JP2016114452A - Imaging system - Google Patents

Imaging system Download PDF

Info

Publication number
JP2016114452A
JP2016114452A JP2014252904A JP2014252904A JP2016114452A JP 2016114452 A JP2016114452 A JP 2016114452A JP 2014252904 A JP2014252904 A JP 2014252904A JP 2014252904 A JP2014252904 A JP 2014252904A JP 2016114452 A JP2016114452 A JP 2016114452A
Authority
JP
Japan
Prior art keywords
light
imaging
reflecting
imaged
male screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014252904A
Other languages
Japanese (ja)
Inventor
裕 道脇
Yutaka Michiwaki
裕 道脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nejilaw Inc
Original Assignee
Nejilaw Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nejilaw Inc filed Critical Nejilaw Inc
Priority to JP2014252904A priority Critical patent/JP2016114452A/en
Publication of JP2016114452A publication Critical patent/JP2016114452A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow a simple structure to simultaneously photograph an entire periphery in a right angle direction of a body axis of an imaged object.SOLUTION: An imaging system 1 is configured to use reflection means 10 that is formed into a cone-shape cylinder having one edge side opened in a small diameter and other edge side opened in a large diameter, and has a reflection surface 12 inside the reflection means; and secure an imaging space 20 causing an imaged body 5 to be located in a cone-shape trapezoidal space inside the reflection means. On the opening side in the large diameter of the reflection means 10, illumination means 90 is arranged that radiates cone-shape cylindrical light almost parallel with a center axis of the reflection means 10. The light of the illumination means 90 illuminates the image body 5 from a right angle direction of a body axis 5A by reflecting upon the reflection surface 12 of the reflection means 10. Imaging means 60 is used to photograph a reflection image of the imaged body 5 reflected upon the reflection surface 12 of the reflection means 10 as irradiating an interior of the imaging space 20 with the light by the illumination means 90.SELECTED DRAWING: Figure 1

Description

本発明は、被撮像体の全周を同時に撮像するための撮像システムに関する。   The present invention relates to an imaging system for simultaneously imaging the entire circumference of an object to be imaged.

従来、様々な部品、部材に対して、カメラによって周囲を撮像して検査することが行われている。例えば、雄ねじに関していえば、螺旋溝が正しく形成されているか否か、検査しなければならない。この場合、撮像システムでは、雄ねじを保持しながら、90°ずつ回転させて、カメラによって、四方向の側面画像を撮像し、これらによって、螺旋溝の形成状態を画像解析によって判定する。   Conventionally, various parts and members are inspected by imaging the surroundings with a camera. For example, when it comes to male threads, it must be checked whether the spiral groove is correctly formed. In this case, in the imaging system, the male screw is rotated by 90 ° while holding the male screw, and four side images are taken by the camera, and the formation state of the spiral groove is determined by image analysis based on these images.

これら撮像システムは極めて幅広い分野で利用されており、被撮像体としては、雄ねじ以外に、ボールスプラインのスプライン軸や、鉛筆等の筆記具、飲料ボトル、各種線材や棒材など多岐にわたる。その材料も、金属、樹脂、繊維など多岐にわたる。撮像システムによる撮像目的も、傷等の外観検査、形状測定、異物検知、X線等を用いた内部検査など多岐にわたる。   These imaging systems are used in a very wide range of fields, and there are a wide variety of imaging objects, such as spline shafts of ball splines, writing tools such as pencils, beverage bottles, various wire rods and rods, in addition to male screws. The materials range from metals, resins and fibers. Imaging purposes by the imaging system are also diverse, such as appearance inspection of scratches, shape measurement, foreign object detection, internal inspection using X-rays and the like.

特開2010−54231JP 2010-54231

しかしながら、これらの撮像システムでは、被撮像体を回転させる必要があり、その回転精度に誤差が生じると、正しい映像を取得できなくなる。一方、被撮像体を固定し、カメラ側を回転させることも考えられるが、その場合、撮像システムの構造が複雑化する。   However, in these imaging systems, it is necessary to rotate the imaging target, and if an error occurs in the rotation accuracy, a correct image cannot be acquired. On the other hand, it is conceivable to fix the object to be imaged and rotate the camera side, but in this case, the structure of the imaging system becomes complicated.

また、被撮像体が大量生産品の場合は、それぞれの被撮像体を高速に撮像する必要があるが、一つずつ被撮像体を回転させていると、撮像に時間を要し、量産ラインに導入することが困難になるという問題がある。   In addition, when the imaging target is a mass-produced product, it is necessary to capture each imaging target at high speed. However, if the imaging target is rotated one by one, it takes time to capture and the mass production line There is a problem that it becomes difficult to introduce into the system.

また、特許文献1に開示されている技術の場合、被撮像体を回転させずとも被撮像体の全周相当分の撮影像を得ることが可能である反面、撮像手段に最も近い被撮像体の部位である真正面部と両脇部とでは、各部位から撮像手段を構成する受光面までの距離差が被撮像体の半径相当程あって、光路長差が非常に大きくなる。そのため、被撮像体の各部を高精度に撮像しようとする場合、極めて深い被写界深度の撮像手段を用いても被撮像体の全体に亘ってピントを合わせた像を得ることが出来ないという問題がある。   In addition, in the case of the technique disclosed in Patent Document 1, it is possible to obtain a captured image corresponding to the entire circumference of the imaging target without rotating the imaging target, but on the imaging target closest to the imaging means. There is a difference in the optical path length between the front part and both side parts, which are the distances from the respective parts to the light receiving surface constituting the imaging means, corresponding to the radius of the object to be imaged. Therefore, when trying to capture each part of the imaged object with high accuracy, it is impossible to obtain an image that is in focus throughout the entire object to be imaged even using an imaging device with an extremely deep depth of field. There's a problem.

更にまた、撮像手段によって撮像する際に、被撮像体を照明手段によって照らすことが好ましいが、照明手段の光によって被撮像体の表面に陰が生じてしまうと、陰の部分については暗い映像となってしまい、画像解析が困難になる。特に雄ねじの螺旋溝については、螺旋溝に沿って陰が生じ易いため、ねじ山の形成状態の画像解析が難しいという問題がある。   Furthermore, it is preferable to illuminate the object to be imaged by the illuminating means when taking an image by the imaging means. As a result, image analysis becomes difficult. In particular, with regard to the spiral groove of the male screw, there is a problem that it is difficult to perform image analysis of the formation state of the thread because the shadow tends to occur along the spiral groove.

本発明は、上記問題点に鑑みて本発明者の鋭意研究により成されたものであり、簡易な構造によって、高精度且つ高速に被撮像体の全周を、全体にピントを合わせつつも同時に撮像可能とする撮像システムを提供することを目的とする。   The present invention has been made by the inventor's diligent research in view of the above-mentioned problems, and with a simple structure, the entire circumference of the imaging target is focused at the same time while focusing on the entire body with high accuracy and high speed. An object is to provide an imaging system that enables imaging.

即ち、上記目的を達成する本発明は、一端側が小径に他端側が大径に開口した錐形筒状を成す内周を反射面とする反射手段と、前記反射手段の内側の錐状台形空間に、被撮像体を位置させて前記被撮像体の中心を通る体軸に対して直角方向の多方位からの像を撮像可能とする撮像空間と、前記反射手段の前記大径の前記開口側に配置され、前記反射手段の前記錐形筒状の中心軸と略平行となる光を該反射手段に向かって放射し、該光を前記反射面に反射させて前記体軸直角方向から前記被撮像体を照らす照明手段と、前記被撮像体を前記撮像空間内に保持させた状態で、前記照明手段によって前記被撮像体を照らしながら、前記反射手段の前記反射面で反射した前記被撮像体の反射像を撮像する撮像手段と、を備えることを特徴とする撮像システムである。   That is, the present invention that achieves the above object includes a reflecting means having a conical cylindrical shape having a small diameter at one end and a large diameter at the other end, and a conical trapezoidal space inside the reflecting means. An imaging space in which an object to be imaged is positioned and images from multiple directions perpendicular to a body axis passing through the center of the object to be imaged can be captured, and the large-diameter opening side of the reflecting means Is disposed on the reflecting means, radiates light substantially parallel to the central axis of the cone-shaped cylinder of the reflecting means toward the reflecting means, reflects the light to the reflecting surface, and causes the light to be reflected from the direction perpendicular to the body axis. Illuminating means for illuminating the imaging body, and the imaging object reflected by the reflecting surface of the reflecting means while illuminating the imaging object by the illumination means with the imaging object held in the imaging space And an image pickup means for picking up a reflection image. Is Temu.

上記撮像システムに関連して、前記照明手段と前記反射手段の間の空間の周囲には、部外光が前記撮像空間に入射することを抑止する、該空間を囲繞するように構成される遮光手段が配置されることを特徴とする。   In connection with the imaging system, a light shield configured to surround outside the space between the illumination unit and the reflection unit is provided around the space to prevent extraneous light from entering the imaging space. Means are arranged.

上記遮光手段は、内側表層に調光手段を有することを特徴とする。この調光手段は、前記照明手段から発せられた光のうち、該内側表面に到達した光を所望の方向(散乱光として反射させることを含む)へ所望の反射率で反射させ、前記空間内の照度を調整することを特徴とする。   The light shielding means has a light control means on the inner surface layer. The light control means reflects light reaching the inner surface out of light emitted from the illumination means in a desired direction (including reflecting it as scattered light) with a desired reflectance, The illuminance is adjusted.

上記撮像システムに関連して、前記照明手段よりも前記反射手段側において、前記照明手段から発せられる光の中から前記錐形筒状の中心軸と略平行となる光を選択する光選択手段を有することを特徴とする。   In relation to the imaging system, a light selection means for selecting light that is substantially parallel to the central axis of the cone-shaped cylinder from light emitted from the illumination means on the reflection means side of the illumination means. It is characterized by having.

上記撮像システムに関連して、前記照明手段は、前記光源と前記反射手段の間に光拡散手段を有することを特徴とする。   In relation to the imaging system, the illumination unit includes a light diffusion unit between the light source and the reflection unit.

上記撮像システムに関連して、前記撮像手段は、撮像素子を有しており、前記照明手段は、光軸方向視において、前記撮像素子における画素の間に配置される光源を有することを特徴とする。   In relation to the imaging system, the imaging unit includes an imaging element, and the illuminating unit includes a light source arranged between pixels of the imaging element when viewed in the optical axis direction. To do.

