、ペリレン化合物等が挙げられる。シアン着色剤としては、銅フタロシアニン化合物及びその誘導体、アントラキノン化合物、塩基染料レーキ化合物等が挙げられる。これらの着色剤は、単独又は混合し更には固溶体の状態で用いることができる。   As the black colorant, for example, carbon black, grafted carbon, and the one toned in black using the yellow / magenta / cyan colorant shown below can be used. Examples of the yellow colorant include compounds typified by condensed azo compounds, isoindolinone compounds, anthraquinone compounds, azo metal complexes, methine compounds, and allylamide compounds. Examples of the magenta colorant include condensed azo compounds, diketopyrrolopyrrole compounds, anthraquinones, quinacridone compounds, basic dye lake compounds, naphthol compounds, benzimidazolone compounds, thioindigo compounds, and perylene compounds. Examples of cyan colorants include copper phthalocyanine compounds and derivatives thereof, anthraquinone compounds, basic dye lake compounds, and the like. These colorants can be used alone or in combination and further in the form of a solid solution.

本発明のトナーは、ワックスを含有してもよい。   The toner of the present invention may contain a wax.

本発明に用いられるワックスには次のようなものがある。例えば低分子量ポリエチレン、低分子量ポリプロピレン、ポリオレフィン共重合物、ポリオレフィンワックス、マイクロクリスタリンワックス、パラフィンワックス、フィッシャートロプシュワックスの如き脂肪族炭化水素系ワックス;酸化ポリエチレンワックスの如き脂肪族炭化水素系ワックスの酸化物;又は、それらのブロック共重合物;キャンデリラワックス、カルナバワックス、木ろう、ホホバろうの如き植物系ワックス;みつろう、ラノリン、鯨ろうの如き動物系ワックス;オゾケライト、セレシン、ペトロラクタムの如き鉱物系ワックス;モンタン酸エステルワックス、カスターワックスの如き脂肪族エステルを主成分とするワックス類;脱酸カルナバワックスの如き脂肪族エステルを一部又は全部を脱酸化したものが挙げられる。   The waxes used in the present invention include the following. For example, low molecular weight polyethylene, low molecular weight polypropylene, polyolefin copolymer, polyolefin wax, microcrystalline wax, paraffin wax, aliphatic hydrocarbon wax such as Fischer-Tropsch wax; oxide of aliphatic hydrocarbon wax such as oxidized polyethylene wax Or block copolymers thereof; plant waxes such as candelilla wax, carnauba wax, waxy wax, jojoba wax; animal waxes such as beeswax, lanolin, spermaceti; mineral systems such as ozokerite, ceresin, petrolactam; Waxes; waxes mainly composed of aliphatic esters such as montanic acid ester wax and castor wax; those obtained by partially or fully deoxidizing aliphatic esters such as deoxidized carnauba wax .

本発明のトナーには、その帯電性を安定化させるために荷電制御剤を用いても良い。荷電制御剤としては、本発明に用いられる結着樹脂の末端に存在する酸基あるいは水酸基と中心金属が相互作用し易い、有機金属錯体、キレート化合物が有効である。その例としては、モノアゾ金属錯体;アセチルアセトン金属錯体;芳香族ヒドロキシカルボン酸又は芳香族ジカルボン酸の金属錯体又は金属塩が挙げられる。   In the toner of the present invention, a charge control agent may be used in order to stabilize the charging property. As the charge control agent, an organometallic complex or a chelate compound in which the acid group or hydroxyl group present at the terminal of the binder resin used in the present invention and the central metal are likely to interact is effective. Examples thereof include monoazo metal complexes; acetylacetone metal complexes; metal complexes or metal salts of aromatic hydroxycarboxylic acids or aromatic dicarboxylic acids.

本発明に係るトナー粒子の製造方法は、特に限定されず、例えば、粉砕法、懸濁重合法、溶解懸濁法、乳化凝集法、分散重合法等の公知の製造方法を用いることが出来る。   The method for producing toner particles according to the present invention is not particularly limited, and for example, a known production method such as a pulverization method, a suspension polymerization method, a dissolution suspension method, an emulsion aggregation method, or a dispersion polymerization method can be used.

例えば、粉砕法で作製するには
i)トナー粒子を構成する結着樹脂及び着色剤としての磁性体酸化鉄粒子、並びに必要に応じてワックス、及びその他の添加剤等を、ヘンシェルミキサー、ボールミルの如き混合機により充分に混合し、
ii)得られた混合物を二軸混練押出機、加熱ロール、ニーダー、エクストルーダーの如き熱混練機を用いて溶融混練して樹脂類を互いに相溶せしめた中に、ワックス、磁性酸化鉄粒子及び含金属化合物を分散又は溶解せしめ、iii)冷却固化後、粉砕し、
及びiv)分級を行うことによって、本発明に係るトナー母粒子を得ることが出来る。
For example, to prepare by a pulverization method, i) a binder resin constituting toner particles, magnetic iron oxide particles as a colorant, and, if necessary, wax, other additives, etc. are added to a Henschel mixer or a ball mill. Mix thoroughly with a blender like
ii) While the obtained mixture was melt-kneaded using a heat kneader such as a twin-screw kneading extruder, a heating roll, a kneader, and an extruder so that the resins were compatible with each other, wax, magnetic iron oxide particles and Disperse or dissolve the metal-containing compound, iii) Cool and solidify, pulverize,
And iv) The toner base particles according to the present invention can be obtained by performing classification.

またトナー粒子の形状及び表面性の制御のために、粉砕あるいは分級後に、連続的に機械的衝撃力を加える表面処理装置内を通過させる表面処理工程を有することが好ましい。   In order to control the shape and surface property of the toner particles, it is preferable to have a surface treatment step of passing through a surface treatment apparatus that continuously applies a mechanical impact force after pulverization or classification.

この表面処理工程の処理時間を制御することによりトナーの表面形状を制御し、トナー粒子の付着力を制御することが可能である。   By controlling the treatment time of this surface treatment step, the surface shape of the toner can be controlled, and the adhesion force of the toner particles can be controlled.

さらに必要に応じ所望の外添剤をヘンシェルミキサーの如き混合機により充分混合し、本発明に係るトナーを得ることができる。   Furthermore, the toner according to the present invention can be obtained by sufficiently mixing a desired external additive with a mixer such as a Henschel mixer, if necessary.

混合機としては、以下のものが挙げられる。ヘンシェルミキサー(日本コークス工業社製);スーパーミキサー(カワタ社製);リボコーン(大川原製作所社製);ナウターミキサー、タービュライザー、サイクロミックス(ホソカワミクロン社製);スパイラルピンミキサー(太平洋機工社製);レーディゲミキサー(マツボー社製)。   The following are mentioned as a mixer. Henschel mixer (manufactured by Nihon Coke Industries); Super mixer (manufactured by Kawata); Ribocorn (manufactured by Okawara Seisakusho); Nauter mixer, turbulizer, cyclomix (manufactured by Hosokawa Micron); Spiral pin mixer (manufactured by Taiheiyo Kiko) ); Ladige mixer (manufactured by Matsubo).

