JP2016122114A - 微細構造体及び光学部材 - Google Patents

微細構造体及び光学部材 Download PDF

Info

Publication number
JP2016122114A
JP2016122114A JP2014262126A JP2014262126A JP2016122114A JP 2016122114 A JP2016122114 A JP 2016122114A JP 2014262126 A JP2014262126 A JP 2014262126A JP 2014262126 A JP2014262126 A JP 2014262126A JP 2016122114 A JP2016122114 A JP 2016122114A
Authority
JP
Japan
Prior art keywords
shape forming
forming portion
fine structure
concavo
convex shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014262126A
Other languages
English (en)
Inventor
佳実 大田
Yoshimi Ota
佳実 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2014262126A priority Critical patent/JP2016122114A/ja
Publication of JP2016122114A publication Critical patent/JP2016122114A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

【課題】機械的な強度に優れた微細構造体及び当該微細構造体を有する光学部材を提供する。
【解決手段】基材1の表面に周期的に凹凸形状が形成されてなる微細構造体100であって、凹凸形状の凹部21が形成される周期は、100nm以上1000nm以下であり、基材1の表面側の部分であって凹凸形状が形成されている部分である凹凸形状形成部2は、温度25℃における引張試験で計測される弾性伸び率Lが2.0%以上である材料からなる。
【選択図】図1

