JP2016111925A - Power generation facility in ocean area for generating power using tidal flow or ocean flow - Google Patents

Power generation facility in ocean area for generating power using tidal flow or ocean flow Download PDF

Info

Publication number
JP2016111925A
JP2016111925A JP2016052689A JP2016052689A JP2016111925A JP 2016111925 A JP2016111925 A JP 2016111925A JP 2016052689 A JP2016052689 A JP 2016052689A JP 2016052689 A JP2016052689 A JP 2016052689A JP 2016111925 A JP2016111925 A JP 2016111925A
Authority
JP
Japan
Prior art keywords
power
receiving plate
pressure receiving
rotation
sea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016052689A
Other languages
Japanese (ja)
Inventor
親男 橋本
Chikao Hashimoto
親男 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Banatsukeisoku B Scope Kk
Original Assignee
Banatsukeisoku B Scope Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Banatsukeisoku B Scope Kk filed Critical Banatsukeisoku B Scope Kk
Priority to JP2016052689A priority Critical patent/JP2016111925A/en
Publication of JP2016111925A publication Critical patent/JP2016111925A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/14Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed pressurised
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J3/00Driving of auxiliaries
    • B63J3/04Driving of auxiliaries from power plant other than propulsion power plant
    • B63J2003/043Driving of auxiliaries from power plant other than propulsion power plant using shore connectors for electric power supply from shore-borne mains, or other electric energy sources external to the vessel, e.g. for docked, or moored vessels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Hydraulic Turbines (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Secondary Cells (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to inexpensively produce, by using power generated using a power generator G that is installed under the sea and is capable of generating power using a tidal flow or ocean flow as renewable clean energy, a hydrogen gas using a hydrogen gas manufacturing device in a ship in an installation sea area to perform marine transport of the gas to a destination, or inexpensively charge a large amount of discharged batteries to efficiently transport the charged batteries to the destination.SOLUTION: A power generation facility in an ocean area includes float bases F, Fprovided on the sea in the vicinity of a power generator G for generating power using a tidal flow; establishes wiring for power generated by the power generator G to the float bases F, Fusing an undersea power line cable K; connects, by using movable arm machines, connectors of air power lines AK connected on the sides of ships SH, SB stopping in the vicinity of the float bases F, Fwith connectors fof power transmission lines provided on surfaces above the sea of the float bases F, F; generates a hydrogen gas through electrolysis of water by a hydrogen manufacturing device SHusing power in a ship; and compresses the gas to fill a hydrogen gas high pressure vessel SHwith the compressed gas.SELECTED DRAWING: Figure 1

Description

本発明は、海中又は水中に設置された発電装置でもって、海の潮流又は海流の水流エネルギーを使用して電力を発生させ、その発生した電力を使用してエネルギー源の燃料としての水素ガスを製造し、又その電力を使用してバッテリー充電に供し、電力エネルギーを水素ガスとバッテリーの形態でエネルギーを保存し、水素ガスは水素燃料電池、又は水素エンジンの持ち運べる燃料源として使用でき、更に電力をバッテリーの充電に使用し、同じく電力エネルギーをバッテリーの形態で保存して、車,工場,船,農業・水産業の施設及び家庭で手軽に使用できるようにし、更に生産した水素ガス及びバッテリーを大量に海上輸送でき易くする、海域での発電設備に関するものである。化石燃料・有機物を一切使わないで、二酸化ガスの発生もなく発電できる、再生可能エネルギーを使ったクリーンな発電設備であり、しかも発生した電力を使用して、二酸化ガスを発生しない環境に優しい燃料としての水素ガスの生産、バッテリー充電に直ちに使用でき、電力エネルギーの保存及び運搬・保管を可能且つ安価に提供できる技術に関する。   The present invention is a power generation device installed in the sea or underwater, and generates electric power using the ocean tide or ocean current energy, and uses the generated electricity to generate hydrogen gas as a fuel for the energy source. Manufacture and use the power to charge the battery, save the energy in the form of hydrogen gas and battery, the hydrogen gas can be used as a portable fuel source for hydrogen fuel cell or hydrogen engine, Is used to charge the battery, and the power energy is also stored in the form of a battery so that it can be easily used in cars, factories, ships, agricultural / fishery facilities and homes, and the produced hydrogen gas and battery The present invention relates to a power generation facility in the sea area that facilitates mass transportation by sea. It is a clean power generation facility using renewable energy that can generate electricity without generating fossil fuel or organic matter, and without generating any dioxide gas. The present invention relates to a technology that can be used immediately for production of hydrogen gas and battery charging, and that can provide power energy storage, transportation and storage at low cost.

再生可能自然エネルギーの活用は地球的課題であるとしても過言ではない。
水力、風力、太陽光、地熱、バイオ等は、技術的課題は解決されて、世界中で活用されている。しかし、最も期待の大きい海の自然エネルギーの活用は、技術的課題も大きく、いまだ実現の例も少ない。
その中で、潮流発電に関しても多数の試みが世界的にもなされてきたが、いまだ普遍性を持った技術が報告されていない。日本の潮流と水深の分布から、潮流発電を設置する海域を限定して、駆動構造の方式を考えた。潮流は速いほど良いが、比較的に流速が低い1ノットから2ノットの範囲の海域は、瀬戸内海から九州にかけて、広く分布している。水深も浅く40m程度以下であり、陸地も近く、この海域を対象に適応する潮流発電の駆動構造を考えれば、製作コスト、運転コストも有利で、採用、活用も広範囲に期待される。
又、潮流の流速がやや大きい2ノットから4ノットの海域も日本・世界に多くあり、この流速の潮流域又は海流域で発電すれば、大きな発電能力(MW),年間総発電量(億kWh)も大きくでき、再生可能エネルギーの有力な発電方式として期待される。
It is no exaggeration to say that the use of renewable natural energy is a global issue.
Hydropower, wind power, solar power, geothermal heat, biotechnology, etc. are used all over the world, with technical problems solved. However, the most promising use of natural energy in the ocean has great technical challenges and few examples have been realized.
Among them, many attempts have been made worldwide for tidal current power generation, but no technology with universality has yet been reported. Based on the tidal current and water depth distribution in Japan, we decided on the drive structure method by limiting the sea area where tidal power generation would be installed. The faster the tidal current is, the better, but the relatively low-velocity area of 1 to 2 knots is widely distributed from the Seto Inland Sea to Kyushu. The shallow water depth is about 40m or less, the land is close, and considering the tidal power generation drive structure adapted to this sea area, the production cost and operation cost are advantageous, and its adoption and utilization are expected in a wide range.
In addition, there are many sea areas of 2 knots to 4 knots in Japan and around the world where the tidal current flow rate is slightly large. If power is generated in tidal current areas or ocean current areas at this flow velocity, large power generation capacity (MW), annual total power generation (100 million kWh) ) Can be increased, and is expected to be a powerful power generation method for renewable energy.

海域で発電する装置としては大型風車発電装置がある。これは海底に土台を設置して海面上方に高いタワー又は大型ポストを構築し、これに5〜20m径のプロペラを取付け、風力でもって発電させるものがあるが、水深が浅い海岸に近い海域に設置されるのであり、水深が30mを超えるときわめて大きい構造物となって設置コストが高い。又、大きな風力エネルギーを得るにはプロペラ径を大径にせねばならず、そのプロペラの軸支構造、プロペラ自体も軽量で高強度のものが要求される。更に、日本では台風・強い波浪が発生するので、それに耐える設計・強度・機構が要求される。又、風速は日時又は月・季節で大きく変動するため、発生電力も大きく変動しがちで不安定である。一般に風力発電は一日で発電できる時間が短い。   As a device for generating electricity in the sea area, there is a large wind turbine generator. This is because a base is set up on the sea floor and a high tower or large post is built above the sea surface. A propeller with a diameter of 5 to 20m is attached to this, and power is generated by wind power. If the water depth exceeds 30 m, the structure becomes very large and the installation cost is high. Further, in order to obtain large wind energy, the propeller diameter must be made large, and the shaft support structure of the propeller and the propeller itself are required to be light and have high strength. Furthermore, since typhoons and strong waves are generated in Japan, design, strength, and mechanisms that can withstand them are required. Further, since the wind speed fluctuates greatly depending on the date and time or the month / season, the generated power tends to fluctuate greatly and is unstable. Generally, wind power generation has a short time for generating electricity in one day.

次に、海面に浮べて風力と海水流又は波浪で発電させるものもあるが、台風・強い波浪・強い海面水流に対して破損・強い揺動を受け、更には係留していても強い水流で遠方へ流される恐れがあった。   Next, there are those that float on the sea surface and generate power with wind and sea currents or waves, but they are damaged or swayed by typhoons, strong waves, and strong sea surface waters. There was a risk of being swept away.

更には、水深が20m以上にある潮流・海流の水流エネルギーを使用して発電する装置を海中に設置する装置があるが、潮流発電装置の場合では海岸から500m〜数km以内の海域に設置されることが多い。その発電装置で発生させられた電力は海底に敷設させた電力線ケーブルで陸上へ送られる。海流で発電させる装置では、海岸から更に遠い位置にある強い流れの海流を利用するため、海岸から発電装置までの距離が5km以上超えることも多くなる。   Furthermore, there is a device that installs in the sea a device that generates electricity using tidal currents and ocean currents that have a water depth of 20 m or more. In the case of tidal current power generation devices, it is installed in a sea area within 500 to several kilometers from the coast. Often. The electric power generated by the power generation device is sent to land by a power line cable laid on the seabed. In a device that generates power using a sea current, a strong current that is further away from the coast is used, and therefore the distance from the coast to the power generation device often exceeds 5 km.

これらに使用する海底敷設の電力線ケーブルはきわめて高価であり、長くなると発電装置本体の製造コストより高くなりがちであり高コストとなり、発電コストが高くなる傾向がある。その為に、潮流・海流発電装置は海岸から遠く離れた海域での設置はコストが嵩んで実用的でないとされてきた。   Submarine-laid power line cables used for these are extremely expensive. If they are long, they tend to be higher than the manufacturing cost of the power generation device main body, resulting in higher costs and higher power generation costs. For this reason, tidal current / ocean current power generation devices have been considered impractical because of the high cost of installation in a sea area far from the coast.

水深が深く、潮流・海流の水流の流速が速い海域での発電は、流速の3乗則に従って高電力を発生させられるが、上記の電力線ケーブルの敷設コストの問題があって、実用化が難しいという難点があった。   Power generation in the sea area where the water depth is deep and the flow velocity of the tidal and ocean currents is high can generate high power according to the cubic law of the flow velocity, but it is difficult to put into practical use due to the problem of the laying cost of the above power line cable. There was a difficulty.

一方、潮流・海流を使った発電装置の利点は海中20m以上の水深に設置されるため、海面の強い波浪・台風等の強い風速の影響を大きく受けないため、比較的に安定的に装置は支持される。しかも、潮流は地球と月の引力によって発生する海水の流れで毎日確実に発生する自然現象であり、1日16時間程発電できる流速があり、海流は1日中所定以上の流速があり、発電装置の稼働時間が長いので、安定した電力が得ることができる。
しかし、潮流発電及び海流発電装置は上記の電力線ケーブルの問題があって実用化しにくいものであった。
On the other hand, the advantage of power generators using tidal currents and ocean currents is that they are installed at a depth of 20 meters or more in the sea, so they are not greatly affected by strong wind speeds such as strong ocean waves and typhoons. Supported. Moreover, tidal current is a natural phenomenon that occurs reliably every day due to the flow of seawater generated by the earth and the moon, and has a flow rate that can generate electricity for about 16 hours a day. Since the operation time of the apparatus is long, stable power can be obtained.
However, tidal current power generation and ocean current power generation devices are difficult to put into practical use due to the problems of the above power line cables.

本発明の課題は高い発電能力と安定性を有する潮流発電と海流発電装置の問題点を解消し、実用性が高い発電設備の提供と、発電エネルギーを使い易いエネルギーに保存して運送し易くし、生産及び使用時いずれでも二酸化炭素を発生することがない環境に優しい水素ガス燃料を安価に提供することにある。又、これによって、水素エネルギーの社会の到来と漁村・漁業の産業振興ともなる。   The object of the present invention is to solve the problems of tidal power generation and ocean current power generation equipment having high power generation capacity and stability, to provide highly practical power generation facilities, and to make it easy to store and transport the generated energy in easy-to-use energy. Another object is to provide an environmentally friendly hydrogen gas fuel that does not generate carbon dioxide during production and use at low cost. This will also lead to the advent of hydrogen energy society and the promotion of fishing villages and fisheries industry.

(従来の潮流・海流発電装置について)
本発明の発電装置として使用される潮流発電装置・海流発電装置の駆動構造として、風車のプロペラ式、船のプロペラ式、ダリウス翼車式、サボニウス翼車式など、さらに固定翼、クロスフロー、捩れ翼、バケットコンベアー式、等多数のものが提案されている。いずれも、海の過酷な条件に対して、一長一短の理由があるためか、試行の段階であり、活用の域に無い。
(Regarding conventional tidal current and ocean current power generation equipment)
As a drive structure of a tidal current generator / ocean current generator used as a generator of the present invention, a wind turbine propeller type, a ship propeller type, a Darius impeller type, a Savonius impeller type, etc., and further, fixed wing, cross flow, twist Many things, such as a wing and a bucket conveyor type, have been proposed. Both are at the trial stage because there are merits and demerits for the severe conditions of the sea, and they are not in the range of utilization.

製造コスト最小な単純構造として、まず古来から現在まで活用されてきた地上の水車のモデルがある。しかし、開放型横軸片掛け水車を横に倒して流水中に沈めるとそのままでは回らない。そこで、ここで導水板を使って水流を片側だけにかかる様にすれば回転する。これがクロスフロー式であるが、実海面での導水板の設置は、固定式でも、可動式でも、コストも過大で、実現していない。   As a simple structure with the lowest manufacturing cost, there is a ground water turbine model that has been used since ancient times. However, if an open horizontal shaft single-sided water wheel is tilted sideways and submerged in running water, it will not turn as it is. Therefore, if the water flow is applied only to one side using a water guide plate here, it rotates. This is a cross-flow type, but the installation of the water guide plate at the actual sea level is not realized because it is a fixed type, a movable type, and the cost is excessive.

改良された水車羽根型の発電装置として、特許文献1に記載の発明があるが、これは回転体の全周に均等に羽根を複数枚を設け、同羽根をストッパ部によって所定範囲では立上げて流体受け部を形成し、その反対側の角度範囲では羽根を倒れるようにして、羽根の流体受け部に流体を送るために流体を誘導する流体ガイド板を設ける構造である。
しかしながら、この水車羽根型の発電装置では、流体の流れ方向が逆になったり、方向が変る海中では流体を常時流体受部へ誘導できず、発電が不安定となると判断される。
As an improved water turbine blade type power generator, there is an invention described in Patent Document 1, which is provided with a plurality of blades evenly around the entire circumference of a rotating body, and the blades are raised within a predetermined range by a stopper portion. In this structure, a fluid receiving plate is formed to guide the fluid to send the fluid to the fluid receiving portion of the blade such that the blade is tilted in the opposite angular range.
However, in this water turbine blade type power generation device, it is determined that the fluid cannot always be guided to the fluid receiving part in the sea where the flow direction of the fluid is reversed or the direction of the fluid is changed, and the power generation becomes unstable.

又、これとは別に回転体に放射状の羽根を複数板取り付け、その羽根の取付角度の一部が流れに対して直角にし、その反対側の羽根を流れに対して平行にするようにギヤ機構で行えるようにする風車が特許文献2に開示されているが、その羽根取付角度調整機構は複雑であり、長年使用すると羽根に作用する力で故障し、長期安定作動が難しいと判断される。又、この羽根取付角度調整機構によってエネルギー損失が大きく、効率的な発電は難しいと判断される。   Separately, a gear mechanism is used so that a plurality of radial blades are mounted on a rotating body, and a part of the blade mounting angle is perpendicular to the flow and the opposite blade is parallel to the flow. A wind turbine that can be used in the above is disclosed in Patent Document 2. However, the blade attachment angle adjustment mechanism is complicated, and when used for many years, it is determined that it will fail due to the force acting on the blade and long-term stable operation is difficult. In addition, it is judged that efficient energy generation is difficult due to a large energy loss due to the blade mounting angle adjusting mechanism.

現在、対象とする海域の条件に適応する潮流発電装置の駆動構造の開発が必要とされている。海域の条件は潮流速度が1.0〜2.0ノットの低流速の潮流域又は2.0〜4.0ノットの比較的に流速が速い潮流域であって、水深が−45mから−10m程度の海域とする。さらに、潮流方向の変化にたいしてはクロスフローの導水板や、プロペラ方式の旋回機構、など特段の機構を必要としないシンプルな構造であること。また、広範囲の採用・活用を図るため、発電能力は100kW,500kW,1MW,2MW,3〜6MW等に対応できること、最終的には発電コストを最小にすること、製造コスト最小の単純な構造とし、高度な技術・精度を要しないで、潮流の方向の変化に対応できて確実に発電出来るようにすることが期待されるものである。   Currently, there is a need to develop a tidal power generator drive structure that adapts to the conditions of the target sea area. The conditions of the sea area are a tidal area with a low tidal current of 1.0 to 2.0 knots or a tidal area with a relatively high tidal speed of 2.0 to 4.0 knots and a water depth of -45 m to -10 m. It is assumed to be about the sea area. Furthermore, it must be a simple structure that does not require special mechanisms such as a cross-flow water guide plate or a propeller-type swivel mechanism for changes in the tidal direction. In addition, in order to adopt and utilize a wide range, the power generation capacity can support 100 kW, 500 kW, 1 MW, 2 MW, 3 to 6 MW, etc., ultimately minimizing the power generation cost and having a simple structure with the minimum manufacturing cost. It is expected to be able to generate electricity reliably without changing the direction of tidal current without requiring high technology and accuracy.

又、特許文献3に記載の発明は、水中に沈むように設けられたタテ軸に水平なヨコ軸を放射状に複数取付け、このヨコ軸に回転羽根を揺動自在に吊り下げ、同回転羽根を二つのストッパで略水平から垂直の角度範囲に制動し、しかもこの回転羽根を板状又は翼状にすることで、水上流に向って右まわりの270°位相では水流からの揚力によって略水平にして水からの抗力を小さくし、回転羽根に働く反対の90°の位相での水抗力の差を大きくして右方向の回転トルクを強く発生させて、その回転力で発電機を回動させて発電させるものである。   In the invention described in Patent Document 3, a plurality of horizontal horizontal shafts are radially attached to a vertical shaft provided so as to sink in water, and the rotary blades are swingably suspended from the horizontal shafts. By braking from one horizontal to a vertical angle range with two stoppers and making this rotary blade into a plate or wing shape, it becomes substantially horizontal by the lift from the water flow at the 270 ° phase clockwise toward the upstream of the water. The drag force from the rotor is reduced, the difference in water drag at the opposite 90 ° phase acting on the rotating blades is increased to generate a strong torque in the right direction, and the generator is rotated by the torque to generate power. It is something to be made.