混練機としては、以下のものが挙げられる。KRCニーダー(栗本鉄工所社製);ブス・コ・ニーダー(Buss社製);TEM型押し出し機(東芝機械社製);TEX二軸混練機(日本製鋼所社製);PCM混練機(池貝鉄工所社製);三本ロールミル、ミキシングロールミル、ニーダー(井上製作所社製);ニーデックス(三井鉱山社製);MS式加圧ニーダー、ニダールーダー(森山製作所社製);バンバリーミキサー(神戸製鋼所社製)。   Examples of the kneader include the following. KRC Kneader (manufactured by Kurimoto Iron Works); Bus Co Kneader (manufactured by Buss); TEM type extruder (manufactured by Toshiba Machine); TEX twin-screw kneader (manufactured by Nippon Steel Works); Steel mill); three roll mill, mixing roll mill, kneader (manufactured by Inoue Seisakusho); kneedex (manufactured by Mitsui Mining); MS-type pressure kneader, nider ruder (manufactured by Moriyama Seisakusho); Banbury mixer (Kobe Steel) (Made by the company).

粉砕機としては、以下のものが挙げられる。カウンタージェットミル、ミクロンジェット、イノマイザ(ホソカワミクロン社製);IDS型ミル、PJMジェット粉砕機(日本ニューマチック工業社製);クロスジェットミル(栗本鉄工所社製);ウルマックス(日曹エンジニアリング社製);SKジェット・オー・ミル(セイシン企業社製);クリプトロン(川崎重工業社製);ターボミル(ターボエ業社製);スーパーローター(日清エンジニアリング社製)。   Examples of the pulverizer include the following. Counter jet mill, micron jet, inomizer (manufactured by Hosokawa Micron); IDS type mill, PJM jet crusher (manufactured by Nippon Pneumatic Industrial Co., Ltd.); cross jet mill (manufactured by Kurimoto Iron Works Co., Ltd.); SK; jet mill (manufactured by Seishin Enterprise Co., Ltd.); kryptron (manufactured by Kawasaki Heavy Industries, Ltd.); turbo mill (manufactured by Turboe Corporation); super rotor (manufactured by Nisshin Engineering Co., Ltd.).

分級機としては、以下のものが挙げられる。クラッシール、マイクロンクラッシファイアー、スペディッククラシファイアー(セイシン企業社製);ターボクラッシファイアー(日清エンジニアリング社製);ミクロンセパレータ、ターボプレックス(ATP)、TSPセパレータ(ホソカワミクロン社製);エルボージェット(日鉄鉱業社製)、ディスパージョンセパレータ(日本ニューマチックエ業社製);YMマイクロカット(安川商事社製)。   Examples of the classifier include the following. Classifier, Micron Classifier, Spedic Classifier (manufactured by Seishin Enterprise); Turbo Classifier (manufactured by Nissin Engineering); Micron Separator, Turboplex (ATP), TSP Separator (manufactured by Hosokawa Micron); Elbow Jet (Japan) Iron Mining Co., Ltd.), Dispersion Separator (manufactured by Nippon Pneumatic Engineering Co., Ltd.); YM Microcut (manufactured by Yaskawa Corporation).

表面改質装置としては、例えばファカルティー(ホソカワミクロン社製)、メカノフュージョン(ホソカワミクロン社製)、ノビルタ(ホソカワミクロン社製)、ハイブリダイザー(奈良機械社製)、イノマイザ(ホソカワミクロン社製)、シータコンポーザ(徳寿工作所社製)、メカノミル(岡田精工社製)が挙げられる。   Examples of the surface modification apparatus include faculty (manufactured by Hosokawa Micron), mechanofusion (manufactured by Hosokawa Micron), nobilta (manufactured by Hosokawa Micron), hybridizer (manufactured by Nara Machinery), inomizer (manufactured by Hosokawa Micron), and theta composer. (Made by Tokuju Kogakusha Co., Ltd.) and Mechanomyl (Made by Okada Seiko Co., Ltd.).

粗粒子をふるい分けるために用いられる篩い装置としては、以下のものが挙げられる。ウルトラソニック(晃栄産業社製);レゾナシーブ、ジャイロシフター(徳寿工作所社);バイブラソニックシステム(ダルトン社製);ソニクリーン(新東工業社製);ターボスクリーナー(ターボエ業社製);ミクロシフター(槙野産業社製);円形振動篩い。   Examples of the sieving apparatus used for sieving coarse particles include the following. Ultrasonic (manufactured by Sakae Sangyo Co., Ltd.); Resonator Sheave, Gyroshifter (Tokusu Kosakusha Co., Ltd.); Vibrasonic System (manufactured by Dalton Co.); Micro shifter (manufactured by Hadano Sangyo Co., Ltd.); circular vibrating sieve.

本発明のトナーは、有機無機複合微粒子以外の他の外添剤を含有してもよい。   The toner of the present invention may contain an external additive other than the organic / inorganic composite fine particles.

他の外添剤としては、例えば、フッ化ビニリデン微粉末、ポリテトラフウルオロエチレン微粉末の如きフッ素系樹脂粉末;湿式製法シリカ、乾式製法シリカの如き微粉末シリカ、微粉末酸化チタン、微粉末アルミナ、それらをシラン化合物、チタンカップリング剤、シリコーンオイルにより表面処理を施した処理シリカ;酸化亜鉛、酸化スズの如き酸化物;チタン酸ストロンチウムやチタン酸バリウム、チタン酸カルシウム、ジルコン酸ストロンチウムやジルコン酸カルシウムの如き複酸化物;炭酸カルシウム及び、炭酸マグネシウムの如き炭酸塩化合物が挙げられる。   Examples of other external additives include fluorine resin powders such as fine vinylidene fluoride powder and polytetrafluoroethylene fine powder; fine powder silica such as wet process silica and dry process silica, fine powder titanium oxide, fine powder Powdered alumina, silica treated with silane compounds, titanium coupling agents, and silicone oil; oxides such as zinc oxide and tin oxide; strontium titanate, barium titanate, calcium titanate, strontium zirconate, Examples thereof include double oxides such as calcium zirconate; calcium carbonate and carbonate compounds such as magnesium carbonate.

好ましい他の外添剤としてはケイ素ハロゲン化合物の蒸気相酸化により生成された微粉末であり、いわゆる乾式法シリカ又はヒュームドシリカと称されるものである。例えば、四塩化ケイ素ガスの酸水素焔中における熱分解酸化反応を利用するもので、基礎となる反応式は次のようなものである。
SiCl4+2H2+O2→SiO2+4HCl
Another preferred external additive is a fine powder produced by vapor phase oxidation of a silicon halogen compound, and so-called dry process silica or fumed silica. For example, a thermal decomposition oxidation reaction of silicon tetrachloride gas in an oxyhydrogen flame is used, and the basic reaction formula is as follows.
SiCl 4 + 2H 2 + O 2 → SiO 2 + 4HCl

この製造工程において、塩化アルミニウム又は塩化チタン等の他の金属ハロゲン化合物をケイ素ハロゲン化合物と共に用いることによってシリカと他の金属酸化物の複合微粉体を得ることも可能であり、シリカとしてはそれらも包含する。   In this production process, it is also possible to obtain composite fine powders of silica and other metal oxides by using other metal halogen compounds such as aluminum chloride or titanium chloride together with silicon halogen compounds. To do.