Description

本発明は、微細構造体及び当該微細構造体を有する光学部材に関する。
近年、ナノスケールの領域における加工技術(以下、微細加工技術と称する。)が急速に進歩している。そこで、このような微細加工技術によって、光学素子や部材の性能を向上させる提案がなされている。特に、基材の表面にナノスケールで凹凸構造を付与した表面構造体は、反射防止機能、回折などによる光の角度変換や撥水機能など、従来にない高い性能を有することが期待されている。
例えば、照明、ディスプレイ、情報機器に代表される光を利用する機器には、ガラスやプラスチックなどからなる部材が多く用いられている。これら部材に光が入射、或いは出射する際に界面(光学部材の入射面等)で生じる反射光は、効率の低下やノイズの増加など性能低下の一因となっている。光学部材の表面に薄膜を形成し、干渉を利用して反射を低減する方法が知られているが、適用波長域が狭い、斜め方向で入射する光線に対する反射防止効果が低いなどの課題があった。
そこで、例えば、特許文献1には、基材に光の波長よりも小さい周期で周期的な構造を形成することによって、擬似的に基材の屈折率を制御し、基材の反射率を低下させる手法が記載されている。
また、特許文献2には、基材に形成する、光の波長よりも小さい周期を有する周期的な構造(モスアイ構造)の形を制御することによって、基材の反射率を低くする手法が記載されている。
しかし、特許文献1や特許文献2に記載された、基材の表面に形成された微細な構造は、平滑な基材の表面に比べて機械的な強度に劣る。そのため、手で触れたり、布でふいたりすることによって、当該微細な構造が破壊されてしまうという問題がある。
そこで、特許文献3には、当該微細な構造を形成する樹脂として、弾性率のより高い樹脂を用いることによって、当該微細な構造の強度を向上させる手法が記載されている。
また、特許文献4には、基材の表面と、微細な構造との間に、当該微細な構造に加わった力を吸収するための中間層を形成することが記載されている。
特開平11−109103号公報 特許第4398507号 特許第4689718号 国際公開2011/125699号
しかしながら、特許文献3又は特許文献4に記載の技術を用いても、基材上に形成された微細な構造自体の強度が変わるものではないため、基材上に十分な強度を有する微細な構造を形成することができないという問題は依然としてある。
また、特許文献4のように中間層を形成する場合、生産性が低下するという問題がある。
本発明は、以上の課題を鑑みてなされたものであり、機械的な強度に優れた微細構造体及び当該微細構造体を有する光学部材を提供することを目的とする。
本発明に係る微細構造体は、基材の表面に周期的に凹凸形状が形成されてなる微細構造体であって、前記凹凸形状の凹部及び凸部が形成される周期は、100nm以上1000nm以下であり、前記基材の表面側の部分であって前記凹凸形状が形成されている部分である凹凸形状形成部は、温度25℃における引張試験で計測される弾性伸び率Lが2.0%以上である材料からなることを特徴とする。
本発明に係る微細構造体によれば、凹凸形状形成部が温度25℃における引張試験で計測される弾性伸び率Lが2.0%以上である材料からなるため、機械的な強度に優れた微細構造体を提供できる。具体的には、凹凸形状形成部の弾性伸び率Lが2.0%以上であるため、微細構造体に接触する物体の動きに基材の表面に形成された凹凸形状が追従することができ、当該凹凸形状が破壊されてしまうことを防ぐことができる。
また、好ましくは、前記凹凸形状形成部は、光硬化性樹脂、熱硬化性樹脂及び熱可塑性樹脂の何れか一つからなる。これにより、型を用いて光硬化性樹脂、熱硬化性樹脂及び熱可塑性樹脂を成形することによって、簡便に凹凸形状を基材表面に形成することができる。
また、好ましくは、温度25℃、振動周波数1Hzにおいて計測される、前記凹凸形状形成部を形成する材料の損失正接tanδは0.06以上である。これにより、微細構造体に物体が接触することによって発生する応力を微細構造体内部で緩和することができ、微細構造体に接触した物体から受けた力が微細構造体に局所的に加わるのを防ぐことができる。そのため、微細構造体の機械的な強度をより向上することができる。
また、好ましくは、前記凹凸形状形成部は、透明材料からなる。これにより、部材の透明性が要求される分野に用いられる微細構造体を提供できる。
本発明に係る光学部材は、上記記載の微細構造体を有する。
これにより、機械的な強度に優れるとともに、光学性能に優れた光学部材を提供することができる。
機械的な強度に優れた微細構造体及び当該微細構造体を有する光学部材を提供することができる。
本発明の実施の形態にかかる微細構造体を示す斜視図である。 本発明の実施の形態にかかる微細構造体を示す斜視図である。 本発明の実施の形態にかかる微細構造体を示す斜視図である。 引張試験において用いる試験片を示す平面図である。 引張試験の結果を示すグラフである。
以下、図面を参照して本発明の実施の形態について説明する。なお、本発明は、下記の実施の形態に限られるものではない。
本発明にかかる微細構造体は、基材の表面に周期的に凹凸形状が形成されてなる。また、当該凹凸形状の凹部及び凸部が形成される周期は、100nm以上1000nm以下である。また、基材の表面側の部分であって凹凸形状が形成されている部分である凹凸形状形成部は、温度25℃における引張試験で計測される弾性伸び率Lが2.0%以上である材料からなる。以下、本発明にかかる微細構造体の基材、凹凸形状形成部を形成する材料、凹凸形状について、詳細に説明する。
[凹凸形状形成部を形成する材料]
まず、凹凸形状形成部を形成する材料は、温度25℃における引張試験で計測される弾性伸び率Lが2.0%以上であればよく、特に限定されるものではない。凹凸形状形成部を形成する材料として、光硬化性樹脂、熱硬化性樹脂及び熱可塑性樹脂の何れかを選択することにより、型を用いて光硬化性樹脂、熱硬化性樹脂及び熱可塑性樹脂を成形することによって、簡便にナノスケールで凹凸形状を基材表面に形成することができる。