上記目的を達成する本発明は、一端側が小径に他端側が大径に開口した錐形筒状を成し、内周を光透過性の反射面とする反射手段と、前記反射手段の内側の錐状台形空間に、被撮像体を位置させて前記被撮像体の中心を通る体軸直角方向の多方位からの像を撮像可能とする撮像空間と、前記反射手段の外側に配置され、前記体軸直角方向と平行となる光を前記反射面の裏側から前記反射面を透過させるように放射し、該透過光によって前記体軸直角方向から前記被撮像体を照らす照明手段と、前記被撮像体を前記撮像空間内に保持させた状態で、前記照明手段によって前記被撮像体を照らしながら、前記反射手段の前記反射面で反射した前記被撮像体の反射像を撮像する撮像手段と、を備えることを特徴とする撮像システムである。   The present invention that achieves the above object comprises a reflecting means having a conical cylindrical shape with one end side having a small diameter and the other end having a large diameter, and having an inner periphery as a light-transmissive reflecting surface, and an inner side of the reflecting means. An imaging space in which a subject to be imaged is positioned in a cone-shaped trapezoid space and images from multiple directions in a direction perpendicular to the body axis passing through the center of the subject to be imaged are disposed outside the reflecting means, Illuminating means for radiating light parallel to the direction perpendicular to the body axis from the back side of the reflecting surface so as to pass through the reflecting surface, and illuminating the object to be imaged from the direction perpendicular to the body axis by the transmitted light; An imaging means for capturing a reflected image of the object to be reflected reflected by the reflecting surface of the reflecting means while illuminating the object to be imaged by the illuminating means in a state where the body is held in the imaging space; It is an imaging system characterized by comprising.

上記撮像システムに関連して、前記反射手段の前記反射面は、円錐状であることを特徴とする。   In relation to the imaging system, the reflecting surface of the reflecting means is conical.

上記撮像システムに関連して、前記反射手段は、表面反射鏡であることを特徴とする。   In relation to the imaging system, the reflecting means is a surface reflecting mirror.

本発明によれば、簡潔な構造でありながらも、被撮像体の体軸直角方向の全周を高速かつ高精度に撮像することが出来るようになる。   According to the present invention, although it has a simple structure, the entire circumference of the body to be imaged in the direction perpendicular to the body axis can be imaged at high speed and with high accuracy.

本発明の実施形態に係る撮像システムの全体構成を示す側面図である。1 is a side view showing an overall configuration of an imaging system according to an embodiment of the present invention. 同撮像システムの同軸化繰送手段の構成を拡大して示す、(A)上面図、(B)B−B矢視上面図、(C)C−C矢視上面図である。It is an enlarged view of the configuration of the coaxial feeding means of the imaging system, (A) top view, (B) BB arrow top view, (C) CC arrow top view. 同撮像システムによる合格部品の振り分け態様を示す側面図である。It is a side view which shows the distribution aspect of the accepted components by the imaging system. 同撮像システムによる不合格部品の振り分け態様を示す側面図である。It is a side view which shows the distribution aspect of the rejection components by the imaging system. 同撮像システムにおける反射面の他の構成態様を示す底面図である。It is a bottom view which shows the other structural aspect of the reflective surface in the imaging system. 同撮像システムにおける振分手段の他の構成態様を示す側面図である。It is a side view which shows the other structure aspect of the distribution means in the imaging system. 同撮像システムにおける照明手段の光路態様を示す側面図である。It is a side view which shows the optical path aspect of the illumination means in the imaging system. 同撮像システムにおける撮像手段の他の配置態様を示す側面図である。It is a side view which shows the other arrangement | positioning aspect of the imaging means in the imaging system. 同撮像システムにおける開放保持機構の他の構成例を示す(A)側面図、(B)上面部分断面図である。It is the (A) side view and (B) upper surface partial sectional view which show the other structural example of the open holding | maintenance mechanism in the imaging system. 同撮像システムにおける開放保持機構の他の構成例の動作状態を示す上面部分断面図である。It is an upper surface fragmentary sectional view which shows the operation state of the other structural example of the open holding | maintenance mechanism in the imaging system. 同撮像システムにおける撮像手段の他の構成態様を示す側面図である。It is a side view which shows the other structure aspect of the imaging means in the imaging system. 同撮像システムにおける照明手段の他の構成態様を示す側面図である。It is a side view which shows the other structure aspect of the illumination means in the imaging system. 同撮像システムにおける照明手段の他の構成態様を示す側面図である。It is a side view which shows the other structure aspect of the illumination means in the imaging system. 従来の撮像システムの撮像状態を示す図である。It is a figure which shows the imaging state of the conventional imaging system.

以下、本発明の実施の形態について図面を参照しながら詳細に説明する。なお、本実施形態では、被撮像物として雄ねじ体を選定し、この雄ねじの螺旋溝の形成状態を検査するために、撮像システムを用いる場合について例示するが、被撮像物としては雄ねじ体に限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the present embodiment, a case where an external thread body is selected as an object to be imaged and an imaging system is used to inspect the formation state of the spiral groove of the external thread is illustrated, but the object to be imaged is limited to an external thread body. Is not to be done.

図1は、本実施形態に係る撮像システム1を示す。この撮像システム1は、反射手段10と、反射手段10の内側に設けられる撮像空間20と、撮像空間20内に被撮像物(以下、雄ねじ体5)を位置させる同軸化繰送手段30と、雄ねじ体5の反射像を撮像する撮像手段60と、画像一致度算出手段70と、合否判定手段75と、振分手段80と、照明手段90を備える。   FIG. 1 shows an imaging system 1 according to the present embodiment. The imaging system 1 includes a reflecting unit 10, an imaging space 20 provided inside the reflecting unit 10, a coaxial feeding unit 30 that positions an object to be imaged (hereinafter, male screw body 5) in the imaging space 20, An image pickup means 60 for picking up a reflection image of the male screw body 5, an image matching degree calculation means 70, a pass / fail judgment means 75, a distribution means 80, and an illumination means 90 are provided.

反射手段10は、一端側が小径で他端側が大径に開口した錐形筒状を成しており、その内周を反射面12としている。また反射手段10は、小径となる一端側の開口16Aが鉛直上方となり、大径となる他端側の開口16Bが鉛直下方となる状態で、錐軸14を鉛直方向に対して平行とすることが好ましい。更に本実施形態では、反射手段10が円錐となっており、その反射面12の角度は、錐軸14に対して略45°となっている。一端側の開口16Aを介して雄ねじ体5が内部に挿入され、他端側の開口16Bを介して雄ねじ体5が外部に放出される。   The reflecting means 10 has a conical cylindrical shape with one end side having a small diameter and the other end side having a large diameter, and the inner periphery thereof is a reflecting surface 12. Further, the reflecting means 10 has the conical shaft 14 parallel to the vertical direction in a state where the opening 16A on one end side having a small diameter is vertically upward and the opening 16B on the other end side having a large diameter is vertically downward. Is preferred. Furthermore, in this embodiment, the reflecting means 10 is a cone, and the angle of the reflecting surface 12 is approximately 45 ° with respect to the cone axis 14. The male screw body 5 is inserted into the inside through the opening 16A on one end side, and the male screw body 5 is discharged to the outside through the opening 16B on the other end side.

反射面12は、いわゆる表面反射鏡とすることが好ましい。この表面反射鏡は金属表面に鏡面仕上げ加工等を施して得ることが出来る他、スパッタリングミラーとも呼ばれる、図1の領域Xに拡大して示されるように、例えば、ガラス等の基材12Aの表面に鏡面材料を付着させて金属膜12Bを形成し、この金属膜12Bの反ガラス側面を鏡面処理した構造が代表的である。従って、反射面12は、金属膜12Bの反ガラス側に形成され、ガラスを介することなく、直接、反射面12に雄ねじ体5を映り込ませる。結果、ガラスの厚さの影響(屈折や多重反射等の影響)を受けることなく映像を反射することができるので、反射像の形状の乱れが大幅に抑制される。勿論、通常の光透過性材料の背面に金属膜が形成される一般的な鏡を用いることもできる。   The reflecting surface 12 is preferably a so-called surface reflecting mirror. This surface reflecting mirror can be obtained by applying a mirror finish to the metal surface, and is also referred to as a sputtering mirror, as shown in an enlarged manner in the region X of FIG. 1, for example, the surface of the substrate 12A such as glass. A typical example is a structure in which a metal film 12B is formed by adhering a mirror material to the surface, and the anti-glass side surface of the metal film 12B is mirror-treated. Therefore, the reflecting surface 12 is formed on the side opposite to the glass of the metal film 12B, and the male screw body 5 is directly reflected on the reflecting surface 12 without using the glass. As a result, since the image can be reflected without being affected by the thickness of the glass (the influence of refraction, multiple reflection, etc.), the disorder of the shape of the reflected image is greatly suppressed. Of course, a general mirror in which a metal film is formed on the back surface of a normal light transmissive material can also be used.

なお、本撮像システム1のように、円錐形筒状を成す反射手段10の円錐形状の錐軸14からの傾斜角を略45°とすると次の利点が得られる。撮像空間20内の錐軸14に沿った様々な箇所を始点とし、反射面12でそれぞれ反射され錐軸14に対して直交する直交面(ここでは撮像面60A)中に対応する各点を終点とした場合、視点から終点まで光路長が至る所で等しくなる。結果、各部の至る所で、撮像手段60のピントを合わせることが可能となる。従って、この錐軸14に対して同心となる棒状材料(ここでは雄ねじ体5の軸部)を撮像する場合に、表面の凹凸相当距離を除けば、上述と同様の結果を得ることが出来る。勿論、ここで、被写界深度の深い光学系を採用した撮像手段を用いる場合には、被撮像物の表面に多少の凹凸があっても全周に亘って高解像度にピントを合わせることが可能となる。また、撮像される映像の縮尺が、反射手段10を用いずに、錐軸14を側面から撮像した状態と一致させることもできる。   In addition, when the inclination angle from the cone-shaped cone shaft 14 of the reflecting means 10 having a conical cylindrical shape is approximately 45 ° as in the present imaging system 1, the following advantages are obtained. The various points along the cone axis 14 in the imaging space 20 are the starting points, and the corresponding points in the orthogonal plane (here, the imaging plane 60A) reflected by the reflecting surface 12 and orthogonal to the cone axis 14 are the end points. In this case, the optical path length is the same from the viewpoint to the end point. As a result, it is possible to focus the imaging unit 60 everywhere. Therefore, when imaging a rod-shaped material (here, the shaft portion of the male screw body 5) that is concentric with the cone axis 14, the same result as described above can be obtained except for the surface unevenness equivalent distance. Of course, when using an imaging means that employs an optical system with a deep depth of field, it is possible to focus on high resolution over the entire circumference even if there is some unevenness on the surface of the object to be imaged. It becomes possible. Further, the scale of the image to be captured can be matched with the state in which the cone axis 14 is imaged from the side without using the reflecting means 10.

撮像空間20は、この反射手段10の内側に形成される円錐台形空間となる。この円錐台形空間内に雄ねじ体5を位置させる。結果、撮像手段60は、雄ねじ体5の周囲を取り囲む反射手段10を介して、雄ねじ体5の中心を通る体軸5Aの直角方向の全方位から同時撮像可能とする。   The imaging space 20 is a frustoconical space formed inside the reflecting means 10. The male screw body 5 is positioned in the frustoconical space. As a result, the image pickup means 60 can simultaneously pick up images from all directions in the direction perpendicular to the body axis 5A passing through the center of the male screw body 5 via the reflecting means 10 surrounding the male screw body 5.