ケイ素ハロゲン化合物の蒸気相酸化により生成された市販のシリカ微粉体としては、例えば、以下のものを例示できる。AEROSIL130、200、300、380、TT600、MOX170、MOX80、COK84(以上、日本アエロジル社)Ca−O−SiLM−5、MS−7、MS−75、HS−5、EH−5(以上、CABOT Co.社)Wacker HDK N 20、V15、N20E、T30、T40(以上、WACKER−CHEMIE GMBH社)D−C Fine Silica(ダウコーニングCo.社)、Fransol(Fransil社)の商品名で市販されているものがあり、本発明ではこれらも好適に用いることができる。   Examples of commercially available silica fine powder produced by vapor phase oxidation of a silicon halogen compound include the following. AEROSIL130, 200, 300, 380, TT600, MOX170, MOX80, COK84 (above, Nippon Aerosil Co., Ltd.) Ca-O-SiLM-5, MS-7, MS-75, HS-5, EH-5 (above, CABOT Co KK) Wacker HDK N 20, V15, N20E, T30, T40 (above, WACKER-CHEMIE GMBH), D-C Fine Silica (Dow Corning Co.), and Fransol (Fransil). In the present invention, these can be preferably used.

本発明のトナーに係る各種物性の測定について以下に説明する。   The measurement of various physical properties relating to the toner of the present invention will be described below.

<有機無機複合微粒子の粒径の測定方法>
有機無機複合微粒子及び他の外添剤の個数平均粒径は、走査型電子顕微鏡「S−4800」(商品名;日立製作所製)を用いて行う。有機無機複合微粒子単独もしくは他の外添剤が外添されたトナーを観察して、最大20万倍に拡大した視野において、ランダムに100個の有機無機複合微粒子及び他の外添剤の一次粒子の長径を測定して個数平均粒径を求める。観察倍率は、有機無機複合微粒子及び他の外添剤の大きさによって適宜調整する。
<Measurement method of particle diameter of organic-inorganic composite fine particles>
The number average particle diameter of the organic / inorganic composite fine particles and other external additives is measured using a scanning electron microscope “S-4800” (trade name; manufactured by Hitachi, Ltd.). 100 organic / inorganic composite fine particles and primary particles of other external additives are randomly observed in a field of view up to 200,000 times maximum by observing a toner to which organic / inorganic composite fine particles alone or other external additives are added. The major axis is measured to determine the number average particle size. The observation magnification is appropriately adjusted according to the size of the organic-inorganic composite fine particles and other external additives.

<有機無機複合微粒子の形状係数SF−2の測定方法>
観察倍率は有機無機複合微粒子の大きさによって適宜調整したが、最大20万倍に拡大した視野において、画像処理ソフト「Image−Pro Plus5.1J」(MediaCybernetics社製)を使用して、100個の一次粒子の周囲長および面積を算出した。形状係数SF−2は、下記式にて算出し、その平均値を有機無機複合微粒子の形状係数SF−2として。
SF−2=(粒子の周囲長)2/粒子の面積×100/4π
<Method for Measuring Shape Factor SF-2 of Organic / Inorganic Composite Fine Particle>
Although the observation magnification was appropriately adjusted according to the size of the organic-inorganic composite fine particles, the image processing software “Image-Pro Plus 5.1J” (manufactured by Media Cybernetics) was used in a field of view enlarged up to 200,000 times. The perimeter and area of the primary particles were calculated. The shape factor SF-2 is calculated by the following formula, and the average value is used as the shape factor SF-2 of the organic-inorganic composite fine particles.
SF-2 = (perimeter of particle) 2 / area of particle × 100 / 4π

<有機無機複合粒子の損失弾性率(G”)の測定方法>
有機無機複合微粒子の樹脂の損失弾性率(G”)は、回転平板型レオメーター「ARES」(TA INSTRUMENTS社製)を用いて測定する。
<Method of measuring loss elastic modulus (G ″) of organic-inorganic composite particles>
The loss elastic modulus (G ″) of the resin of the organic / inorganic composite fine particles is measured using a rotating plate rheometer “ARES” (manufactured by TA INSTRUMENTS).

測定試料としては、25℃の環境下で、錠剤成型器を用いて、トナーを直径7.9mm、厚さ2.0±0.3mmの円板状に加圧成型(15kN、常温で1分間加圧)した試料を用いる。   As a measurement sample, a toner was pressure-molded into a disk shape having a diameter of 7.9 mm and a thickness of 2.0 ± 0.3 mm using a tablet molding machine in an environment of 25 ° C. (15 kN, normal temperature for 1 minute) Pressurized) sample is used.

該試料をパラレルプレートに装着し、室温(25℃)から120℃に15分間で昇温して、試料の形を整えた後、粘弾性の測定開始温度まで冷却し、測定を開始する。この際、初期のノーマルフォースが0になるようにサンプルをセットすることが、重要である。また、以下に述べるように、その後の測定においては、自動テンション調整(Auto Tension Adjustment ON)にすることで、ノーマルフォースの影響をキャンセルできる。   The sample is mounted on a parallel plate, heated from room temperature (25 ° C.) to 120 ° C. over 15 minutes to adjust the shape of the sample, then cooled to the measurement start temperature of viscoelasticity, and measurement is started. At this time, it is important to set the sample so that the initial normal force becomes zero. Further, as described below, in the subsequent measurement, the effect of normal force can be canceled by performing automatic tension adjustment (Auto Tension Adjustment ON).

測定は、以下の条件で行う。
(1)直径7.9mmのパラレルプレートを用いる。
(2)周波数(Frequency)は6.28rad/secとする。
(3)印加歪初期値(Strain)を0.1%に設定する。
(4)30〜200℃の間を、昇温速度(Ramp Rate)2.0℃/minで測定を行う。尚、測定においては、以下の自動調整モードの設定条件で行う。自動歪み調整モード(Auto Strain)で測定を行う。30秒おき、すなわち1℃おきに粘弾性データを測定する。
(5)最大歪(Max Applied Strain)を20.0%に設定する。
(6)最大トルク(Max Allowed Torque)200.0g・cmとし、最低トルク(Min Allowed Torque)0.2g・cmと設定する。
(7)歪み調整(Strain Adjustment)を20.0% of Current Strainと設定する。測定においては、自動テンション調整モード(Auto Tension)を採用する。
(8)自動テンションディレクション(Auto Tension Direction)をコンプレッション(Compression)と設定する。
(9)初期スタティックフォース(Initial Static Force)を10.0g、自動テンションセンシティビティ(Auto Tension Sensitivity)を40.0gと設定する。
(10)自動テンション(Auto Tension)の作動条件は、サンプルモデュラス(Sample Modulus)が1.0×103(Pa)以上である。
The measurement is performed under the following conditions.
(1) A parallel plate having a diameter of 7.9 mm is used.
(2) The frequency (Frequency) is 6.28 rad / sec.
(3) The applied strain initial value (Strain) is set to 0.1%.
(4) A temperature between 30 and 200 ° C. is measured at a ramp rate of 2.0 ° C./min. In the measurement, the following automatic adjustment mode setting conditions are used. Measurement is performed in an automatic strain adjustment mode (Auto Strain). Viscoelasticity data is measured every 30 seconds, ie every 1 ° C.
(5) The maximum applied strain (Max Applied Strain) is set to 20.0%.
(6) The maximum torque (Max Allowed Torque) is set to 200.0 g · cm, and the minimum torque (Min Allowed Torque) is set to 0.2 g · cm.
(7) Set the distortion adjustment (Strain Adjustment) to 20.0% of Current Strain. In the measurement, an automatic tension adjustment mode (Auto Tension) is adopted.
(8) Set automatic tension direction (Auto Tension Direction) as compression (Compression).
(9) An initial static force (Initial Static Force) is set to 10.0 g, and an automatic tension sensitivity (Auto Tension Sensitivity) is set to 40.0 g.
(10) The operating condition of the automatic tension (Auto Tension) is that the sample modulus is 1.0 × 10 3 (Pa) or more.