凹部形状形成部を形成する光硬化性樹脂として、ラジカル重合やカチオン重合が可能なモノマー或いはオリゴマーを単独で或いは2種以上組み合わせて用いることによって、前述の弾性伸び率を有する光硬化性樹脂を得ることができる。
また、当該モノマーや当該オリゴマーの含有割合を調整することによって、光硬化性樹脂に耐熱性、表面硬度などを付与することができる。
光硬化性樹脂を形成する成分の具体例としては、脂肪族、脂環族、芳香族系のモノアルコールまたはポリアルコールとアクリル酸またはメタクリル酸との縮合反応で得られるエステル型(メタ)アクリレートが挙げられる。また、他の具体例としては、分子内に2個以上のイソシアネート基を有するイソシアネート化合物とヒドロキシル基またはチオール基を含有する(メタ)アクリレートとのウレタン化反応で得られるウレタンポリ(メタ)アクリレートが挙げられる。また、他の具体例としては、分子内に少なくとも2個のエポキシ基を有する化合物とアクリル酸またはメタクリル酸とのグリシジル基開環反応で得られるエポキシポリ(メタ)アクリレートが挙げられる。また、他の具体例としては、飽和または不飽和多価カルボン酸、多価アルコールおよび(メタ)アクリル酸との縮合反応で得られるポリエステル(メタ)アクリレート等の(メタ)アクリロイル官能性モノマー若しくはオリゴマーが挙げられる。また、他の具体例としては、スチレン、クロロスチレン、ブロモスチレン、ジブロモスチレン、ジビニルベンゼン等のビニル化合物や、ジエチレングリコールビスアリルカーボネート、ジアリルフタレート、ジアリルビフェニレート等の(メタ)アリル化合物が挙げられる。これらの単量体(モノマー)の1種を単独で用いてもよいし、2種以上の単量体を混合して用いてもよい。
凹部形状形成部を形成する熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、メラミン樹脂などが挙げられる。
また、凹部形状形成部を形成する熱可塑性樹脂としては、アクリル樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリアミド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、ABS(アクリロニトリルーブタジエンースチレン共重合)樹脂などが挙げられる。
さらに、凹凸形状形成部を形成する材料に、必要に応じて、滑り剤、離型剤、拡散剤等の微粒子、消泡剤、レベリング剤、帯電防止剤、着色剤等を添加してもよい。例えば、滑り剤を添加することによって、微細構造体の滑り性が向上し、機械的な強度をより高めることができる。
また、凹凸形状形成部は、透明材料からなることが、さらに好ましい。具体的には、当該透明材料として、ポリエチレンテレフタレート(PET)などのポリエステル樹脂、PMMAなどのアクリル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、シクロオレフィンポリマー等の透明性に優れた樹脂フィルムなどを用いることができるが、取扱い性や透明性の面からPETが好適である。
[弾性伸び率L]
上述の通り、凹凸形状形成部の弾性伸び率Lは、温度25℃における引張試験で計測される値が2.0%以上であればよい。弾性伸び率Lの値が高い方が、外力が加えられた場合に、当該外力に対して弾性的に変形することができ、外力が消失した後に外力が加わる前の形状に戻りやすい。また、凹凸形状形成部の弾性伸び率Lは、温度25℃における引張試験で計測される値が2.5%以上であることが望ましい。
[弾性率]
外力による変形を抑制することができるため、凹凸形状形成部の弾性率は高い方が好ましい。具体的には、凹凸形状形成部の弾性率は300MPa以上であることが好ましい。
[tanδ]
温度25℃、振動周波数1Hzにおいて計測される、凹凸形状形成部を形成する材料の損失正接tanδは0.06以上であることが好ましい。損失正接tanδの値が大きいほど応力を緩和することができる。さらに、凹凸形状形成部の損失正接tanδは0.1以上であることが好ましい。
[基材]
凹凸形状が形成される基材は、凹凸形状形成部を形成する材料と同じ材料で形成されてもよく、微細構造体の用途に応じて適宜選択することができる。
また、基材を形成する材料として、例えば、ポリエチレンテレフタレート(PET)などのポリエステル樹脂、PMMAなどのアクリル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、シクロオレフィンポリマー等の透明性に優れた樹脂フィルムなどを用いることができるが、取扱い性や透明性の面からPETが好適に用いられる。
[凹凸形状]
本発明の実施の形態にかかる微細構造体を図1〜図3に示す。本発明の実施の形態にかかる微細構造体は、基材1の表面に周期的に凹凸形状が形成されてなる。また、凹凸形状は、当該凹凸形状の凹部及び凸部が形成される周期が100nm以上1000nm以下であればよい。また、当該微細構造体に求められる撥水性、反射防止性能や、回折格子等の当該微細構造体の用途等に応じて、凹凸形状の凹部又は凸部の形状及び大きさは、適宜決定される。例えば、当該微細構造体に撥水性が求められる場合には、凹凸形状の凹部及び凸部が先端に向かうにつれて細くなることが好ましい。また、当該微細構造体が回折格子として用いられる場合には、凹凸形状が三角プリズムや直角プリズムの形状であることが好ましい。
例えば、図1に示すように、本発明の実施の形態にかかる微細構造体100は、基材1の表面に周期的に凹部21が形成されてなる。ここで、基材1の表面側の部分であって凹部21が形成されている部分を凹凸形状形成部2とする。なお、基材1と凹部形状形成部2とは同じ材料から形成されてもよいし、異なる材料から形成されてもよい。具体的には、基材1と凹凸形状形成部2とが同じ材料から形成される場合、基材1の表面に、直接に、凹部21を周期的に形成してもよいし、基材1の表面に、凹部21が周期的に形成された凹凸形状形成部2を積層してもよい。一方、基材1と凹凸形状形成部2とが異なる材料から形成される場合、基材1の表面に、凹部21が周期的に形成された凹凸形状形成部2を積層してもよいし、基材1の表面に凹凸形状形成部2を形成した後、当該凹凸形状形成部2に対して周期的に凹部21を形成してもよい。
