JP2016118228A - Wave-form holder and rivet caulking method - Google Patents

Wave-form holder and rivet caulking method Download PDF

Info

Publication number
JP2016118228A
JP2016118228A JP2014257274A JP2014257274A JP2016118228A JP 2016118228 A JP2016118228 A JP 2016118228A JP 2014257274 A JP2014257274 A JP 2014257274A JP 2014257274 A JP2014257274 A JP 2014257274A JP 2016118228 A JP2016118228 A JP 2016118228A
Authority
JP
Japan
Prior art keywords
annular
rivet
hollow
shaft
hollow portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014257274A
Other languages
Japanese (ja)
Inventor
聡 宇都宮
Satoshi Utsunomiya
聡 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2014257274A priority Critical patent/JP2016118228A/en
Publication of JP2016118228A publication Critical patent/JP2016118228A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve resistance to the breakage of a holder, by suppressing tensile stress remaining near hole inner peripheries of annular components when the two annular components are joined by a rivet.SOLUTION: As a rivet 10, a hollow rivet having a hollow portion 13 at a shaft part caulked to an annular component 5 is adopted. When being caulked by a jig 20, the deformation resistance of the hollow portion 13 is small, so that force acting on a shaft part positioned in a hole 8 is suppressed.SELECTED DRAWING: Figure 1

Description

この発明は、波形保持器に関し、特に、2個の波形の環状部品をリベットによって接合することに関する。   The present invention relates to a corrugated cage, and more particularly to joining two corrugated annular parts by rivets.

従来、鋼板等の金属板から形成された2個の波形の環状部品をリベットによって接合することにより、所定数のポケット部を有する波形保持器が製造されている。従来、リベットとして、中実軸を有する成形リベットが採用されている(例えば特許文献1)。   Conventionally, a corrugated cage having a predetermined number of pocket portions is manufactured by joining two corrugated annular parts formed of a metal plate such as a steel plate with rivets. Conventionally, as a rivet, a molded rivet having a solid shaft is employed (for example, Patent Document 1).

特開2008−303897号公報(特に図4)Japanese Patent Laying-Open No. 2008-303897 (particularly FIG. 4)

図10に示すように、リベット100の中実軸101のうち、環状部品110に形成された穴111から突き出る軸部分102が、加締め治具120を用いて所定形状で環状部品110に加締められ、これにより、2個の環状部品110,110が接合される。   As shown in FIG. 10, of the solid shaft 101 of the rivet 100, the shaft portion 102 protruding from the hole 111 formed in the annular component 110 is caulked to the annular component 110 with a predetermined shape using a caulking jig 120. As a result, the two annular parts 110, 110 are joined.

この加締め工程の際、中実軸101のうち、穴111内に位置する軸部分103が、穴111の穴径以上に膨らみ、図11に示すように、環状部品110の穴内周112を押し広げる。このため、加締め後も、環状部品110の穴内周112付近に引っ張り応力が残留する。   During this caulking process, the shaft portion 103 located in the hole 111 of the solid shaft 101 swells beyond the hole diameter of the hole 111 and pushes the hole inner periphery 112 of the annular component 110 as shown in FIG. spread. For this reason, tensile stress remains in the vicinity of the hole inner periphery 112 of the annular component 110 even after caulking.

しかしながら、ミスアライメント等による玉の公転速度の遅れ進みが生じて玉がポケット部に衝突した場合の衝撃力や、波形保持器が高速回転する際の遠心力が、波形保持器に強い力として作用する。前述のように穴内周付近に残留する引っ張り応力は、波形保持器に強い力が作用するアプリケーションにおいて、保持器破損を誘発する可能性がある。   However, the impact force when the ball collides with the pocket due to the delayed revolving speed of the ball due to misalignment or the centrifugal force when the waveform holder rotates at high speed acts as a strong force on the waveform holder. To do. As described above, the tensile stress remaining in the vicinity of the inner periphery of the hole may induce cage breakage in an application in which a strong force acts on the corrugated cage.

図10に示す穴111の穴径を拡大すれば、前述の引っ張り応力を緩和することは可能であるが、リベット100の自由度が増すため、軸部分102を加締める際にリベット100が不安定になる。そうすると、加締め不足や異常変形等の不良が頻発することになるので、穴111の穴径拡大は現実的でない。   If the hole diameter of the hole 111 shown in FIG. 10 is increased, the above-described tensile stress can be reduced. However, since the degree of freedom of the rivet 100 is increased, the rivet 100 is unstable when the shaft portion 102 is caulked. become. In this case, defects such as insufficient crimping and abnormal deformation frequently occur, so that the hole diameter of the hole 111 is not realistic.