同軸化繰送手段30は、反射手段10の錐状台形の中心を通る錐軸14と、雄ねじ体5の体軸5Aを同軸化しつつ、雄ねじ体5を保持して、撮像空間内20の所定位置に雄ねじ体5を配置する。なお、本実施形態では、反射手段10の錐軸14が鉛直方向に平行となっているので、雄ねじ体5の体軸5Aも鉛直方向に平行となる。   The coaxial feeding means 30 holds the male screw body 5 while coaxially concentrating the cone axis 14 passing through the center of the cone-shaped trapezoid of the reflecting means 10 and the body axis 5A of the male screw body 5, and predetermined in the imaging space 20. The male screw body 5 is disposed at the position. In this embodiment, since the cone axis 14 of the reflecting means 10 is parallel to the vertical direction, the body axis 5A of the male screw body 5 is also parallel to the vertical direction.

同軸化繰送手段30は、鉛直方向に配置される筒状部32と、この筒状部32の下端側に配置される開放保持機構40を備える。筒状部32は、自身の筒軸が、反射手段10の錐軸14の延長線上に沿って配置され、一端となる上方の開口は、雄ねじ体5が投入される投入口32Aとなり、他端となる下方の開口は、雄ねじ体5を放出する放出口32Aとなる。この放出口32は、小径側の開口16Aの近傍に位置する。筒状部32の内径は、雄ねじ体5の頭部外形と比較して、少しだけ大きく設定されており、一つ以上、好ましくは複数の雄ねじ体5を内部に収容し、且つ鉛直方向に整列させる。具体的に筒状部32の内周断面形状は、上方の投入口32A側は、雄ねじ体5の頭部の最大径よりも大きな円形に設定されているが、下端の放出口32Aに進むにつれて、雄ねじ体5の頭部の六角形状と略同形状となっている。結果、筒状部32は、雄ねじ体5の周方向の整列も行う。この際、筒状部32は、振動装置によって微細振動させてもよい。但し、撮像時には当該微細振動を停止させることが好ましい。   The coaxial feeding means 30 includes a cylindrical portion 32 disposed in the vertical direction and an open holding mechanism 40 disposed on the lower end side of the cylindrical portion 32. The cylindrical part 32 has its own cylinder axis arranged along the extension of the cone axis 14 of the reflecting means 10, and the upper opening serving as one end serves as an insertion port 32 </ b> A into which the male screw body 5 is introduced, and the other end The lower opening is a discharge port 32A through which the male screw body 5 is discharged. The discharge port 32 is located in the vicinity of the opening 16A on the small diameter side. The inner diameter of the cylindrical portion 32 is set slightly larger than the outer shape of the head portion of the male screw body 5, and one or more, preferably a plurality of male screw bodies 5 are accommodated therein and aligned in the vertical direction. Let Specifically, the inner circumferential cross-sectional shape of the cylindrical portion 32 is set to a circle larger than the maximum diameter of the head of the male screw body 5 on the upper input port 32A side, but as it proceeds to the lower discharge port 32A. The hexagonal shape of the head of the male screw body 5 is substantially the same. As a result, the cylindrical portion 32 also performs alignment of the male screw body 5 in the circumferential direction. At this time, the cylindrical portion 32 may be finely vibrated by a vibration device. However, it is preferable to stop the fine vibration during imaging.

図2に拡大して示されるように、開放保持機構40は、筒状部32の放出口32Bの外側に連続するように配置される保持部42と、この保持部42を、放出口32Bの半径方向に進退させる駆動部44と、保持部42全体を、反射手段10に対して錐軸14の直角方向全方位に移動させる位置決め手段50を備える。保持部42は、放出口32Bの内径よりも半径方向内側に突出可能な複数の係合突起42Aを備える。駆動部44によって、複数の係合突起42Aを放出口32B(図2では図示省略)の内側に進入させると、係合突起42Aが雄ねじ体5の頭部の段差と係合して、雄ねじ体5を保持することが可能となる。一方、係合突起42Aを放出口32Bの外側に退避させると、雄ねじ体5との係合状態が開放され、雄ねじ体5が鉛直下方に落下する。更に保持部42は、係合突起42Aに連続するようにして、雄ねじ体5の頭部の側面、より好ましくは雄ねじ体5の軸部の付け根を挟み込む複数の押圧面42Bを有する。従って、駆動部44によって、複数の押圧面42Bを放出口32Bの内側に進入させると、押圧面42Bが雄ねじ体5の頭部の側面を両側から挟み込んで、若しくは雄ねじ体5の軸部の付け根を複数方位(好ましくは多方位)から挟み込んで、雄ねじ体5の姿勢を固定する。これにより、雄ねじ体5の体軸5Aが、鉛直方向と強制的に平行となる。   As shown in an enlarged view in FIG. 2, the open holding mechanism 40 includes a holding portion 42 that is arranged continuously outside the discharge port 32 </ b> B of the tubular portion 32, and this holding portion 42 that is connected to the discharge port 32 </ b> B. A driving unit 44 that advances and retracts in the radial direction and a positioning unit 50 that moves the entire holding unit 42 in all directions perpendicular to the cone shaft 14 with respect to the reflecting unit 10 are provided. The holding part 42 includes a plurality of engaging protrusions 42A that can protrude radially inward from the inner diameter of the discharge port 32B. When the plurality of engaging protrusions 42A are made to enter the inside of the discharge port 32B (not shown in FIG. 2) by the drive unit 44, the engaging protrusions 42A engage with the step of the head of the male screw body 5, and the male screw body. 5 can be held. On the other hand, when the engagement protrusion 42A is retracted to the outside of the discharge port 32B, the engagement state with the male screw body 5 is released, and the male screw body 5 falls vertically downward. Furthermore, the holding portion 42 has a plurality of pressing surfaces 42B that sandwich the side surface of the head of the male screw body 5, more preferably the base of the shaft portion of the male screw body 5, so as to be continuous with the engaging protrusion 42A. Accordingly, when the drive unit 44 causes the plurality of pressing surfaces 42B to enter the inside of the discharge port 32B, the pressing surface 42B sandwiches the side surface of the head of the male screw body 5 from both sides, or the root of the shaft portion of the male screw body 5 Are inserted from a plurality of directions (preferably multiple directions) to fix the posture of the male screw body 5. Thereby, the body axis 5A of the male screw body 5 is forcibly parallel to the vertical direction.

位置決め手段50は、反射手段10の錐軸14に対して直角方向に移動するいわゆるX−Yステージであり、Xステージ52とYステージ54を備えて構成される。これにより、保持部42の中心(雄ねじ体5の体軸5A)をX−Y平面内で自在に移動させることができ、体軸5Aと錐軸14を同軸化できる。この同軸制御は、後述する撮像手段60によって雄ねじ体5の下端面を撮像し、画像解析することによって行う事が好ましい。なお、ここでは開放保持機構40が位置決め手段50を有する場合を例示しているが、保持部42の形状のみによって雄ねじ体5の体軸5Aの同軸化が達成される場合は、この位置決め手段50を省略できる。また、ここでは特に図示しないが、位置決め手段50は、必要に応じて、保持部42をZ方向に移動させる移動手段を備えることも可能である。   The positioning means 50 is a so-called XY stage that moves in a direction perpendicular to the cone axis 14 of the reflecting means 10, and includes an X stage 52 and a Y stage 54. As a result, the center of the holding portion 42 (the body axis 5A of the male screw body 5) can be freely moved in the XY plane, and the body axis 5A and the cone shaft 14 can be coaxial. This coaxial control is preferably performed by imaging the lower end surface of the male screw body 5 by an imaging means 60 described later and analyzing the image. Although the case where the open holding mechanism 40 has the positioning means 50 is illustrated here, when the coaxiality of the body axis 5A of the male screw body 5 is achieved only by the shape of the holding portion 42, the positioning means 50 is used. Can be omitted. Although not particularly shown here, the positioning means 50 can also include a moving means for moving the holding portion 42 in the Z direction as necessary.

筒状部32の下端側には、雄ねじ体5の通過を検知するセンサ58が設けられる。このセンサ58は近接センサであり、筒状部32の最下端近傍において、次の撮像用として待機する雄ねじ体5の通過状態を検知する。具体的にセンサ58は、待機中の雄ねじ体5の軸部の途中に配置されており、その雄ねじ体5の頭部がセンサ58に接近すると通過信号を発する。従って、駆動部44が保持部42を退避させることによって、撮像が完了した雄ねじ体5を開放して落下させると、筒状部32の下端で待機中の雄ねじ体5がこれに追従して筒状部32内を落下し、センサ58が通過信号を発する。駆動部44がこの通過信号を受信すると、保持部42を再び進入させて、係合突起42Aによって雄ねじ体5の頭部を受け止める。その後、駆動部44は更に保持部42を進入させて、押圧面42Bによって頭部の側面若しくは雄ねじ体5の軸部の付け根部位を挟み込んで、雄ねじ体5の保持位置を固定させる。   A sensor 58 that detects the passage of the male screw body 5 is provided on the lower end side of the cylindrical portion 32. This sensor 58 is a proximity sensor, and detects the passing state of the male screw body 5 waiting for the next imaging in the vicinity of the lowermost end of the cylindrical portion 32. Specifically, the sensor 58 is disposed in the middle of the shaft portion of the male screw body 5 that is on standby, and generates a passage signal when the head of the male screw body 5 approaches the sensor 58. Accordingly, when the drive unit 44 retracts the holding unit 42 to open and drop the male screw body 5 that has completed imaging, the male screw body 5 waiting at the lower end of the cylindrical portion 32 follows this, and the cylinder The sensor part 58 falls and the sensor 58 generates a passage signal. When the drive unit 44 receives the passage signal, the holding unit 42 is re-entered and the head of the male screw body 5 is received by the engagement protrusion 42A. Thereafter, the drive unit 44 further advances the holding unit 42 and sandwiches the side surface of the head or the base portion of the shaft portion of the male screw body 5 by the pressing surface 42B to fix the holding position of the male screw body 5.

以上の動作を繰り返すことにより、開放保持機構40は、筒状部32の内部に収容される雄ねじ体5について、筒状部32の通過の可否を規定することで、順番に雄ねじ体5を繰送できる。具体的には、通過可能状態と通過不可状態とを切り替え、通過可能状態では雄ねじ体5を開放し、通過不可状態では雄ねじ体5を保持する。この開放保持機構40は、通過不可状態では雄ねじ体の体軸5Aと錐軸14を同軸化しつつ、雄ねじ体5の軸部を撮像空間20に位置させる。   By repeating the above operation, the open holding mechanism 40 repeats the male screw body 5 in order by defining whether the male screw body 5 accommodated in the cylindrical portion 32 can pass through the cylindrical portion 32. I can send it. Specifically, the state is switched between a passable state and a non-passable state, the male screw body 5 is opened in the passable state, and the male screw body 5 is held in the non-passable state. The open holding mechanism 40 positions the shaft portion of the male screw body 5 in the imaging space 20 while coaxializing the body axis 5A of the male screw body and the conical shaft 14 in a state where passage is impossible.