また、図1に示す微細構造体100では、各凹部21は、基材1の表面上における正方格子の格子点の位置に配置されている。なお、図1では、各凹部21が、基材1の表面上における正方格子の格子点の位置に配置される例を挙げたが、基材1の表面に形成される凹部21の配列はこれに限定されるものではない。例えば、各凹部21は、基材1の表面上における三角格子の格子点の位置に配置されていてもよい。この場合、各凹部21が形成される周期Pは、当該三角格子を構成する三角形の高さ方向に沿った長さとなる。各凹部21が形成される位置をこのような位置とすることにより、微細構造体100を反射防止のために用いる場合には、あらゆる偏光方向に対して反射防止性能を有する光学部材を形成することができる。
また、凹部21が形成される周期は、100nm以上1000nm以下であることが好ましい。凹部21が形成される周期が100nmより小さい場合、微細構造の作製が困難であるとともに、隣り合う凹部21を隔てる壁が薄くなるため、微細構造体100の強度が低下してしまう。また、微細構造体100に反射防止性能が要求される場合には、凹部21が形成される周期は入射波長以下であることが望ましい。さらに、凹部21が形成される周期は200nm以下であることが望ましい。
なお、図1では、基材1の表面に円柱形状の凹部21が形成される例を挙げたが、基材1の表面に形成される構造はこれに限定されるものではない。例えば、四角柱等の円柱以外の凹部21が基材1の表面に形成されてもよい。また、ライン状(線状、列状)の凹部21が基材1の表面に形成されてもよい。基材1の表面に形成される凹部21の形状は、製造方法や生産性等に応じて、適切な形状を選択することができる。
また、基材1の表面に周期的な凸部が形成されてもよいが、基材1の表面に形成されるのは凹部21の方が好ましい。基材1の表面に形成する微細構造を凹部21とすることにより、微細構造体100に接触する物体が上から押す力及び当該物体との摩擦によって微細構造体100の表面において横方向に加わる力を凹凸形状形成部2の面全体で受けることができ、当該押す力及び横方向に加わる力によって微細構造が破壊されることを防ぐことができる。
図1に示す微細構造体100では、凹凸形状形成部2の有効屈折率Neffは、凹凸形状形成部2の屈折率Nと空気の屈折率との間の範囲で調節可能であり、(1)式で表すことができる。
Figure 2016122114
ここで、rは、凹凸形状形成部2全体の体積に対する凹凸形状形成部2の凹部21以外の部分の体積の比率である体積率である。
また、Nは、凹凸形状形成部2を形成する材料の屈折率である。
また、空気の屈折率は1である。
換言すれば、凹凸形状形成部2は、疑似的に、空気の屈折率と凹凸形状形成部2を形成する材料の屈折率Nと間の値の凹有効屈折率Neffを有するとみなすことができる。そのため、空気と凹凸形状形成部2との界面における反射光と、凹凸形状形成部2と基材1との界面における反射光とを干渉させることができ、微細構造体100における光の反射を低減することができる。すなわち、反射防止性能を有する微細構造体100を得ることができる。
また、(1)式から分かるように、体積率rが大きいほど、有効屈折率Neffは、凹凸形状形成部2を形成する材料の屈折率Nに近くなる。そのため、凹凸形状形成部2の体積率rを調整することにより、所望する値の有効屈折率Neffを有する微細構造体100を得ることができる。
また、凹凸形状形成部2の高さ(層の厚さ)Hは、それぞれ、50nm以上150nm以下であることが好ましい。凹凸形状形成部2の高さが当該範囲である場合に、高い反射防止効果を得ることができる。
また、図2に示す微細構造体100Aは2層の凹凸形状形成部2A、2Bを備える点のみが実施の形態1にかかる微細構造体100と異なる。そのため、同様の構成については同一の符号を付すとともに、その説明を省略する。
図2に示すように、微細構造体100Aは、基材1の表面に2層の凹凸形状形成部2A、2Bが形成されてなる。なお、基材1の表面に3層以上の凹凸形状形成部2が形成されてもよい。
微細構造体100Aでは、基材1表面に上側から順に、凹凸形状形成部2A、2Bが形成されている。また、凹凸形状形成部2Aの有効屈折率と凹凸形状形成部2Bの有効屈折率とは異なる。
具体的には、凹凸形状形成部2A、2Bの有効屈折率Neffは、凹凸形状形成部2A、2Bの屈折率Nと空気の屈折率との間の範囲で調節可能であるため、上記の(1)式で表すことができる。なお、(1)式において、rは、凹凸形状形成部2A、2B全体の体積に対する凹凸形状形成部2A、2Bの凹部21A、21B以外の部分の体積の比率である体積率であり、Nは、凹凸形状形成部2A、2Bを形成する材料の屈折率である。
よって、凹凸形状形成部2A、2Bを屈折率Nの値が異なる材料により形成することによって、凹凸形状形成部2Aの有効屈折率Neffと凹凸形状形成部2Bの有効屈折率Neffとを異ならせてもよい。また、凹凸形状形成部2Aの体積率rと凹凸形状形成部2Bの体積率rとを異ならせることにより、凹凸形状形成部2Aの有効屈折率Neffと凹凸形状形成部2Bの有効屈折率Neffとを異ならせてもよい。
そして、微細構造体100Aを光学部材として用いる場合、凹凸形状形成部2Aの有効屈折率Neffと凹凸形状形成部2Bの有効屈折率Neffとを異ならせることにより、空気と凹凸形状形成部2Aとの界面における反射光と、凹凸形状形成部2Aと凹凸形状形成部2Bとの界面における反射光と、凹凸形状形成部2Bと基材1との界面における反射光とを干渉させることができ、微細構造体100Aにおける光の反射を低減することができる。
また、(1)式から分かるように、体積率rが大きいほど、有効屈折率Neffは、凹凸形状形成部2A、2Bを形成する材料の屈折率Nに近くなる。そのため、例えば、凹凸形状形成部2A、2B及び基材1が同じ屈折率Nの材料からなる場合、凹凸形状形成部2Aの体積率rよりも凹凸形状形成部2Bの体積率rが大きくなるようにして、有効屈折率Neffが空気側から基材1側に向かうにつれて徐々に変化するようにしてもよい。例えば、図2に示す微細構造体100Aでは、凹凸形状形成部2Aに形成される凹部21Aの体積よりも、凹凸形状形成部2Bに形成される凹部21Bの体積の方を小さくすることによって、凹凸形状形成部2Aの有効屈折率Neffよりも凹凸形状形成部2Bの有効屈折率Neffの方がより基材1の屈折率Nと近い値となるようにしている。これにより、例えば、微細構造体100Aを光学部材として用いる場合、光の反射を低減することができる。