しかしながら、この特許文献3の発明で、回転羽根を略水平に保持することの確実性が低いものである。270°の位相で回転羽根を略水平に保持するには所定の速度以上の水流が必要であり、低い流速の水流のときは又は回転の動き始めにおいては、その水からの揚力が弱く、水平方向に回転羽根が揺動しにくい。又、180°の位相では水からの揚力が弱く回転羽根が水平方向に揺動する力が弱く、270°の位相で水平になりにくい。又、水流の流速方向が変化すると回転羽根が上下に揺れがちとなる。
このように、水平になることの確実性が低く、強い回転トルクの発生が期待できにくい。
更に、特許文献3の発明では、小径の垂直なタテ軸に直接ヨコ軸を放射状に取付けるものであり、回転羽根に働く回転トルクはヨコ軸とタテ軸との挟・接合部に集中的に働いて、ヨコ軸がその取付位置で破損し易く、大きな回転トルク(発電量)に耐えられない。又、回転羽根の水力作用中心位置とタテ軸との距離は長くとれず、大きな回転トルク(発電量)を発生させることは難しいと判断される。
However, in the invention of Patent Document 3, the certainty of holding the rotary blade substantially horizontally is low. In order to keep the rotating blades substantially horizontal at a phase of 270 °, a water flow of a predetermined speed or more is required. At a low flow velocity or at the beginning of rotation, the lift from the water is weak, and the horizontal The rotating blade is less likely to swing in the direction. Further, when the phase is 180 °, the lift from the water is weak and the force of the rotating blades swinging in the horizontal direction is weak, and it is difficult to become horizontal when the phase is 270 °. Further, when the flow velocity direction of the water flow changes, the rotary blade tends to swing up and down.
Thus, the certainty of becoming horizontal is low, and it is difficult to expect generation of strong rotational torque.
Further, in the invention of Patent Document 3, the horizontal shaft is directly attached to the vertical vertical shaft having a small diameter, and the rotational torque acting on the rotary blade is concentrated on the sandwiching / joining portion between the horizontal shaft and the vertical shaft. Therefore, the horizontal shaft is easily damaged at the mounting position and cannot withstand a large rotational torque (power generation amount). Further, the distance between the hydrodynamic center of the rotary blade and the vertical shaft cannot be made long, and it is judged that it is difficult to generate a large rotational torque (power generation amount).

更に、特許文献4の発明は、本発明者が先に出願した特許発明であり、潮流の方向にかかわらず効率よく発電でき、又その潮流速も1〜3ノットでも作動できるようにした実用的な潮流発電装置である。その構造は水中の設置台のまわりに回転体を設け、同回転体の円周に沿って複数の取付枠を放射状に取付け、取付枠の半径方向に延びた横フレームに複数の水よりやや比重を軽くして浮力を発生させる受圧板を水平から−4°から−90°の間で揺動できるように枢着し、受圧板に働く水流からの回転トルクで回転体を回転させ、その回転体の回転を設置台に伝達して、その回転力でもって発電機を作動させるものである。これであれば、潮流・水の流れの方向にかかわらず回転体を回転でき、安定した発電を簡単な水中構造物で可能とした。
しかしながら、発電装置が事故・故障してその補修・検査の為に、回転体と受圧板の回転を強制停止させること及び受圧板の揺動を止めて固定することについては何ら開示がなかった。
Furthermore, the invention of Patent Document 4 is a patented invention previously filed by the present inventor, which can generate power efficiently regardless of the direction of the tidal current, and can be operated even at a tidal velocity of 1 to 3 knots. It is a tidal current power generation device. In its structure, a rotating body is provided around the underwater installation base, a plurality of mounting frames are mounted radially along the circumference of the rotating body, and the specific gravity of the horizontal frame extending in the radial direction of the mounting frame is slightly higher than that of the plurality of water. The pressure receiving plate that generates buoyancy by lightening is pivotally attached so that it can swing between -4 ° and -90 ° from the horizontal, and the rotating body is rotated by the rotational torque from the water flow that acts on the pressure receiving plate. The rotation of the body is transmitted to the installation base, and the generator is operated with the rotational force. In this way, the rotating body can be rotated regardless of the tidal current / water flow direction, and stable power generation can be achieved with a simple underwater structure.
However, there has been no disclosure about forcibly stopping the rotation of the rotating body and the pressure receiving plate and stopping and fixing the pressure receiving plate in order to repair or inspect the power generation device in the event of an accident or failure.

本発明の発電装置には点検・補修・部品・消耗品交換する作業又は回転体・フレーム・受圧板にからみ付いた漂流物の除去作業が定期的・不定期的に必要となる。
引用文献4の発明において回転体・受圧板の回転を強制的に低速化・静止させるために従来知られている回転軸の回転を強制停止するメカ的ブレーキ装置を採用しても、受圧板の回転中での回転停止及び非回転中での回転停止維持に大きな負荷(200,000kgf・m程、又はそれ以上の回転トルク)が常時作用するので、従来のメカ的ブレーキ装置では本願発明の受圧板・回転体の回転を停止させようとすれば、ブレーキ機構がその大きな回転トルクに負けて破損・破壊するか発熱を生じる可能性が大きく、受圧板・回転体の回転停止には採用し難いものである。
The power generation apparatus of the present invention requires periodic and irregular operations for inspection, repair, replacement of parts and consumables, and removal of drifting objects entangled with the rotating body, frame and pressure receiving plate.
Even if a mechanical brake device that forcibly stops the rotation of the rotary shaft, which is conventionally known in order to force the rotation of the rotating body / pressure receiving plate to be slowed down and stopped in the invention of the cited document 4, the pressure receiving plate Since a large load (rotational torque of about 200,000 kgf · m or more) always acts on rotation stoppage during rotation and rotation stoppage maintenance during non-rotation, the conventional mechanical brake device receives the pressure receiving of the present invention. If you try to stop the rotation of the plate / rotating body, the brake mechanism is likely to be damaged / destructed or generate heat due to its large rotational torque, and it is difficult to adopt it for stopping the rotation of the pressure receiving plate / rotating body. Is.

尚、潮流で発電させる発電装置の場合では、潮止りの時間が1日に4時間以上あるので、この潮止りの時間帯を利用して受圧板・取付枠・回転体を設置台内の設けた通常のブレーキ装置を作動させることで、受圧板等の回転は容易に停止でき、潮止りの時間帯にクリーニング・点検等の水中作業を行えば安全にでき、回転停止の問題はかなり軽減できるが、それでも受圧板の揺動があり、これを止めることが作業上の安全上更に好ましいことであった。   In the case of a power generation device that generates electricity by tidal current, the tidal time is 4 hours or more per day, so the pressure plate, mounting frame, and rotating body are installed in the installation base using this tidal time zone. In addition, by operating a normal brake device, the rotation of the pressure plate can be easily stopped, and it can be safely performed by underwater work such as cleaning and inspection during the tidal period, and the problem of rotation stop can be considerably reduced. However, there is still rocking of the pressure receiving plate, and it is more preferable in terms of work safety to stop this.

本発明者の次の発明である引用文献5では、受圧板の揺動を止めて略水平に保持して固定状態とする機構及び受圧板を水平から下方4°〜90°程の角度範囲で揺動可能状態にする角度規制する機構について開示がある。これによって回転停止させる場合、まず受圧板を略水平に固定できれば回転トルクを大巾に低下させ、その後従来知られているブレーキ装置を使用すれば、受圧板・回転体の回転停止と受圧板の揺動を容易に停止でき、点検・補修・交換作業又は除去作業が安全に行えるようにできる。   In the cited document 5 which is the next invention of the present inventor, the mechanism and the pressure receiving plate which are fixed in a state where the pressure receiving plate is prevented from swinging and held in a substantially horizontal state in an angle range of 4 ° to 90 ° downward from the horizontal. There is a disclosure about a mechanism for restricting the angle to make the swingable state possible. When stopping the rotation by this, first, if the pressure receiving plate can be fixed substantially horizontally, the rotational torque is greatly reduced, and then using a conventionally known brake device, the rotation stop of the pressure receiving plate / rotating body and the pressure receiving plate Oscillation can be easily stopped and inspection, repair, replacement work or removal work can be performed safely.

しかしながら、揺動可能状態及び固定状態とするための受圧板を制動する駆動源は、回転体側に設置されるエアタンクの高圧空気による空気圧力を使用するものである。これを用いてエアシリンダーを駆動して受圧板の角度制動の機構を作動させるものである。   However, the drive source that brakes the pressure receiving plate for allowing the rocking and fixing states uses the air pressure generated by the high-pressure air in the air tank installed on the rotating body side. Using this, the air cylinder is driven to actuate the angle braking mechanism of the pressure receiving plate.

しかし、この引用文献5のエアタンクを駆動源を使用する方法では機構を作動させる毎に高圧空気が消費されるため、エアタンクの交換作業が必要となって作業回数を増大させる。この交換作業は受圧板の回転及び揺動を止めての水中での作業となるので、手間・時間・コストがかかるものとなるという問題点があった。又、このエアタンクの高圧空気の制御は、設置台側からのエア回路の回転している切換弁を設置台側からの加圧力による切換作動が必要として、やや構造が複雑になるという欠点があった。   However, in the method using the driving source of the air tank of the cited document 5, high-pressure air is consumed every time the mechanism is operated, so that the air tank needs to be replaced and the number of operations is increased. Since this replacement work is an underwater work in which the pressure plate is stopped from rotating and swinging, there is a problem that it takes time, cost and cost. In addition, the control of the high-pressure air in this air tank has the drawback that the switching valve rotating the air circuit from the installation base side needs to be switched by applying pressure from the installation base side, and the structure is somewhat complicated. It was.

次に、引用文献6の発明では引用文献3と同様に本願発明の中央にある設置台が存在せず、回転中心にある縦回転シャフトに直接横回転シャフト3を放射状に4個取付けられている。この横回転シャフト3に回転受圧羽根4が揺動自在に取付けられている。
そのため、引用文献6の発明では回転受圧羽根4に働く水流からの水圧力による回転モーメントは全て一本の縦回転シャフト2に働き、しかも同じ高さ位置に4本の横回転シャフト3の取付部が集中しているので、縦回転シャフト2は大きな回転トルクに耐えることが難しく、機械的強度に問題が生じる。この取付部の破損が生じる危険性が高い。
又、回転受圧羽根4に働く水圧力による回転トルクは、回転受圧羽根4の半径方向の中間位置と縦回転シャフト2の中心との間の回転アームの長さが短いので、本願発明に比べて小さな回転トルクしか発生しない。回転トルクが小さい分発電量も小さくなり、よって大きな発電量を得にくい構造である。
Next, in the invention of Cited Document 6, as in Cited Document 3, there is no installation base in the center of the present invention, and four laterally rotating shafts 3 are attached radially to the longitudinally rotating shaft at the center of rotation. . A rotation pressure receiving blade 4 is swingably attached to the lateral rotation shaft 3.
For this reason, in the invention of the cited document 6, all the rotational moments due to the water pressure from the water flow acting on the rotary pressure receiving blade 4 work on one vertical rotary shaft 2 and the mounting portions of the four horizontal rotary shafts 3 at the same height position. Therefore, it is difficult for the longitudinally rotating shaft 2 to withstand a large rotational torque, causing a problem in mechanical strength. There is a high risk of damage to the mounting portion.
Further, the rotational torque due to the water pressure acting on the rotary pressure receiving blade 4 is shorter than the present invention because the length of the rotary arm between the radial intermediate position of the rotary pressure receiving blade 4 and the center of the longitudinal rotating shaft 2 is short. Only a small rotational torque is generated. Since the rotational torque is small, the amount of power generation is also small, and thus it is difficult to obtain a large amount of power generation.

特開2012−2220号公報JP 2012-2220 A 特許第4717966号公報Japanese Patent No. 4717966 実願平3−76448号マイクロフィルムNo. 3-76448 microfilm 特許第5347048号公報Japanese Patent No. 5347048 特許第5451938号公報Japanese Patent No. 5451938 国際公開第2011/129056 A1International Publication No. 2011/129056 A1

本発明が解決しようとする課題は、海岸から遠い海域で設置されても電力線ケーブルのコストの問題を解消でき、低価格な電力コストを実現し、しかも電力エネルギーを保存でき、使い易く且つエネルギー源として使用しても二酸化炭素の発生のない環境に優しい水素ガス・充電したバッテリーを安価に提供でき、しかもこれら水素ガス及び充電したバッテリーは自然エネルギーを使用して二酸化炭素の発生もなく生産・充電でき、しかもそれらの製造搬送も効率的に行わせることができるようにすることにある。第二の課題は従来の海流、水流を使った発電装置の構造上の問題点・欠点を解消し、簡単な構造でもって長期間耐久性をもって確実に作動でき、しかも30〜50m程の直径エリアにおいて500kW〜数MW程の大きな電力を発電可能にでき、しかも発電装置の点検・補修・部品交換・漂流物の除去等の水中作業の為に、受圧板の回転・揺動を停止させるが容易にでき、更に受圧板の角度制動の動力源に電力が使用にでき、その制御・制動を容易なものにすることにある。   The problem to be solved by the present invention is that the problem of the cost of the power line cable can be solved even if it is installed in the sea area far from the coast, the low cost power cost is realized, the power energy can be stored, it is easy to use and the energy source It is possible to provide environmentally friendly hydrogen gas and charged batteries that do not generate carbon dioxide even when used as low-cost, and these hydrogen gas and charged batteries are produced and charged using natural energy without the generation of carbon dioxide. In addition, it is possible to efficiently manufacture and convey them. The second problem is to solve the problems and disadvantages of the conventional power generation equipment using ocean currents and water currents, and with a simple structure, it can operate reliably with long-term durability, and it has a diameter area of about 30-50m. It is possible to generate a large amount of electric power of 500kW to several MW, and it is easy to stop the rotation and swinging of the pressure plate for underwater work such as inspection, repair, replacement of parts, removal of drifting objects, etc. In addition, electric power can be used as a power source for angle braking of the pressure receiving plate, and the control and braking can be facilitated.

かかる課題を解決した本発明の構成は、
1) 潮流又は海流の水流エネルギーで発電する発電装置を海中に設置し、海水又は水中に設置された前記発電装置の外周を囲うように且つ海底面から海面まで延びた中・大型の魚・哺乳動物の進入を阻止する定置網を設け、同定置網を上方に引張するフロートの上部に海面より上方に突出する海面柵部を設け、発電装置への中・大型の魚と動物の進入及び人の無断進入を防止するようにして発電装置・動物と人の安全を確保し、しかも前記定置網の外側の海域の近くの所定位置の海面に浮ぶフロート基地を1基又は複数基設け、同フロート基地に前記発電装置で発生させた電力の送電線を配線し、同フロート基地において発電装置の電力が使用できるように又はフロート基地からフロート基地に近接した位置で停船する船又は作業船に対し、フロート基地に送られた送電線の電力を中継して給電できるようにしたことを特徴とする、海域での発電設備
2) 前記フロート基地が送電線の中継の基地であって、発電装置とフロート基地の送電線が海中の送電線で配線し、フロート基地と近接して停船する船又は作業船に対し、フロート基地の送電線を空中で送電できるようにした、前記1)記載の海域での発電設備
3) フロート基地に近接した位置で停船する船又は作業船がフロート基地からの送電線の電力を使用して、真水から水を電気分解して水素を発生して、発生した水素を水素高圧貯蔵容器に充填する水素製造装置を備えたものである、前記1)又は2)記載の海域での発電設備
4) フロート基地に近接した位置で停船する船又は作業船がフロート基地から送電線で給電される電力を使用して、船又は作業船にあるバッテリー充電装置で複数のバッテリーを充電するようにした、前記1)又は2)記載の海域での発電設備
5) フロート基地自体に発電装置からの送電線の電力を使用して真水の電気分解で水素を発生して、その水素を水素高圧貯蔵容器へ充填する水素発生装置を備えた、前記1)〜4)いずれか記載の海域での発電設備
6) フロート基地自体に発電装置からの送電線の電力を使用して複数のバッテリーに電力を充電するバッテリー充電装置を備えた、前記1)〜4)いずれか記載の海域での発電設備
7) 前記1)〜6)記載の発電装置が下記の構成のものである、前記1)〜6)いずれか記載の海域での発電設備