そこで、この発明が解決しようとする課題は、リベットで2個の環状部品を接合する際に環状部品の穴内周付近に残留する引っ張り応力を抑えて、保持器破損に対する耐力向上を図ることである。   Therefore, the problem to be solved by the present invention is to suppress the tensile stress remaining in the vicinity of the inner periphery of the hole of the annular part when joining the two annular parts with rivets, and to improve the proof strength against breakage of the cage. .

上記の課題を達成する第1の手段は、2個の波形の環状部品がリベットによって接合される波形保持器において、前記リベットが、前記環状部品に加締める軸部分に中空部を有する中空リベットからなる構成を採用したものである。   A first means for achieving the above object is a corrugated cage in which two corrugated annular parts are joined by a rivet, wherein the rivet is a hollow rivet having a hollow portion in a shaft portion to be crimped to the annular part. Is adopted.

この第1の手段によれば、リベットの中空部を環状部品に加締めることになる。中空部を加締める場合の変形抵抗は、中実軸を加締める場合と比して小さくなる。このため、環状部品の穴内に位置するリベットの軸部分に作用する力が緩和され、この軸部分の拡径変形が抑えられる。   According to this first means, the hollow portion of the rivet is caulked to the annular part. The deformation resistance when caulking the hollow portion is smaller than when caulking the solid shaft. For this reason, the force acting on the shaft portion of the rivet located in the hole of the annular part is alleviated, and the diameter expansion deformation of the shaft portion is suppressed.

好ましくは、前記中空部の周方向複数個所に軸方向のスリットが形成されているとよい。   Preferably, axial slits are formed at a plurality of locations in the circumferential direction of the hollow portion.

このようにすると、中空部が複数の断片に分かれて放射状に変形するため、全周に亘って変形する場合と比して、加締め加工の際の変形抵抗をより小さくすることができる。   If it does in this way, since a hollow part will be divided into a some piece and deform | transformed radially, the deformation | transformation resistance at the time of a crimping process can be made smaller compared with the case where it deform | transforms over a perimeter.

上記の課題を達成する第2の手段は、2個の波形の環状部品がリベットによって接合される波形保持器において、前記リベットのうち、前記環状部品に加締める軸部分の外径が、当該環状部品の穴内に位置する軸部分の最大外径よりも小径に設けられている構成を採用したものである。   According to a second means for achieving the above object, in the corrugated cage in which two corrugated annular parts are joined by a rivet, an outer diameter of a shaft portion of the rivet that is caulked to the annular part has an annular shape. A configuration is adopted in which the diameter is smaller than the maximum outer diameter of the shaft portion located in the hole of the component.

上記第2の手段によれば、リベットのうち、環状部品の穴内に位置する軸部分の最大外径よりも小径な軸部分を加締めることになる。当該小径な軸部分を加締める場合の変形抵抗は、当該最大外径と同径な箇所を含んだ軸部分を加締める場合と比して小さくなる。このため、当該穴内に位置する軸部分に作用する力が緩和され、この軸部分の拡径変形が抑えられる。   According to the second means, the shaft portion having a smaller diameter than the maximum outer diameter of the shaft portion located in the hole of the annular part in the rivet is caulked. The deformation resistance when caulking the small-diameter shaft portion is smaller than when caulking the shaft portion including a portion having the same diameter as the maximum outer diameter. For this reason, the force which acts on the axial part located in the said hole is relieved, and the diameter expansion deformation | transformation of this axial part is suppressed.

前記中空部を加締め治具を用いて環状部品に加締めるリベット加締め方法として、例えば、前記中空部に嵌合可能な突出部が設けられた治具を用い、前記治具が、前記突出部と前記中空部の嵌合によって径方向に案内されながら当該中空部を前記環状部品に加締める方法を採用することができる。   As a rivet caulking method for caulking the hollow part to an annular part using a caulking jig, for example, a jig provided with a protruding part that can be fitted to the hollow part is used, and the jig is A method of caulking the hollow part to the annular part while being guided in the radial direction by fitting the part and the hollow part can be employed.

また、別のリベット加締め方法として、前記中空部を受ける環状部が設けられた治具を用い、前記治具が、前記環状部を前記中空部に押し付けるように前記リベットの軸の中心線に対して揺動することにより、当該中空部を前記環状部品に加締める方法を採用することもできる。   As another rivet caulking method, a jig provided with an annular portion for receiving the hollow portion is used, and the jig is placed on the center line of the rivet shaft so as to press the annular portion against the hollow portion. It is also possible to employ a method of caulking the hollow part to the annular part by swinging against the annular part.