図1に戻って、撮像手段60は、反射手段10の錐軸14と同軸状態で鉛直下方に配置されるカメラであり、反射面12から得られる反射光の光軸(進行方向)と、自身の光軸(撮像方向)が一致する。この撮像手段60は、本実施形態ではCCDカメラ又はCMOSカメラ等の受光素子からなる平坦な受光面を有し、反射手段10の反射面12で反射した反射像、具体的には雄ねじ体5の軸部の全方位像を撮像する。なお、この撮像手段60は、できる限り被写界深度が大きい状態、又は焦点深度が大きい状態で用いることが望ましい。   Returning to FIG. 1, the imaging means 60 is a camera that is arranged vertically below the conical axis 14 of the reflecting means 10, and is an optical axis (traveling direction) of reflected light obtained from the reflecting surface 12 and itself. Are coincident with each other in the optical axis (imaging direction). In this embodiment, the imaging means 60 has a flat light receiving surface made of a light receiving element such as a CCD camera or a CMOS camera, and reflects the reflected image reflected by the reflecting surface 12 of the reflecting means 10, specifically the male screw body 5. An omnidirectional image of the shaft is taken. Note that it is desirable to use the imaging unit 60 in a state where the depth of field is as large as possible or in a state where the depth of focus is large.

照明手段90は、反射手段10の大径の開口16Bから撮像手段60の後部までの間に配置され、反射手段10の錐形筒状の中心軸(錐軸14)と略平行となる光を反射手段10に向かって放射し、この光を反射面12に反射させて、雄ねじ体5を、その体軸5Aの直角方向から照らす。なお、ここでは照明手段90が、撮像手段60よりも反射手段10側(前部側)に配置されており、撮像手段60の撮像範囲が干渉しないように、照明手段90の中央には雄ねじ体5の像を通過させることが可能な開口状の像光通過部としての開口90Aが形成される。なお、照明手段90が、撮像手段60よりも後部側(反射手段10よりも離れる方向)に配置される場合は、撮像手段60の撮像範囲が干渉することは無いので、開口90Aは不要になる。   The illumination unit 90 is disposed between the large-diameter opening 16B of the reflection unit 10 and the rear portion of the imaging unit 60, and emits light that is substantially parallel to the central axis (cone axis 14) of the cone-shaped cylinder of the reflection unit 10. It radiates | emits toward the reflection means 10, this light is reflected on the reflective surface 12, and the external thread body 5 is illuminated from the right angle direction of the body axis 5A. Here, the illumination unit 90 is disposed on the reflection unit 10 side (front side) with respect to the imaging unit 60, and a male screw body is provided at the center of the illumination unit 90 so that the imaging range of the imaging unit 60 does not interfere. An opening 90 </ b> A is formed as an aperture-shaped image light passage portion through which five images can pass. Note that when the illumination unit 90 is disposed on the rear side of the imaging unit 60 (in the direction away from the reflecting unit 10), the imaging range of the imaging unit 60 does not interfere, and thus the opening 90A is unnecessary. .

具体的に照明手段90は、光源92と、必須ではないが光源92よりも反射手段10側に配置される光透過性の保護部材94と、光源の形態によっては必須ではない(つまり、面状に均一発光可能な光源か否かという視点において、面状均一発光可能な光源の場合には必須ではない)が、保護部材94の表面に配置される光拡散部材95と、光源の形態によっては必須ではない(つまり、光量が十分あって被撮像体に陰の写り込みが出ないか、或いは、直線的な発光をする光源の場合には必須ではない)が、光拡散部材95よりも反射手段10側に配置される光選択部材96を有する。ここでの光源92としては、複数のストロボを採用しており、反射手段10側に向かって光を放射する。勿論、光源としては、十分な光量を以て自発光するものであれば特に限定されるものではなく、例えば、ハロゲンランプ、蛍光灯、LED、有機EL等とすることも可能である。なお、ここでは四台の光源92を配置しているが、その数や配置方法は特に限定されない。保護部材94はガラス板であり、万が一、雄ねじ体5が落下した場合に、光源92や撮像手段60を保護する役割となる。   Specifically, the illumination unit 90 is not essential depending on the form of the light source 92, the light-transmitting protection member 94 that is not essential, but is disposed closer to the reflection unit 10 than the light source 92 (that is, a planar shape). However, depending on the type of light source, the light diffusing member 95 disposed on the surface of the protective member 94 may be used. Although it is not essential (that is, it is not necessary in the case of a light source that has sufficient light quantity and does not appear in the image pickup object, or is a light source that emits linear light), it reflects more than the light diffusion member 95. It has the light selection member 96 arrange | positioned at the means 10 side. Here, a plurality of strobes are employed as the light source 92, and light is emitted toward the reflecting means 10 side. Of course, the light source is not particularly limited as long as it emits light with a sufficient amount of light. For example, a halogen lamp, a fluorescent lamp, an LED, or an organic EL can be used. Although four light sources 92 are arranged here, the number and arrangement method are not particularly limited. The protective member 94 is a glass plate and serves to protect the light source 92 and the imaging means 60 in the unlikely event that the male screw body 5 falls.

光拡散部材95は、複数の光源90の光を拡散させて、光源92の存在/不存在の像が生じないように、均整度の高い面発光状態を生成する。従って、この光拡散部材95の表面は、所謂面状発光光源の状態となる。なお、光源92自体を、例えば有機ELのように、積層材料自体が拡散光として直接発光する面状発光光源を光源とする場合は、この光拡散部材95を省略できる。   The light diffusing member 95 diffuses the light from the plurality of light sources 90 to generate a surface emitting state with a high degree of uniformity so that an image of the presence / absence of the light source 92 is not generated. Therefore, the surface of the light diffusing member 95 becomes a so-called planar light source. When the light source 92 is a planar light source that emits light directly as diffused light, such as an organic EL, for example, the light diffusing member 95 can be omitted.

光選択部材(光選択手段)96は、ここでは錐軸14と平行に延びる筒状のハニカムグリッド96Aを多数有する。このハニカムグリッド96Aの周壁は反射防止表面(光吸収材料)となる。結果、光拡散部材95を通過した光の中でも、錐軸14と略平行に進行する光のみが、ハニカムグリッド96A内を通過することができ、それ以外の光は周壁で吸収される。結果、光選択部材96は、錐軸14と平行となる光を選択する部材となる。以上の構成により、照明手段90は、錐軸14と平行となる光を反射手段10に向かって放射することが可能となる。勿論、光選択部材96としては、ハニカムグリッドに限らず、視野角制限フィルタを用いても好く、例えば、平行格子状の視野角制限フィルタを用いる場合、当該視野角制限フィルタを90°位相ズレで二枚重ねにして配置し、直交格子とすることで、円錐軸と略平行な光を選択的に通過させることが出来るようにしても好い。   Here, the light selection member (light selection means) 96 has a large number of cylindrical honeycomb grids 96 </ b> A extending parallel to the cone axis 14. The peripheral wall of the honeycomb grid 96A serves as an antireflection surface (light absorbing material). As a result, among the light that has passed through the light diffusing member 95, only light that travels substantially parallel to the cone axis 14 can pass through the honeycomb grid 96A, and other light is absorbed by the peripheral wall. As a result, the light selection member 96 is a member that selects light that is parallel to the cone axis 14. With the above configuration, the illuminating unit 90 can emit light parallel to the cone axis 14 toward the reflecting unit 10. Of course, the light selection member 96 is not limited to the honeycomb grid, and a viewing angle limiting filter may be used. For example, when a parallel grating-shaped viewing angle limiting filter is used, the viewing angle limiting filter is shifted by 90 °. It is also preferable that the two layers are arranged in an overlapping manner to form an orthogonal grating so that light substantially parallel to the cone axis can be selectively transmitted.

なお本実施形態では、少なくとも照明手段90と反射手段10の間の周囲には、筒状の遮光部材99が配置される。この遮光部材99は、照明手段90の光を除いた部外光が、撮像空間20内に入射することを抑止する。また、遮光部材99の内周面は光反射防止材で構成されており、照明手段90から放射された散乱光が、遮光部材99の内周面で反射しないようにしている。この光反射防止材としては、ウールペーパーや反射防止材、反射防止塗料等を用いれば良い。   In the present embodiment, a cylindrical light shielding member 99 is disposed at least around the illumination unit 90 and the reflection unit 10. The light shielding member 99 suppresses the extraneous light except the light of the illumination unit 90 from entering the imaging space 20. The inner peripheral surface of the light shielding member 99 is made of a light reflection preventing material so that scattered light emitted from the illumination unit 90 is not reflected by the inner peripheral surface of the light shielding member 99. As the light reflection preventing material, wool paper, a reflection preventing material, a reflection preventing paint or the like may be used.

このように、照明手段90を利用して、錐軸14と平行となる平行光を反射手段10に向かって放射すれば、この反射手段10によって平行光が直角方向に反射して、雄ねじ体5に対して、体軸5Aの直角方向の全方位から光を照らすことが可能となる。結果、雄ねじ体5は、その螺旋溝に陰が生じることなく全体が明るく照らしだされる。この状態で撮像手段60によって雄ねじ体5を撮像すれば、他のねじ山の陰が映り込んで出来てしまうような陰の無い画像データを得ることができる。   Thus, if the parallel light parallel to the cone axis 14 is radiated toward the reflecting means 10 using the illumination means 90, the parallel light is reflected in the right angle direction by the reflecting means 10, and the male screw body 5 is reflected. On the other hand, light can be illuminated from all directions in the direction perpendicular to the body axis 5A. As a result, the entire external thread body 5 is brightly illuminated without any shade in the spiral groove. If the male screw body 5 is imaged by the imaging means 60 in this state, it is possible to obtain shade-free image data that may be reflected by the shadows of other screw threads.

ちなみに、遮光部材99の内周面を光反射材で構成することも好ましい。このようにすると、照明手段90の一部が遮光部材99の内周面で反射しながら、反射手段10まで到達するので、雄ねじ体5に照射される全体光量を増大させることができる。具体的には、遮光部材99の内周面で反射せずに、光源92から直線的に反射手段10まで到達する略平行の光によって、雄ねじ体5の螺旋溝に陰が生じにくい状態を確保しつつも、それ以外の遮光部材99の内周面で反射するような散乱光で、雄ねじ体5全体を明るく照らすことで、照度不足を補うことができる。この際、内周面の光反射材は、調光手段として機能させることが好ましい。この調光手段は、照明手段90から発せられた光のうち、内側表面に到達した光を所望の方向へ所望の反射率で反射させ、空間内の照度を調整する。   Incidentally, it is also preferable that the inner peripheral surface of the light shielding member 99 is made of a light reflecting material. If it does in this way, since a part of illumination means 90 reaches | attains the reflection means 10 reflecting in the internal peripheral surface of the light-shielding member 99, the total light quantity irradiated to the external thread body 5 can be increased. Specifically, it is ensured that the shadow of the male screw body 5 is less likely to be shaded by the substantially parallel light reaching the reflecting means 10 linearly from the light source 92 without being reflected by the inner peripheral surface of the light shielding member 99. However, the lack of illuminance can be compensated by brightly illuminating the entire male screw body 5 with scattered light that is reflected by the inner peripheral surface of the other light shielding member 99. At this time, it is preferable that the light reflecting material on the inner peripheral surface functions as a light control means. This light control means reflects the light that has reached the inner surface of the light emitted from the illumination means 90 in a desired direction with a desired reflectance, and adjusts the illuminance in the space.