また、凹凸形状形成部2A、2Bの高さ(層の厚さ)は、それぞれ、50nm以上150nm以下であることが好ましい。さらに、凹凸形状形成部2Aの高さは90nm以上120nm以下であり、凹凸形状形成部2Bの高さは70nm以上100nm以下であることが好ましい。凹凸形状形成部2A、2Bの高さが当該範囲である場合に、高い反射防止効果を得ることができる。
次に、図3に示す微細構造体100Bは、2層目の平坦層2Cが凹部を有しない点のみが実施の形態3にかかる微細構造体100Aと異なる。そのため、同様の構成については同一の符号を付すとともに、その説明を省略する。
図3に示す微細構造体100Bは、基材1と凹凸形状形成部2Aとの間に平坦層2Cを有している。なお、基材1の表面に2層以上の凹凸形状形成部2及び平坦層2Cが形成されてもよい。
微細構造体100Bでは、基材1表面に上側から順に、凹凸形状形成部2A、平坦層2Cが形成されている。また、凹凸形状形成部2Aの有効屈折率と平坦層2Cの屈折率とは異なる。
なお、凹凸形状形成部2Aと平坦層2Cとは屈折率が同じ材料から形成されてもよいし、屈折率が異なる材料から形成されてもよい。凹凸形状形成部2Aと平坦層2Cとが屈折率が同じ材料から形成されても、凹凸形状形成部2Aに凹部21Aを形成することによって、凹凸形状形成部2Aの有効屈折率と平坦層2Cの屈折率とを異ならせることができる。
そして、微細構造体100Bを光学部材として用いる場合、凹凸形状形成部2Aの有効屈折率Neffと平坦層2Cの屈折率とを異ならせることにより、空気と凹凸形状形成部2Aとの界面における反射光と、凹凸形状形成部2Aと平坦層2Cとの界面における反射光と、平坦層2Cと基材1との界面における反射光とを干渉させることができ、微細構造体100Bにおける光の反射を低減することができる。
また、平坦層2Cの屈折率は、凹凸形状形成部2Aの有効屈折率と基材1の屈折率との間であることが好ましい。これにより、例えば、微細構造体100Bを光学部材として用いる場合、光の反射を低減することができる。
また、平坦層2Cの高さ(層の厚さ)は、凹凸形状形成部2Aと同様に、50nm以上150nm以下であることが好ましい。さらに、凹凸形状形成部2Aの高さは90nm以上120nm以下であり、平坦層2Cの高さは70nm以上100nm以下であることが好ましい。凹凸形状形成部2A及び平坦層2Cの高さが当該範囲である場合に、高い反射防止効果を得ることができる。
このように、実施の形態に係る微細構造体では、干渉効果により反射防止効果を発現させることができる。反射防止効果を得るための膜厚の最適値は、材料の屈折率、凹凸の構造、光の波長により異なるため、一義的に決められるものではない。しかしながら、適した範囲とした値を外れると十分な干渉効果が得られなくなる。
次に、実施の形態に係る微細構造体100、100A、100Bの製造において、基材1の表面に凹部21、21A、21Bを形成するために使用する型の製造方法について説明する。
当該型の製造方法としては、フォトリソグラフィーや電子線リソグラフィーによってレジストを露光・現像し、レジストをマスクにしてエッチングすることにより当該型を製造する方法、配列させた粒子をマスクにしてエッチングすることにより当該型を製造する方法などが挙げられる。また、アルミの陽極酸化によって作製した穴状(ホール状)の構造を転写し、転写した構造から電気鋳造によって反転形状を得ることによっても、当該型を製造することができる。
また、本発明の実施の形態に係る微細構造体100、100A、100Bの凹凸形状は、スタンパ又は雌金型等を用いて、熱プレス法、紫外線硬化による2P法(Photo-Polymer法)、熱硬化によるキャスト法、射出成型法によって、透明な基材上に形成することができる。
[実施例及び比較例]
<引張試験>
図4に、本発明の実施例1〜5及び比較例1〜5に係る微細構造体を形成する材料の弾性伸び率Lを算出するための引張試験に用いる試験片の形状を示す。
まず、図4に示す形状を有する型を用いてMSフィルムを打ち抜き、打ち抜いたMSフィルムの周囲をシリコーン樹脂(KE1300T、硬化剤CAT1300、信越化学工業株式会社)で覆って当該シリコーン樹脂を硬化させることにより、試験片を作製するための試験片型を作製した。
次に、試験片型に、表1に示す光硬化性樹脂を注入し、高圧水銀ランプで照射エネルギー量3000mJ/cmで光を照射し、硬化させることにより、実施例1〜5及び比較例1〜5に係る微細構造体を形成する材料からなる試験片を作製した。すなわち、当該試験片は、図4に示す平面形状を有する厚さ0.5mm〜1mmの板状部材である。
Figure 2016122114
表1において、1行目には、各実施例又は各比較例において用いた物質の略号を示している。また、2行目から9行目までは、各実施例又は各比較例における物質の配合量(質量部)を示す。
表1に示す配合量(質量部)で各成分を混合し、更に開始剤としてイルガギュア184(チバスペシャリティーケミカルズ株式会社製)1質量部を混合して、実施例1〜5及び比較例1〜5にかかる微細構造体を形成する光硬化性樹脂を調整した。表1に示す略号は、以下の通りである。
「M315」は、イソシアヌル酸EO変性ジ及びトリアクリレート(東亞合成株式会社製 商品名アロニックスM315)である。
「M325」は、1分子当たり1個のカプロラクトンにより変性されたトリスアクリロイルオキシエチルイソシアヌレート(東亞合成株式会社製 商品名アロニックスM325)である。
「M327」は、1分子当たり3個のカプロラクトンにより変性されたトリスアクリロイルオキシエチルイソシアヌレート(東亞合成株式会社製、商品名アロニックスM327)である。
「M408」は、ジメチロールプロパンテトラアクリレート(東亞合成株式会社製 商品名アロニックスM408)である。