海中又は水中で固定される設置台を設け、同設置台の外側に回転体を回転自在に取付けるとともに、同回転体の回転軸線を設置される海中又は水中の水流の流れと略直角となる縦方向に設定し、同回転体から円周に沿って複数の取付枠を放射状に取付け、その各取付枠の回転中心から半径方向に延びた上辺部材に平板状受圧板を複数個所定間隔離して配置するとともに各受圧板の一端を前記上辺部材に揺動自在に取付け、又同受圧板の質量をその容積の4℃の真水の質量で割った受圧板の比重を設置される海水又は水の比重より僅か小さくして海・水中で受圧板に浮力を発生しえるようにし、更に回転軸線まわりに回転する間に各受圧板の揺動の角度範囲が受圧板の自由端側が受圧板の取付け側の一端の回転軸線まわりの回転軌跡の面より少し下方となるように受圧板が下方に傾く所定の下げ角度θから、受圧板が回転体の略回転軸線方向となる自由端の最下位置までの角度範囲で受圧板が揺動できる揺動可能状態と、受圧板の姿勢を回転軸線まわりに回転する間に前記回転軌跡の面に対して0°か又は0°に近い小さな角度δで略水平となるように受圧板を常に固定する固定状態とのいずれの状態にも電力を動力源として切替できる受圧板制動手段を設け、同受圧板制動手段に受圧板の状態を他の状態に切替える操作命令を設置台側の機器又は遠隔地で操作する機器から回転体側の受圧板制動手段に非接触的方法又は接触を伴う方法で伝達して電気的制御信号に変換して操作命令の通りに受圧板制動手段を作動させる状態操作手段を備え、前記回転体の設置台に対する回転を設置台内の回転軸に伝達する回転伝達手段を設け、設置台内に前記回転軸の回転で発電する発電機を設け、同発電機の出力電力を有線で設置台近くの陸上又は海上あるいは水上船体に送電するようにし、しかも、回転体側にある受圧板制動手段の電力の動力源は、回転する回転体に近接した設置台の周縁部に巻線をコアに巻回した防水処理された1次コイルを1個所又は複数個所配置するとともに、回転体側の回転体又はこれに固設した取付枠であって前記の設置台の1次コイルと近接できる位置に巻線をコアに巻回した防水処理された2次コイルを複数個所又は1個所設け、前記1次コイルに交流を設置台の側の電源を用いて印加し、2次コイルが1次コイルに近接すると電磁誘導で2次コイルに電力を出力できるようにし、この2次コイルに発生する交流の電力でもって又は2次側の交流電圧を整流器で直流に変換してバッテリーに電力を充電させて同バッテリーの電力でもって受圧板制動手段に給電してこれを作動するものとし、受圧板を揺動可能状態とすると潮流又は水流によって受圧板に発生する力と受圧板の浮力と受圧板の角度制動とによって確実に回転体を回動させて発電でき、受圧板を固定状態とすることで回転体の回転を低速又は停止し易くした、発電装置
8) 前記7)記載の発電装置を使用し、その1次コイルのコアの端面が回転体側に臨み、又2次コイルのコアの端面は1次コイルのコアの端面に近接位置で対向するようにし、2次コイルの電力の伝達効率を高めた、前記7)記載の海域での発電設備
9) 前記7)又は8)記載において、その取付枠が回転体の回転中心から半径方向に延びた上下複数本の横フレームと、上下の横フレームを連結する複数本の縦フレームとからなり、受圧板は横フレームの上端に回動自在に取付けられ、
受圧板制動手段は受圧板の自由端が最下位置となる角度以上に受圧板が回転するのを防ぐ下ストッパを受圧板を取付けた横フレーム下方に設け、受圧板を取付けた横フレームの各受圧板の左右側辺近くの位置でしかも同横フレームから直角に且つ前記回転軌跡面に沿って略平行に延びたストッパ取付部材を複数設け、同ストッパ取付部材に回転軌跡の面に対して0°又は0°に近い小さな角δで受圧板の上面と当接して上方への回転を抑止する上固定ストッパを前記ストッパ取付部材から隣接する各受圧板に向けて略直角に取付け、又ストッパ取付部材の途中にストッパ取付部材の長手方向からストッパ取付部材の長手方向に対し略直角になる直角方向まで回転できる回転ストッパを枢支し、しかも同回転ストッパの回転する下板は上下方向に離れた上面と下面を有し、回転ストッパの下板の下面はこれと受圧板の上面が当接すると受圧板が前記の下げ角度θ以上に浮き上らないように規制して受圧板を揺動可能状態とし、一方回転ストッパの下板の上面は受圧板の下面と当接すると受圧板を前記上固定ストッパと協同して受圧板を略水平に固定するように規制する形状寸法として回転ストッパの下板の上面で受圧板を固定状態にできるようにし、同回転ストッパを長手方向と直角方向に回動させる電力を動力源として作動する回動手段を取付枠側に設け、同回動手段によって回転ストッパの下板を長手方向又は直角方向に切替える構造とし、
受圧板制動手段の状態操作手段は、設置台の海又は水の水流が流れてくる上流を回転位相0°とすると受圧板を取付けた横フレームが水流に対し略直角となる回転体の回転位相の90°又は270°となる前の少なくとも20°以上手前の位置で、回転ストッパを直角方向から長手方向にする操作命令を送った後、それから少し回転した回転位相90°又は270°に近い回転位相前後位置で回転ストッパを長手方向から直角方向にする操作命令を送るようにした、前記7)又は8)記載の海域での発電設備
10) 前記7)又は8)記載において、その取付枠が回転体の回転中心から半径方向に延びた上下複数本の横フレームと、上下の横フレームを連結する複数本の縦フレームとからなり、受圧板は横フレームの上端に回動自在に取付けられ、
受圧板制動手段は受圧板の自由端が最下位置となる角度以上に受圧板が回転するのを防ぐ下ストッパを受圧板を取付けた横フレーム下方に設け、受圧板を取付けた横フレームの各受圧板の左右側辺近くの位置でしかも同横フレームから直角に且つ前記回転軌跡面に沿って略平行に延びたストッパ取付部材を複数設け、同ストッパ取付部材に回転軌跡の面に対して0°又は0°に近い小さな角δで受圧板の上面と当接して上方への回転を抑止する上固定ストッパを前記ストッパ取付部材から隣接する各受圧板に向けて略直角に取付け、又ストッパ取付部材の途中にストッパ取付部材の長手方向からストッパ取付部材の長手方向に対し略直角になる直角方向まで回転できる回転ストッパを枢支し、しかも同回転ストッパは受圧板の厚みより長く上下方向に離れた上板と下板を有し、回転ストッパの下板はこれと受圧板の上面が当接すると受圧板が前記の下げ角度θ以上に浮き上らないように規制して受圧板を揺動可能状態とし、且つ回転ストッパの上板と下板との間に受圧板を挟んで受圧板を略水平に固定できる形状寸法として回転ストッパの下板の上面で受圧板を固定状態にできるようにし、同回転ストッパを長手方向と直角方向に回動させる電力を動力源として作動する回動手段を取付枠側に設け、同回動手段によって回転ストッパを長手方向又は直角方向に切替える構造とし、
受圧板制動手段の状態操作手段は設置台の海又は水の水流が流れてくる上流を回転位相0°とすると受圧板を取付けた横フレームが水流に対し略直角となる回転体の回転位相の90°又は270°となる前の少なくとも20°以上手前の位置で、回転ストッパを直角方向から長手方向にする操作命令を送った後、それから少し回転した回転位相90°又は270°に近い回転位相前後位置で回転ストッパを長手方向から直角方向にする操作命令を送るようにした、前記7)又は8)記載の海域での発電設備
11) 状態操作手段の機器が、設置台に電磁気・光・水中無線又は水中音波を用いて操作命令を発信する送信器を設け、回転体側にそれを受けて受圧板制動手段の電気制御信号に変換する受信器を設け、操作命令を前記送信器と受信器とによって設置台から回転体側の受圧板制動手段に電気制御信号として伝達するものである、前記7)〜10)いずれか記載の海域での発電設備
12) 状態操作手段の機器が、設置台に物理的力を与える加圧体を設け、回転体側に同加圧体で開閉する電気開閉器のスイッチを設け、設置台上の加圧体をアクチュエータで制動して、前記スイッチを作動させて回転体側の受圧板制動手段に電気的制御信号を送出する、前記7)〜10)いずれか記載の海域での発電設備
13) 設置台内の回転体の回転が伝達された回転軸の途中にその回転を減速させる外部から入切制御できる常時切のブレーキ装置を設けて入制御で回転体を減速又は静止させるようにし、更に同回転軸に常時伝動のクラッチを介して回転軸の回転を発電機の入力軸に回転を伝達し、更に強制回転用モータの出力軸の動力をクラッチを介して前記回転軸に回転を伝達できるようにして回転体を強制回転可能にした、前記7)〜12)いずれか記載の海域での発電設備
14) 各受圧板の自由端にヘ字状に折曲したフラップを取付け、同フラップに作用する水流からの力によって回転位相90°に近づく位相では自由端が最下位置方向に早期に向かうようにし、回転位相270°に近づく位相で受圧板を早期に水平状態に近づけるようにした、前記7)〜13)いずれか記載の海域での発電設備
15) 受圧板の比重を設置される海水又は河川の水の比重の0.95〜0.99倍とし、しかも受圧板の取付け側の一端の回転軌跡面からの下げ角度θが3°〜6°の範囲であり、又受圧板の固定の角度δが前記回転軌跡面を0°とした−3°〜+3°の範囲である、前記7)〜14)いずれか記載の海域での発電設備
16) 設置台の平面形状を楕円状とし、その長軸方向を設置される海中又は水中の主たる水流の流れ方向となるように設置台を海中又は水中に設置し、同設置台の外側に環状の固定ガイドフレームを上下方向に複数段設け、同固定ガイドフレームに回転体を回動自在に取付けた構造のものである、前記7)〜15)いずれか記載の海域での発電設備
17) 設置台の甲板部に、設置される海又は川の最高水位でも筒上端が水沈しない設置台内へ人が出入できる開閉蓋付の通行筒を設けた、前記7)〜16)いずれか記載の海域での発電設備
18) 設置台の内部の一部を中空として、水中で大きな浮力を発生させ、しかも設置台から海底面又は水底面に投下したアンカーウェイトをくさりで係留して、設置台に取付けられた回転体と取付枠と受圧板とそれらの付属物及び設置台内に配置した機器の重さによる下方力とくさりの引張力と設置台の浮力とを平衝させて、発電装置を海中・水中で固定させた、前記7)〜17)いずれか記載の海域での発電設備
19) 海水又は水中に設置された発電装置の外周を囲うように且つ海底面から海面まで延びた中・大型の魚・哺乳動物の進入を阻止する定置網を設け、同定置網を上方に引張するフロートの上部に海面より上方に突出する海面柵部を設け、発電装置への中・大型の魚と動物の進入及び人の無断進入を防止するようにして発電装置・動物と人の安全を確保した、前記7)〜18)いずれか記載の海域での発電設備
にある。
The configuration of the present invention that solves this problem is
1) A medium- or large-sized fish or suckling that is installed in the sea with a power generation device that generates electricity using tidal currents or ocean current energy, and that surrounds the outer periphery of the power generation device installed in seawater or underwater, and extends from the bottom to the sea A stationary net that prevents the entry of animals is provided, and a sea surface fence that protrudes above the sea level is provided on the top of the float that pulls the identification net upward. One or a plurality of float bases floating on the sea surface at a predetermined position near the sea area outside the stationary net are provided so as to prevent the ingress and ensuring the safety of the power generation apparatus / animals and humans. Wiring the power transmission line generated by the power generator, so that the power of the power generator can be used at the float base, or for a ship or work ship that stops at a position close to the float base from the float base, A power generation facility in the sea area, characterized in that the power of the power transmission line sent to the float base can be relayed to supply power. 2) The float base is a power transmission line relay base comprising a power generator and a float. In the sea area as described in 1) above, the base transmission line is wired with an underwater transmission line, and the ship or work ship that stops in the vicinity of the float base can transmit the float base transmission line in the air. Power generation equipment 3) A ship or work ship that stops at a position close to the float base uses the power of the transmission line from the float base to electrolyze water from fresh water to generate hydrogen, and the generated hydrogen is hydrogenated. Power generation equipment in the sea area as described in 1) or 2) above, which is equipped with a hydrogen production device for filling a high-pressure storage container 4) A ship or work ship that stops at a position close to the float base is a transmission line from the float base Powered by The power generation facility in the sea area as described in 1) or 2) above, in which a plurality of batteries are charged with a battery charging device on a ship or a work ship using electric power. 5) Transmission from the power generation device to the float base itself. The power generation facility in the sea area according to any one of the above 1) to 4), comprising a hydrogen generator that generates electric power by electrolysis of fresh water using electric power from an electric wire and fills the hydrogen into a hydrogen high-pressure storage container. 6) The power generation equipment in the sea area according to any one of 1) to 4) above, wherein the float base itself is equipped with a battery charging device that charges power to a plurality of batteries using the power of the transmission line from the power generation device. The power generation equipment in the sea area according to any one of 1) to 6) above, wherein the power generation device according to 1) to 6) has the following configuration.
An installation base that is fixed in the sea or underwater is provided, and a rotating body is rotatably mounted on the outside of the installation base, and the rotation axis of the rotating body is substantially perpendicular to the flow of water in the sea or water. A plurality of mounting frames are mounted radially along the circumference from the same rotating body, and a plurality of flat plate-shaped pressure receiving plates are separated by a predetermined distance from the upper side member extending radially from the center of rotation of each mounting frame. Seawater or water in which one end of each pressure receiving plate is swingably attached to the upper side member, and the specific gravity of the pressure receiving plate obtained by dividing the mass of the pressure receiving plate by the mass of fresh water at 4 ° C. It is slightly smaller than the specific gravity of the pressure plate so that buoyancy can be generated in the pressure plate in the sea and water, and the angle range of oscillation of each pressure plate during rotation around the axis of rotation is the free end side of the pressure plate. From the surface of the rotation locus around the rotation axis at one end of the mounting side Oscillation in which the pressure receiving plate can swing within a range of angles from a predetermined lowering angle θ at which the pressure receiving plate is tilted downward so that the pressure receiving plate is slightly downward to the lowest position of the free end where the pressure receiving plate is substantially in the rotational axis direction of the rotating body. A fixed state in which the pressure receiving plate is always fixed so that it is substantially horizontal at a small angle δ of 0 ° or close to 0 ° with respect to the surface of the rotation trajectory while rotating the posture of the pressure receiving plate around the rotation axis. Pressure receiving plate braking means capable of switching electric power as a power source is provided in any of the states, and an operation command for switching the state of the pressure receiving plate to another state is sent to the pressure receiving plate braking means at a device on the installation base side or at a remote place. It is provided with a state operating means for transmitting the pressure receiving plate braking means from the operating device to the pressure receiving plate braking means on the rotating body side by a non-contact method or a method involving contact and converting it into an electric control signal to operate the pressure receiving plate braking means according to the operation command. Rotation of the rotating body with respect to the installation base A rotation transmission means for transmitting to the rotation shaft is provided, a generator for generating electricity by rotation of the rotation shaft is provided in the installation table, and the output power of the generator is wired to the land, sea or water hull near the installation table The power source of the power of the pressure-receiving plate braking means on the rotating body is a waterproof primary coil in which the winding is wound around the periphery of the installation base near the rotating body. Is disposed at one or more locations, and is a waterproof body in which a winding is wound around the core at a position close to the primary coil of the installation table, which is a rotating body on the rotating body side or a mounting frame fixed to the rotating body. A plurality of or one secondary coil is provided, and an alternating current is applied to the primary coil using a power supply on the installation base side. When the secondary coil is close to the primary coil, power is supplied to the secondary coil by electromagnetic induction. Output to this secondary coil. It is assumed that the AC voltage generated or the secondary side AC voltage is converted to DC by a rectifier, the battery is charged with power, and the battery power is supplied to the pressure receiving plate braking means to operate it. When the pressure receiving plate is in a swingable state, power can be generated by reliably rotating the rotating body by the force generated in the pressure receiving plate by tidal current or water flow, the buoyancy of the pressure receiving plate, and the angle braking of the pressure receiving plate, and the pressure receiving plate is in a fixed state. The power generator 8) which uses the power generator described in 7) above, the end face of the core of the primary coil faces the rotor, and the core of the secondary coil The power generating equipment 9) in the sea area described in 7) above, wherein the end face of is opposed to the end face of the core of the primary coil at a close position, and the power transmission efficiency of the secondary coil is increased 9) above 7) or 8) The mounting frame of the rotating body Upper and lower plurality of transverse frame extending radially from the rolling center, composed of a plurality of vertical frames connecting the upper and lower horizontal frame, the pressure receiving plate is rotatably attached to the upper end of the transverse frame,
The pressure plate braking means is provided with a lower stopper that prevents the pressure plate from rotating beyond the angle at which the free end of the pressure plate is at its lowest position. A plurality of stopper mounting members are provided at positions near the left and right sides of the pressure receiving plate and extending at right angles from the horizontal frame and substantially parallel to the rotation locus surface. Attach the upper fixing stopper, which contacts the upper surface of the pressure receiving plate at a small angle δ close to 0 ° or 0 °, and suppresses upward rotation from the stopper mounting member to each adjacent pressure receiving plate, and attaches the stopper. A rotating stopper that can rotate from the longitudinal direction of the stopper mounting member to a right angle that is substantially perpendicular to the longitudinal direction of the stopper mounting member is pivotally supported in the middle of the member, and the rotating lower plate of the rotating stopper is vertically moved. The lower surface of the lower plate of the rotation stopper is controlled so that the pressure receiving plate does not float above the lowering angle θ when the lower surface of the lower plate contacts the upper surface of the pressure receiving plate. When the upper surface of the lower plate of the rotation stopper comes into contact with the lower surface of the pressure receiving plate, the rotation stopper has a shape dimension that regulates the pressure receiving plate to be fixed substantially horizontally in cooperation with the upper fixing stopper. The pressure receiving plate can be fixed on the upper surface of the lower plate, and a rotating means is provided on the mounting frame side to operate with the electric power for rotating the rotation stopper in a direction perpendicular to the longitudinal direction. With the structure that the lower plate of the rotation stopper is switched to the longitudinal direction or the perpendicular direction,
The state operation means of the pressure receiving plate braking means is the rotational phase of the rotating body in which the horizontal frame on which the pressure receiving plate is attached is substantially perpendicular to the water flow when the upstream phase where the water flow of the sea or water flows is 0 °. After sending an operation command to move the rotation stopper from the perpendicular direction to the longitudinal direction at a position at least 20 ° or more before 90 ° or 270 ° of the rotation, the rotation phase is rotated slightly to 90 ° or 270 °. In the description 7) or 8), the power generation equipment 10) in the sea area 7) or 8) described above, in which an operation command for making the rotation stopper at a right angle direction from the longitudinal direction is sent at the front and rear positions of the phase. Composed of a plurality of upper and lower horizontal frames extending in the radial direction from the rotation center of the rotating body and a plurality of vertical frames connecting the upper and lower horizontal frames, the pressure receiving plate is rotatably attached to the upper end of the horizontal frame,
The pressure plate braking means is provided with a lower stopper that prevents the pressure plate from rotating beyond the angle at which the free end of the pressure plate is at its lowest position. A plurality of stopper mounting members are provided at positions near the left and right sides of the pressure receiving plate and extending at right angles from the horizontal frame and substantially parallel to the rotation locus surface. Attach the upper fixing stopper, which contacts the upper surface of the pressure receiving plate at a small angle δ close to 0 ° or 0 °, and suppresses upward rotation from the stopper mounting member to each adjacent pressure receiving plate, and attaches the stopper. A rotating stopper that can rotate from the longitudinal direction of the stopper mounting member to a right angle that is substantially perpendicular to the longitudinal direction of the stopper mounting member is pivotally supported in the middle of the member, and the rotational stopper is longer than the thickness of the pressure receiving plate. The lower plate of the rotation stopper is regulated so that the pressure receiving plate does not float above the lowering angle θ when the lower plate of the rotation stopper abuts the upper surface of the pressure receiving plate. The pressure receiving plate is fixed on the upper surface of the lower plate of the rotation stopper so that the pressure receiving plate can be fixed substantially horizontally with the pressure receiving plate sandwiched between the upper plate and the lower plate of the rotation stopper. A structure is provided on the mounting frame side that operates by using electric power for rotating the rotation stopper in a direction perpendicular to the longitudinal direction as a power source, and the rotation stopper is switched to the longitudinal direction or the perpendicular direction by the rotation means. age,
The state operation means of the pressure receiving plate braking means is the rotational phase of the rotating body in which the horizontal frame on which the pressure receiving plate is mounted is substantially perpendicular to the water flow when the upstream of the installation table where the water flow of the sea or water flows is 0 °. After sending an operation command to move the rotation stopper from the perpendicular direction to the longitudinal direction at a position before at least 20 ° before 90 ° or 270 °, the rotation phase is slightly rotated from that, and the rotation phase is close to 90 ° or 270 ° The power generation equipment in the sea area described in 7) or 8), which sends an operation command to turn the rotation stopper at a right angle from the longitudinal direction at the front and rear positions. A transmitter that transmits an operation command using underwater radio or underwater sound waves is provided, and a receiver that receives the command and converts it into an electric control signal of a pressure-receiving plate braking means is provided on the rotating body, and the operation command is transmitted to the transmitter and the receiver. And The power generation equipment 12) in the sea area according to any one of the above 7) to 10), which is transmitted as an electric control signal from the installation base to the pressure-receiving plate braking means on the rotating body side. A pressurizing body that provides physical force is provided, and a switch for an electric switch that opens and closes with the same pressurizing body is provided on the rotating body. The pressurizing body on the installation base is braked by an actuator, and the switch is operated to rotate. The power generation equipment in the sea area according to any one of the above 7) to 10), which sends an electrical control signal to the pressure-receiving plate braking means on the body side 13) In the middle of the rotating shaft to which the rotation of the rotating body in the installation base is transmitted A brake device that can be controlled on and off from the outside to reduce the rotation is provided, and the rotating body is decelerated or stopped by the on and off control, and the rotation shaft is rotated through a clutch that is always transmitted to the generator. The rotation to the input shaft of The power generation facility in the sea area according to any one of 7) to 12), wherein the power of the output shaft of the forced rotation motor is transmitted to the rotation shaft via a clutch so that the rotating body can be forcibly rotated. 14) A flap bent in a letter shape is attached to the free end of each pressure receiving plate, and the free end is directed toward the lowermost position early in the phase approaching the rotation phase of 90 ° by the force from the water flow acting on the flap. The power generation equipment 15) in any one of the above-mentioned 7) to 13), in which the pressure plate is brought close to a horizontal state at a phase approaching the rotational phase 270 °, or the seawater in which the specific gravity of the pressure plate is installed The specific gravity of the river water is 0.95 to 0.99 times, and the downward angle θ from the rotation trajectory surface at one end of the pressure plate mounting side is in the range of 3 ° to 6 °, and the pressure plate is fixed. The angle δ is 0 ° with respect to the rotation locus surface − The power generation equipment in the sea area described in any one of 7) to 14) in the range of ° to + 3 ° 16) The main water flow in the sea or water in which the plane shape of the installation base is elliptical and the major axis direction is installed The installation base was installed in the sea or underwater so that the flow direction of the air would be, and a plurality of annular fixed guide frames were provided on the outside of the installation base in the vertical direction, and the rotating body was attached to the fixed guide frame in a freely rotatable manner. The power generation equipment in the sea area according to any one of the above 7) to 15) having a structure 17) To the installation base where the upper end of the cylinder is not submerged even at the highest water level of the sea or river installed on the deck of the installation base A power generation facility in the sea area according to any one of 7) to 16) provided with a passing cylinder with an openable / closable lid that allows people to enter and exit. The part of the installation base is made hollow, and a large buoyancy is generated in water. Moreover, the unloading from the installation base to the bottom of the sea or the bottom of the water -The weight is moored with a wedge, the rotating body attached to the installation base, the mounting frame, the pressure plate, their attachments, and the downward force due to the weight of the equipment placed in the installation base, The power generation equipment in the sea area according to any one of 7) to 17), wherein the power generation apparatus is fixed in the sea and water by balancing with buoyancy, so as to surround the outer periphery of the power generation apparatus installed in seawater or water In addition, a stationary net that prevents the entry of medium- and large-sized fish and mammals that extend from the sea floor to the sea surface is provided, and a sea surface fence that projects above the sea surface is provided above the float that pulls the identification net upward. The power generation equipment in the sea area according to any one of 7) to 18), which has secured the safety of the power generation apparatus / animals and humans by preventing entry of medium and large fish and animals into the apparatus and unauthorized entry of persons. It is in.