上記の測定によって、温度(T)に対する損失弾性率(G”)曲線を得る。   The loss elastic modulus (G ″) curve with respect to temperature (T) is obtained by the above measurement.

得られた損失弾性率(G”)曲線をもとに、温度(T)における損失弾性率を(G”T)したとき、温度(T)に対する損失弾性率(G”T)の常用対数(Log(G”T))の変化率d(Log(G”T))/dTを以下のようにして求める。   Based on the obtained loss modulus (G ″) curve, when the loss modulus at temperature (T) is (G ″ T), the common logarithm of loss modulus (G ″ T) with respect to temperature (T) ( The rate of change d (Log (G "T)) / dT of Log (G" T)) is obtained as follows.

まず測定温度Tに対して、隣り合う前後の2点(T−1.0,T+1.0)の測定データ間の傾きΔ1を求める。
Δ1={Log(G”T+1.0)−Log(G”T−1.0)}/{(T+1.0)−(T−1.0)}
=Log(G”T+1.0)−Log(G”T−1.0)
First, with respect to the measured temperature T, the slope Δ1 between the measured data at two points (T−1.0, T + 1.0) adjacent to each other is obtained.
Δ1 = {Log (G ″ T + 1.0) −Log (G ″ T−1.0)} / {(T + 1.0) − (T−1.0)}
= Log (G "T + 1.0) -Log (G" T-1.0)

このΔ1を温度(T)における変化率d(Log(G”T))/dTのデータとする。   This Δ1 is used as data of the rate of change d (Log (G ″ T)) / dT at temperature (T).

測定中に損失弾性率(G”)が1.0×103dN/m2より低くなった場合は、その時点で測定を終了する。他の外添剤でも同様の方法で測定する。 When the loss elastic modulus (G ″) becomes lower than 1.0 × 10 3 dN / m 2 during the measurement, the measurement is terminated at that point. The measurement is performed in the same manner for other external additives.

<有機無機複合微粒子の樹脂のTHF不溶分の測定方法>
有機無機複合微粒子の樹脂のTHF不溶分は、以下のように定量した。
<Method for Measuring Insoluble Content of Organic Inorganic Composite Fine Particle Resin>
The THF-insoluble content of the organic-inorganic composite fine particle resin was quantified as follows.

有機無機複合微粒子を約0.1g精秤(Wc[g])し、予め秤量した遠心分離用ボトル(例えば、商品名「オークリッジ遠沈管3119−0050」(サイズ28.8×106.7mm)、Nalgene社製)に入れる。これに、20gのTHFを加えて、室温で24時間放置しTHF可溶分を抽出する。次いで、この遠心分離用ボトルを遠心分離器「himac CR22G」(日立工機株式会社製)にセットし、20℃に設定して、毎分15,000回転で1時間遠心分離することにより、有機無機複合微粒子全体のTHF不溶分を完全に沈降させた。遠心分離用ボトルを取り出して、THF可溶分抽出液を分離除去した後、内容物が入ったままの遠心分離用ボトルを40℃で8時間真空乾燥した。この遠心分離用ボトルを秤量し、予め秤量したおいた遠心分離用ボトルの質量を差し引くことにより、有機無機複合微粒子全体のTHF不溶分の質量(Wr[g])を求めた。   About 0.1 g of organic / inorganic composite fine particles (Wc [g]) are weighed in advance, and weighed in advance (for example, trade name “Oakridge centrifuge tube 3119-0050” (size 28.8 × 106.7 mm)). , Manufactured by Nalgene). To this, 20 g of THF is added, and the mixture is allowed to stand at room temperature for 24 hours to extract a THF soluble component. Next, this centrifuge bottle is set in a centrifuge “himac CR22G” (manufactured by Hitachi Koki Co., Ltd.), set to 20 ° C., and centrifuged at 15,000 rpm for 1 hour to obtain organic. The THF-insoluble matter of the entire inorganic composite fine particles was completely precipitated. The centrifuge bottle was taken out and the THF-soluble extract was separated and removed, and the centrifuge bottle with the contents contained therein was vacuum-dried at 40 ° C. for 8 hours. The centrifuge bottle was weighed and the mass of the centrifuge bottle weighed in advance was subtracted to obtain the mass (Wr [g]) of the THF-insoluble matter of the whole organic-inorganic composite fine particles.

有機無機複合微粒子の樹脂のTHF不溶分[質量%]は、有機無機複合微粒子中の無機微粒子含有量をWi[質量%]として、下記式にて算出した。
有機無機複合微粒子の樹脂のTHF不溶分[質量%]
={(Wr−Wc×Wi/100)/Wc×(100−Wi)/100}×100
The THF-insoluble content [% by mass] of the resin of the organic / inorganic composite fine particle was calculated by the following formula, where the content of the inorganic fine particle in the organic / inorganic composite fine particle was Wi [% by mass].
THF-insoluble matter [mass%] of organic / inorganic composite fine particle resin
= {(Wr−Wc × Wi / 100) / Wc × (100−Wi) / 100} × 100

以下に、実施例を挙げて本発明をより具体的に説明するが、これは本発明を何ら限定するものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples.

<トナー粒子の製造例>
・非晶性ポリエステル樹脂(Tg:59℃、軟化点Tm:112℃):100質量部
・磁性酸化鉄粒子:75質量部
・フィッシャートロプッシュワックス(サゾール社製C105、融点:105℃):2質量部
・荷電制御剤(保土谷化学社製、T−77):2質量部
上記材料をヘンシェルミキサーで前混合した後、2軸押出機(商品名:PCM−30、池貝鉄工所社製)を用いて、吐出口における溶融物温度が150℃になるように、温度を設定し、溶融混練した。
<Example of toner particle production>
Amorphous polyester resin (Tg: 59 ° C., softening point Tm: 112 ° C.): 100 parts by mass Magnetic iron oxide particles: 75 parts by mass Fischer-Tropsch wax (C105 manufactured by Sasol, melting point: 105 ° C.): 2 Part by mass / charge control agent (Hodogaya Chemical Co., Ltd., T-77): 2 parts by mass After the above materials were premixed with a Henschel mixer, a twin-screw extruder (trade name: PCM-30, manufactured by Ikekai Ironworks Co., Ltd.) Was used to set the temperature so that the melt temperature at the discharge port was 150 ° C., and melt-kneaded.