「UN9000」は、ポリカーボネート系ウレタン(メタ)アクリレート(根上工業株式会社製 商品名アートレジンUN9000PEP)である。
「AT600」は、フェニルグリシジルエーテルアクリレートトルエンジイソシアネートウレタンプレポリマー、フェニルグリシジルエチルアクリレートトリレンジイソシアナート(共栄化学株式会社製)である。
「HDDA」は、1,6−ヘキサンジオールジアクリレート(大阪有機化学工業製 商品名ビスコート230)である。
また、光硬化性樹脂として、比較例4では、市販の光硬化性樹脂UVX4332(東亞合成株式会社製)、比較例5では、HU223A(新日鐵化学株式会社製)を用いて微細構造体を形成した。
次に、引張試験機(インストロン 5566)を用い、温度25℃、引張速度50mm/minまたは25mm/min、評点間距離約10mm、サンプル数N=3〜5において、作製した試験片の引張試験を行った。図5に、引張試験の結果の一例を示す。なお、図5の縦軸は引張試験において試験片に生じた応力(MPa)を示し、図5の横軸は引張試験における試験片の伸び(%)を示す。また、試験片の伸び(%)は、試験片の全長(図4の左右方向における長さ90nm)に対する試験片が伸びた長さの割合(%)である。
次に、図5に示すような試験結果のグラフから、伸び(%)と応力(MPa)との関係が略比例関係である領域から傾きを算出して弾性率とした。
次いで、当該弾性率を算出するための直線SL1と同じ傾きを有し、且つオフセット量として+0.2%の伸びを有する直線SL2とグラフとの交点と、直線SL1と同じ傾きを有し、且つオフセット量として−0.2%の伸びを有する直線SL3とグラフとの交点とを算出し、両交点の伸び(%)の値の差を弾性伸び率Lとして算出した。算出した弾性伸び率Lを表2に示す。
Figure 2016122114
<粘弾性測定>
次に、実施例1〜5及び比較例1〜5に係る微細構造体を形成する材料の粘弾性を測定した。粘弾性を測定するためのサンプルは、長さ約20mm、幅約5mm、厚み約0.5mmの平面視長方形形状を有する。
具体的には、PETフィルム上にシリコーンテープで当該サンプルを作製するための型を作製した。次いで、この型に、表1に示す光硬化性樹脂を注入し、高圧水銀ランプを用いて、照射エネルギー量3000mJ/cmで光を照射して硬化させた。次いで、粘弾性測定装置(セイコーインスツルメンツ株式会社製 DMS6100)を用いて、引張モード、1Hz、チャック間距離10mm、3℃/minで動的粘弾性測定を行い、当該サンプルの25℃における損失正接(tanδ)の値を求めた。得られた損失正接(tanδ)の値を表2に示す。
<チーズクロス試験>
次に、チーズクロス試験を行って、実施例1〜5及び比較例1〜5に係る微細構造体の機械的強度を調べた。
まず、Siモールドを用いて、PET(ポリエチレンテレフタラート)フィルム上に、表1に示す光硬化性樹脂からなる凹凸形状形成部を成形することにより、実施例1〜5及び比較例1〜5に係る微細構造体を製造した。また、高圧水銀ランプを用いてエネルギー量3000mJ/cmの光を照射することにより、光硬化性樹脂を硬化した。
実施例1〜5及び比較例1〜5に係る微細構造体は、図1に示す微細構造体100と同様の形状を有し、凹部21の直径は150nmであり、凹部21の深さは100nmである。
次に、実施例1〜に5及び比較例1〜5に係る微細構造体の機械的強度を調べるため、以下のチーズクロス試験を行った。チーズクロス試験では、チーズクロス(Mil Spec CCC−c−440製品番号S12905)を摩耗試験機(株式会社東洋精機製作所製)に取り付け、1cmに100gの荷重をかけて、速度50mm/minで100回摺動させた。次いで、分光光度計(株式会社日立ハイテクノロジーズ製U4000)を用いて、可視光の波長範囲である380nm〜780nmで5nm間隔で、チーズクロス試験前と後の微細構造体の反射率を測定した。次いで、当該波長範囲における反射率の平均値である平均反射率を算出した。チーズクロス試験前後の平均反射率の差ΔRを次の(2)式を用いて算出した。算出したΔRの値を表2に示す。
Figure 2016122114
また、チーズクロス試験後の微細構造体を目視で外観を検査した結果を「○」、「△」、「×」で、表2に示す。ここで、「○」は、微細構造体の凹凸形状(パターン)がほぼ全て残存していることを示し、「△」は、微細構造体の凹凸形状(パターン)が一部残存していることを示し、「×」は、微細構造体の凹凸形状が全て消失してしまったことを示す。
なお、表2において、2列目に弾性伸び率L(%)を示し、3列目に損失正接(tanδ)を示し、4列目にΔR(%)を示し、5列目に外観検査の結果を示す。
表2に示すように、実施例1〜5では、弾性伸び率Lが2.0%以上となっており、チーズクロス試験前後の平均反射率の差ΔRも小さく、一部の凹凸形状(パターン)の消失が観察されるものの、その程度は小さかった。さらに、損失正接(tanδ)が大きいほどチーズクロス試験前後の平均反射率の差ΔRが小さい傾向があることが分かる。換言すれば、微細構造体を弾性伸び率Lが2.0%以上の材料から形成することによって、微細構造体の機械的強度を向上できることが分かる。また、微細構造体を損失正接(tanδ)が0.06以上の材料から形成することにより、微細構造体の機械的強度をさらに強くすることができることが分かる。
一方、比較例1〜5では、弾性伸び率Lが2.0%より小さく、チーズクロス試験前後の平均反射率の差ΔRも大きく、凹凸形状(パターン)が試験範囲全てで消失した。換言すれば、比較例1〜5にかかる微細構造体の機械的強度は弱く、チーズクロス試験によって反射防止性能も消失してしまった。
なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、基材の表面に凹部が形成される周期は、例えば、基材の横方向と縦方向とで異なっていてもよい。
1 基材
2、2A、2B 凹凸形状形成部
2C 平坦層
21、21A、21B 凹部
100、100A、100B 微細構造体
P 周期
H 高さ