本発明によれば、海中に設置した潮流又は海流の水流エネルギーを用いた発電装置で発生させた電力は、海中・海底に敷設した常設の短い海中電力線ケーブルによって、又は海上面上に架設された常設の空中電力線によって発電装置の海域近くの海面に浮上するように設置されたフロート基地に送電され、ここを介してフロート基地近くに停船させた船・作業船に電力を給電することによって、船が水素発生装置を備えていれば、この海域で船中にて給電される電力エネルギーを用いて水の電気分解等によって水素ガスを発生させ、発生した水素ガスを水素ガス高圧容器に充填し、多数の水素ガス高圧容器が格納できれば、船はフロート基地を離れて海上運送して所要の地の港へ水素ガス高圧容器を運ぶことができ、水素ガス高圧容器の乗せ換えの必要なく、直接遠方の地まで多数個運べるようになる。
本発明の海中にある発電装置に、大型魚・中型魚・哺乳動物又はそれらの群集体あるいは大型海藻・流木等の大型の漂流物が接触又は衝突して発電装置又は魚体が傷つける恐れがある海域では又は人及び小型船の立入を禁止するため、図35,36,37に示すように本発明の発電装置の外周に海底近くから海面まで垂直な網面をもった定置網を設置している。この定置網を垂直に引張する大型フロートの海上面部分に進入防止の為の海面柵部を設けている。
According to the present invention, the electric power generated by the tidal current installed in the sea or the power generator using the current energy of the ocean current is installed by a short permanent submarine power line cable laid on the ocean floor or on the sea surface. Power is sent to a floating base installed on the surface of the power generation system by a permanent aerial power line so that it floats near the sea surface. If it is equipped with a hydrogen generator, hydrogen gas is generated by electrolysis of water using power energy fed in the ship in this sea area, and the generated hydrogen gas is filled in a hydrogen gas high-pressure vessel, If a large number of hydrogen gas high-pressure vessels can be stored, the ship can leave the float base and transport it by sea to the port where it is required. Without the need for example, so that carry a large number to the land of direct distant.
Sea area where large-scale fish, medium-sized fish, mammals, or their collectives, or large drifts such as large seaweed and driftwood may come into contact with or collide with the power generation apparatus in the sea of the present invention. Then, in order to prohibit entry of people and small ships, as shown in FIGS. 35, 36, and 37, a stationary net having a vertical mesh surface from near the sea bottom to the sea surface is installed on the outer periphery of the power generator of the present invention. A sea surface fence for preventing entry is provided on the sea surface of a large float that pulls this stationary net vertically.

同様に、船・作業船がバッテリー充電装置を備えていれば、フロート基地からの安価な電力給電によって船内で多数個のバッテリーに電力を充填させることができる。多数のバッテリーに充電させれば、フロート基地を離れて充電されたバッテリーを所要の土地の港に運び、充電したバッテリーを各地に迅速に且つ安価に供給できる。   Similarly, if the ship / working ship is equipped with a battery charging device, it is possible to charge a large number of batteries on the ship by inexpensive power supply from the float base. If a large number of batteries are charged, the charged battery can be transported to the port of the required land by leaving the float base, and the charged battery can be quickly and inexpensively supplied to various places.

このように、本発明によれば発電装置の電力を遠方の陸地まで長い海中電力線ケーブルを使って送電する必要がないので、発電設備のコストが安価にできる。又、水素ガスの発生から水素ガス高圧容器に充填しての運送が迅速にでき、又各地への配給も容易となる。充電したバッテリーの配給も同様に迅速且つ効率的に行える。   As described above, according to the present invention, it is not necessary to transmit the power of the power generation device to a distant land using a long underwater power line cable, so the cost of the power generation facility can be reduced. In addition, the hydrogen gas high-pressure container can be quickly transported from the generation of hydrogen gas, and can be easily distributed to various places. Distribution of charged batteries can be done quickly and efficiently as well.

更に、フロート基地を設ける利点は、大型船が直径が40〜80m程の発電装置の海域近くに近接すると大型船が海中の発電装置に接触して発電装置を破損させる危険性があり、これを避けることにある。又、大型船の海中の船体部分によって発電装置の海中の水流が乱れたり、水流の流速を低下させることになって、発電装置に悪い影響を与えることをなくすことにある。更に、発電装置の発生電力を送電する電力線ケーブル又は空中線による大型船との直接接続は距離が長くなって難しく不安定となり、これを避け、フロート基地が電力線の中継基地となって船等に容易に送電できるようにすることにある。   Furthermore, the advantage of providing a float base is that if a large ship comes close to the sea area of a power generator with a diameter of about 40 to 80 m, there is a risk that the large ship will contact the power generator in the sea and damage the power generator. There is to avoid. Another object is to eliminate the adverse effect on the power generation device by disturbing the water flow in the sea of the power generation device or reducing the flow velocity of the water flow due to the hull portion of the large ship in the sea. Furthermore, direct connection with a large ship using a power line cable or aerial line that transmits the power generated by the power generator becomes long and difficult and unstable, avoiding this, and making the float base a power line relay base that is easy for ships, etc. It is to be able to transmit power to.

この点、本発明ではフロート基地は発電装置の海域の近くの位置にアンカー等で安定するように海面上の所定位置で安定設置するものであるから、発電装置とフロート基地の海中電力線ケーブルは200m程の長さで短くて済み、波浪・風を避けて比較的に安定し、フロート基地まで安価に配電できる。そして、船・作業船はフロート基地の発電装置の反対側となる外側に近接して停船させれば、船と発電装置はかなり遠くに離れることができ、発電装置と接触することも、又発電装置の海中の水流を乱したり水流の流れを低下させたりすることもない。フロート基地は海面にフロートで浮ぶので、海面のかなり下方に設置される発電装置と接触することも、又上下に離れているため海中の水流を乱したり、水流を低速化させたりすることはほとんどない。   In this regard, in the present invention, since the float base is stably installed at a predetermined position on the sea surface so as to be stabilized by an anchor or the like near the sea area of the power generation apparatus, the power line cable between the power generation apparatus and the float base is 200 m. It can be short and short, is relatively stable by avoiding waves and winds, and can distribute power to float bases at low cost. If the ship / working vessel is stopped close to the outside of the float base on the opposite side of the generator, the ship and the generator can be separated from each other considerably far away. It does not disturb or reduce the flow of water in the device. Since the float base floats on the surface of the sea, it can be in contact with the power generator installed far below the surface of the sea, and because it is separated up and down, it can disturb the water flow in the sea and slow down the water flow. rare.

更に、船側又はフロート基地の海面上に空中電力線をフロート基地と船との間で配線するための持ち上げアーム・架線支持アーム機構又はクレーン機構を備えれば、フロート基地と船との間での空中電力線の接続は容易に行える。フロート基地と停船した船との離間距離は5〜20m程の短い距離にできるので、空中電力線の接続作業も容易となる。これによって、船の停船・電力線接続・電力線分離・船の出航が迅速にできる。   Furthermore, if a lifting arm / overhead support arm mechanism or crane mechanism for wiring an aerial power line between the float base and the ship on the ship side or the sea surface of the float base is provided, the air between the float base and the ship The power line can be easily connected. Since the distance between the float base and the stopped ship can be as short as about 5 to 20 m, it is easy to connect the aerial power line. This makes it possible to quickly stop the ship, connect the power line, separate the power line, and leave the ship.

更には、漁船・運搬船・レジャー船等の船自体がバッテリー又は水素ガスをエネルギー・燃料源とするものであれば、水素ガス発生装置・水素ガス充填装置・水素ガス補給ホース・バッテリー充電装置を有するフロート基地では、これらの船に直接電力を給電又は水素ガス・バッテリーの供給が行え、フロート基地が個別の船のエネルギー供給基地(ステーション)ともなる。   Furthermore, if the ship itself, such as a fishing boat, a transport ship, or a leisure ship, uses a battery or hydrogen gas as an energy / fuel source, it has a hydrogen gas generator, a hydrogen gas filling device, a hydrogen gas supply hose, and a battery charging device. At the float base, electric power can be directly supplied to these ships or hydrogen gas batteries can be supplied, and the float base also serves as an energy supply base (station) for individual ships.

又、フロート基地自体で水素製造装置と水素ガスを高圧容器に充填する装置を備え、又はバッテリー充電装置を備えて水素ガス高圧容器又は水素ガス補給ホース及びバッテリー格納室を有すれば、充填完了した水素ガス高圧容器又はバッテリーあるいは水素ガスを直接フロート基地から船・作業船・貨物船に移載して、海上運送して各地に配給できるようになる。   Also, if the float base itself has a hydrogen production device and a device for filling hydrogen gas into a high-pressure vessel, or a battery charging device with a hydrogen gas high-pressure vessel or hydrogen gas supply hose and a battery storage chamber, filling is completed The hydrogen gas high-pressure vessel or battery or hydrogen gas can be transferred directly from the float base to a ship, work ship, or cargo ship and transported by sea to be distributed to various locations.

加えて、海域でフロート基地又はこれに近接して停船する船内で、水素ガス製造装置を作動させても、万が一水素ガス爆発・火災が発生しても廻りは海面であり、外周に人家・建物・人がほとんどないので大きな災害となりえず、海中の発電装置に損害を与えることも少ないという利点もある。   In addition, even if a hydrogen gas production device is operated on a float base in the sea area or in the vicinity of a ship, even if a hydrogen gas explosion or fire occurs, the surrounding area is the sea surface.・ Since there are few people, it cannot be a major disaster, and there is also an advantage that it causes little damage to the power generation equipment in the sea.

更に、本発明によればフロート基地の電力を使用して、フロート基地の近い海域で魚の養殖生簀を設置すれば、その養殖生簀に海中への空気泡送気用電動ポンプ、回転羽根、又は給餌機の電動モータ、又は養殖観察カメラ、温度計測・魚体数の計算・漁体の動き、漁体寸法等の観察用電気機器に給電でき、海上での養殖を高度にできる。魚ばかりでなく、海中での貝類・カニ類の養殖、あるいは魚の幼魚・稚魚の育養の海中設備に電力を給電でき、これらの養殖・育養を電力をもって高度化できる。これらの目的の給電用の発電装置の発電量は、比較的に小さいもので済む。   Furthermore, according to the present invention, if a fish farm is installed in the sea area near the float base using the power of the float base, the electric pump for supplying air bubbles to the sea, the rotating blades, or the feeding of the fish Electric motor of the machine, or aquaculture observation camera, temperature measurement, calculation of the number of fish, movement of the fish body, and the electrical equipment for observation of the fish body size, etc. can be fed, and aquaculture at sea can be advanced. Electricity can be supplied not only to fish, but also to underwater facilities for raising shellfish and crabs in the sea, or raising young fish and larvae. The power generation amount of the power generation device for power supply for these purposes may be relatively small.

又、発電装置が発生した電力を使用して海水と大気中の空気を取り込み、これに必要に応じて幼魚・稚魚・小魚の餌となる植物プランクトン・無機有機の餌料成分とを加えて冷却して、海水の比重に近い空気泡と餌料成分とを含んだ氷粒子を製造し、この氷粒子を発電装置の下方・周囲海中に散布するようにすれば、発電装置の周囲海域を魚の幼魚・稚魚・小魚のよい育成場とすることも可能である。この氷粒子が水流・渦流で周囲に拡散し、氷の溶解とともに徐々に含まれた空気泡が海中に放出し、併せて餌料成分も放出して海中の溶存酸素を高め、又幼魚・稚魚・小魚の餌があることでこれら稚魚がよく育つ海域にできる。これによって、発電装置の設置海域をよき漁場にできる可能性がある。   In addition, the power generated by the power generator is used to take in seawater and atmospheric air, and if necessary, add phytoplankton and inorganic organic feed ingredients that feed young, fry, and small fish and cool them. If ice particles containing air bubbles and feed components close to the specific gravity of seawater are manufactured and sprayed into the sea around the power generator and the surrounding sea, the surrounding sea area of the power generator It can also be a good breeding ground for fry and small fish. These ice particles diffuse to the surroundings by water currents and vortex currents, and the air bubbles gradually contained in the sea are released into the sea as the ice melts. At the same time, the feed components are also released to increase the dissolved oxygen in the sea. The presence of small fish feeds the area where these fry grow well. As a result, there is a possibility that the sea area where the power generator is installed can be a good fishing ground.

加えて、フロート基地からの給電によって水素ガス・充電バッテリーを安価に提供できれば、現在の漁船の動力源の化石燃料に代えて水素ガスを燃料とする燃料電池とモータの採用又は水素エンジンの開発によって、船の動力又は船上機器の動力源とすれば、漁船における遠海での燃料費コストを大巾に低減でき、競争力ある漁業ビジネスにできる。又、漁船で使う照明灯、船内の電気機器の電源を充電されたバッテリーで行えば、化石燃料による発電装置を使用しないで済み、又これによって漁業の低コスト化を可能にできる。   In addition, if hydrogen gas and a rechargeable battery can be provided at low cost by supplying power from the float base, it will be possible to use a fuel cell and motor that use hydrogen gas instead of fossil fuel as the power source for fishing boats, or to develop a hydrogen engine. If it is used as a power source for ship power or on-board equipment, fuel costs in the far sea of fishing boats can be greatly reduced, and a competitive fishery business can be achieved. In addition, if the power source of the lighting lamp used on the fishing boat and the electric equipment in the boat is used with a charged battery, it is not necessary to use a power generation device using fossil fuel, and this makes it possible to reduce the cost of the fishing industry.

又、本発明の請求項7以降の改良された発電装置を使用すれば、回転体から放射状に取付けた取付枠の上端に揺動自在に取付けた複数の受圧板は、水流からの受圧力と、受圧板の重力・浮力と、受圧板の回転による受圧揚力との力を受けるが、受圧板の回転位相(以下、取付枠の横フレームの方向が水流の上流方向を示す取付枠の位相角を0°とし、受圧板が水流の力でその自由端が押し下げられて略鉛直に制止される側に向う方向(以下正回転方向という)に取付枠・受圧板を回転させたときの位相角0°からの回転角度を回転位相の角度という)によって、これらの力のバランスを変化させて回転トルクを常時得るようにする。しかも、水流の方向が変化しても常に回転トルクを発生し、発電できるものとしている。   In addition, if the improved power generator of claim 7 of the present invention is used, the plurality of pressure receiving plates attached to the upper end of the mounting frame radially attached from the rotating body can receive the pressure received from the water flow. The gravity and buoyancy of the pressure receiving plate and the force of the pressure receiving lift due to the rotation of the pressure receiving plate, but the rotational phase of the pressure receiving plate (hereinafter, the phase angle of the mounting frame in which the horizontal frame direction of the mounting frame indicates the upstream direction of the water flow) When the mounting frame / pressure plate is rotated in a direction (hereinafter referred to as a positive rotation direction) in which the pressure plate is directed to the side where the free end is pushed down by the force of water flow and the free end is pushed down substantially vertically The balance of these forces is changed according to the rotation angle from 0 ° (referred to as the rotation phase angle), so that a rotational torque is always obtained. Moreover, even if the direction of the water flow changes, rotational torque is always generated and power can be generated.