撮像手段60によって撮像された画像データは、ケーブルや無線等を含む情報伝達手段を介して画像一致度算出手段70に出力される。画像一致度算出手段70は、いわゆる演算装置であり、画像データに基づいて各種画像処理や演算処理を実行する。具体的には、予めシミュレーションで作成された、或いは理想的な雄ねじ体を用いて撮像されたマスター画像と、実際の雄ねじ体5を撮像して得られた撮像画像を比較して、画像マッチングによりこれらの一致度を算出する。この一致度に関するデータは、合否判定手段75に提供される。   The image data picked up by the image pickup means 60 is output to the image matching degree calculation means 70 via an information transmission means including a cable and a radio. The image matching degree calculating means 70 is a so-called arithmetic device, and executes various image processing and arithmetic processing based on image data. Specifically, a master image created in advance by simulation or captured using an ideal male screw body is compared with a captured image obtained by imaging the actual male screw body 5 and image matching is performed. The degree of coincidence is calculated. Data regarding the degree of coincidence is provided to the pass / fail judgment means 75.

合否判定手段75は、画像一致度に応じて合否判定を行う。画像一致度が所定の閾値を超えて、不一致と判断される場合は、雄ねじ体5の螺旋溝やねじ山等の品質が悪いと判定する。画像一致度が所定の閾値内に収まることで、一致と判断される場合は、雄ねじ体5の螺旋溝やねじ山等の品質が良好と判定する。   The pass / fail determination means 75 performs pass / fail determination according to the degree of image coincidence. When the image matching degree exceeds a predetermined threshold value and is determined to be inconsistent, it is determined that the quality of the spiral groove or thread of the male screw body 5 is poor. If it is determined that the image coincidence falls within a predetermined threshold value, it is determined that the quality of the spiral groove and thread of the male screw body 5 is good.

なお、画像一致度算出手段70及び合否判定手段75は、コンピュータ等の演算処理装置においてプログラムが実行されることで実現される。この演算処理の詳細については説明を省略するが、各種の既知の手法を採用することができる。マスター画像、撮像手段60によって撮像された画像データ、画像一致度算出手段70や合否判定手段75によって導出された測定データは、図示を省略したハードディスク等の記憶媒体に記憶されると共に、必要であれば図示を省略した表示装置やプリンタ等に出力する。   The image coincidence degree calculation means 70 and the pass / fail judgment means 75 are realized by executing a program in an arithmetic processing device such as a computer. Although the details of this calculation process are omitted, various known methods can be employed. The master image, the image data picked up by the image pickup means 60, and the measurement data derived by the image matching degree calculation means 70 and the pass / fail judgment means 75 are stored in a storage medium such as a hard disk (not shown) and are necessary. For example, the data is output to a display device, a printer, etc. (not shown).

図3及び図4に示されるように、振分手段80は、合否判定手段75による合否判定結果に基づいて、雄ねじ体5を、二種類以上のグループに機械的に振り分ける。具体的に振分手段80は、反射手段10の鉛直下方側且つ撮像手段60の上方に配置されており、互いに異なる方向に傾斜する合格傾斜面82A及び不合格傾斜面82Bと、合格傾斜面82A及び不合格傾斜面82Bを雄ねじ体5の落下位置に進退させる移動装置84を備える。例えば、開放保持機構40が、撮像後の雄ねじ体5を開放する際に、落下位置に合格側傾斜面82Aを進入させると、雄ねじ体5は合格側回収箱86Aに回収される。一方、落下位置に不合格側傾斜面82Bを進入させると、雄ねじ体5は不合格側回収箱86Bに回収される。撮像手段60による撮像中は、合格傾斜面82A及び不合格傾斜面82Bを光路から対比させる。なお、ここでは、振分手段80が合格傾斜面82Aと不合格傾斜面82Bを別々に備える場合を例示したが、一つの面の傾斜方向を切り替えることで、雄ねじ体5を二つの方向に振り分けることができる。また、図6に示されるように、合格傾斜面82Aと不合格傾斜面82Bの間に撮影干渉回避領域82Cを設けたスライダを用意し、このスライダをガイドレール85に沿って移動させることで、合格傾斜面82Aと不合格傾斜面82Bを切り替えることもできる。撮像手段60は、この撮影干渉回避領域82Cを介して画像を撮影する。   As shown in FIGS. 3 and 4, the distribution unit 80 mechanically distributes the male screw body 5 into two or more types of groups based on the pass / fail determination result by the pass / fail determination unit 75. Specifically, the distribution unit 80 is disposed vertically below the reflection unit 10 and above the image pickup unit 60, and passes an acceptable inclined surface 82A and a failed inclined surface 82B that are inclined in different directions, and an acceptable inclined surface 82A. And a moving device 84 for moving the rejected inclined surface 82B forward and backward to the falling position of the male screw body 5. For example, when the open holding mechanism 40 opens the male screw body 5 after imaging, if the acceptance-side inclined surface 82A enters the drop position, the male screw body 5 is collected in the acceptance-side collection box 86A. On the other hand, when the reject side inclined surface 82B enters the fall position, the male screw body 5 is recovered in the reject side recovery box 86B. During imaging by the imaging means 60, the acceptable inclined surface 82A and the rejected inclined surface 82B are compared from the optical path. In addition, although the case where the distribution means 80 was separately provided with the acceptance inclined surface 82A and the rejection inclination surface 82B was illustrated here, the male screw body 5 is distributed to two directions by switching the inclination direction of one surface. be able to. Further, as shown in FIG. 6, by preparing a slider provided with a photographing interference avoidance region 82C between the acceptable inclined surface 82A and the rejected inclined surface 82B, and moving this slider along the guide rail 85, It is also possible to switch between the acceptable inclined surface 82A and the rejected inclined surface 82B. The imaging unit 60 captures an image through the imaging interference avoidance area 82C.

なお、本発明は、上述のように傾斜面を用いて合否判定する場合に限られず、複数のカップを用いて合否判定したものを振り分けたり、空圧を用いて雄ねじ体5を動かしたり、プッシャによって雄ねじ体5を押すようにして振り分けたり等、様々な方法を用いることが出来る。   Note that the present invention is not limited to the case where the acceptance / rejection determination is performed using the inclined surface as described above, but the ones determined using the plurality of cups are sorted, the male screw body 5 is moved using pneumatic pressure, the pusher Various methods can be used, such as sorting by pushing the male screw body 5.

以上、本実施形態の撮像システム1によれば、簡潔な構成で、雄ねじ体5の体軸5Aに対する直角方向の全方位を、まとめて撮像することが可能となり、撮像時間を大幅に短縮することができる。また、反射手段10が円錐形の筒状となることから、両端の開口16A、16Bを介して、一方の開口16Aから雄ねじ体5を搬入し、他方の開口16Bから雄ねじ体5を搬出することができる。従って、パーツフィーダ等の自動供給装置と組みあわせることで大量の雄ねじ体5を連続的に撮像することができ、量産ラインに適したシステム構成とすることが出来る。   As described above, according to the imaging system 1 of the present embodiment, it is possible to collectively image all directions in the direction perpendicular to the body axis 5A of the male screw body 5 with a simple configuration, and to greatly reduce the imaging time. Can do. Further, since the reflecting means 10 has a conical cylindrical shape, the male screw body 5 is loaded from one opening 16A and the male screw body 5 is unloaded from the other opening 16B via the openings 16A and 16B at both ends. Can do. Therefore, when combined with an automatic supply device such as a parts feeder, a large number of male screw bodies 5 can be continuously imaged, and a system configuration suitable for a mass production line can be obtained.

とりわけ本実施形態では、図7の光路Pに示すように、照明手段90を利用して、錐軸14と平行となる平行光を反射手段10に向かって放射し、反射手段10によって平行光を直角方向に反射させることで、雄ねじ体5に対して、体軸5Aの直角方向の全方位から光を照らす。結果、雄ねじ体5は、その螺旋溝やねじ山等に陰が生じることなく全体が明るく照らしだされるので、この状態で撮像手段60によって雄ねじ体5を撮像すれば、陰の無い画像データを得ることができる。画像データを解析すれば、表面の凹凸形状やその深さ、さらには見つかりにくい螺旋溝やねじ山等の表面欠陥等を検知することが可能となる。   In particular, in the present embodiment, as shown by the optical path P in FIG. 7, the illumination unit 90 is used to radiate parallel light parallel to the cone axis 14 toward the reflection unit 10, and the reflection unit 10 generates parallel light. By reflecting in the right angle direction, the male screw body 5 is illuminated with light from all directions in the direction perpendicular to the body axis 5A. As a result, the male screw body 5 is brightly illuminated as a whole without any shade on its spiral grooves and threads, so if the male screw body 5 is imaged by the imaging means 60 in this state, image data without shadow is obtained. Can be obtained. By analyzing the image data, it is possible to detect surface irregularities and their depth, and surface defects such as spiral grooves and threads that are difficult to find.

なお、ここでは反射面12を円錐形状としたが、多角錐にすることも可能である。例えば、図5(A)に示されるように、被撮像物が円柱であれば反射面12を円錐にし、図5(B)に示されるように、被撮像物が三角柱であれば反射面12を三角錐とし、図5(C)に示されるように、被撮像物が四角柱であれ反射面12を四角錐とすることで、適切な撮像が可能となる。この場合は、照明手段90の発光面94も、三角筒や四角筒にすることが好ましい。勿論、この他の錐体形状を選定することもできる。   Here, the reflecting surface 12 has a conical shape, but may be a polygonal pyramid. For example, as shown in FIG. 5A, if the object to be imaged is a cylinder, the reflecting surface 12 is made into a cone, and as shown in FIG. 5B, if the object to be imaged is a triangular prism, the reflecting surface 12 is used. 5 is a triangular pyramid, and as shown in FIG. 5C, appropriate imaging can be performed when the imaging target is a quadrangular prism and the reflecting surface 12 is a quadrangular pyramid. In this case, it is preferable that the light emitting surface 94 of the illumination means 90 is also a triangular tube or a square tube. Of course, other cone shapes can be selected.