得られた混練物を冷却し、ハンマーミルで粗粉砕した後、粉砕機(商品名:ターボミルT250、ターボ工業社製)を用いて微粉砕した。得られた微粉砕粉末をコアンダ効果を利用した多分割分級機を用いて分級して、重量平均粒径(D4)7.2μmのトナー粒子1を得た。トナー粒子1の軟化点Tmは120℃であった。   The obtained kneaded material was cooled, coarsely pulverized with a hammer mill, and then finely pulverized using a pulverizer (trade name: Turbo Mill T250, manufactured by Turbo Kogyo Co., Ltd.). The obtained finely pulverized powder was classified using a multi-division classifier utilizing the Coanda effect to obtain toner particles 1 having a weight average particle diameter (D4) of 7.2 μm. The softening point Tm of the toner particles 1 was 120 ° C.

<有機無機複合微粒子A1乃至A3の製造例>
有機無機複合微粒子は、WO 2013/063291の実施例の記載に従って製造することができる。
<Production example of organic-inorganic composite fine particles A1 to A3>
The organic-inorganic composite fine particles can be produced according to the description in the examples of WO 2013/063291.

後述の実施例において用いる有機無機複合微粒子としては、WO 2013/063291の実施例1に従って製造したものを用意した。以下に物性を示す。なお、有機無機複合微粒子A1乃至A3は、いずれも樹脂微粒子Aに無機微粒子Aが埋め込まれ、その表面に無機微粒子Aによる凸部が形成されていた。   As the organic-inorganic composite fine particles used in Examples described later, those prepared according to Example 1 of WO 2013/063291 were prepared. The physical properties are shown below. The organic / inorganic composite fine particles A1 to A3 all have the resin fine particles A embedded with the inorganic fine particles A, and the convex portions of the inorganic fine particles A are formed on the surface thereof.

Figure 2016126257
Figure 2016126257

<有機無機複合微粒子B1の製造例>
撹拌機、コンデンサー、温度計、窒素導入管を備えた反応容器に、860gの水、無機微粒子として、196gのオルガノシリカゾル(商品名:オルガノシリカゾルMEK‐ST‐40、日産化学工業社製:平均粒子径15nm、固体質量比40%)を投入した。続いて20gのアクリル酸ブチル、78gのスチレンを添加して、撹拌しつつ60℃まで加熱昇温し、乳化粒子溶液を作製した。続いて乳化粒子溶液中に重合開始剤として2,2’−アゾビス(2,4−ジメチルバレロニトリル)50質量%トルエン溶液5gを添加し、60℃で4時間保持し重合反応させた。その後、ろ過、乾燥して有機無機複合微粒子B1を得た。有機無機複合微粒子B1の損失弾性率(G”)のグラフを図1に示す。
<Production example of organic-inorganic composite fine particles B1>
In a reaction vessel equipped with a stirrer, a condenser, a thermometer, and a nitrogen introduction tube, 196 g of organosilica sol (trade name: Organosilica Sol MEK-ST-40, manufactured by Nissan Chemical Industries, Ltd .: average particle) (Diameter 15 nm, solid mass ratio 40%). Subsequently, 20 g of butyl acrylate and 78 g of styrene were added and heated to 60 ° C. while stirring to prepare an emulsified particle solution. Subsequently, 5 g of a 2,2′-azobis (2,4-dimethylvaleronitrile) 50% by mass toluene solution was added as a polymerization initiator to the emulsified particle solution, and the polymerization reaction was carried out by maintaining at 60 ° C. for 4 hours. Then, it filtered and dried and obtained organic inorganic composite fine particle B1. A graph of the loss elastic modulus (G ″) of the organic-inorganic composite fine particle B1 is shown in FIG.

<有機無機複合微粒子B2の製造例>
有機無機複合微粒子B1から無機微粒子の量を220gに変更した以外は同様にして有機無機複合微粒子B2を得た。
<Production example of organic-inorganic composite fine particles B2>
Organic-inorganic composite fine particles B2 were obtained in the same manner except that the amount of inorganic fine particles was changed to 220 g from the organic-inorganic composite fine particles B1.

<有機無機複合微粒子B3の製造例>
撹拌機、コンデンサー、温度計、窒素導入管を備えた反応容器に、融点85℃の結晶性ポリエステル(モノマー構成:セバシン酸/1,12−ドデカンジオール)を10gとトルエンを40gを仕込み、60℃に加熱して溶解した。
<Production example of organic-inorganic composite fine particles B3>
A reaction vessel equipped with a stirrer, a condenser, a thermometer, and a nitrogen introduction tube was charged with 10 g of crystalline polyester (monomer composition: sebacic acid / 1,12-dodecanediol) having a melting point of 85 ° C. and 40 g of toluene at 60 ° C. Was dissolved by heating.

次いで、撹拌しながら、ジアルキルスルホコハク酸塩(商品名:サンモリンOT‐70、三洋化成工業(株)社製)を0.8g、ジメチルアミノエタノールを0.17g、無機微粒子として、オルガノシリカゾル(商品名:オルガノシリカゾルMEK‐ST‐40、日産化学工業製、平均粒子径15nm、固体質量比40%)を20g添加した。続いて撹拌しながら、60gの水を2g/分の速度で添加しながら、転相乳化を行った。続いて温度を40℃に設定して窒素を100ml/分でバブリングしながらトルエンを飛ばすことで、有機無機複合微粒子B3の分散液を得た。分散液の固形分濃度は30%に調整した。   Then, while stirring, 0.8 g of dialkylsulfosuccinate (trade name: Sanmorin OT-70, manufactured by Sanyo Chemical Industries Co., Ltd.), 0.17 g of dimethylaminoethanol, and inorganic silica particles (trade name) : Organosilica sol MEK-ST-40, manufactured by Nissan Chemical Industries, average particle size 15 nm, solid mass ratio 40%) was added 20 g. Subsequently, phase inversion emulsification was performed while adding 60 g of water at a rate of 2 g / min while stirring. Subsequently, the temperature was set to 40 ° C., and toluene was blown while bubbling nitrogen at 100 ml / min to obtain a dispersion of organic-inorganic composite fine particles B3. The solid content concentration of the dispersion was adjusted to 30%.

<有機無機複合微粒子B4の製造例>
有機無機複合微粒子B3の製造例において、オルガノシリカゾルの添加量を10gとした以外は、有機無機複合微粒子B3の製造例と同様にして、有機無機複合微粒子B4の分散液を得た。分散液の固形分濃度は30%に調整した。
<Production example of organic-inorganic composite fine particles B4>
In the production example of the organic / inorganic composite fine particle B3, a dispersion liquid of the organic / inorganic composite fine particle B4 was obtained in the same manner as in the production example of the organic / inorganic composite fine particle B3 except that the amount of the organosilica sol added was 10 g. The solid content concentration of the dispersion was adjusted to 30%.