受圧板が固定されず揺動可能状態では水流の流れ方向と取付枠の方向とが直交する回転位相90°及びその前後の45°〜90°,90°〜135°の回転位相にある受圧板は、水流から強い受圧力を受け、その力は受圧板の自由端を下流方向に回動するように作用する。この回転位相90°付近では受圧板の自由端が最下位置近くになるように回動されるが、受圧板制動手段によって受圧板は略鉛直に保持され、この位相での受圧板に作用する水流からの強い受圧力は取付枠を介して回転体に対して正回転方向(上から見て時計方向)に回動させようとする高い回転トルクを与える。
他方の直交する回転位相270°前後では、受圧板は水流からの受圧抗力と浮力と回転による水流からの受圧揚力によって、受圧板の自重の力に抗してその自由端が水平方向になるように付勢され、受圧板制動手段で略水平(上端の回転軌跡面)からやや自由端が低くなる軽い傾斜角の下げ角度θで制止される。従って、この位相では、受圧板に作用する力は水流の流れ方向と略平行になることで小さく、取付枠・回転体を正回転方向と逆方向に回転させる力(抗力)の発生が弱く、正回転と逆の反対回転に回動させようとする回転トルクはきわめて小さく、回転トルクの合計は受圧板を正回転方向に回転させる(図31参照)。
When the pressure receiving plate is not fixed and can swing, the pressure receiving plate has a rotation phase of 90 ° in which the flow direction of the water flow and the direction of the mounting frame are orthogonal to each other, and a rotation phase of 45 ° to 90 ° and 90 ° to 135 ° before and after that. Receives a strong receiving pressure from the water flow, and the force acts to rotate the free end of the pressure receiving plate in the downstream direction. In the vicinity of this rotation phase of 90 °, the pressure receiving plate is rotated so that the free end is close to the lowest position, but the pressure receiving plate is held substantially vertical by the pressure receiving plate braking means and acts on the pressure receiving plate in this phase. The strong pressure received from the water flow gives a high rotational torque to rotate the rotating body in the forward rotation direction (clockwise as viewed from above) via the mounting frame.
Around the other orthogonal rotational phase of 270 °, the pressure receiving plate has its free end in a horizontal direction against the force of its own weight by the pressure receiving drag force from the water flow, the buoyancy, and the pressure receiving lift force from the water flow due to the rotation. And is restrained by the pressure-receiving plate braking means at a light inclination angle lowering angle θ at which the free end is slightly lowered from substantially horizontal (upper rotation trajectory plane). Therefore, in this phase, the force acting on the pressure receiving plate is small by being substantially parallel to the flow direction of the water flow, and the generation of force (drag) that rotates the mounting frame / rotating body in the direction opposite to the normal rotation direction is weak. The rotational torque to be rotated in the opposite direction opposite to the normal rotation is very small, and the total rotational torque rotates the pressure receiving plate in the normal rotation direction (see FIG. 31).

又、中間の位相の145°〜225°及び315°〜0°〜30°の範囲では、その範囲の受圧板は鉛直でも又は水平でもない傾いた浮遊状態にあって、回転トルクの発生は小さく、又正回転方向の回転を阻害するトルク抵抗の発生は少ない。
よって、本発明の受圧板は回転位相45°〜135°で発生する強い回転トルクによって回転位相0°から90°に向う正回転方向に回動し、取付枠・回転体は確実に回転され、発電機の発電も確保される。
水流の流れの方向が変化しても、その水流の流れに対する回転位相45〜135°で強い水圧力による回転トルクが発生し確実に回転体は回転できて発電できる。
回転位相の145°〜225°及び315°〜0°〜30°の中間における受圧板の回転位相90°、270°(鉛直状態又は水平状態)への移行は、受圧板の90°での揺動の制止と、僅かな下げ角度θでの制止による水からの力と、浮力と、回転速度による水からの揚力等とによって円滑に行える。
Further, in the intermediate phase range of 145 ° to 225 ° and 315 ° to 0 ° to 30 °, the pressure receiving plate in the range is in an inclined floating state that is neither vertical nor horizontal, and the generation of rotational torque is small. In addition, there is little occurrence of torque resistance that hinders rotation in the positive direction.
Therefore, the pressure receiving plate of the present invention is rotated in the positive rotation direction from the rotation phase 0 ° to 90 ° by the strong rotation torque generated at the rotation phase 45 ° to 135 °, and the mounting frame / rotary body is reliably rotated, Generator power generation is also secured.
Even if the direction of the water flow changes, a rotational torque due to strong water pressure is generated at a rotation phase of 45 to 135 ° with respect to the water flow, and the rotating body can reliably rotate to generate power.
The transition of the pressure receiving plate to the rotational phase 90 °, 270 ° (vertical state or horizontal state) in the middle of the rotational phase of 145 ° to 225 ° and 315 ° to 0 ° to 30 ° is the fluctuation of the pressure receiving plate at 90 °. Smooth movement can be achieved by force from water by restraining at a slight lowering angle θ, buoyancy, lift from water by rotational speed, and the like.

本発明では受圧板は揺動可能状態か、略水平の固定状態かのいずれかの状態となる。その状態を保持する構造及び状態を切替える機構は、受圧板制動手段によって行われる。この受圧板制動手段には、力・トルクを必要とするため動力源を有するが、本発明での受圧板制動手段の動力源は設置台の外周縁に設けたコア付1次コイルに交流を印加し、回転する回転体側に設けたコア付2次コイルがこの1次コイルに近接して、1次コイルの磁力線の磁束が2つのコアを介して及びコア間の海水・プラスチック等の介在物を透過して2次コイルに誘導され、2次コイルに2次電圧と2次電流が発生し、回転体側に1次コイルに印加した電力の一部が2次コイルに伝達され、回転側の受圧板制動手段をこの電力を用いて作動させることができるものである。2次コイルの交流電力はそのまま又は変圧して、あるいは直流に変換してバッテリーに充電し、直流電圧として使用することが可能である。   In the present invention, the pressure receiving plate is in either a swingable state or a substantially horizontal fixed state. The structure for holding the state and the mechanism for switching the state are performed by the pressure receiving plate braking means. This pressure receiving plate braking means has a power source because it requires force and torque, but the power source of the pressure receiving plate braking means in the present invention supplies an alternating current to the primary coil with core provided on the outer peripheral edge of the installation base. The cored secondary coil provided on the rotating body side to be applied and rotated is close to the primary coil, and the magnetic flux of the magnetic field of the primary coil passes through the two cores, and inclusions such as seawater / plastic between the cores. Is transmitted to the secondary coil, a secondary voltage and a secondary current are generated in the secondary coil, and a part of the electric power applied to the primary coil is transmitted to the secondary coil on the rotating body side. The pressure receiving plate braking means can be operated using this electric power. The AC power of the secondary coil can be used as a DC voltage as it is or after being transformed or converted to DC and charged to a battery.

受圧板制動手段が電気でもって作動できるので、陸上で使用できる高信頼性・高精度の電気機器(電磁ソレノイド,電動モータ,電動シリンダー,電動アクチュエータ,電動ウィンチ,水シリンダーとその水圧を発生させる電動式水ポンプ,油圧シリンダーとその油圧を発生させる電動式油圧ポンプ等の駆動力を発生させる電気機器)が使用でき、これらを防水パッケージ・防水処理されることで海水・水中で使用可能となる。
又、これらの電気機器の制御装置も電気制御となるので現在の電気技術が使用でき、正確・確実な制御を容易に且つ小型でできるようになる。
Since the pressure-receiving plate braking means can be operated with electricity, high-reliability and high-precision electrical equipment that can be used on land (electromagnetic solenoids, electric motors, electric cylinders, electric actuators, electric winches, water cylinders and electric motors that generate water pressure) Water pumps, hydraulic cylinders, and electric devices that generate driving force such as electric hydraulic pumps that generate hydraulic pressure), and these can be used in seawater and water by being waterproof packaged and waterproofed.
In addition, since the control device for these electric devices is also electric control, the current electric technology can be used, and accurate and reliable control can be easily and miniaturized.

更に、本発明では回転している回転体側でも電力が使用できるので、受圧板の揺動・静止状態の観察、回転体・取付枠・回転ストッパの状態及び水中漂流物の付着状態等の観察する水中カメラを回転体側に設置できる。回転体側の取付枠の回転速度計測・受圧板の傾き角度計測器等の各種計測器・センサーが回転体側に設置できる。更に、回転体側の取付枠に取付けた発電装置の存在・回転物の存在を外部の人・船に対して示す接近禁止の警告灯の開閉制御信号及び上記の計測器・センサーの情報及びこれらを制御する水中の回転体側と設置台又は海上船体との間の信号・情報の伝達手段として、水中音波・水中超音波・光・レーザー・電磁誘導・水中放射(水中無線)等の方法による非接触による情報・制御情報の伝達手段が使用できる。これらの伝達手段の送信器・受信器・投光器・受光器等の公知の電気機器が防水処理するだけで自由に使用できるようになり、制御及び関連情報を設置台・海上船舶・陸上施設へ送れることが容易となる。よって、本発明の発電装置の観察・制御がきめ細かくできるようになる。
又、設置台の上部に通行筒を設けたものであれば、この通行筒に無線アンテナを取付ければ無線アンテナは海面上に配置でき、陸上施設,離れた海上船と水中の発電装置とは無線(電波)での情報・制御信号の送受信が行える。
Furthermore, in the present invention, since the electric power can be used even on the rotating rotating body side, the pressure receiving plate is observed in the swinging / stationary state, the state of the rotating body / mounting frame / rotating stopper, the adhesion state of the underwater drifting substance, and the like. An underwater camera can be installed on the rotating body. Various measuring devices and sensors such as a rotational speed measurement of the mounting frame on the rotating body side and an inclination angle measuring device of the pressure receiving plate can be installed on the rotating body side. In addition, an access prohibition warning light open / close control signal indicating the presence of the power generation device attached to the mounting frame on the rotating body side and the presence of rotating objects to outside people and ships, and information on the above measuring instruments and sensors, and these Non-contact by means of underwater sonic wave, underwater ultrasonic wave, light, laser, electromagnetic induction, underwater radiation (underwater radio), etc., as a means of signal and information transmission between the underwater rotating body to be controlled and the installation base or ocean hull Information / control information transmission means can be used. Known electrical devices such as transmitters, receivers, projectors, receivers, etc. of these transmission means can be used freely just by waterproofing, and control and related information can be sent to installation bases, marine vessels, land facilities It becomes easy. Therefore, the observation and control of the power generation device of the present invention can be finely performed.
In addition, if a traffic tube is provided at the top of the installation base, the wireless antenna can be placed on the surface of the sea if a wireless antenna is attached to this traffic tube. Wireless (radio) information and control signals can be sent and received.

図1は、本発明の海域での発電設備の実施例Xの説明図である。FIG. 1 is an explanatory diagram of an embodiment X of power generation equipment in the sea area of the present invention. 図2は、本発明の海域での発電設備の実施例Yの説明図である。FIG. 2 is an explanatory diagram of Example Y of the power generation facility in the sea area of the present invention. 図3は、図2の例Yの平面配置を示す説明図である。FIG. 3 is an explanatory diagram showing a planar arrangement of the example Y in FIG. 図4は、本発明の発電設備の実施例Zの説明図である。FIG. 4 is an explanatory diagram of Example Z of the power generation facility of the present invention. 図5は、実施例Zの設置台の内部構造を示す説明図である。FIG. 5 is an explanatory view showing the internal structure of the installation base of the embodiment Z. 図6は、発電装置から船に空中の電力線で直接給電する参考例を示す説明図である。FIG. 6 is an explanatory diagram showing a reference example in which power is directly supplied from a power generation device to a ship through an air power line. 図7は、図6の参考例の平面配置を示す説明図である。FIG. 7 is an explanatory diagram showing a planar arrangement of the reference example of FIG. 図8は、本発明に使用する発電装置例の海中での設置状態を示す説明図である。FIG. 8 is an explanatory view showing an installation state in the sea of an example of the power generation apparatus used in the present invention. 図9は、本発明に使用する発電装置例の回転体と取付枠の骨組構造を示す説明図である。FIG. 9 is an explanatory view showing a skeleton structure of a rotating body and a mounting frame of an example of a power generator used in the present invention. 図10は、本発明に使用する発電装置例の受圧板の取付構造及び1次コイルと2次コイルの配置を示す説明図である。FIG. 10 is an explanatory view showing the pressure receiving plate mounting structure and the arrangement of the primary coil and the secondary coil in the example of the power generator used in the present invention. 図11は、本発明に使用する発電装置例の回転伝達手段の構造を示す説明図である。FIG. 11 is an explanatory diagram showing the structure of the rotation transmission means of the power generation device example used in the present invention. 図12は、本発明に使用する発電装置例の回転伝達手段の詳細と回転体の取付構造と1次コイルと2次コイルの取付構造とを示す説明図である。FIG. 12 is an explanatory diagram showing the details of the rotation transmission means of the example of the power generation apparatus used in the present invention, the mounting structure of the rotating body, and the mounting structure of the primary coil and the secondary coil. 図13は、本発明に使用する発電装置例の回転体の下部の支持構造を示す説明図である。FIG. 13 is an explanatory view showing a support structure for the lower part of the rotating body of the power generation device example used in the present invention. 図14は、本発明に使用する発電装置例の取付枠の横フレームの支持構造を示す説明図である。FIG. 14 is an explanatory view showing a support structure of the horizontal frame of the mounting frame of the power generation device example used in the present invention. 図15は、本発明に使用する発電装置例の回転伝達手段のラック歯車とピンとの係合を示す説明図である。FIG. 15 is an explanatory view showing the engagement between the rack gear and the pin of the rotation transmission means of the power generation device example used in the present invention. 図16は、本発明に使用する発電装置例の受圧板の内部構造を示す説明図である。FIG. 16 is an explanatory diagram showing the internal structure of the pressure receiving plate of the power generation device example used in the present invention. 図17は、本発明に使用する発電装置例の受圧板の横フレームとの取付構造を示す平面図である。FIG. 17 is a plan view showing a mounting structure of the pressure receiving plate of the example of the power generation device used in the present invention with the horizontal frame. 図18は、本発明に使用する発電装置例の受圧板の横フレームと枢支の構造を示す説明図である。FIG. 18 is an explanatory diagram showing the structure of the horizontal frame and the pivot of the pressure receiving plate of the power generation device example used in the present invention. 図19は、本発明に使用する発電装置例の受圧板の揺動を示す説明図である。FIG. 19 is an explanatory view showing the swing of the pressure receiving plate of the power generation device example used in the present invention. 図20は、本発明に使用する発電装置例のストッパ取付部材と回転ストッパ・上固定ストッパの取付を示す説明図である。FIG. 20 is an explanatory view showing the mounting of the stopper mounting member and the rotation stopper / upper fixing stopper of the power generation device example used in the present invention. 図21は、本発明に使用する発電装置例の回転ストッパの動作説明図である。FIG. 21 is an explanatory view of the operation of the rotation stopper of the power generation device example used in the present invention. 図22は、本発明に使用する発電装置例の回転ストッパの構造と直角方向の状態を示す説明図である。FIG. 22 is an explanatory diagram showing a state in a direction perpendicular to the structure of the rotation stopper of the power generation device example used in the present invention. 図23は、本発明に使用する発電装置例の他の回転ストッパの構造を示す説明図である。FIG. 23 is an explanatory view showing the structure of another rotation stopper of the power generation device example used in the present invention. 図24は、図23の他の回転ストッパの動作説明図である。FIG. 24 is an explanatory diagram of the operation of the other rotation stopper of FIG. 図25は、本発明に使用する発電装置例の電力の伝達と状態操作手段の制御信号の伝達の機器を示す説明図である。FIG. 25 is an explanatory diagram showing an apparatus for transmitting electric power and transmitting a control signal for the state operation means in the example of the power generator used in the present invention. 図26は、本発明に使用する発電装置例の電力の伝達のコア付1次コイルとコア付2次コイルの配置を示す説明図である。FIG. 26 is an explanatory diagram showing the arrangement of the primary coil with core and the secondary coil with core for power transmission in the example of the power generator used in the present invention. 図27は、本発明に使用する発電装置例の状態操作手段の構造を示す説明図である。FIG. 27 is an explanatory view showing the structure of the state operation means of the power generation device example used in the present invention. 図28は、本発明に使用する発電装置例の状態操作手段の設置側の回路ブロック図である。FIG. 28 is a circuit block diagram on the installation side of the state operation means of the power generation device example used in the present invention. 図29は、本発明に使用する発電装置例の状態操作手段の回転体側の回路ブロック図である。FIG. 29 is a circuit block diagram on the rotating body side of the state operation means of the example of the power generator used in the present invention. 図30は、本発明に使用する発電装置例の設置台における1次コイルと信号伝達用直流コイルの配置状態を示す説明図である。FIG. 30 is an explanatory diagram showing an arrangement state of the primary coil and the signal transmission DC coil in the installation base of the power generation device example used in the present invention. 図31は、本発明に使用する発電装置例の受圧板の傾き姿勢を示す説明図である。FIG. 31 is an explanatory view showing the inclination posture of the pressure receiving plate of the power generation device example used in the present invention. 図32は、本発明に使用する発電装置例の通行筒を示す平面図である。FIG. 32 is a plan view showing a passing tube of an example of a power generator used in the present invention. 図33は、本発明に使用する発電装置例の設置台の沈降の状態を示す説明図である。FIG. 33 is an explanatory diagram showing the state of settling of the installation base of the power generation device example used in the present invention. 図34は、本発明に使用する発電装置例の海底地盤設置型の他の形態の設置台の説明図である。FIG. 34 is an explanatory view of an installation base of another form of the submarine ground installation type of an example of the power generation apparatus used in the present invention. 図35は、本発明に使用する発電装置例の保護のため定置網を設置した例を示す説明図である。FIG. 35 is an explanatory diagram showing an example in which a stationary network is installed to protect the example of the power generation device used in the present invention. 図36は、図35の定置網の設置の状態を示す平面視の説明図である。FIG. 36 is an explanatory diagram in plan view showing a state of installation of the stationary net in FIG. 図37は、本発明に使用する発電装置例の大型フロートの海面柵部を示す拡大図である。FIG. 37 is an enlarged view showing a sea surface fence portion of a large float of an example of a power generator used in the present invention. 図38は、本発明に使用する発電装置例の情報と制御信号の授受の伝達方法と定置網設置と監視カメラの監視状況を示す説明図である。FIG. 38 is an explanatory diagram showing information on an example of the power generation device used in the present invention, a transmission method of transmission / reception of control signals, installation of a stationary network, and monitoring status of a monitoring camera. 図39は、本発明に使用する発電装置例の状態操作手段の物理的接触による信号の伝達の機構例の説明図である。FIG. 39 is an explanatory diagram of a mechanism example of signal transmission by physical contact of the state operation means of the power generation apparatus example used in the present invention.