更に、本撮像システム1では、反射面12が表面反射鏡で構成されるので、一般的な鏡と比較してガラスの屈折や多重反射等の影響を受けないため、撮像結果の形状精度を高めることができる。   Furthermore, in this imaging system 1, since the reflecting surface 12 is composed of a surface reflecting mirror, it is not affected by refraction or multiple reflection of glass as compared with a general mirror, so that the shape accuracy of the imaging result is improved. be able to.

反射面12の傾斜角を略45°に設定する場合、雄ねじ体5の軸部の軸方向に沿った様々な箇所を始点とし、反射面12でそれぞれ反射されて、錐軸14に対して直交する撮像面60Aに対応する各点を終点とした場合、始点から終点まで光路長が至る所でほぼ等しくなる。更に、雄ねじ体5(被撮像体)の軸部(測定対象表面)の体軸直角方向の断面形状と、反射面12の錐軸直角方向の断面形状を相似させているので、雄ねじ体5の軸部の周方向に沿った様々な箇所を始点とし、反射面12でそれぞれ反射されて、錐軸14に対して直交する撮像面60Aに対応する各点を終点とした場合、同様に始点から終点まで光路長が至る所でほぼ等しくなる。結果、雄ねじ体5の軸部のあらゆる表面の至る所で、その表面自体の凹凸(螺旋溝)の差異を除けば、全ての光路長が等しくなるので、全方位について同時に光撮像手段60のピントを合わせることが可能となる。結果、この錐軸14に対して同心となる棒状材料(ここでは雄ねじ体5の軸部)を撮像する場合に、螺旋溝の凹凸相当距離を除けば、ピント合わせが極めて容易となる。また、雄ねじ体5の体軸5Aの軸方向の実寸と、同心円状となる撮像結果の半径方向の実寸が、ほぼ一致するので、高精度の形状判定に適している。なお、図14に示されるように、雄ねじ体5の軸部側面を、撮像手段60によって直接撮像する場合は、撮像手段に接近する正面位置Rと、撮像手段から最も離れた両脇位置Qとの間で光路長が大きく異なるので、被写界深度を大きくしても、同時に双方にピントを合わせることが極めて困難となる。この傾向は、呼び径の大きさに比例して顕著となる。   When the inclination angle of the reflecting surface 12 is set to about 45 °, the light is reflected at the reflecting surface 12 at various points along the axial direction of the shaft portion of the male screw body 5 and orthogonal to the cone axis 14. When each point corresponding to the imaging surface 60A to be performed is set as the end point, the optical path lengths are almost equal from the start point to the end point. Furthermore, since the cross-sectional shape in the direction perpendicular to the body axis of the shaft portion (surface to be measured) of the male screw body 5 (object to be imaged) and the cross-sectional shape in the direction perpendicular to the cone axis of the reflecting surface 12 are similar, When various points along the circumferential direction of the shaft portion are set as the starting points, and each point corresponding to the imaging surface 60A that is reflected by the reflecting surface 12 and orthogonal to the cone axis 14 is set as the ending point, similarly, from the starting point The optical path length is almost equal everywhere until the end point. As a result, all the optical path lengths are equal throughout the entire surface of the shaft portion of the male screw body 5 except for the unevenness (spiral groove) of the surface itself. Can be combined. As a result, when a rod-shaped material (here, the shaft portion of the male screw body 5) that is concentric with the cone shaft 14 is imaged, focusing is extremely easy if the distance corresponding to the unevenness of the spiral groove is excluded. Further, since the actual size in the axial direction of the body axis 5A of the male screw body 5 and the actual size in the radial direction of the imaging result having a concentric shape substantially coincide with each other, it is suitable for highly accurate shape determination. As shown in FIG. 14, when the shaft side surface of the male screw body 5 is directly imaged by the imaging means 60, the front position R approaching the imaging means and both side positions Q farthest from the imaging means Therefore, even if the depth of field is increased, it is very difficult to focus on both at the same time. This tendency becomes prominent in proportion to the size of the nominal diameter.

更に本撮像システム1では、反射手段10の錐軸14及び雄ねじ体5の体軸5Aを鉛直方向にしているので、自由落下を用いて雄ねじ体5を反射手段10内から搬出できる。従って、雄ねじ体5の搬送機構を簡略化することが可能となる。具体的には、シュータ又はフィーダとなる筒状部32を用いて、自重による自由落下方式によって雄ねじ体5を搬送し、同軸化繰送手段30が、この最も下端の雄ねじ体5を保持して、雄ねじ体5の軸部を撮像空間20内に固定する。撮像完了後は、同軸化繰送手段30が、雄ねじ体5を開放して落下させるだけで、搬出が完了する。従って、高コストとなるロボットハンド等を用いず、同軸化繰送手段30の構成も簡潔化できる上、高速処理が可能となる。   Furthermore, in this imaging system 1, since the cone axis 14 of the reflecting means 10 and the body axis 5A of the male screw body 5 are set in the vertical direction, the male screw body 5 can be carried out from the reflecting means 10 using free fall. Therefore, it is possible to simplify the conveyance mechanism of the male screw body 5. Specifically, the male threaded body 5 is transported by a free fall method by its own weight using the tubular portion 32 that becomes a shooter or feeder, and the coaxial feeding means 30 holds the male threaded body 5 at the lowest end. The shaft portion of the male screw body 5 is fixed in the imaging space 20. After completion of imaging, the coaxial feeding means 30 simply opens the male screw body 5 and drops it, and the unloading is completed. Therefore, the configuration of the coaxial feeding means 30 can be simplified without using a high-cost robot hand or the like, and high-speed processing can be performed.

この際、雄ねじ体5を、反射手段10の小径の開口16A側から搬入するため、同軸化繰送手段30が、反射手段10における、大径側の開口16Bを通過する反射光の光路と干渉しないで済む。結果、撮像手段60の配置構成も簡略化できる。   At this time, since the male screw body 5 is carried in from the small-diameter opening 16A side of the reflecting means 10, the coaxial feeding means 30 interferes with the optical path of the reflected light passing through the large-diameter opening 16B in the reflecting means 10. I don't have to. As a result, the arrangement configuration of the imaging means 60 can be simplified.

更に、本撮像システム1では、撮像画像とマスター画像の一致度から合否判定をおこない、振分手段80を用いて、落下する雄ねじ体5の搬出先を振り分けるので、極めて簡素な構成で、不良品の排除が可能となる。   Further, in the present imaging system 1, the acceptance / rejection determination is performed from the degree of coincidence between the captured image and the master image, and the delivery destination of the falling male screw body 5 is distributed using the distribution means 80, so that the defective product has an extremely simple configuration. Can be eliminated.

なお、本実施形態では、反射手段10の錐軸14の延長線上に、撮像手段60を配置したが、本発明はこれに限定されない。例えば、図8に示されるように、錐軸14の延長線上に、光路に対して45°で傾斜する第二反射手段13を配置し、この第二反射手段13が、反射光の光路を変更しつつも、錐軸から撮像手段まで至る光路長を至る点でほぼ等しく保つようにすることもできる。更にこの第二反射手段13を採用することで、撮像手段60を鉛直上向きに配置した場合に起こり得る、例えば、塵埃等の降積や被撮像物の落下時における振り分けミスによるレンズへの衝突等を事前に回避することが出来る。このようにすると、撮像手段60の配置場所に柔軟性を持たせることが可能となる。勿論、第二反射手段95は、表面反射鏡であることが好ましい。この場合、例えば第二反射手段95を光透過性のハーフミラーとすれば、照明手段90を、第二反射手段95よりも反射手段10から離れた場所に配置し、この第二反射手段95を透過させるようにして、光を照射することもできる。   In the present embodiment, the imaging unit 60 is disposed on the extension line of the cone axis 14 of the reflecting unit 10, but the present invention is not limited to this. For example, as shown in FIG. 8, the second reflecting means 13 that is inclined at 45 ° with respect to the optical path is disposed on the extension line of the cone axis 14, and the second reflecting means 13 changes the optical path of the reflected light. However, it is also possible to keep the optical path length from the cone axis to the imaging means substantially equal at all points. Further, by adopting the second reflecting means 13, it can occur when the image pickup means 60 is arranged vertically upward, for example, accumulation of dust or the like, collision with the lens due to a sorting error when the image pickup object falls, etc. Can be avoided in advance. In this way, it is possible to give flexibility to the location of the imaging means 60. Of course, the second reflecting means 95 is preferably a surface reflecting mirror. In this case, for example, if the second reflecting means 95 is a light-transmitting half mirror, the illuminating means 90 is disposed at a location farther from the reflecting means 10 than the second reflecting means 95, and the second reflecting means 95 is disposed. Light can be irradiated so as to transmit light.

また本撮像システム1の開放保持機構40においては、位置決め手段50が、保持部42をX−Y平面内で移動させる構造を例示したが、本発明はこれに限定されない。例えば図9(A)に示される開放保持機構140のように、雄ねじ体5の軸部の付け根を三方向から保持する保持部142と、この保持部142を、雄ねじ体5の体軸を中心とした半径方向にスライドさせるスライダ144と、保持部142を半径方向内側に付勢するばね146と、保持部142に設けられるカム受け148と、このカム受け148と係合して、ばね146の力に抗して保持部142を半径方向外側に移動させる板カム150と、板カム150をベルト駆動するモータ152を備えることも好ましい。   In the open holding mechanism 40 of the imaging system 1, the positioning unit 50 illustrated the structure that moves the holding unit 42 in the XY plane, but the present invention is not limited to this. For example, as in the open holding mechanism 140 shown in FIG. 9A, the holding portion 142 that holds the base of the shaft portion of the male screw body 5 from three directions, and the holding portion 142 are centered on the body axis of the male screw body 5. The slider 144 that is slid in the radial direction, the spring 146 that biases the holding portion 142 radially inward, the cam receiver 148 provided in the holding portion 142, and the cam receiver 148 are engaged with each other, It is also preferable to include a plate cam 150 that moves the holding portion 142 radially outward against the force, and a motor 152 that drives the plate cam 150 with a belt.

図9(B)に示されるように、板カム150は、筒状部32に対して、特に図示しないベアリングを介して回転自在に配置される。板カム150の外寸(半径方向寸法)は、周方向に沿って少なくとも二段階以上(ここでは三段階)に変化しており、もっとも大きい「雄ねじ体解放領域150A」と、中間の「雄ねじ体受け止め領域150B」と、最も小さい「雄ねじ体固定領域150C」が周方向にこの順番に形成される。各領域150A〜150Cは、それぞれ120°間隔で三カ所に設けられることによって、一つの板カム150で三つの保持部142を同時に移動させる。   As shown in FIG. 9B, the plate cam 150 is rotatably arranged with respect to the cylindrical portion 32 via a bearing (not shown). The external dimension (radial dimension) of the plate cam 150 changes in at least two stages (here, three stages) along the circumferential direction, and the largest “male screw body release region 150A” and the middle “male screw body”. The "receiving area 150B" and the smallest "male screw fixing area 150C" are formed in this order in the circumferential direction. Each of the regions 150A to 150C is provided at three positions at intervals of 120 °, so that the three holding portions 142 are simultaneously moved by one plate cam 150.