<有機無機複合微粒子B5の製造例>
有機無機複合微粒子B3の製造例において、融点115℃の結晶性ポリエステル(モノマー構成:フマル酸/1,6−ヘキサンジオール)を用いて、ジメチルアミノエタノールを0.56gとした以外は、有機無機複合微粒子B3の製造例と同様にして、有機無機複合微粒子B5の分散液を得た。分散液の固形分濃度は30%に調整した。
<Production example of organic-inorganic composite fine particles B5>
In the production example of the organic / inorganic composite fine particle B3, an organic / inorganic composite was used except that crystalline polyester (monomer composition: fumaric acid / 1,6-hexanediol) having a melting point of 115 ° C. was used and dimethylaminoethanol was changed to 0.56 g. A dispersion of organic-inorganic composite fine particles B5 was obtained in the same manner as in the production example of the fine particles B3. The solid content concentration of the dispersion was adjusted to 30%.

<有機粒子の製造例>
撹拌機、コンデンサー、温度計、窒素導入管を備えた反応容器に、860gの水、非イオン性界面活性剤(ノニポール400:三洋化成(株)製)6g、アニオン性界面活性剤(ネオゲンSC:第一工業製薬(株)製)10gを投入撹拌し、同時に窒素置換を行いフラスコ内を窒素雰囲気化に置いた。次に下記材料を混合した単量体組成物液を投入した。
メタクリル酸:66g
ジビニルベンゼン:5g
<Production example of organic particles>
In a reaction vessel equipped with a stirrer, a condenser, a thermometer, and a nitrogen introduction tube, 860 g of water, 6 g of a nonionic surfactant (Nonipol 400: manufactured by Sanyo Chemical Co., Ltd.), an anionic surfactant (Neogen SC: Daiichi Kogyo Seiyaku Co., Ltd. (10 g) was added and stirred, and at the same time, the atmosphere was replaced with nitrogen and the flask was placed in a nitrogen atmosphere. Next, a monomer composition liquid in which the following materials were mixed was added.
Methacrylic acid: 66 g
Divinylbenzene: 5g

フラスコ内を撹拌しつつ60℃まで加熱昇温し、有機粒子を作製した。   While stirring the flask, the temperature was raised to 60 ° C. to produce organic particles.

その後撹拌した乳化粒子溶液中に重合開始剤として2,2’−アゾビス(2,4−ジメチルバレロニトリル)50質量%トルエン溶液11gを添加し、60℃で4時間保持し重合反応させた。その後さらに75℃まで加熱昇温し、75℃で2時間保持した後室温まで冷却後乾燥し有機粒子を得た。   Thereafter, 11 g of a 2,2′-azobis (2,4-dimethylvaleronitrile) 50 mass% toluene solution was added as a polymerization initiator to the stirred emulsion particle solution, and the polymerization reaction was carried out by maintaining at 60 ° C. for 4 hours. Thereafter, the temperature was further raised to 75 ° C., kept at 75 ° C. for 2 hours, cooled to room temperature and dried to obtain organic particles.

有機無機複合微粒子Bと有機粒子の物性を表2に示す。   Table 2 shows the physical properties of the organic-inorganic composite fine particles B and the organic particles.

Figure 2016126257
Figure 2016126257

<トナー1の製造例>
トナー粒子1を100.0質量部に対し、有機無機複合微粒子A1を1.0質量部、有機無機複合微粒子B1を1.0質量部、ヘキサメチルジシラザンで表面処理された疎水性シリカ微粉体(一次粒子の個数平均粒子径:10nm)を0.8質量部添加し、ヘンシェルミキサーで3200rpmで2分間混合し、トナー1を得た。
<Production Example of Toner 1>
Hydrophobic silica fine powder surface-treated with 1.0 parts by mass of organic / inorganic composite fine particles A1, 1.0 part by mass of organic / inorganic composite fine particles B1 and hexamethyldisilazane with respect to 100.0 parts by mass of toner particles 1 0.8 parts by mass (number average particle diameter of primary particles: 10 nm) was added, and the mixture was mixed with a Henschel mixer at 3200 rpm for 2 minutes to obtain toner 1.

<トナー2乃至4、8乃至11の製造例>
使用する有機無機複合微粒子A及び有機無機複合微粒子Bの種類を変更した以外はトナー1と同様にして、トナー2乃至4、8乃至11を得た。
<Examples of production of toners 2 to 4 and 8 to 11>
Toners 2 to 4 and 8 to 11 were obtained in the same manner as the toner 1 except that the types of the organic-inorganic composite fine particles A and the organic-inorganic composite fine particles B used were changed.

<トナー5の製造例>
トナー粒子1への有機無機複合微粒子B3の外添は湿式で行った。水2000質量部に「コンタミノンN」(商品名、和光純薬工業社製)を添加し、100質量部のトナー粒子1を分散させた。トナー粒子分散液を撹拌しながら3.3質量部の有機無機複合微粒子B3の分散液(固形分濃度は30%)を添加した。続いて温度を50℃に保持し、2時間撹拌を続け、トナー粒子1の表面へ有機無機複合微粒子B3を外添した。ろ過、乾燥をすることで、トナー粒子1の表面に有機無機複合微粒子B3が外添されたトナーを得ることができた。
<Production Example of Toner 5>
The external addition of the organic / inorganic composite fine particles B3 to the toner particles 1 was performed by a wet method. “Contaminone N” (trade name, manufactured by Wako Pure Chemical Industries, Ltd.) was added to 2000 parts by mass of water, and 100 parts by mass of toner particles 1 were dispersed. While stirring the toner particle dispersion, 3.3 parts by mass of the organic-inorganic composite fine particle B3 dispersion (solid content concentration: 30%) was added. Subsequently, the temperature was maintained at 50 ° C., and stirring was continued for 2 hours, and organic-inorganic composite fine particles B3 were externally added to the surfaces of the toner particles 1. By filtering and drying, a toner in which the organic / inorganic composite fine particles B3 were externally added to the surface of the toner particles 1 could be obtained.

100.0質量部のトナー粒子1を対して、有機無機複合微粒子A1を1.0質量部、ヘキサメチルジシラザンで表面処理された疎水性シリカ微粉体(一次粒子の個数平均粒子径:10nm)を0.8質量部となるように添加し、ヘンシェルミキサーで3200rpmで2分間混合し、トナー1を得た。   Hydrophobic silica fine powder surface-treated with 1.0 part by mass of organic inorganic composite fine particles A1 and hexamethyldisilazane for 100.0 parts by mass of toner particles 1 (number average particle diameter of primary particles: 10 nm) Was added to 0.8 parts by mass and mixed with a Henschel mixer at 3200 rpm for 2 minutes to obtain toner 1.