本発明のフロート基地は、海上土木で使用されているフロート台船1台又はそれを複数台連結した構造のもの、又は大型フロートを連結して一体化し、上方に室又は送電線の配電作業用のクレーン装置を設け、これらの重量の他に送電線、アンカー、アンカーを繰り出し引き上げるウィンチ装置又はウィンドラス装置、電力制御装置、フロート基地の通信照明装置、バッテリー充電装置、整流回路、バッテリー格納庫、作業者室又は必要に応じて配置する水の電気分解による水素製造装置、水の電気分解に使用する真水の水タンク等の重量に対して海面浮上を維持できるだけの浮力を保有させる。   The float base of the present invention has one float carrier used in offshore civil engineering or a structure in which a plurality of float carriers are connected, or a large float is connected and integrated, and above the room or transmission line for power distribution work In addition to these weights, in addition to these weights, transmission lines, anchors, winch devices or windlass devices that pull out and lift anchors, power control devices, communication lighting devices at float bases, battery chargers, rectifier circuits, battery hangars, work A buoyancy sufficient to maintain sea surface levitation should be maintained against the weight of a hydrogen production device by electrolysis of water disposed as needed, a fresh water tank used for water electrolysis, or the like.

本発明における海中にある発電装置とフロート基地との間の電力の送電の方法は、海中・海底を通して海中電力線ケーブルで送電するのが海面波浪・風の影響を受けずに安定して送電できる。海中の発電装置の上部に海面上方まで立設された送電塔を設けたものであれば、送電塔の海面上の高い位置から送電線をフロート基地まで空中架設する方法もあるが、後者は波浪・風の影響・塩害を受け易いので、前者の海中電力線ケーブルの送電の方が好ましい。   According to the method of transmitting power between the power generation apparatus and the float base in the sea in the present invention, power can be transmitted stably through the underwater power line cable through the sea and the bottom of the sea without being affected by sea surface waves and wind. If a power transmission tower standing up above the sea level is installed on the upper part of the power generation device in the sea, there is a method of installing the transmission line in the air from a high position on the sea level of the power transmission tower to the float base.・ Because it is easily affected by wind and salt damage, the former submarine power line cable is preferred.

本発明のフロート基地と近接して停船させた船との間の電力線の配線接続は、フロート基地側又は船側に設けた配線作業用のクレーン装置又は電力線の持ち上げアーム機構を設け、電力線の先端と受電線側の先端とにそれぞれ嵌合するアダプター(接続コネクター)を設けて、船上で又はフロート基地上でアダプター同士を連結して電気接続するようにするのがよい。   The wiring connection of the power line between the float base of the present invention and the ship stopped in the vicinity is provided with a crane device for wiring work provided on the float base side or the ship side or a lifting arm mechanism of the power line, and the tip of the power line It is preferable to provide adapters (connecting connectors) that are respectively fitted to the ends on the receiving wire side, and connect the adapters on the ship or on the float base for electrical connection.

フロート基地は、水素ガス製造装置又はバッテリー充電装置を備えた船への電力中継基地のみの機能としてもよいが、フロート基地自体にも水素ガス製造装置と発生した水素ガスのボンベ充填装置を備え、又はバッテリー充電装置を備え、更に水素ガス高圧容器,バッテリー格納庫を備えれば、フロート基地で水素ガスを製造して水素ガス高圧容器に充填して格納して、船にこれを移載させて運送するようにもできる。又は、フロート基地で充電したバッテリーを船に移載して目的地へ運送させることもできる。   The float base may be a function of only a power relay base to a ship equipped with a hydrogen gas production device or a battery charging device, but the float base itself also comprises a hydrogen gas production device and a hydrogen gas cylinder filling device generated, Or, if equipped with a battery charger, and further equipped with a hydrogen gas high-pressure vessel and a battery hangar, the hydrogen gas is produced at the float base, stored in the hydrogen gas high-pressure vessel, transferred to the ship and transported. You can also Alternatively, the battery charged at the float base can be transferred to the ship and transported to the destination.

本発明の発電装置の海上の空気を設置台中のポンプで取り込んで、発電装置下方から空気泡として放出する散気管を設置台の下方又は回転体下方の海底に設置すれば、発生した気泡が上方の回転する受圧板によって水流・渦流とともに発電装置周辺の海中に散布でき、これがこの海域での魚に酸素供給し、魚の育成を行える。   If the air in the power generation device of the present invention is taken in with the pump in the installation base and the diffuser pipe that discharges as air bubbles from the lower side of the power generation device is installed on the bottom of the installation base or the bottom of the rotating body, the generated bubbles are upward. The rotating pressure receiving plate can be sprayed into the sea around the power generator along with water and eddy currents, which can supply oxygen to fish in this area and grow the fish.

本発明の発電装置の回転体の回転軸線の方向は、設置した海中・水中の流速の方向と略直角となるように、且つ潮流・水流の方向と受圧板とがその回転位相の90°で略直角となるようにする。一般に潮流・水流は海底面・水底面に略平行となることが多いので、回転体の回転軸線は設置する海底面・水底面の地面に直角の縦方向となることが多い。   The direction of the rotation axis of the rotating body of the power generator of the present invention is substantially perpendicular to the direction of the installed underwater / underwater flow velocity, and the tidal current / water flow direction and the pressure receiving plate are 90 ° of the rotational phase. Try to be almost right angle. In general, tidal currents and water currents are often almost parallel to the sea floor and the bottom of the water. Therefore, the axis of rotation of the rotating body is often in a vertical direction perpendicular to the ground of the sea bottom and the bottom of the water.

本発明の発電装置の設置台としては、図34に示すような海底面又は水底面上に載置されて固定的に設置される円筒又は楕円筒の形状の筺体タイプと、以下の実施例の如く、海底面又は水底面にアンカーで係留された海中又は水中で浮遊する構造体のタイプと、海面・水面上の空中構造体(橋・水中タワー等)から海・水中へ垂設された取付台タイプ、又は海・水面に浮ぶ係留された浮体・船体から海・水中へ垂設された取付台タイプとがある。
尚、設置台及びその上部の通行筒は水深に応じた耐水圧の構造とする。
更に、取付枠に受圧板を上下方向に複数段設ければ、回転トルク及び出力電力も複数倍にできて高い発電量を得ることができる。段数によって発電量を変えることができる。
As the installation stand of the power generation device of the present invention, a cylindrical or elliptical cylinder type body type mounted on the sea bottom or water bottom and fixedly installed as shown in FIG. 34, and the following examples As described above, the type of structure floating in the sea or underwater moored with anchors on the sea floor or underwater, and the installation suspended from the aerial structure (bridge, underwater tower, etc.) on the sea / water There is a stand type or a mount type suspended from a moored floating body / hull floating on the sea / water surface to the sea / water.
In addition, the installation stand and the upper passing tube have a waterproof pressure structure according to the water depth.
Furthermore, if the mounting frame is provided with a plurality of pressure receiving plates in the vertical direction, the rotational torque and the output power can be increased several times, and a high power generation amount can be obtained. The amount of power generation can be changed according to the number of stages.

本発明の発電装置の設置台の外形状を楕円形状として、その長軸方向を設置する海・水での水流の主たる水流の方向に設置することが設置台による水流の乱れを少なくして、発電効率を高める(図31参照)。海中の潮の流れの方向は、時間とともに変動するが、その場合は水流の流れの方向の時間的に多い方向を「主たる水流の方向」とする。又は、流速が速い時間帯の水流エネルギーを主に使用する場合は、その時間帯の水流の流れの方向を「主たる方向」とする。これによって、設置台の長軸方向が水流方向と略平行となり、設置台の受ける水の抵抗は小さくなり、又設置台によって水流が乱れたり、又は渦が発生することが少なくなり、受圧板の位置の水流は層流に近いものとなり、受圧板から取り出される回転トルク・エネルギーの効率は高くなる。又、干満で水の流れが反対になっても、同様にエネルギー効率よく発電できる。
本発明の発電装置の設置台の「楕円形状」とは、その平面外形状が正確な楕円形状ばかりでなく、正確な楕円形状でなく偏平な形状、又は流線形状のものを含み、水流の流れに対して抵抗が少なく、設置台まわりの水流に乱流・渦の発生を少ない縦横の長さに長短のある形状のものをいう。
The outer shape of the installation base of the power generation device of the present invention is an elliptical shape, and installation in the direction of the main water flow of the water flow in the sea / water that installs the major axis direction reduces the turbulence of the water flow by the installation base, Increase power generation efficiency (see FIG. 31). The direction of the tide flow in the sea varies with time. In this case, the direction in which the flow direction of the water flow is large in time is defined as the “main water flow direction”. Alternatively, when the water flow energy in a time zone with a high flow velocity is mainly used, the direction of the water flow in that time zone is defined as the “main direction”. As a result, the long axis direction of the installation table is substantially parallel to the water flow direction, the resistance of the water received by the installation table is reduced, the water flow is disturbed by the installation table, and the occurrence of vortices is reduced. The water flow at the position is close to a laminar flow, and the efficiency of the rotational torque energy extracted from the pressure receiving plate is increased. Moreover, even if the flow of water is reversed due to tidal flow, it is possible to generate power efficiently as well.
The “elliptical shape” of the installation base of the power generation apparatus of the present invention includes not only an accurate elliptical shape but also a flat shape, or a streamlined shape other than an accurate elliptical shape, It has a shape that is long and short in length and breadth with little resistance to flow and less turbulence and vortex generation in the water flow around the installation base.

本発明の発電装置の取付枠は、回転体から設置の海・水の水流に平行な方向で大略海底又は水底の地面に略平行方向に放射状に突出した部材であるが、この取付枠には受圧板から力が負荷されるので、回転体に一端が取付けられた上下の複数の横フレームと同上下の横フレームを連結する複数の縦フレームで連結し、取付枠の回転に水の抵抗を少なく且つ高い強度を保有させるのが取付枠の好ましい構造である。   The mounting frame of the power generator according to the present invention is a member that projects radially from the rotating body in a direction parallel to the water flow of the sea / water installed, and in a direction substantially parallel to the seabed or the ground of the waterbed. Since the force is applied from the pressure plate, the upper and lower horizontal frames, one end of which is attached to the rotating body, are connected by a plurality of vertical frames that connect the upper and lower horizontal frames, and water resistance is applied to the rotation of the mounting frame. It is a preferable structure of the mounting frame to have a small and high strength.

本発明の発電装置の受圧板は、表と裏の表面材として傷付きにくい金属板又はプラスチック板を用い、内部に発泡樹脂材又はハニカム材を充填させて、受圧板の比重を、1.01〜1.05程の比重をもつ海水又は河川の水の比重に対する比で1.0より僅か小さく0.95〜0.99の範囲とすることが好ましい。その比が0.95より小さくなると浮力が大きくなり、受圧板が水平になる力が強くなり、そのため0°〜90°の位相で遅く垂直状態となり、90°の位相を過ぎると早目に水平状態となるので受圧板による発生トルクが小さくなる。又、水流・潮流の流速が低い場合は、浮力の方が強く回転体が自動始動しにくい。一方、その比が0.99を超えると浮力が弱くなって、受圧板が水平状態になりにくい。特に、位相角度270°付近で水平になりにくく、270°付近の受圧板の水の抵抗が大きくなり、反対方向に回転させようとする回転トルクが大きくなって、やはり発生トルクが小さくなる。よって、その比は0.95〜0.99が好ましい。その比が小さい程下げ角度θは大きくして下方力を大きくする必要がある。尚、受圧板は、海水・河川水の水の比重1.00〜1.05より軽いプラスチック板と重たい金属・セラミックスとの複合板であってもよい。この受圧板の後端にフラップを設ければ、回転位相0°〜90°での早期の沈降と、回転位相180°〜270°での早期の水平化に働く。   The pressure receiving plate of the power generation device of the present invention uses a metal plate or a plastic plate which is not easily damaged as the front and back surface materials, and is filled with a foamed resin material or a honeycomb material, so that the specific gravity of the pressure receiving plate is 1.01. The ratio of the specific gravity of seawater or river water having a specific gravity of about -1.05 to a specific gravity of slightly smaller than 1.0 is preferably in the range of 0.95-0.99. When the ratio is smaller than 0.95, the buoyancy increases, and the force that the pressure receiving plate becomes horizontal becomes stronger, so that it becomes a vertical state slowly at a phase of 0 ° to 90 °, and becomes horizontal immediately after the phase of 90 °. As a result, the torque generated by the pressure receiving plate is reduced. Further, when the flow velocity of the water flow / tide is low, the buoyancy is stronger and the rotating body is difficult to start automatically. On the other hand, if the ratio exceeds 0.99, the buoyancy is weakened and the pressure receiving plate is hardly placed in a horizontal state. In particular, it is difficult to become horizontal near the phase angle of 270 °, the water resistance of the pressure receiving plate near 270 ° increases, the rotational torque to rotate in the opposite direction increases, and the generated torque also decreases. Therefore, the ratio is preferably 0.95 to 0.99. The smaller the ratio is, the larger the lowering angle θ needs to be increased. The pressure receiving plate may be a composite plate of a plastic plate lighter than the specific gravity of seawater / river water 1.00 to 1.05 and a heavy metal / ceramic. If a flap is provided at the rear end of the pressure receiving plate, it works for early sedimentation at a rotational phase of 0 ° to 90 ° and early leveling at a rotational phase of 180 ° to 270 °.

本発明の発電装置の発電機は、設置台内に設けられ、防水された中空空間内に収容され、回転体の設置台に対する回転力を、増速ギア機構を介して発電機を回動させる構造とするのが一般的である。   The generator of the power generator according to the present invention is provided in the installation base, is accommodated in a waterproof hollow space, and rotates the generator via the speed increasing gear mechanism to rotate the rotary body against the installation base. It is common to have a structure.

本発明の受圧板の取付枠の上端での取付け方法は、蝶番又は枢着いずれでもよく、高い強度をもって取付枠の上辺部材・横フレームまわりに受圧板が揺動できるものであればよい。   The mounting method of the pressure receiving plate of the present invention at the upper end of the mounting frame may be either a hinge or a pivot, as long as the pressure receiving plate can swing around the upper side member and the horizontal frame of the mounting frame with high strength.

本発明の発電装置の受圧板の受圧板制動手段の代表的手段としては、取付枠の下方の横フレームに受圧板の自由端を回転体の軸線方向となる略鉛直状態で係止する下ストッパーを設け、又取付枠に設けた回転ストッパで、受圧板をその自由端が回転軌跡面0°より僅か低くなる3°〜6°程の受圧板の傾き角度θ(下げ角度)状態とする。この下ストッパと回転ストッパの構造としては、実施例の構造以外の他の機構も採用できる。
例えば、回転ストッパの構造は請求項9の構造の他に、請求項10における回転ストッパの上板を、非回転として常時直角方向に固定するようにすれば、この非回転の上板を上固定ストッパとして機能させることも可能である。
As a typical means of the pressure receiving plate braking means of the pressure receiving plate of the power generation device of the present invention, a lower stopper for locking the free end of the pressure receiving plate in a substantially vertical state in the axial direction of the rotating body on the horizontal frame below the mounting frame And a rotation stopper provided on the mounting frame, the pressure receiving plate is brought into a state of a tilt angle θ (lowering angle) of the pressure receiving plate of about 3 ° to 6 ° whose free end is slightly lower than the rotation locus plane 0 °. As the structure of the lower stopper and the rotation stopper, other mechanisms other than the structure of the embodiment can be adopted.
For example, in addition to the structure of claim 9, the structure of the rotation stopper is fixed to the upper plate of the non-rotating upper plate by fixing the upper plate of the rotation stopper of claim 10 in the right-angle direction at all times as non-rotating. It is also possible to function as a stopper.

受圧板の下げ角度θの設定角度は小さすぎると、0°〜90°の回転位相で受圧板は90°の回転位相で垂直にならなかったり、垂直になるのが遅れすぎて全体の回転トルクが小さくなる傾向がある。逆に下げ角度θが大きすぎると、270°の位相で受圧板に強い流水抵抗が働いて、逆方向の大きな回転トルクが働いて、全体の回転トルクが小さくなって好ましくない。よって、受圧板の回転位相90°の垂直への円滑な移行と、270°回転位相での小さな抵抗とするため、受圧板の下げ角度θは回転軌跡面からの下方の3°〜6°(軌跡面を0°とするとその下方の3°〜6°)程の角度範囲に抑えるようにするのがよい。   If the setting angle of the pressure plate lowering angle θ is too small, the pressure plate does not become vertical at a rotation phase of 0 ° to 90 ° or becomes too vertical at a rotation phase of 90 °. Tends to be smaller. On the other hand, if the lowering angle θ is too large, a strong flow resistance acts on the pressure receiving plate at a phase of 270 °, and a large rotational torque in the reverse direction acts to reduce the overall rotational torque. Therefore, in order to achieve a smooth transition of the pressure plate 90 ° to the vertical rotation phase and a small resistance at the 270 ° rotation phase, the lowering angle θ of the pressure plate is 3 ° to 6 ° below the rotation locus plane ( It is preferable that the angle range is about 3 ° to 6 ° below the trajectory plane of 0 °.