このようなリベット加締め方法によれば、中空部を周上の一部分ずつ変形させていくことができ、中空部全体を同時的に加締める場合と比して、中空部の変形抵抗をより小さくすることが可能となる。   According to such a rivet caulking method, the hollow portion can be deformed part by part on the circumference, and the deformation resistance of the hollow portion can be made smaller than when the entire hollow portion is caulked simultaneously. It becomes possible to do.

上述のように、上記第1の手段又は第2の手段に係る発明は、リベットで2個の環状部品を接合する際に、環状部品の穴内に位置する軸部分の拡径変形を抑えられるので、その穴内周付近に残留する引っ張り応力を抑えて、保持器破損に対する耐力向上を図ることができる。   As described above, the invention according to the first means or the second means can suppress the expansion deformation of the shaft portion located in the hole of the annular part when joining the two annular parts with the rivet. The tensile stress remaining in the vicinity of the inner periphery of the hole can be suppressed, and the yield strength against the cage breakage can be improved.

この発明の第1実施形態に係る波形保持器においてリベットを加締める直前の状態を示す部分断面図The fragmentary sectional view which shows the state just before crimping a rivet in the waveform holder which concerns on 1st Embodiment of this invention. 図1の状態からリベットを加締め終えた様子を示す部分断面図FIG. 1 is a partial sectional view showing a state where rivets are crimped from the state of FIG. 第1実施形態の波形保持器を玉軸受に組み込んだ状態を示す断面図Sectional drawing which shows the state which incorporated the waveform holder of 1st Embodiment in the ball bearing 第1実施形態の環状部品の外観を保持器中心軸に沿った方向から示す部分側面図The partial side view which shows the external appearance of the cyclic | annular component of 1st Embodiment from the direction along the cage central axis 第2実施形態のリベットを加締める様子を示す部分断面図The fragmentary sectional view which shows a mode that the rivet of 2nd Embodiment is caulked. 第3実施形態のリベットを加締める直前の状態で中空部の外観をリベット軸方向から示す部分平面図Partial top view which shows the external appearance of a hollow part from a rivet axial direction in the state just before crimping the rivet of 3rd Embodiment. 図6の状態からリベットを加締め終えた様子を示す部分平面図The partial top view which shows a mode that crimping of the rivet was finished from the state of FIG. 第4実施形態のリベットを加締める直前の状態を示す部分断面図Partial sectional view showing a state immediately before caulking the rivet of the fourth embodiment 図8の状態からリベットを加締め終えた様子を示す部分断面図FIG. 8 is a partial cross-sectional view showing a state where rivets have been crimped from the state of FIG. 従来例のリベットを加締める直前の状態を示す部分断面図Partial sectional view showing a state immediately before caulking a conventional rivet 図10の状態からリベットを加締め終えた様子を示す部分断面図FIG. 10 is a partial sectional view showing a state where rivets have been crimped from the state of FIG.

この発明の一例としての第1実施形態を添付図面に基づいて説明する。図3に示すように、第1実施形態の波形保持器1は、玉軸受に適用されるものであって、内輪2と、外輪3との間に組み込まれた所定数の玉4の周方向間隔を保持する。   1st Embodiment as an example of this invention is described based on an accompanying drawing. As shown in FIG. 3, the corrugated cage 1 of the first embodiment is applied to a ball bearing, and the circumferential direction of a predetermined number of balls 4 incorporated between the inner ring 2 and the outer ring 3. Hold the interval.

この波形保持器1は、2個の波形の環状部品5を接合することによって製造される。   The corrugated cage 1 is manufactured by joining two corrugated annular parts 5.

環状部品5は、金属板から形成されている。環状部品5の素材として一般的なものは、鋼板である。   The annular component 5 is formed from a metal plate. A common material for the annular component 5 is a steel plate.

図4に示すように、環状部品5は、周方向に一定間隔で形成された所定数の湾曲部6と、周方向に隣り合う湾曲部6,6間に亘る平坦板部7とを有する環状体からなる。   As shown in FIG. 4, the annular component 5 has an annular shape having a predetermined number of curved portions 6 formed at regular intervals in the circumferential direction and a flat plate portion 7 extending between the curved portions 6 and 6 adjacent in the circumferential direction. Consists of the body.

図3に示すように、向き合わせた同形の環状部品5,5の湾曲部6,6同士によって、玉4を収めるポケット部が形成される。平坦板部7は、向き合わせた環状部品5,5同士が重なる接合箇所となる。これら環状部品5,5は、リベット10によって接合されている。各平坦板部7には、リベット10の軸を通すための穴8が形成されている。以下、軸の中心線に沿った方向のことを単に「軸方向」と呼び、当該中心線に直角な方向のことを単に「径方向」と呼ぶ。   As shown in FIG. 3, a pocket portion for receiving the ball 4 is formed by the curved portions 6 and 6 of the annular components 5 and 5 having the same shape facing each other. The flat plate portion 7 becomes a joint portion where the annular parts 5 and 5 facing each other overlap each other. These annular parts 5 and 5 are joined by a rivet 10. Each flat plate portion 7 is formed with a hole 8 through which the shaft of the rivet 10 passes. Hereinafter, the direction along the center line of the shaft is simply referred to as “axial direction”, and the direction perpendicular to the center line is simply referred to as “radial direction”.