Claims (5)

  1. 基材の表面に周期的に凹凸形状が形成されてなる微細構造体であって、
    前記凹凸形状の凹部及び凸部が形成される周期は、100nm以上1000nm以下であり、
    前記基材の表面側の部分であって前記凹凸形状が形成されている部分である凹凸形状形成部は、温度25℃における引張試験で計測される弾性伸び率Lが2.0%以上である材料からなることを特徴とする微細構造体。
  2. 前記凹凸形状形成部は、光硬化性樹脂、熱硬化性樹脂及び熱可塑性樹脂の何れか一つからなることを特徴とする、請求項1に記載の微細構造体。
  3. 温度25℃、振動周波数1Hzにおいて計測される、前記凹凸形状形成部を形成する材料の損失正接tanδは0.06以上であることを特徴とする、請求項1又は2に記載の微細構造体。
  4. 前記凹凸形状形成部は、透明材料からなる、請求項1乃至3の何れか一項に記載の微細構造体。
  5. 請求項1乃至4の何れか一項に記載の微細構造体を有する光学部材。
JP2014262126A 2014-12-25 2014-12-25 微細構造体及び光学部材 Pending JP2016122114A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014262126A JP2016122114A (ja) 2014-12-25 2014-12-25 微細構造体及び光学部材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014262126A JP2016122114A (ja) 2014-12-25 2014-12-25 微細構造体及び光学部材