概算してみると、tを受圧板の平均厚みとし、ρを水の密度とし、始動させる潮流の流速をVsとすると、受圧板の90°位相での傾き角度θの受圧板を押し下げる下方力=1/2*ρ*Cd*A*Vs*tanθと、浮力=9.8*A*t*ρ*(1−受圧板の比重/水の比重)との比Xが、90°以前の位相で下方力が浮力より余裕をもって大きくする値1.3程以上が好ましく、又270°位相で流水抗力を強く抑えるため、下方力の浮力に対する比Xが2.7以下程が良い設定であることが分った。受圧板の比重/水の比重の比を0.99とすると、3°〜6°程で4°±0.5が最も好ましいことが分った。 Approximately, if t is the average thickness of the pressure receiving plate, ρ is the density of water, and the flow velocity of the tidal current to be started is Vs, the downward force that pushes down the pressure receiving plate with the inclination angle θ at the 90 ° phase of the pressure receiving plate = 1/2 * ρ * Cd * A * Vs 2 * tan θ and the ratio X of buoyancy = 9.8 * A * t * ρ * (1-specific pressure plate / specific gravity of water) is 90 ° or less It is preferable that the lower force is more than 1.3 so that the lower force is larger than the buoyancy at the phase of 1.25, and the ratio X of the lower force to the buoyancy is preferably 2.7 or less in order to strongly suppress the flowing water drag at the 270 ° phase. I found that there was. Assuming that the ratio of the specific gravity of the pressure receiving plate / the specific gravity of water is 0.99, it has been found that 4 ° ± 0.5 is most preferable at about 3 ° to 6 °.

本発明では、横に倒した水車の受圧板を揺動自在にする事を、最も主要な特徴とする。受圧板は回転翼桁である取付枠の上端で揺動自在に取付け、その受圧板の比重を海水・河川の水の比重の0.95〜0.99倍程とし、僅かに浮く様にする。受圧板制動手段により、設定の下げ角度θ位置に回転止して水平以上にならないようにし、又、90度前後の位置に下ストッパで回転止をする。水流速が0〜0.5ノットの低速域では水流による力の発生が小さく、全受圧板は浮力により略水平になり、水圧をうけないため受圧板は回らない。下げ角度θが4°の場合、0.8ノット頃から初期角度4〜5度前後の面に当たる水圧による下方力が、受圧板の浮力に勝って、受圧板を下方へ回転させ、下ストッパで止まり、受圧板は水流に直角となり強い流水圧を受ける。その受圧力を取付枠に伝えることで受圧板・回転体は連続回転する。   The most important feature of the present invention is to make the pressure receiving plate of the waterwheel tilted sideways swingable. The pressure plate is swingably mounted at the upper end of the mounting frame, which is a rotating blade girder. The specific gravity of the pressure plate is about 0.95 to 0.99 times the specific gravity of seawater / river water so that it floats slightly. . The pressure receiving plate braking means stops the rotation at the set lower angle θ position so as not to become more than horizontal, and the rotation is stopped by the lower stopper at a position around 90 degrees. In the low speed region where the water flow rate is 0 to 0.5 knot, the generation of force due to the water flow is small, and all the pressure receiving plates are substantially horizontal due to buoyancy, and the pressure receiving plate does not rotate because it is not subjected to water pressure. When the lowering angle θ is 4 °, the downward force due to the water pressure hitting the surface at an initial angle of about 4 to 5 degrees from about 0.8 knots overcomes the buoyancy of the pressure receiving plate, rotates the pressure receiving plate downward, and the lower stopper The pressure receiving plate stops at right angles to the water flow and receives a strong water pressure. The pressure receiving plate / rotary body rotates continuously by transmitting the pressure receiving pressure to the mounting frame.

次に、潮流方向の変化に対して、本発明は構造上の対称性があり、水流の方向が違うだけで受圧板の水流からの作用効果は変化なく、回転位相0°の方位が変化するのみである。このように、特段の機構を必要とせず、受圧板だけで自動的に対応できて、いずれの潮流方向でも回転体を回転可能としている。
これにより、受圧板の回転方向は流れの方向が変わっても常に一定回転方向に保たれ、発電可能となる。
Next, the present invention is structurally symmetric with respect to changes in the tidal current direction, and only the direction of the water flow is different, so that the effect of the pressure receiving plate from the water flow does not change, and the orientation of the rotational phase 0 ° changes. Only. In this way, no special mechanism is required, and only the pressure receiving plate can automatically cope with it, and the rotating body can be rotated in any tidal direction.
As a result, the rotational direction of the pressure receiving plate is always maintained at a constant rotational direction even if the flow direction changes, and power generation is possible.

本願発明の使用条件の潮流速度が2ノットから1ノット、水深が−40m程から−10m程度の海域に適応する構造にする手段としては、まずプロペラ式やダリウス翼方式があるが何れも翼の揚力を利用する方式であり、発電量が翼直径の2乗・流速の3乗に比例する理論に基づく方式であり、さらに翼の回転軸が横軸で、支柱が直立となるため、深い水深と速い流速が必要条件となる。
これに比較して本発明は浅い水深、低流速の海域に適応できる構造とするため、陸上の下掛け水車の近似理論:発電量=水車直径×水流量/秒×効率・係数に基き、縦軸横置き水平方向回転の水車に相当する。翼理論の流れ方向に、直角な揚力でなく、平行な直圧・抗力を利用する。受圧域が翼回転の全周になるプロペラ方式に比べ受圧域が回転の半周になることを補って、目標発電量に、余裕のある水車の直径、受圧板の寸法を自在に設定することができる。このことで、低い潮流速度浅い水深その他の現実条件に適応する構造とする事ができる。
There are propeller type and Darius wing methods as a means of adapting to the sea area where the tidal velocity of the present invention is 2 knots to 1 knot and the water depth is about -40 m to -10 m. This is a system that uses lift, and is based on the theory that the amount of power generation is proportional to the square of the blade diameter and the cube of the flow velocity. Further, since the rotation axis of the blade is the horizontal axis and the support is upright, deep water depth A fast flow rate is a necessary condition.
Compared to this, the present invention has a structure that can be adapted to shallow water depths and low-velocity sea areas. Therefore, based on the approximate theory of land-based water turbine: power generation = turbine diameter × water flow rate / second × efficiency / factor, Corresponds to a horizontal turbine that rotates horizontally. Use parallel direct pressure / drag instead of lift perpendicular to the flow direction of the wing theory. Compared to the propeller system where the pressure receiving area is the entire circumference of the blade rotation, it can compensate for the pressure receiving area becoming a half rotation, and the target power generation amount can be set freely with the diameter of the turbine wheel and the size of the pressure receiving plate it can. As a result, the structure can be adapted to the low tidal velocity, shallow water depth and other real conditions.

次に、目標発電量を達成するための、水車の概算寸法を設定してみる。基本的には、前出の下掛け水車の近似理論に基づくが、その他の理論式や余裕、バランス等加味して、設定する。1000kWでは、水車直径50mのとき、水車翼幅は、流速1ノットで10m、流速2ノットで5mとなる。2000kWでは、水車直径80mのとき、水車翼幅は、流速1ノットで12m、流速2ノットで6mとなる。100kWでは、水車直径10mのとき、水車翼幅は、流速1ノットで5m、流速2ノットで3mとなる。
上記の如く、海洋構造物らしくかなり長大なものになるが、慎重な構造計算や、回転数と増速機構の計画を行うことで、十分実現可能な手段である。
Next, set the approximate dimensions of the water turbine to achieve the target power generation. Basically, it is based on the approximate theory of the underwater turbine mentioned above, but it is set by taking into account other theoretical formulas, margin, balance, etc. At 1000 kW, when the turbine diameter is 50 m, the turbine blade width is 10 m at a flow rate of 1 knot and 5 m at a flow rate of 2 knots. At 2000 kW, when the turbine diameter is 80 m, the turbine blade width is 12 m at a flow rate of 1 knot and 6 m at a flow rate of 2 knots. At 100 kW, when the turbine diameter is 10 m, the turbine blade width is 5 m at a flow rate of 1 knot and 3 m at a flow rate of 2 knots.
As mentioned above, it is quite long like an offshore structure, but it can be sufficiently realized by careful structural calculations and planning of the rotation speed and speed increasing mechanism.

設置台、回転体、回転数と増速機構等にかんしては既存の周知技術内で達成される。又、各部材の強度も適切な素材・寸法及びリブ等で構造強度は確保でき、実用化できるものである。更に、本発明の海・水中に設置した発電装置を点検・補修・安全等の為に、回転体・取付枠・受圧板の回転を停止させる機構を設けている。その機構として本発明の受圧板制動手段は、運転中に受圧板の上限の設定の下げ角度θ(3°〜6°程)の揺動可能状態を変更して、受圧板を0°程又は−3°〜+3°程の範囲の水平に近い小さな角度δに固定する固定状態にすれば、受圧板は水流の流れと略平行の姿勢となって回転トルクがほとんど発生しないようになって、設置台内の回転軸に対してブレーキを与えるブレーキ装置等で受圧板の回転を容易に停止できる。   The installation table, the rotating body, the rotation speed, the speed increasing mechanism, and the like can be achieved within the existing well-known technology. Also, the strength of each member can be ensured by using appropriate materials, dimensions, ribs, etc., and can be put to practical use. Further, a mechanism for stopping the rotation of the rotating body, the mounting frame, and the pressure receiving plate is provided for the purpose of inspection, repair, safety, etc. of the power generator installed in the sea / water of the present invention. As the mechanism, the pressure receiving plate braking means of the present invention changes the swingable state of the lowering angle θ (about 3 ° to 6 °) of the upper limit setting of the pressure receiving plate during operation and moves the pressure receiving plate to about 0 ° or If it is in a fixed state where it is fixed at a small angle δ near the horizontal in the range of about -3 ° to + 3 °, the pressure receiving plate is in a posture substantially parallel to the flow of the water flow so that almost no rotational torque is generated. The rotation of the pressure receiving plate can be easily stopped by a brake device or the like that applies a brake to the rotation shaft in the installation table.

最後に、潮流・流水中における本発明の発電装置の姿勢安定対策が必要である。漁場を対象としてアンカーケーブル方式を検討する潮流速2.0ノットで試算する。1000kW型の概算の寸法、重量を設定して試算した結果、計算により求められる数値に、全体浮力、アンカーの重量、アンカーケーブルの位置を設定することで、安定する。
2.0ノット以上の急潮流域では十分余裕のある対策が必要となる。台風波浪に対しては潮流発電装置全体を低潮位以下3.0mに沈めることで安定させられる。津波対策は、別途の検討を行う。海底固定方式はアンカーケーブル式よりさらに安定は容易である。又、2000kW型の発電装置も同様に可能である。
Finally, it is necessary to take measures for stabilizing the posture of the power generation device of the present invention in tidal currents and flowing water. Estimate at a tidal velocity of 2.0 knots to study the anchor cable system for fishing grounds. As a result of trial calculation by setting approximate dimensions and weight of the 1000 kW type, setting the overall buoyancy, the weight of the anchor, and the position of the anchor cable to the numerical values obtained by the calculation stabilizes.
Measures with a sufficient margin are required in a rapid tide area of 2.0 knots or more. Typhoon waves can be stabilized by sinking the entire tidal current generator to 3.0 m below the low tide level. The tsunami countermeasure will be examined separately. The seafloor fixing method is easier to stabilize than the anchor cable method. A 2000 kW type power generator is also possible.

本発明の海中にある発電装置に、大型魚・中型魚・哺乳動物又はそれらの群集体あるいは大型海藻・流木等の大型の漂流物が接触又は衝突して発電装置又は魚体が傷つける恐れがある海域では又は人及び小型船の立入を禁止するため、図35,36,37に示すように本発明の発電装置の外周に海底近くから海面まで垂直な網面をもった定置網を設置することが好ましい。定置網の網目を中型・大型の魚又は大型の哺乳動物が進入できない寸法のものとすることがよい。海上面にも進入禁止の防止柵を設けることが好ましい。定置網を垂直に引張する大型フロートの海上面部分に進入防止棚を突出させるとよい。
定置網の垂直面の一部には内側に進入した中型・大型の魚・哺乳動物の逃し口筒網部を設けるとよい。この逃し口筒網部は外部からの進入ができにくいようになっていて、内部からは外へ出やすいように縮径していく筒状となっている。又、定置網が水流で流されて移動又は変形しないようにアンカーロープで引張することが好ましい。
The sea area where large-scale fish, medium-sized fish, mammals or their collectives or large-scale floating algae such as large seaweed and driftwood may come into contact with or collide with the power generation apparatus in the sea of the present invention Then, in order to prohibit entry of people and small ships, it is preferable to install a stationary net having a vertical mesh surface from near the sea bottom to the sea surface on the outer periphery of the power generator of the present invention as shown in FIGS. . It is preferable that the mesh of the stationary net is of a size that medium or large fish or large mammals cannot enter. It is preferable to provide an anti-entry fence on the sea surface. It is advisable to make an entry prevention shelf project on the sea surface of a large float that pulls the stationary net vertically.
A part of the vertical surface of the stationary net may be provided with a middle-sized / large-sized fish / mammal outlet tubular net that has entered inside. This relief tube network portion is designed to be difficult to enter from the outside, and has a cylindrical shape that is reduced in diameter so that it can easily come out from the inside. Further, it is preferable to pull the stationary net with an anchor rope so that the stationary net is not moved or deformed by the water flow.

又、設置台に設ける1次コイル,直流コイル,水中音波送受信器,水中カメラ,各種センサー,設置台上方に設ける監視カメラ,警告灯,照明灯及び回転体側に設ける2次コイル,磁気スイッチ,開閉器,整流器,充電器,水中カメラ,バッテリー,電動シリンダー,各種計測器,電気センサー,開閉器,制御器等の電気機器,電線,電気回路等はプラスチック・金属・セラミックでもって封止・被覆保護され、防水処理され、魚・動物との接触により破損がないよう保護され、又腐食・漏電もないようにして水中・海中・海上面での耐久性を保持させる。   Also, primary coil, DC coil, underwater acoustic wave transmitter / receiver, underwater camera, various sensors, surveillance camera, warning light, illumination light, and secondary coil provided on the rotating body, magnetic switch, open / close Devices, rectifiers, chargers, underwater cameras, batteries, electric cylinders, various measuring instruments, electrical sensors, switches, controllers, etc., electrical equipment, electric wires, electrical circuits, etc. are sealed and covered with plastic, metal, and ceramic. It is waterproofed, protected from damage by contact with fish and animals, and maintained durability in water, underwater, and on the sea surface without corrosion and leakage.

特に、海水・水中に直接設置される1次コイル,2次コイル,直流コイル,小型変圧器はプラスチック内に封止され、プラスチック内に耐熱性絶縁油を封入し、コイルに電流を流して使用した時の発熱を絶縁油とプラスチックパッケージを介して、外側の海水・水で冷却できるようにすれば、熱問題はほとんど生じない。   In particular, primary coils, secondary coils, DC coils, and small transformers installed directly in seawater / water are sealed in plastic, heat-resistant insulating oil is sealed in the plastic, and current is passed through the coils. If the heat generated at this time can be cooled by seawater and water outside through insulating oil and plastic package, there will be almost no heat problem.

1次コイルと2次コイルの電磁誘導による電力伝達に用いるコイルのコア形状・寸法は、1次コイルの磁束が2次コイルでよく捕捉できてループするもので、2次コイルに電力を効率よく伝達できるものが選ばれる。   The core shape and dimensions of the coil used for power transmission by electromagnetic induction between the primary coil and the secondary coil are such that the magnetic flux of the primary coil can be well captured by the secondary coil and loops. The power is efficiently supplied to the secondary coil. The one that can be transmitted is selected.

以下、本発明の実施例の発電装置について図面と符号を用いて説明する。   Hereinafter, the power generator of the Example of this invention is demonstrated using drawing and a code | symbol.

(実施例)
図1〜5は本発明の海域での発電設備の実施例X,Y,Zを示す図面であって、本発明の発電装置とフロート基地と船との関係を示す図面であり、その発電設備の発電装置の構造例は図8〜39によって好ましい具体例で示している。
図6と図7は海域での発電設備であって、フロート基地を用いないで直接発電装置から空中電力線を用いて船へ給電させる参考例である。
(Example)
1 to 5 are drawings showing Examples X, Y, and Z of the power generation facility in the sea area of the present invention, and are diagrams showing the relationship between the power generation device of the present invention, the float base and the ship, and the power generation facility. An example of the structure of the power generation apparatus is shown as a preferred specific example in FIGS.
FIG. 6 and FIG. 7 show power generation facilities in the sea area, and are reference examples in which power is supplied to the ship directly from the power generator using the aerial power line without using the float base.

(実施例Xの説明)
図1に示す本発明の実施例Xは、潮流用発電装置Gの中心から80m程離れた海面にフロート台船を用いたフロート基地F,Fを設け、発電装置Gが発生する電力は海中電力線ケーブルKによって海中・海底を介してフロート基地F,Fへ送られる各フロート基地F,Fには配電盤fと整流回路(図示せず)を用いた直流電源部(図示せず)を有し、又直流電力のバッテリー充電回路(図示せず)とバッテリー格納庫(図示せず)を有し、又上部には電力線の接続コネクターfを先端に取付けたポールfpが設けられ、又このフロート基地F,Fの運転操作室frが設けられている。又、このフロート基地F,Fは土木作業船として使用されているフロート台船を2台連結してフロート基地本体fとして使用され、ウィンチ装置fでアンカーfを海中に置いて、定位置で安定的に海面浮上させている。又、フロート基地F,Fの外周には厚みあるゴムの防舷材fを取付けられ、船の接触で破損しないようにしている。尚、図1の発電装置GはA4一枚に収めるためフロート基地F,Fに比べ図面寸法を小さく描いている。
(Description of Example X)
The embodiment X of the present invention shown in FIG. 1 is provided with float bases F 1 and F 2 using float carriers on the sea surface about 80 m away from the center of the tidal power generator G, and the power generated by the power generator G is DC power supply unit to each float base F 1, F 2 to be sent to the float base F 1, F 2 was used switchboard f 1 and the rectifier circuit (not shown) by subsea power line cable K through the sea-seabed (Figure has Shimese not), also has a direct-current power of the battery charging circuit (not shown) and a battery hangar (not shown), and the pole fp is provided which is attached to the distal end of the connection connector f 2 of the power line on the top In addition, the operation rooms fr of the float bases F 1 and F 2 are provided. The float bases F 1 and F 2 are used as a float base body f 4 by connecting two float base ships used as civil engineering work ships, and the anchor f 6 is placed in the sea with the winch device f 5. The sea surface is stably floated at a fixed position. Further, the outer periphery of the float base F 1, F 2 is attached to fender f 7 of rubber with a thickness, and to avoid damage by contact with the ship. Incidentally, the power generation device G in FIG. 1 depicts small drawing dimensions compared to the float base F 1, F 2 to fit on a single A4.