図1に環状部品5,5を接合する前の状態を示すように、リベット10は、穴8に通す軸11と、穴8の穴径よりも大きな外径の頭12とで構成され、環状部品5に加締める軸部分に中空部13を有する中空リベットからなる。   As shown in FIG. 1 before the annular parts 5 and 5 are joined, the rivet 10 is composed of a shaft 11 passing through the hole 8 and a head 12 having an outer diameter larger than the hole diameter of the hole 8. It consists of a hollow rivet having a hollow portion 13 at the shaft portion that is crimped onto the component 5.

軸11のうち、穴8内に位置する軸部分は、円筒面状の外周面を有する中実軸14になっている。中実軸14の外径は、加締め不足や異常変形等の不良発生を防止するため、穴8に対応の一般的な寸法になっている。   The shaft portion located in the hole 8 of the shaft 11 is a solid shaft 14 having a cylindrical outer peripheral surface. The outer diameter of the solid shaft 14 is a general dimension corresponding to the hole 8 in order to prevent defects such as insufficient caulking and abnormal deformation.

軸11のうち、環状部品5に加締める軸部分は、穴8から突き出る。中空部13は、軸11の中心部に中空穴を規定する。図示の中空部13は、穴8内に位置する中実軸14の外周面と同心同径の円筒面状に形成された外周面15と、この外周面15と同心の内周面16とを有する。この内周面16は、軸11の先端から連なる円筒面部と、この円筒面部から縮径する円錐面部とで構成されている。従い、中空部13は、全周に亘って均等な断面形状を有し、全周に亘って図2に示す頭形状に塑性変形させて環状部品5に加締めることが可能な部位となっている。   A portion of the shaft 11 that is caulked to the annular component 5 protrudes from the hole 8. The hollow portion 13 defines a hollow hole in the center portion of the shaft 11. The illustrated hollow portion 13 includes an outer peripheral surface 15 formed in a cylindrical surface concentric with the outer peripheral surface of the solid shaft 14 positioned in the hole 8, and an inner peripheral surface 16 concentric with the outer peripheral surface 15. Have. The inner peripheral surface 16 is composed of a cylindrical surface portion continuous from the tip of the shaft 11 and a conical surface portion whose diameter is reduced from the cylindrical surface portion. Accordingly, the hollow portion 13 has a uniform cross-sectional shape over the entire circumference, and is a portion that can be plastically deformed into the head shape shown in FIG. Yes.

図1に示すように、加締め工程の実施は、軸11を環状部品5,5の穴8,8に通して頭12を一方の環状部品5の平坦板部7に付け、かつ中空部13が他方の環状部品5の穴8から突き出る状態で行う。この状態のまま任意の治具で中空部13を押圧することによって、中空部13を環状部品5に加締める。   As shown in FIG. 1, the caulking process is performed by passing the shaft 11 through the holes 8 and 8 of the annular parts 5 and 5, attaching the head 12 to the flat plate part 7 of the one annular part 5, and the hollow part 13. In a state protruding from the hole 8 of the other annular part 5. In this state, the hollow portion 13 is crimped to the annular component 5 by pressing the hollow portion 13 with an arbitrary jig.

例えば、中空部13に嵌合可能な突出部21が設けられた治具20を用いることができる。突出部21は、中空部13の内周面16の円筒面部と同径の嵌合面と、この嵌合面よりも小径な隅R面とを有する。また、治具20は、突出部21の周囲に形成された環状溝部22を有する。環状溝部22は、溝横断面視で円弧状の溝内面になっている。その円弧状の片側は、突出部21の嵌合面から次第に拡径するように連続している。   For example, the jig | tool 20 provided with the protrusion part 21 which can be fitted in the hollow part 13 can be used. The protrusion 21 has a fitting surface having the same diameter as the cylindrical surface portion of the inner peripheral surface 16 of the hollow portion 13 and a corner R surface having a smaller diameter than the fitting surface. The jig 20 has an annular groove portion 22 formed around the protruding portion 21. The annular groove portion 22 is an arc-shaped groove inner surface in the groove cross-sectional view. One side of the arc shape is continuous so that the diameter gradually increases from the fitting surface of the protrusion 21.