因みに、図9(B)は、板カム150の雄ねじ体固定領域150Cにカム受け149が係合している状態を示しており、この状態では、三本の保持部142の突端が最も半径方向内側に突出することによって、雄ねじ体5の軸部を挟み込んで固定する。結果、雄ねじ体5の体軸5Aと錐軸14を同軸化できるので、撮像が実行される。また、図10(A)は、板カム150の雄ねじ体開放領域150Aに、カム受け149が係合している状態を示しており、三本の保持部142が、雄ねじ体5の頭部よりも半径方向外側に退避することによって雄ねじ体5を開放する。これにより雄ねじ体5が落下する。図10(B)は、板カム150の雄ねじ体受け止め領域150Bに、カム受け149が係合している状態を示しており、三本の保持部142の突端が、雄ねじ体5の頭部よりも半径方向内側、且つ軸部外形よりも半径方向外側に待機することによって、上方から落下してくる雄ねじ体5の軸部を通過させつつ、頭部を受け止める。   9B shows a state in which the cam receiver 149 is engaged with the male screw body fixing region 150C of the plate cam 150, and in this state, the projecting ends of the three holding portions 142 are in the most radial direction. By projecting inward, the shaft portion of the male screw body 5 is sandwiched and fixed. As a result, since the body axis 5A of the male screw body 5 and the cone axis 14 can be coaxial, imaging is performed. FIG. 10A shows a state in which the cam receiver 149 is engaged with the male screw body opening region 150 </ b> A of the plate cam 150, and the three holding portions 142 are from the head of the male screw body 5. Also, the male screw body 5 is released by retracting outward in the radial direction. Thereby, the male screw body 5 falls. FIG. 10B shows a state in which the cam receiver 149 is engaged with the male screw body receiving region 150 </ b> B of the plate cam 150, and the protruding ends of the three holding portions 142 are from the head of the male screw body 5. Also, by waiting on the radially inner side and the radially outer side of the outer shape of the shaft portion, the head portion is received while passing the shaft portion of the male screw body 5 falling from above.

板カム150をモータ152によって一方向に等速回転させることで、雄ねじ体5の解放、雄ねじ体5の受け止め、雄ねじ体の固定が繰り返されることになり、連続的に雄ねじ体5を繰り出して順番に撮像できる。なお、図9及び図10では、筒状部32内の最下端の雄ねじ体5に対して、その一つ上で待機している雄ねじ体5を保持する予備保持部160を備えており、共通の板カム150の動作で、保持部142と同じ動作を行う。この予備保持部160により、撮像中の雄ねじ体の上の雄ねじ体5を保持できるので、上の雄ねじ体が、撮像中の雄ねじ体に衝突する状況を回避できるので、撮像中の雄ねじ体5の保持姿勢に誤差が発生することを抑制できる。なお、図9及び図10では、板カム150の外寸が階段状に変位する場合を例示したが、滑らかに変位するように設計することも勿論可能である。   By rotating the plate cam 150 at a constant speed in one direction by the motor 152, the release of the male screw body 5, the reception of the male screw body 5, and the fixing of the male screw body are repeated. Can be imaged. 9 and 10, the lowermost male screw body 5 in the cylindrical portion 32 is provided with a preliminary holding portion 160 that holds the male screw body 5 waiting on one of them. The operation of the plate cam 150 performs the same operation as that of the holding unit 142. Since the external screw body 5 on the male screw body being imaged can be held by the preliminary holding unit 160, it is possible to avoid a situation in which the upper male screw body collides with the male screw body being imaged. It is possible to suppress the occurrence of an error in the holding posture. 9 and 10 exemplify the case where the outer dimension of the plate cam 150 is displaced stepwise, it is of course possible to design it so that it is displaced smoothly.

また、上記実施形態では、撮像手段60と照明手段90が別体となる場合を例示したが、本発明はこれに限定されない。例えば図11に示すように、光軸方向視の状態において、撮像手段60におけるCCD又はCMOS等の半導体による撮像素子200の各画素200Aの間に、発光素子200Bを形成することで、撮像手段60と照明手段90の光源を一体化することも可能である。   Moreover, although the case where the imaging means 60 and the illumination means 90 became a separate body was illustrated in the said embodiment, this invention is not limited to this. For example, as shown in FIG. 11, the imaging unit 60 is formed by forming a light emitting element 200 </ b> B between the respective pixels 200 </ b> A of the imaging device 200 made of a semiconductor such as a CCD or a CMOS in the imaging unit 60 in a state viewed in the optical axis direction. It is also possible to integrate the light source of the illumination means 90.

また、上記実施形態では、遮光部材99の内周面を光反射防止材で構成するか又は光反射材で構成する場合を例示したが、本発明はこれに限定されない。例えば図12に示すように、遮光部材99の内周側に対して、又は遮光部材99に代えて、第二照明手段190を配置することができる。この第二照明手段190は、周方向内側に向かって光を放射する円筒形状の発光面194を有している。この発光面194は、反射手段10と撮像手段60の間を結ぶ反射光の光路の周辺を取り囲むようにして、反射面12と略同軸状に配置される。更にこの発光面194を、雄ねじ体5に対して軸方向にずらして配置し、発光面194から軸心方向に拡散的に光を照射して間接的に雄ねじ体5を照らす。   Moreover, in the said embodiment, although the case where the internal peripheral surface of the light shielding member 99 was comprised with a light reflection preventing material or it comprised with a light reflection material was illustrated, this invention is not limited to this. For example, as shown in FIG. 12, the second illumination means 190 can be arranged on the inner peripheral side of the light shielding member 99 or in place of the light shielding member 99. The second illumination unit 190 has a cylindrical light emitting surface 194 that emits light toward the inner side in the circumferential direction. The light emitting surface 194 is disposed substantially coaxially with the reflecting surface 12 so as to surround the periphery of the optical path of the reflected light connecting the reflecting means 10 and the imaging means 60. Further, the light emitting surface 194 is arranged so as to be shifted in the axial direction with respect to the male screw body 5, and light is diffusely irradiated from the light emitting surface 194 in the axial direction to indirectly illuminate the male screw body 5.

このように、反射手段10の錐形筒状の中心軸(錐軸14)と略平行となる光を発する照明手段90と、それとは光照射方向が異なる第二照明手段190を組み合わせることで、雄ねじ体5の螺旋溝やねじ山等に陰が生じにくい状態を確保しつつも、雄ねじ体5の全体を明るく照らすことが可能となる。特に、第二照明手段190は、雄ねじ体5に対して軸方向にずらして配置し、かつ、発光面194を雄ねじ体5に対向しないように配置すれば、映像のハレーションも抑制できることになる。   Thus, by combining the illumination unit 90 that emits light that is substantially parallel to the central axis (cone axis 14) of the cone-shaped cylinder of the reflection unit 10 and the second illumination unit 190 having a different light irradiation direction, It is possible to brightly illuminate the entire male screw body 5 while ensuring a state in which the spiral groove and the thread of the male screw body 5 are not easily shaded. In particular, if the second illuminating unit 190 is arranged so as to be shifted in the axial direction with respect to the male screw body 5 and the light emitting surface 194 is arranged so as not to face the male screw body 5, it is possible to suppress the halation of the image.

更に上記実施形態では、照明手段90が錐軸14と平行となる光を放射し、反射手段10によって反射させることで、錐軸14に対して直角となる光を生成して、雄ねじ体5を全方位から照らす場合を例示したが、本発明はこれに限定されない。例えば図13に示すように、照明手段90は、錐軸14の半径方向内側に向かって光を放射する円筒形状の発光面93を有するようにし、これを反射手段10の外周を取り囲むように略同軸状に配置する。この場合、反射手段10は、ガラス等の光透過性基材12Aの表面に、光透過性を有する金属膜12Bを形成した所謂ハーフミラーとする。このようにすると、図13の領域Xに拡大して示すように、照明手段90の光Pは、反射手段10における反射面12の裏側から反射面12を通過して、この透過光によって体軸5Aの直角方向から雄ねじ体5を照らすことができる。   Furthermore, in the said embodiment, the illumination means 90 radiate | emits the light parallel to the cone axis 14, and it reflects with the reflection means 10, and produces | generates the light which becomes a right angle with respect to the cone axis 14, The male screw body 5 is made. Although the case where it illuminated from all directions was illustrated, this invention is not limited to this. For example, as shown in FIG. 13, the illuminating means 90 has a cylindrical light emitting surface 93 that emits light toward the inside in the radial direction of the cone axis 14, and substantially surrounds the outer periphery of the reflecting means 10. Arrange coaxially. In this case, the reflecting means 10 is a so-called half mirror in which a light-transmitting metal film 12B is formed on the surface of a light-transmitting substrate 12A such as glass. In this way, as shown in the region X of FIG. 13 in an enlarged manner, the light P of the illumination means 90 passes through the reflection surface 12 from the back side of the reflection surface 12 in the reflection means 10, and the body axis is transmitted by this transmitted light. The male screw body 5 can be illuminated from a right angle direction of 5A.

以上、本実施形態では、被撮像体として、軸部に螺旋溝又はねじ山等を有する雄ねじ体5を撮像する場合を例示したが、本発明はこれに限定されず、様々な部品、部材を撮像することができる。一方、本撮像システムでは、被撮像体が棒状部位を有しており、その棒状部位の全周を撮像する際に好適である。   As described above, in the present embodiment, the case where the male screw body 5 having a spiral groove or a screw thread or the like is imaged as the imaging target is illustrated, but the present invention is not limited to this, and various components and members are included. An image can be taken. On the other hand, in the present imaging system, the object to be imaged has a bar-shaped part, which is suitable for imaging the entire circumference of the bar-shaped part.

また、本発明の実施例は、上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Further, the embodiments of the present invention are not limited to the above-described embodiments, and it is needless to say that various modifications can be made without departing from the scope of the present invention.

本発明によれば、簡便な構造によって、被撮像体を高速に撮像することが可能となる。   According to the present invention, an object to be imaged can be imaged at high speed with a simple structure.