<トナー6、7の製造例>
使用する有機無機複合微粒子A及び有機無機複合微粒子Bの種類を変更した以外はトナー1と同様にして、トナー6、7を得た。
<Production Example of Toners 6 and 7>
Toners 6 and 7 were obtained in the same manner as toner 1 except that the types of organic-inorganic composite fine particles A and organic-inorganic composite fine particles B used were changed.

Figure 2016126257
Figure 2016126257

<実施例1>
トナー1を以下の様に評価した。評価結果を表4に示す。
<Example 1>
Toner 1 was evaluated as follows. The evaluation results are shown in Table 4.

HP LaserJet Enterprise600 M603dn(HP社製)を使用した。より厳しく定着尾引きを評価するためにプロセススピードは375mm/secとした。   HP LaserJet Enterprise 600 M603dn (manufactured by HP) was used. In order to more strictly evaluate the fixing tail, the process speed was set to 375 mm / sec.

トナー1を所定のプロセスカートリッジに400g充填した
[低温定着性]
A4の普通紙(105g/m2)に画像濃度が1.4になるように調整し、濃度測定用の10mm×10mmの3ドット3スペース(600dpi)画像を多数有する画像を出力し、得られた定着画像を、50g/cm2(4.9kPa)加重をかけたシルボン紙で5回摺擦し、摺擦後の画像濃度の低下率が10%以下になる温度を定着温度とした。濃度の測定には、マクベス反射濃度計(マクベス社製)を用いた。以下に評価基準を示す。
A:定着温度195℃未満
B:定着温度195℃以上200℃未満
C:定着温度200℃以上205℃未満
D;定着温度205℃以上
400 g of toner 1 is filled in a predetermined process cartridge [low-temperature fixability]
A4 plain paper (105 g / m 2 ) is adjusted so that the image density is 1.4, and an image having a large number of 10 mm × 10 mm 3 dot 3 space (600 dpi) images for density measurement is obtained. The fixed image was rubbed with Silbon paper applied with a load of 50 g / cm 2 (4.9 kPa) five times, and the temperature at which the reduction rate of the image density after the rub was 10% or less was defined as the fixing temperature. For the measurement of density, a Macbeth reflection densitometer (manufactured by Macbeth) was used. The evaluation criteria are shown below.
A: Fixing temperature less than 195 ° C. B: Fixing temperature between 195 ° C. and less than 200 ° C. C: Fixing temperature between 200 ° C. and less than 205 ° C. D: Fixing temperature of 205 ° C. or more

[定着尾引き評価]
上記プロセスカートリッジ及び評価紙(RIVER BOND紙[90g/m2])を高温高湿環境下(32.5℃,85%RH)に24時間放置したのち、評価を行った。評価紙に4ドットラインを、20ドットスペースで並べたヨコ線画像を出力した。このときの定着温度は画像濃度の低下率が10%の時の温度とした。以下に評価基準を示す。
A:定着尾引き未発生
B:定着尾引きが発生しているが、目視で確認が困難なレベル
C:定着尾引きが発生しており、目視で確認可能となるレベル
D:定着尾引きが発生しており、実用上好ましくないレベル
[Evaluation of fixing trail]
The process cartridge and the evaluation paper (RIVE BOND paper [90 g / m 2 ]) were left in a high temperature and high humidity environment (32.5 ° C., 85% RH) for 24 hours, and then evaluated. A horizontal line image in which 4 dot lines are arranged on an evaluation paper in a 20 dot space was output. The fixing temperature at this time was the temperature at which the image density reduction rate was 10%. The evaluation criteria are shown below.
A: Fixing tail has not occurred B: Fixing tail has occurred but difficult to visually check Level C: Fixing tail has occurred and can be confirmed visually D: Fixing tail has occurred It is generated and is unfavorable for practical use

[排紙接着評価]
上記プロセスカートリッジ及び評価紙(A4の普通紙[60g/m2])を高温高湿環境下(32.5℃,85%RH)に24時間放置したのち、評価を行った。評価紙に4ドットラインを、20ドットスペースで並べたヨコ線画像を500枚出力した。印刷終了後、そのままの状態で一時間放置したのち、10枚目の画像において排紙接着を評価した。以下に評価基準を示す。
A:排紙接着が発生しない
B:排紙接着するが、容易にひきはがすことが可能で画像への影響も軽微
C:排紙接着し、ひきはがし後、画像不良が発生
[Discharge adhesion evaluation]
The process cartridge and evaluation paper (A4 plain paper [60 g / m 2 ]) were left in a high temperature and high humidity environment (32.5 ° C., 85% RH) for 24 hours, and then evaluated. 500 horizontal line images in which 4 dot lines are arranged in 20 dot spaces on the evaluation paper were output. After printing, the sheet was left as it was for 1 hour, and then the paper discharge adhesion was evaluated on the tenth image. The evaluation criteria are shown below.
A: Adhesion of paper discharge does not occur B: Adhesion of paper discharge occurs, but it can be easily peeled off and the effect on the image is minor C: Image defect occurs after paper discharge is adhered and peeled off

<実施例2乃至7、比較例1乃至4>
トナー2乃至11を実施例1と同様に評価した。評価結果を表4に示す。
<Examples 2 to 7, Comparative Examples 1 to 4>
Toners 2 to 11 were evaluated in the same manner as in Example 1. The evaluation results are shown in Table 4.

Figure 2016126257
Figure 2016126257

Claims (3)

トナー粒子及び外添剤を有するトナーであって、
該外添剤は、有機無機複合微粒子A及び有機無機複合微粒子Bを含有し、
該有機無機複合微粒子Aは
i)樹脂微粒子Aの表面に無機微粒子Aが埋め込まれた構造を有し、
ii)有機無機複合微粒子Aの表面に、該無機微粒子Aに由来する凸部を複数有し、
iii)走査型電子顕微鏡を用いて20万倍に拡大して撮影した該有機無機複合微粒子Aの拡大画像を用いて測定される形状係数SF−2が103以上120以下であり、
iv)THF不溶分が95質量%以上であり、
該有機無機複合微粒子Bは、
回転平板型レオメータを用いて周波数6.28rad/secで測定される粘弾性特性に関し、温度(T)[℃]における損失弾性率をG”T[dN/m2]としたとき、
i)常用対数Log(G”T)の温度に対する変化率d(Log(G”T))/dTが、温度60℃以上150℃以下の範囲において最小値を示し、前記最小値が−0.05未満であり、
ii)温度180℃における損失弾性率(G”180)が、1.0×104dN/m2以上1.0×107dN/m2以下である、
ことを特徴とするトナー。
A toner having toner particles and an external additive,
The external additive contains organic-inorganic composite fine particles A and organic-inorganic composite fine particles B,
The organic-inorganic composite fine particles A have a structure in which i) inorganic fine particles A are embedded on the surface of the resin fine particles A;
ii) The surface of the organic / inorganic composite fine particle A has a plurality of convex portions derived from the inorganic fine particle A,
iii) The shape factor SF-2 measured using an enlarged image of the organic-inorganic composite fine particles A photographed at 200,000 times using a scanning electron microscope is 103 or more and 120 or less,
iv) THF insoluble content is 95% by mass or more,
The organic-inorganic composite fine particles B are:
Regarding the viscoelastic property measured at a frequency of 6.28 rad / sec using a rotating plate rheometer, when the loss elastic modulus at temperature (T) [° C.] is G ″ T [dN / m 2 ],
i) The rate of change d (Log (G "T)) / dT with respect to the temperature of the common logarithm Log (G" T) shows a minimum value in the temperature range of 60 ° C to 150 ° C, and the minimum value is -0. Less than 05,
ii) Loss elastic modulus (G ″ 180) at a temperature of 180 ° C. is 1.0 × 10 4 dN / m 2 or more and 1.0 × 10 7 dN / m 2 or less.
Toner characterized by the above.
該有機無機複合微粒子Aは、個数平均粒径が60nm以上500nm以下であることを特徴とする請求項1に記載のトナー。   2. The toner according to claim 1, wherein the organic-inorganic composite fine particle A has a number average particle diameter of 60 nm or more and 500 nm or less. 該有機無機複合微粒子Bは、個数平均粒径が30nm以上500nm以下であることを特徴とする請求項1又は2に記載のトナー。   3. The toner according to claim 1, wherein the organic-inorganic composite fine particles B have a number average particle diameter of 30 nm to 500 nm.
JP2015001937A 2015-01-08 2015-01-08 toner Active JP6410611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015001937A JP6410611B2 (en) 2015-01-08 2015-01-08 toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015001937A JP6410611B2 (en) 2015-01-08 2015-01-08 toner