図1に示す位置の治具20を軸方向に動かして突出部21の嵌合面を中空部13の内周面16の円筒面部に嵌合するように打ち込むと、治具20は、突出部21と中空部13の嵌合によって径方向に案内されながら中空部13を環状部品5の平坦板部7に加締める。すなわち、治具20が径方向に案内されながら軸方向に進む間に、環状溝部22が、中空部13を穴8よりも大径で環状部品5の穴8の内周付近に密着させる頭形状に成形する。このとき、図2に示すように、中空部13は、環状溝部22の溝内面形状に沿って巻き込まれるように変形し、頭12と協働して2個の環状部品5,5の平坦板部7,7同士を接合する。   When the jig 20 at the position shown in FIG. 1 is moved in the axial direction to drive the fitting surface of the protruding portion 21 into the cylindrical surface portion of the inner peripheral surface 16 of the hollow portion 13, the jig 20 The hollow portion 13 is caulked to the flat plate portion 7 of the annular component 5 while being guided in the radial direction by the fitting of 21 and the hollow portion 13. That is, while the jig 20 is guided in the radial direction, the annular groove 22 has a head shape in which the hollow portion 13 has a diameter larger than that of the hole 8 and closely contacts the inner periphery of the hole 8 of the annular component 5. To form. At this time, as shown in FIG. 2, the hollow portion 13 is deformed so as to be wound along the groove inner surface shape of the annular groove portion 22, and in cooperation with the head 12, the flat plate of the two annular components 5, 5. The parts 7 and 7 are joined together.

波形保持器1は、上述のようなものであり、薄い円筒状の中空部13のみを環状部品5に加締めることになる。この際、中空部13の変形抵抗は、中実軸を加締める場合と比して小さくなる。このため、治具20を中空部13に打ち込む間に、穴8内に位置する中実軸14等の軸部分に作用する力が緩和され、この軸部分の拡径変形が抑えられる。したがって、波形保持器1は、平坦板部7の穴8の内周付近に残留する引っ張り応力を抑えて、保持器破損に対する耐力向上を図ることができる。   The waveform holder 1 is as described above, and only the thin cylindrical hollow portion 13 is caulked to the annular component 5. At this time, the deformation resistance of the hollow portion 13 is smaller than when the solid shaft is caulked. For this reason, while driving the jig 20 into the hollow portion 13, the force acting on the shaft portion such as the solid shaft 14 located in the hole 8 is alleviated, and the diameter-expanding deformation of the shaft portion is suppressed. Therefore, the corrugated cage 1 can suppress the tensile stress remaining in the vicinity of the inner periphery of the hole 8 of the flat plate portion 7 and can improve the yield strength against the breakage of the cage.

なお、中空部は、リベットのうち、少なくとも加締める軸部分にあればよく、例えば、軸全体を中空部にしてもよい。   In addition, a hollow part should just be in the shaft part to crimp at least among rivets, for example, you may make the whole shaft into a hollow part.

また、図2に示すリベット加締め方法のように、中空部13の全体を同時的に加締める必要性はなく、中空部13を周方向に一部ずつ加締めるようにしてもよい。この一例としての第2実施形態を図5に示す。なお、以下では、第1実施形態との相違点を述べるに留める。   Further, unlike the rivet caulking method shown in FIG. 2, it is not necessary to caulk the entire hollow portion 13 simultaneously, and the hollow portion 13 may be caulked part by part in the circumferential direction. FIG. 5 shows a second embodiment as an example of this. Hereinafter, only differences from the first embodiment will be described.

図5に示すように、第2実施形態の軸30は、中空部31の内周面に連なる半球面状の穴底面32を有する。中空部31の加締め工程では、軸方向に突出した支点軸41と、中空部31を受ける環状部42とが設けられた治具40を用いることができる。支点軸41の先端面は、半球状になっている。穴底面32の曲率は、支点軸41の先端面よりも少し小さくなっている。支点軸41と、中空部31の内周面との間には、隙間が設定されている。環状部42は、支点軸41の周囲に形成された円周溝部になっており、その溝横断面視で円弧状の溝内面を有する。これら曲率差、隙間、及び環状部の溝形状の設定により、治具40は、支点軸41の先端面を穴底面32に突き当てた状態で、環状部42を中空部31に押し付けるように軸30の中心線CLに対して揺動することが可能となっている。   As shown in FIG. 5, the shaft 30 of the second embodiment has a semispherical hole bottom surface 32 that is continuous with the inner peripheral surface of the hollow portion 31. In the caulking process of the hollow portion 31, a jig 40 provided with a fulcrum shaft 41 protruding in the axial direction and an annular portion 42 that receives the hollow portion 31 can be used. The tip surface of the fulcrum shaft 41 is hemispherical. The curvature of the hole bottom surface 32 is slightly smaller than the tip surface of the fulcrum shaft 41. A gap is set between the fulcrum shaft 41 and the inner peripheral surface of the hollow portion 31. The annular portion 42 is a circumferential groove portion formed around the fulcrum shaft 41 and has an arc-shaped groove inner surface in a cross-sectional view of the groove. By setting the difference in curvature, the gap, and the groove shape of the annular portion, the jig 40 is configured to press the annular portion 42 against the hollow portion 31 in a state where the tip surface of the fulcrum shaft 41 abuts against the hole bottom surface 32. It is possible to swing about 30 center lines CL.