Publications (1)

Publication Number Publication Date
JP2016122114A true JP2016122114A (ja) 2016-07-07

Family

ID=56327380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014262126A Pending JP2016122114A (ja) 2014-12-25 2014-12-25 微細構造体及び光学部材

Country Status (1)

Country Link
JP (1) JP2016122114A (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143503A1 (ja) * 2009-06-12 2010-12-16 シャープ株式会社 反射防止膜、表示装置及び透光部材
JP2011076072A (ja) * 2009-09-02 2011-04-14 Sony Corp 光学素子、およびその製造方法
WO2014163198A1 (ja) * 2013-04-05 2014-10-09 三菱レイヨン株式会社 積層構造体およびその製造方法と、物品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143503A1 (ja) * 2009-06-12 2010-12-16 シャープ株式会社 反射防止膜、表示装置及び透光部材
US20120081793A1 (en) * 2009-06-12 2012-04-05 Tokio Taguchi Antireflection film, display device and light transmissive member
JP2011076072A (ja) * 2009-09-02 2011-04-14 Sony Corp 光学素子、およびその製造方法
US20110128629A1 (en) * 2009-09-02 2011-06-02 Sony Corporation Optical element and method for manufacturing optical element
WO2014163198A1 (ja) * 2013-04-05 2014-10-09 三菱レイヨン株式会社 積層構造体およびその製造方法と、物品

Similar Documents

Publication Publication Date Title
US10591133B2 (en) Diffractive optical element and light irradiation apparatus
TWI469858B (zh) A method for manufacturing a nano-embossed mold, a method for manufacturing the same, a resin molded product having a fine asperity structure on its surface, and a method for manufacturing a wire-grid polarizing plate
JP6038261B2 (ja) 樹脂モールド及びその製造方法
KR101457254B1 (ko) 광경화성 조성물, 미세 패턴 형성체의 제조 방법 및 광학 소자
JP5716868B2 (ja) 積層構造体およびその製造方法と、物品
TWI436405B (zh) And a method for producing a layered product for forming a fine pattern and a fine pattern forming layer
US20170297293A1 (en) Water repellent film and component for vehicle including the film
KR20120106923A (ko) 미세 요철 구조를 표면에 갖는 물품의 제조 방법 및 와이어 그리드형 편광자의 제조 방법
TW201405159A (zh) 積層體、抗反射物品、圖像顯示裝置以及觸控面板
JP2023029913A (ja) 回折光学素子形成用のアクリル系樹脂組成物
US20200190277A1 (en) Transparent composite film with hard coating, method for forming the same and flexible display device including the same
JP2012252149A (ja) 凹凸パターン形成シートおよびその製造方法、光拡散体、光拡散体製造用スタンパならびに光拡散体の製造方法
KR20180095721A (ko) 광학 접착제
JP2016122114A (ja) 微細構造体及び光学部材
KR20150145253A (ko) 적층체
JP7077524B2 (ja) 回折光学素子、及び光照射装置
JP2013142770A (ja) 反射防止フィルム
WO2018230659A1 (ja) 光学的立体造形装置用の容器
JP5858113B2 (ja) 凹凸パターン形成シート、光拡散体、光拡散体製造用スタンパの原版、光拡散体製造用スタンパ
TW201901260A (zh) 光學片及背光單元
JP2015074200A (ja) 光透過性意匠部材および物品
KR20160064369A (ko) 광학시트 및 이를 포함하는 광학표시장치
KR20160072946A (ko) 복합광학필름 및 이를 포함하는 디스플레이 장치
JP2013033136A (ja) 微細凹凸構造体、およびこれを有する反射防止物品

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190604