1 撮像システム
5 雄ねじ体
5A 体軸
10 反射手段
12 反射面
14 錐軸
16A、16B 開口
20 撮像空間
30 同軸化繰送手段
32 筒状部
32A 投入口
32B 放出口
40 開放保持機構
42 保持部
42A 係合突起
42B 押圧面
44 駆動部
50 位置決め手段
52 Xステージ
54 Yステージ
58 センサ
60 撮像手段
70 画像一致度算出手段
75 合否判定手段
80 振分手段
90 照明手段
92 光源
94 保護部材
95 光拡散部材
96 光選択部材
99 遮蔽部材
190 第二照明手段
DESCRIPTION OF SYMBOLS 1 Imaging system 5 Male screw body 5A Body axis 10 Reflecting means 12 Reflecting surface 14 Conical shaft 16A, 16B Aperture 20 Imaging space 30 Coaxial feeding means 32 Cylindrical part 32A Input port 32B Release port 40 Opening holding mechanism 42 Holding part 42A Joint protrusion 42B Pressing surface 44 Drive unit 50 Positioning means 52 X stage 54 Y stage 58 Sensor 60 Imaging means 70 Image coincidence calculating means 75 Pass / fail judgment means 80 Distribution means 90 Illumination means 92 Light source 94 Protection member 95 Light diffusion member 96 Light Selection member 99 Shielding member 190 Second illumination means

Claims (9)

一端側が小径に他端側が大径に開口した錐形筒状を成す内周を反射面とする反射手段と、
前記反射手段の内側の錐状台形空間に、被撮像体を位置させて前記被撮像体の中心を通る体軸に対して直角方向の多方位からの像を撮像可能とする撮像空間と、
前記反射手段の前記大径の前記開口側に配置され、前記反射手段の前記錐形筒状の中心軸と略平行となる光を該反射手段に向かって放射し、該光を前記反射面に反射させて前記体軸直角方向から前記被撮像体を照らす照明手段と、
前記被撮像体を前記撮像空間内に保持させた状態で、前記照明手段によって前記被撮像体を照らしながら、前記反射手段の前記反射面で反射した前記被撮像体の反射像を撮像する撮像手段と、
を備えることを特徴とする撮像システム。
Reflecting means having a reflecting surface on the inner periphery forming a conical cylindrical shape with one end side having a small diameter and the other end having a large diameter;
An imaging space in which an object to be imaged is positioned in a conical trapezoidal space inside the reflecting means and images from multiple directions perpendicular to a body axis passing through the center of the object to be imaged can be captured;
Light that is disposed on the large-diameter opening side of the reflecting means, radiates light that is substantially parallel to the central axis of the conical cylindrical shape of the reflecting means toward the reflecting means, and the light is emitted to the reflecting surface. Illumination means for reflecting and illuminating the object to be imaged from the direction perpendicular to the body axis;
Imaging means for capturing a reflected image of the object to be reflected reflected by the reflecting surface of the reflecting means while illuminating the object to be imaged by the illuminating means in a state where the object to be imaged is held in the imaging space. When,
An imaging system comprising:
前記照明手段と前記反射手段の間の空間の周囲には、部外光が前記撮像空間に入射することを抑止する、該空間を囲繞するように構成される遮光手段が配置されることを特徴とする、
請求項1に記載の撮像システム。
Around the space between the illuminating means and the reflecting means, there is disposed a light shielding means configured to surround the space to prevent extraneous light from entering the imaging space. And
The imaging system according to claim 1.
前記遮光手段は、内側表層に調光手段を有することを特徴とする、
請求項2に記載の撮像システム。
The light shielding means has a light control means on the inner surface layer,
The imaging system according to claim 2.
前記照明手段よりも前記反射手段側において、前記照明手段から発せられる光の中から前記錐形筒状の中心軸と略平行となる光を選択する光選択手段を有することを特徴とする、
請求項1乃至3のいずれかに記載の撮像システム。
It has light selection means for selecting light that is substantially parallel to the central axis of the cone-shaped cylindrical tube from light emitted from the illumination means on the reflection means side of the illumination means.
The imaging system according to claim 1.
前記照明手段は、前記光源と前記反射手段の間に光拡散手段を有することを特徴とする、
請求項4に記載の撮像システム。
The illumination unit includes a light diffusion unit between the light source and the reflection unit.
The imaging system according to claim 4.
前記撮像手段は、撮像素子を有しており、
前記照明手段は、光軸方向視において、前記撮像素子における画素の間に配置される光源を有することを特徴とする、
請求項1乃至5のいずれかに記載の撮像システム。
The imaging means has an imaging element,
The illuminating unit includes a light source disposed between pixels in the image sensor in an optical axis direction view.
The imaging system according to claim 1.
一端側が小径に他端側が大径に開口した錐形筒状を成し、内周を光透過性の反射面とする反射手段と、
前記反射手段の内側の錐状台形空間に、被撮像体を位置させて前記被撮像体の中心を通る体軸直角方向の多方位からの像を撮像可能とする撮像空間と、
前記反射手段の外側に配置され、前記体軸直角方向と平行となる光を前記反射面の裏側から前記反射面を透過させるように放射し、該透過光によって前記体軸直角方向から前記被撮像体を照らす照明手段と、
前記被撮像体を前記撮像空間内に保持させた状態で、前記照明手段によって前記被撮像体を照らしながら、前記反射手段の前記反射面で反射した前記被撮像体の反射像を撮像する撮像手段と、
を備えることを特徴とする撮像システム。
Reflecting means having a conical cylindrical shape with one end side having a small diameter and the other end having a large diameter, and having an inner circumference as a light-transmissive reflecting surface;
An imaging space in which an object to be imaged is positioned in a conical trapezoidal space inside the reflecting means and images from multiple directions perpendicular to the body axis passing through the center of the object to be imaged can be captured;
Light that is arranged outside the reflecting means and is parallel to the direction perpendicular to the body axis is radiated from the back side of the reflecting surface so as to pass through the reflecting surface, and the imaged object is taken from the direction perpendicular to the body axis by the transmitted light. Lighting means to illuminate the body;
Imaging means for capturing a reflected image of the object to be reflected reflected by the reflecting surface of the reflecting means while illuminating the object to be imaged by the illuminating means in a state where the object to be imaged is held in the imaging space. When,
An imaging system comprising:
前記反射手段の前記反射面は、円錐状であることを特徴とする請求項1乃至7のいずれかに記載の撮像システム。   The imaging system according to claim 1, wherein the reflecting surface of the reflecting means has a conical shape. 前記反射手段は、表面反射鏡であることを特徴とする請求項1乃至8のいずれかに記載の撮像システム。   The imaging system according to claim 1, wherein the reflecting unit is a surface reflecting mirror.
JP2014252904A 2014-12-15 2014-12-15 Imaging system Pending JP2016114452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014252904A JP2016114452A (en) 2014-12-15 2014-12-15 Imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014252904A JP2016114452A (en) 2014-12-15 2014-12-15 Imaging system

Publications (1)

Publication Number Publication Date
JP2016114452A true JP2016114452A (en) 2016-06-23

Family

ID=56141398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014252904A Pending JP2016114452A (en) 2014-12-15 2014-12-15 Imaging system

Country Status (1)

Country Link
JP (1) JP2016114452A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021012127A (en) * 2019-07-08 2021-02-04 西進商事株式会社 Visual inspection device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115055U (en) * 1991-03-23 1992-10-12 太陽誘電株式会社 Appearance inspection equipment for electronic components
JP2000180371A (en) * 1998-12-11 2000-06-30 Sharp Corp Foreign matter inspecting apparatus and semiconductor process apparatus
WO2003010525A1 (en) * 2001-07-27 2003-02-06 Nippon Sheet Glass Co., Ltd. Method for evaluating contamination of object surface and imaging box used for this method
JP2003254726A (en) * 2002-02-28 2003-09-10 Shibuya Kogyo Co Ltd Device for visual inspection of semi-conductor element
JP2004108833A (en) * 2002-09-13 2004-04-08 Ykk Corp Apparatus for visually inspecting article, its inspection method, and apparatus for continuously selecting non-conforming article
JP2004347410A (en) * 2003-05-21 2004-12-09 Toshiba Corp Method and device for testing nuclear fuel pellet
JP2006194872A (en) * 2005-01-10 2006-07-27 Ajuhitek Inc Automatic optical inspection device
JP2007081203A (en) * 2005-09-15 2007-03-29 Fujifilm Corp Area sensor, image input device, and electrophotographic device and the like in which same is incorporated
JP2010276866A (en) * 2009-05-28 2010-12-09 Nikon Corp Image acquisition device and microscope device having the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115055U (en) * 1991-03-23 1992-10-12 太陽誘電株式会社 Appearance inspection equipment for electronic components
JP2000180371A (en) * 1998-12-11 2000-06-30 Sharp Corp Foreign matter inspecting apparatus and semiconductor process apparatus
WO2003010525A1 (en) * 2001-07-27 2003-02-06 Nippon Sheet Glass Co., Ltd. Method for evaluating contamination of object surface and imaging box used for this method
JP2003254726A (en) * 2002-02-28 2003-09-10 Shibuya Kogyo Co Ltd Device for visual inspection of semi-conductor element
JP2004108833A (en) * 2002-09-13 2004-04-08 Ykk Corp Apparatus for visually inspecting article, its inspection method, and apparatus for continuously selecting non-conforming article
JP2004347410A (en) * 2003-05-21 2004-12-09 Toshiba Corp Method and device for testing nuclear fuel pellet
JP2006194872A (en) * 2005-01-10 2006-07-27 Ajuhitek Inc Automatic optical inspection device
JP2007081203A (en) * 2005-09-15 2007-03-29 Fujifilm Corp Area sensor, image input device, and electrophotographic device and the like in which same is incorporated
JP2010276866A (en) * 2009-05-28 2010-12-09 Nikon Corp Image acquisition device and microscope device having the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021012127A (en) * 2019-07-08 2021-02-04 西進商事株式会社 Visual inspection device

Similar Documents

Publication Publication Date Title
US9952151B2 (en) Surface features by azimuthal angle
US8416403B2 (en) Method and system for high-speed, high-resolution 3-D imaging of manufactured parts of various sizes
US9810633B2 (en) Classification of surface features using fluoresence
CN101924053B (en) System and method for inspecting a wafer
KR100793182B1 (en) Apparatus and method for detecting defects in wafer using line sensor camera
US9863876B2 (en) Reflective surfaces for surface features of an article
CN102412170A (en) System and method for capturing illumination reflected in multiple directions
US9863892B2 (en) Distinguishing foreign surface features from native surface features
CN103884651B (en) A kind of full-automatic bottle cap quality detecting system
US9539619B2 (en) High speed method and system for inspecting a stream of parts at a pair of inspection stations
US9228957B2 (en) High speed method and system for inspecting a stream of parts
JP2013505464A5 (en)
TWI633295B (en) Apparatus for surface feature detection and inspection of an article
US10300510B2 (en) High speed method and system for inspecting a stream of parts
US9188532B2 (en) Inspection apparatus
JP2014163916A (en) Imaging system
TWI449878B (en) Apparatus and method for optically converting a three-dimensional object into a two-dimensional planar image
CN105223207A (en) Defect inspection equipment and method
JP2016114452A (en) Imaging system
JP6489540B2 (en) Imaging system, illumination means
CN205015284U (en) Optical device for detecting assembly
US10025965B2 (en) Method, device and inspection line for the optical reading of reliefs on a side wall of a container
KR101485425B1 (en) Cover-glass Analysis Apparatus
JPH09304285A (en) Method and apparatus for inspecting surface, laser beam generator and prism
JP2017009541A (en) Imaging System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20181113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190514