治具40は、前述の揺動により、中空部31を環状部品5に加締める。すなわち、環状部42が、治具40の傾いた方へ中空部30の周方向一部分を倒しながら湾曲状に塑性変形させて環状部品5の平坦板部7に密着させる。治具40が支点軸41を中心として周方向に回転すると、環状部42が中空部31を倒す箇所が変化する。治具40は、中空部31に対して1周以上することにより、最終的に、中空部31を全周に亘って環状部品5に加締める。例えば、治具40の揺動態様として歳差運動を採用することにより、中空部31を倒す箇所を連続的に周方向に変化させるようにしてもよい。   The jig 40 crimps the hollow portion 31 to the annular component 5 by the above-described swinging. That is, the annular portion 42 is plastically deformed in a curved shape while tilting a part in the circumferential direction of the hollow portion 30 toward the inclined side of the jig 40 and is brought into close contact with the flat plate portion 7 of the annular component 5. When the jig 40 rotates in the circumferential direction around the fulcrum shaft 41, the location where the annular portion 42 tilts the hollow portion 31 changes. The jig 40 finally crimps the hollow part 31 to the annular part 5 over the entire circumference by making one or more rounds with respect to the hollow part 31. For example, by adopting precession as the swinging mode of the jig 40, the place where the hollow portion 31 is tilted may be continuously changed in the circumferential direction.

このように、第2実施形態で採用されたリベット加締め方法は、中空部31を周上の一部分ずつ変形させていくため、中空部の全体を同時的に加締める第1実施形態のリベット加締め方法と比して、中空部31の変形抵抗をより小さくすることが可能となる。   As described above, the rivet caulking method employed in the second embodiment deforms the hollow portion 31 part by part on the circumference, so that the entire hollow portion is caulked simultaneously. Compared with the fastening method, the deformation resistance of the hollow portion 31 can be further reduced.

第3実施形態を図6に示す。第3実施形態は、中空部50の周方向複数個所に軸方向のスリット51が形成されている点でのみ第1実施形態と相違している。   A third embodiment is shown in FIG. The third embodiment is different from the first embodiment only in that axial slits 51 are formed at a plurality of locations in the circumferential direction of the hollow portion 50.

スリット51の数は、2以上の任意の数に設定すればよく、図示例のスリット数は4に設定される。スリット51の配置間隔は、中空部50の各断片52間で均等な加締めを行うため、周方向等配に設定することが好ましい。   The number of slits 51 may be set to an arbitrary number of 2 or more, and the number of slits in the illustrated example is set to 4. The arrangement interval of the slits 51 is preferably set to be equal in the circumferential direction in order to perform uniform caulking between the pieces 52 of the hollow portion 50.

中空部50も、第1実施形態と同様なリベット加締め方法によって環状部品5に加締めることができる。この際、図7に示すように、複数の断片52が分かれて放射状に塑性変形させられる。したがって、第3実施形態は、第1実施形態のように円筒状の中空部を全周変形させる場合と比して、中空部50の変形抵抗をより小さくすることができる。   The hollow portion 50 can also be crimped to the annular component 5 by the same rivet crimping method as in the first embodiment. At this time, as shown in FIG. 7, the plurality of pieces 52 are separated and plastically deformed radially. Therefore, in the third embodiment, the deformation resistance of the hollow portion 50 can be further reduced as compared to the case where the cylindrical hollow portion is deformed all around as in the first embodiment.