Publications (2)

Publication Number Publication Date
JP2016126257A true JP2016126257A (en) 2016-07-11
JP6410611B2 JP6410611B2 (en) 2018-10-24

Family

ID=56357914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015001937A Active JP6410611B2 (en) 2015-01-08 2015-01-08 toner

Country Status (1)

Country Link
JP (1) JP6410611B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019139231A (en) * 2018-02-14 2019-08-22 キヤノン株式会社 Toner external additive, method for manufacturing the same, and toner

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002091084A (en) * 2000-07-10 2002-03-27 Canon Inc Toner and full-color image forming method
JP2003287917A (en) * 2002-03-28 2003-10-10 Seiko Epson Corp Toner and image forming apparatus
JP2004212740A (en) * 2003-01-06 2004-07-29 Ricoh Co Ltd Toner for forming image, toner container, and image forming method
JP2005024784A (en) * 2003-06-30 2005-01-27 Ricoh Co Ltd Electrostatic charge image developing toner, method for forming image and process cartridge for image forming apparatus
JP2005140952A (en) * 2003-11-06 2005-06-02 Konica Minolta Business Technologies Inc Toner and method for manufacturing toner
JP2006251400A (en) * 2005-03-10 2006-09-21 Fuji Xerox Co Ltd Image forming method and image forming apparatus
JP2007033617A (en) * 2005-07-25 2007-02-08 Fuji Xerox Co Ltd Image forming apparatus
JP2011017913A (en) * 2009-07-09 2011-01-27 Fuji Xerox Co Ltd Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming method, and image forming apparatus
JP2011090168A (en) * 2009-10-23 2011-05-06 Kyocera Mita Corp Toner for developing electrostatic charge image, developer for developing electrostatic charge image and image forming apparatus
JP2012013776A (en) * 2010-06-29 2012-01-19 Nippon Zeon Co Ltd Toner for electrostatic charge image development
JP2013083837A (en) * 2011-10-11 2013-05-09 Kyocera Document Solutions Inc Positively-charged toner
JP2013092748A (en) * 2011-10-26 2013-05-16 Cabot Corp Toner additives comprising composite particles

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002091084A (en) * 2000-07-10 2002-03-27 Canon Inc Toner and full-color image forming method
JP2003287917A (en) * 2002-03-28 2003-10-10 Seiko Epson Corp Toner and image forming apparatus
JP2004212740A (en) * 2003-01-06 2004-07-29 Ricoh Co Ltd Toner for forming image, toner container, and image forming method
JP2005024784A (en) * 2003-06-30 2005-01-27 Ricoh Co Ltd Electrostatic charge image developing toner, method for forming image and process cartridge for image forming apparatus
JP2005140952A (en) * 2003-11-06 2005-06-02 Konica Minolta Business Technologies Inc Toner and method for manufacturing toner
JP2006251400A (en) * 2005-03-10 2006-09-21 Fuji Xerox Co Ltd Image forming method and image forming apparatus
JP2007033617A (en) * 2005-07-25 2007-02-08 Fuji Xerox Co Ltd Image forming apparatus
JP2011017913A (en) * 2009-07-09 2011-01-27 Fuji Xerox Co Ltd Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming method, and image forming apparatus
JP2011090168A (en) * 2009-10-23 2011-05-06 Kyocera Mita Corp Toner for developing electrostatic charge image, developer for developing electrostatic charge image and image forming apparatus
JP2012013776A (en) * 2010-06-29 2012-01-19 Nippon Zeon Co Ltd Toner for electrostatic charge image development
JP2013083837A (en) * 2011-10-11 2013-05-09 Kyocera Document Solutions Inc Positively-charged toner
JP2013092748A (en) * 2011-10-26 2013-05-16 Cabot Corp Toner additives comprising composite particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019139231A (en) * 2018-02-14 2019-08-22 キヤノン株式会社 Toner external additive, method for manufacturing the same, and toner
JP7199990B2 (en) 2018-02-14 2023-01-06 キヤノン株式会社 External additive for toner, method for producing external additive for toner, and toner

Also Published As

Publication number Publication date
JP6410611B2 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
JP4560462B2 (en) toner
JP5025966B2 (en) Method for producing toner for electrophotography
JP3976952B2 (en) Toner production method
JP2014164274A (en) Toner for electrostatic charge image development
JP4857033B2 (en) Method for producing toner for developing electrostatic image
JP6493301B2 (en) Toner for developing electrostatic latent image and method for producing the same
JP2020144329A (en) toner
JP2017134398A (en) Toner and external additive for toner
JP5078059B2 (en) Method for producing toner for developing electrostatic image
JP2008107679A (en) Toner
JP2010282154A (en) Toner and method of manufacturing the same
JP2008197288A (en) Electrophotographic toner, and method for producing the same
JP4283800B2 (en) Toner for developing electrostatic image and method for producing the same
JP6410611B2 (en) toner
JP6350796B2 (en) Full-color image forming device
JP2014035462A (en) Toner and image forming apparatus
EP3422107B1 (en) Method for producing toner for electrophotography
JP5339778B2 (en) Image forming method and fixing method
JP4272081B2 (en) Method for producing toner for electrophotography
JP5911416B2 (en) Toner for electrostatic image development
JP7027821B2 (en) Toner, toner accommodating unit, image forming apparatus, and toner manufacturing method
JP3397596B2 (en) toner
JP4085233B2 (en) Toner production method
JP7327959B2 (en) white toner
WO2023127815A1 (en) Toner for electrostatic image development

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171220

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180822

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180925

R151 Written notification of patent or utility model registration

Ref document number: 6410611

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151