第4実施形態を図8に示す。第4実施形態は、リベット60の軸61のうち、環状部品5に加締める軸部分62の外径が、環状部品5の穴8内に位置する軸部分63の最大外径D1よりも小径に設けられている点で第1実施形態と相違している。軸部分62も中実軸になっている。軸部分62の外周面は、外径D2の円筒面部と、外径D2から外径D3に縮径する先端面部とで構成されている。外径D2からD3への縮径化は、軸61を先端から潰れ易くするためのものである。最大外径D1>外径D2,D3であり、軸部分62の全体で外径が最大外径D1よりも小径になっている。   A fourth embodiment is shown in FIG. In the fourth embodiment, of the shaft 61 of the rivet 60, the outer diameter of the shaft portion 62 that is crimped to the annular component 5 is smaller than the maximum outer diameter D1 of the shaft portion 63 located in the hole 8 of the annular component 5. It is different from the first embodiment in that it is provided. The shaft portion 62 is also a solid shaft. The outer peripheral surface of the shaft portion 62 includes a cylindrical surface portion having an outer diameter D2 and a tip surface portion that is reduced in diameter from the outer diameter D2 to the outer diameter D3. The diameter reduction from the outer diameter D2 to D3 is for making the shaft 61 easily crushed from the tip. The maximum outer diameter D1> the outer diameters D2 and D3, and the outer diameter of the entire shaft portion 62 is smaller than the maximum outer diameter D1.

皿状凹部71が設けられた治具70を用い、図9に示すように、軸部分62を頭状に塑性変形させて環状部品5に加締めることが可能である。この際、図8に示すように、軸部分63の最大外径D1よりも小径な軸部分62の変形抵抗は、最大外径D1と同径な箇所を含んだ軸部分を加締める場合(図10、図11の従来例を参照。)と比して小さくなる。このため、図9の状態になるまでに軸部分63に作用する力が緩和され、この軸部分63の拡径変形が抑えられる。したがって、第4実施形態は、平坦板部7の穴8の内周付近に残留する引っ張り応力を抑えて、保持器破損に対する耐力向上を図ることができる。   Using the jig 70 provided with the dish-shaped recess 71, as shown in FIG. 9, the shaft portion 62 can be plastically deformed in a head shape and crimped to the annular component 5. At this time, as shown in FIG. 8, when the deformation resistance of the shaft portion 62 smaller than the maximum outer diameter D1 of the shaft portion 63 is caulked, the shaft portion including a portion having the same diameter as the maximum outer diameter D1 (FIG. 10 and the conventional example of FIG. 11). Therefore, the force acting on the shaft portion 63 is relaxed until the state of FIG. 9 is reached, and the diameter-expanding deformation of the shaft portion 63 is suppressed. Therefore, the fourth embodiment can suppress the tensile stress remaining in the vicinity of the inner periphery of the hole 8 of the flat plate portion 7 and can improve the resistance to breakage of the cage.

なお、リベット60による環状部品5,5同士の接合強度を確保するには、頭形状に加締められた軸部分62に十分な径が必要であるが、図8に示す軸部分62の軸方向長さ設定によって軸部分62の体積を適切に設定することにより、十分な径の頭状に成形して接合強度を確保することができる。   In addition, in order to ensure the joining strength of the annular parts 5 and 5 by the rivet 60, a sufficient diameter is required for the shaft portion 62 crimped to the head shape, but the axial direction of the shaft portion 62 shown in FIG. By appropriately setting the volume of the shaft portion 62 by setting the length, it is possible to secure the bonding strength by forming the head portion with a sufficient diameter.

この発明の技術的範囲は、上述の各実施形態に限定されず、特許請求の範囲の記載に基づく技術的思想の範囲内での全ての変更を含むものである。   The technical scope of the present invention is not limited to the above-described embodiments, and includes all modifications within the scope of the technical idea based on the description of the scope of claims.

1 波形保持器
2 内輪
3 外輪
4 玉
5 環状部品
7 平坦板部
8 穴
10、60 リベット
11、30、61 軸
13、31、50 中空部
20、40、70 治具
21 突出部
22 環状溝部
41 支点軸
42 環状部
51 スリット
52 断片
62 加締める軸部分
63 穴内に位置する軸部分
D1 最大外径
CL 中心線
DESCRIPTION OF SYMBOLS 1 Corrugated cage 2 Inner ring 3 Outer ring 4 Ball 5 Annular part 7 Flat plate part 8 Hole 10, 60 Rivet 11, 30, 61 Shaft 13, 31, 50 Hollow part 20, 40, 70 Jig 21 Projection part 22 Annular groove part 41 Fulcrum shaft 42 annular portion 51 slit 52 fragment 62 shaft portion 63 to be crimped shaft portion D1 located in the hole D1 maximum outer diameter CL center line

Claims (5)

2個の波形の環状部品がリベットによって接合される波形保持器において、
前記リベットが、前記環状部品に加締める軸部分に中空部を有する中空リベットからなることを特徴とする波形保持器。
In a corrugated cage in which two corrugated annular parts are joined by rivets,
The corrugated cage, wherein the rivet comprises a hollow rivet having a hollow portion in a shaft portion for crimping the annular part.
前記中空部の周方向複数個所に軸方向のスリットが形成されている請求項1に記載の波形保持器。   The waveform holder according to claim 1, wherein axial slits are formed at a plurality of locations in the circumferential direction of the hollow portion. 2個の波形の環状部品がリベットによって接合される波形保持器において、
前記リベットのうち、前記環状部品に加締める軸部分の外径が、当該環状部品の穴内に位置する軸部分の最大外径よりも小径に設けられていることを特徴とする波形保持器。
In a corrugated cage in which two corrugated annular parts are joined by rivets,
The waveform holder according to claim 1, wherein an outer diameter of a shaft portion crimped to the annular part of the rivet is provided smaller than a maximum outer diameter of a shaft part located in a hole of the annular part.
請求項1又は2に記載の前記中空部に嵌合可能な突出部が設けられた治具を用い、前記治具が、前記突出部と前記中空部の嵌合によって径方向に案内されながら当該中空部を前記環状部品に加締めるリベット加締め方法。   A jig provided with a protrusion that can be fitted into the hollow part according to claim 1 or 2, wherein the jig is guided in the radial direction by the fitting of the protrusion and the hollow part. A rivet caulking method for caulking a hollow portion to the annular part. 請求項1又は2に記載の前記中空部を受ける環状部が設けられた治具を用い、前記治具が、前記環状部を前記中空部に押し付けるように前記リベットの軸の中心線に対して揺動することにより、当該中空部を前記環状部品に加締めるリベット加締め方法。   A jig provided with an annular portion for receiving the hollow portion according to claim 1 or 2, wherein the jig is pressed against the center line of the shaft of the rivet so as to press the annular portion against the hollow portion. A rivet caulking method for caulking the hollow part to the annular part by swinging.
JP2014257274A 2014-12-19 2014-12-19 Wave-form holder and rivet caulking method Pending JP2016118228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014257274A JP2016118228A (en) 2014-12-19 2014-12-19 Wave-form holder and rivet caulking method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014257274A JP2016118228A (en) 2014-12-19 2014-12-19 Wave-form holder and rivet caulking method

Publications (1)

Publication Number Publication Date
JP2016118228A true JP2016118228A (en) 2016-06-30

Family

ID=56242926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014257274A Pending JP2016118228A (en) 2014-12-19 2014-12-19 Wave-form holder and rivet caulking method

Country Status (1)

Country Link
JP (1) JP2016118228A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112081819A (en) * 2020-10-15 2020-12-15 慈溪市新中天轴承有限公司 Deep groove ball bearing and preparation process thereof
WO2023210576A1 (en) * 2022-04-28 2023-11-02 Ntn株式会社 Ball bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112081819A (en) * 2020-10-15 2020-12-15 慈溪市新中天轴承有限公司 Deep groove ball bearing and preparation process thereof
WO2023210576A1 (en) * 2022-04-28 2023-11-02 Ntn株式会社 Ball bearing

Similar Documents

Publication Publication Date Title
JP2013024423A (en) Functional element having rotation prevention function, and component assembly having functional element and sheet metal member
US9404541B2 (en) Mating connection for connecting two components in a non-rotatable way and method
US5690459A (en) Plate and riveted stud assembly
EP2592288A1 (en) Ball joint and method for producing ball joint
KR101832582B1 (en) Method for manufacturing ribbon cage and ribbon cage
JP2016118228A (en) Wave-form holder and rivet caulking method
JP2016031131A (en) Wave type holder, and its manufacturing process
JP5251213B2 (en) Wheel bearing device and manufacturing method thereof
WO2013157543A1 (en) Ribbon cage and method for manufacturing same
EP3070371A2 (en) Method of attaching ring gear to differential case, jig, and differential case
JP2016223505A (en) Radial ball bearing
JP2010185541A (en) Ball type constant velocity joint
US10989294B2 (en) Planetary drive assembly and method of connecting a planet carrier to a splined part
JP2018179144A (en) Fixing structure of stud bolt and fixed member, fixing method and stud bolt
JPH11179475A (en) Rivetting method and rivetting jig
JP2015044220A (en) Method for manufacturing waveform retainer and waveform retainer
JP2017150584A (en) Ball bearing
JP5039197B2 (en) Lower arm with ball joint housing secured to mounting hole
JP6750074B1 (en) Torque limiter assembly method
JP4306645B2 (en) Manufacturing method of wheel supporting hub unit
JP4481169B2 (en) Deformable bearing housing
JP2008232281A (en) Trust roller bearing
JP2017166620A (en) Method for manufacturing waveform retainer and its waveform retainer intermediate unit
EP2860414A1 (en) Conical roller bearing
JP2016161109A (en) Fastening method for material to be fastened, fastening structure, fastener and caulking device