又、一方フロート基地F,Fの近くで停船する船SHは、電力と水の電気分解による水素製造装置SHとその原料となる真水を貯えた真水タンクSHと製造した水素ガスを高圧で多くの耐圧性の水素ガス高圧貯蔵容器(水素ガス高圧容器)に充填する水素ガス加圧充填装置(図示せず)とを備え、水素ガス高圧貯蔵容器SHを多く格納する容器格納室(図示せず)を備えている。 On the other hand, the ship SH, which is stopped near the float bases F 1 and F 2 , uses a hydrogen production apparatus SH 1 based on electrolysis of electric power and water, a fresh water tank SH 2 storing fresh water as a raw material, and produced hydrogen gas. A container storage chamber for storing a large number of hydrogen gas high-pressure storage containers SH 3 , including a hydrogen gas pressure filling device (not shown) that fills many high-pressure, high-pressure hydrogen gas high-pressure storage containers (hydrogen gas high-pressure containers). (Not shown).

船SHはフロート基地Fから7m程離れた位置でアンカーSHankを下して停船する。この船SHにはフロート基地Fとの電力線の空中接続の為に、フロート基地F,Fの接続コネクターfとアダプター接続されるコネクターSccを有する空中電力線AKを架設するための配線用可動アーム装置SADを設けている。同可動アーム装置SADは複数のアームSA,SAを油圧シリンダーSO,SOによって駆動できて、アーム先端が所定方向に移動して進退できるようになっている。尚、SAは空中電力線AKを放電しないようにアームSA,SAに保持する絶縁支持具である。
反対側の海域に停船させた船SBにはバッテリー充電装置Sb,多数の空のバッテリーBatt,バッテリー格納室Sbrと空中電力線AKを船SBとフロート基地Fとの間で架設するための電力線支持用の可動アーム装置SBAとを有している。可動アーム装置SBAの先端から吊した空中電力線AKの先端に接続コネクターAKcを有して、フロート基地Fの接続コネクターfと嵌合して接続できるようになっている。SBAは可動アーム装置SBAの伸縮シリンダー、SBAは同伸縮シリンダーの傾動を行う起伏シリンダー、SBAは空中電力線AKの支持部である。
Ship SH descends anchor SHunk at a position about 7 m away from float base F 1 and stops. For the aerial connection of the power line to the float base F 1 , the ship SH is used for wiring to construct the aerial power line AK having the connector Scc connected to the connection connector f 2 of the float bases F 1 and F 2 . A movable arm device SAD is provided. The movable arm device SAD can drive a plurality of arms SA 1 , SA 2 by hydraulic cylinders SO 1 , SO 2 , and the arm tip can move forward and backward in a predetermined direction. SA 3 is an insulating support that is held by the arms SA 1 and SA 2 so as not to discharge the aerial power line AK.
The ship SB stopped in the opposite sea area has a battery charger Sb 1 , a large number of empty batteries Batt, a battery storage room Sbr and an aerial power line AK between the ship SB and the float base F 2. And a movable arm device SBA for support. A connection connector AKc the tip of the aerial power lines AK was suspended from the tip of the movable arm device SBA, which is able to connect fitted with connection connector f 2 of the float base F 2. SBA 1 is a telescopic cylinder of the movable arm device SBA, SBA 2 is a hoisting cylinder that tilts the telescopic cylinder, and SBA 3 is a support portion of the aerial power line AK.

この実施例Xでは、海中の40m前後の水深の海中にある発電装置Gから海中電力線ケーブルK170m程の長さでもって、フロート基地F,Fに送電される。そして、その電力は配電盤fを通って、接続コネクターアダプターfに接続されている。発電装置Gとしては図8〜33に示す例のものを採用しているが、これに限定するものでない。 In this embodiment X, power is transmitted from the power generation device G in the sea at a depth of about 40 m underwater to the float bases F 1 and F 2 with a length of about a submarine power line cable K 170 m. Then, the power through the switchboard f 1, is connected to the connection connector adapter f 2. Although the thing of the example shown to FIGS. 8-33 is employ | adopted as the power generator G, it is not limited to this.

図1に示す実施例Xでは、潮流用発電装置Gで発生する電力は海中電力線ケーブルKを介してフロート基地F,Fへ送られる。海中電力線ケーブルKの長さは200m程以下で済むので、海中電力線ケーブルKの費用はさほど高くない。又、海中電力線ケーブルKは海中・海底にあって、海面波浪及び風力の影響は少なく、電力線が破断しにくく、安定して電力はフロート基地F,Fに送られる。
フロート基地F,Fは180°反対側に設けられていて、発電装置Gの直径70mの外周から20〜50m程の少し離れた位置に浮上していて、アンカーfで略定位置の海域の海面に停置している。フロート基地F,Fの大きさは、一辺が10〜20m程とすることが多い。
In the embodiment X shown in FIG. 1, the electric power generated by the tidal power generator G is sent to the float bases F 1 and F 2 through the underwater power line cable K. Since the length of the submarine power line cable K is about 200 m or less, the cost of the submarine power line cable K is not so high. In addition, the submarine power line cable K is in the sea and at the bottom of the sea, and is less affected by sea surface waves and wind power. The power line is not easily broken, and power is stably sent to the float bases F 1 and F 2 .
The float bases F 1 and F 2 are provided on the opposite sides of 180 °, and are floated at a distance of about 20 to 50 m from the outer periphery of the power generation device G having a diameter of 70 m, and are approximately fixed at the anchor f 6. It is parked at sea level. The sizes of the float bases F 1 and F 2 are often about 10 to 20 m on each side.

船SH,SBをこのフロート基地F,Fの外側に数m〜8m程離して停船させる。船SH,SBがフロート基地F,Fの外側にあるため、船SH,SBが発電装置Gに直接接触することはなく、又船SH,SBの水中部分が発電装置Gの水流を乱したり、水速を低下させたりすることはない。
又、船SH,SBがフロート基地F,Fに接触しても、フロート基地F,Fの外周に設けたゴムの防舷材fによって破損することがないようになっている。逆に、船SH,SBがフロート基地F,Fに数m〜十m程近接しても、フロート基地は機能に悪影響を与えることもない。
The ships SH and SB are stopped outside the float bases F 1 and F 2 by several m to 8 m apart. Since the ships SH and SB are outside the float bases F 1 and F 2 , the ships SH and SB do not directly contact the power generator G, and the underwater portions of the ships SH and SB disturb the water flow of the power generator G. And does not reduce the water speed.
Moreover, even if the ship SH, SB contacts the float base F 1, F 2, so that the not damaged by the float base F 1, F fender f 7 of rubber provided on the outer periphery of the 2 . Conversely, even if the ships SH and SB are close to the float bases F 1 and F 2 by several meters to 10 meters, the float base does not adversely affect the function.

船SH,SBをフロート基地F,Fに近づけて、次に可動アーム装置SAD,可動アーム装置SBAを作動させ、船内まで配線された空中電力線AKの先端の接続コネクターScc,AKcをフロート基地Fのポールfpの接続コネクターfと嵌合して接続する。
このように、発電装置Gの発電電力は海中電力線ケーブルKによってフロート基地F,Fに送られ、更に配電盤fを介して空中電力線AKによって船SH,SBへ送電される。
船SHでは、送電された電力は真水タンクSHの真水の電気分解の電力として使用され、水素製造装置SHを作動させ、水素ガスを発生させ、発生した水素ガスを水素加圧充填装置(図示せず)によって、水素ガスは高圧にして高圧貯蔵容器SH(水素ガス高圧容器)に充填され、その容器格納室SHrに格納され、多数の容器が充填されると空中電力線AKをフロート基地Fのポールfpの接続コネクターScc,AKc,fとを外して離してフロート基地Fから離脱して海上運送して、目的地の港から多くの高圧貯蔵容器SHを配送するものである。
The ships SH and SB are brought close to the float bases F 1 and F 2 , and then the movable arm device SAD and the movable arm device SBA are operated, and the connection connectors Scc and AKc at the tip of the aerial power line AK wired up to the ship are connected to the float base. The F 2 pole fp is connected to the connection connector f 2 for connection.
In this way, the power generated by the power generator G is sent to the float bases F 1 and F 2 by the underwater power line cable K, and further transmitted to the ships SH and SB by the aerial power line AK via the switchboard f 1 .
In the ship SH, the transmitted electric power is used as electric power for electrolysis of fresh water in the fresh water tank SH 2 , operates the hydrogen production apparatus SH 1 , generates hydrogen gas, and supplies the generated hydrogen gas to a hydrogen pressurizing and filling apparatus ( (Not shown), the hydrogen gas is filled at a high pressure into a high-pressure storage container SH 3 (hydrogen gas high-pressure container), stored in the container storage chamber SHr, and when a large number of containers are filled, the aerial power line AK is connected to the float base. F 1 of the pole fp of connection connector Scc, AKc, and maritime transport disengaged from the float base F 1 away Remove and f 2, intended to deliver many of the high-pressure storage container SH 3 from the destination of the harbor is there.

同様に、フロート基地Fには空の放電したバッテリーBattを多数積み込んだ船SBが停船し、空中電力線AKが船SB側に接続されると、発電装置Gの電力は船SBのバッテリー充電装置Sbに使用され、その電力を直流に変換して放電したバッテリーBattを充電する。そして、これも多くのバッテリーBattを充電完了すると空中電力線AKの接続コネクターf,AKcを外し、フロート基地Fから離れて海上運送して、所要の港から充電完了したバッテリーBattを目的地に送られてその配送先で使用されるようにするものである。 Similarly, when the ship SB loaded with a large number of discharged batteries Batt stops at the float base F 2 and the aerial power line AK is connected to the ship SB side, the power of the power generator G is supplied to the battery charging device of the ship SB. Used for Sb 1 , the electric power is converted into direct current to discharge the discharged battery Batt. Then, when the charging of many batteries Batt is completed, the connection connectors f 2 and AKc of the aerial power line AK are disconnected, transported by sea away from the float base F 2 , and the battery Batt that has been charged from the required port to the destination. It is sent and used at its delivery destination.

図2,3に示す実施例Yは、フロート基地F,Fに送られた電力を空中送電線AKYをもって船側へ直接送る例で、各相の電力線を碍子AKg等で電気絶縁しながらフロート基地F,Fから船SH,SB上へ張り渡して送電するものである。
そして、船SHには空中電線から送電された電力をもって、この船内に設けた真水タンクSHの水を電力を用いて水素製造装置SHでもって水の電気分解によって水素ガスを発生し、発生した水素ガスを高圧で水素ガス加圧充填装置SHで充填して、高圧水素ガスを水素ガス高圧貯蔵容器SHに貯えて、多くの水素ガス高圧貯蔵容器SHに充填完了すれば、フロート基地Fを離れて目的の港から陸送によって、所定目的地に水素ガス高圧貯蔵容器SHを配送する。尚、水の電気分解により酸素ガスが生成されれば、これも高圧容器に充填して有効活用する。
この実施例Yは、実施例Xとは空中電力線AKの配線の手段と方法が異なるだけで、他は実施例Xと同様な作用効果である。この実施例Yでの発電装置Gとして、図8〜33の構造のものを採用するが、これに限定するものではない。
The embodiment Y shown in FIGS. 2 and 3 is an example in which the electric power sent to the float bases F 1 and F 2 is directly sent to the ship side through the aerial transmission line AKY, and the electric power line of each phase is floated while being electrically insulated by the insulator AKg or the like. The power is transmitted over the ships SH and SB from the bases F 1 and F 2 .
Then, the ship SH generates the hydrogen gas by electrolysis of the water from the fresh water tank SH 2 provided in the ship with the hydrogen production apparatus SH 1 using the electric power transmitted from the aerial cable. the hydrogen gas was filled with hydrogen gas under pressure filling device SH 4 at high pressure and stored high-pressure hydrogen gas to the hydrogen gas pressure storage vessel SH 3, if complete filled in many of the hydrogen gas pressure storage vessel SH 3, the float the land for the purpose of the harbor off base F 1, to deliver the hydrogen gas pressure storage vessel SH 3 to a predetermined destination. In addition, if oxygen gas is produced | generated by electrolysis of water, this will also be filled in a high-pressure container and used effectively.
This embodiment Y is the same as the embodiment X except for the means and method of wiring the aerial power line AK, and the other effects are the same as those of the embodiment X. Although the thing of the structure of FIGS. 8-33 is employ | adopted as the electric power generating apparatus G in this Example Y, it is not limited to this.

図4,5に示す実施例Zは、発電装置Gからの電力は海水電力線ケーブルKで近くに浮べた前記フロート基地F,Fより小規模な海面で浮上する電力中継フロートFに送り、同電力中継フロートFにある電力線配電コネクター(図示せず)に船SH,SBから出した電力線Kのコネクターを接続し、この電力を用いて船SHの船内で水素製造して加圧充填装置で水素ガス高圧貯蔵容器SHに充填し、多くの水素ガス高圧貯蔵容器SHに充填し終えると、離れて海上輸送する。又は船SB内にあるバッテリー充電装置(図示せず)でバッテリー充電させる。いずれも多くの水素ガス高圧貯蔵容器の充填、又は多くのバッテリー充電が完了すると、船SH,SBは電力中継フロートFから離れてこれらを運送・配送するものである。
又、この図4,5の実施例Zでは発電装置Gの設置台の下部室に水素製造装置HPと水素ガス加圧充填装置CHを設け、発電装置G自体に水素ガスの水素ガス高圧貯蔵容器Gbを一部生産・保管できるようにしている。Taは真水タンク、他は図8以下の発電装置Gの構造・符号と共通している。
In the embodiment Z shown in FIGS. 4 and 5, the electric power from the power generator G is sent to the power relay float F 3 which floats on the sea surface at a smaller scale than the float bases F 1 and F 2 floated nearby by the seawater power line cable K. , connect the connector of the power line K which issued to the power line distribution connectors on the same power relay float F 3 (not shown) ship SH, the SB, and hydrogen on board the ship SH charged under pressure with the power When the hydrogen gas high-pressure storage container SH 3 is filled with the apparatus, and many hydrogen gas high-pressure storage containers SH 3 are filled, they are transported away by sea. Alternatively, the battery is charged by a battery charging device (not shown) in the ship SB. Both more hydrogen gas high pressure storage filling of the container, or when the number of battery charge completion, ship SH, SB is to transport and delivery of these away from the power relay float F 3.
4 and 5, a hydrogen production device HP and a hydrogen gas pressure filling device CH are provided in the lower chamber of the installation base of the power generator G, and the hydrogen gas high-pressure storage container for hydrogen gas is provided in the power generator G itself. Part of Gb can be produced and stored. Ta is the same as the fresh water tank, and the others are in common with the structure / symbol of the power generator G shown in FIG.

図6,7に示す参考例は、発電装置Gの電力を空中電力線で船SH,SBまで直接送電する参考例の図面である。発電装置G自体が40〜80mの半径を有すること及び船SH,SBが発電装置Gに近接すると発電装置Gが破損したり、又は発電装置Gの水流の流れを乱したりして発電効率を悪くする。併せて、発電装置Gの中心から船までの距離は80m前後となり、その間を空中電力線AKを張り渡すことは長すぎて船SH,SBの来船毎の空中電力線AKの架線の接続作業、又は取り外し作業が難しく、手間・時間がかかるものとなっていた。又、長いため空中電力線が風・波の揺動を受け易く、断線する恐れがある。
本発明は、この点の問題点を解消すべく、フロート基地を発電装置Gに近い位置に配置して、ここに電力線の中継基地として使用することで、上記問題を解決した。
The reference examples shown in FIGS. 6 and 7 are drawings of a reference example in which the electric power of the power generator G is directly transmitted to the ships SH and SB through the aerial power line. If the power generation device G itself has a radius of 40 to 80 m and the ships SH and SB come close to the power generation device G, the power generation device G is damaged, or the water flow of the power generation device G is disturbed. Make it worse. At the same time, the distance from the center of the power generation apparatus G to the ship is about 80 m, and it is too long to span the air power line AK between them, and the overhead power line AK connection work for each ship SH, SB, or Removal work was difficult, and it took time and effort. Moreover, since it is long, the aerial power line is susceptible to wind and wave fluctuations and may be broken.
In order to solve this problem, the present invention solves the above problem by arranging the float base at a position close to the power generator G and using it as a power line relay base.

図8〜33に示す発電装置例は大略1000kWの潮流を使った発電装置Gの例であり、潮流速が1〜2ノットの海域の水深40m程の海中にアンカーケーブル方式で設置される総重量が400tで楕円状設置台1の浮力が800t程の1000kW型の発電装置例である。楕円筒状の設置台1はその内部の上部を中空にし、設置台1の外周の上段,下段に円環状の固定ガイドフレーム2をブラケット2aによって固設し、同固定ガイドフレーム2に円環状の回転体3を固定ガイドフレーム2に沿って周回可能に取付ける。この回転体3に8組の放射状の取付枠5(複段の横フレーム5aとこれを上下方向に連結する縦フレーム5bと補助横フレーム5cとその連結材5dとよりなる)を取付け、各取付枠5の上段の横フレーム5aの上端に横3列の受圧板6を揺動自在に取付けている。発電運転時の受圧板6の揺動角範囲は、上限の下げ角度θは4°とし、これから垂直状態の90°の範囲としている。   The example of the power generator shown in FIGS. 8 to 33 is an example of the power generator G using a tidal current of approximately 1000 kW, and the total weight installed by the anchor cable system in the sea at a depth of about 40 m in the sea area where the tidal velocity is 1 to 2 knots. Is an example of a 1000 kW type power generation device in which the buoyancy of the elliptical installation base 1 is about 800 t. The elliptic cylinder-shaped installation base 1 is hollow in its upper part, and an annular fixed guide frame 2 is fixed to the upper and lower stages of the outer periphery of the installation base 1 by brackets 2a. The rotating body 3 is attached along the fixed guide frame 2 so as to be able to go around. Eight sets of radial mounting frames 5 (consisting of a multi-stage horizontal frame 5a, a vertical frame 5b for connecting this in the vertical direction, an auxiliary horizontal frame 5c, and its connecting member 5d) are mounted on the rotating body 3. Three horizontal rows of pressure receiving plates 6 are swingably attached to the upper end of the upper horizontal frame 5a of the frame 5. As for the swing angle range of the pressure receiving plate 6 during the power generation operation, the lowering angle θ of the upper limit is 4 °, and the vertical range is 90 °.

次に、この設置台1は上半部を中空室として大きな800t程の浮力を保有し、設置台1の海水に漬かる下部の内部にウインドラス1gを複数配置し、同ウインドラスに巻き取られるくさり1hの下端に浮きタンク1j付アンカーウエイト1iを取付けて、海底面にアンカーとして配置している。この設置台1の浮力と、アンカーウエイト1iによるアンカー力及び固定ガイドフレーム2・回転体3・取付枠5・受圧板6の自重及びそれからの下方力・上方力・回転力を平衝させて、設置台1・回転体3・取付枠5・受圧板6を海中に保持している。
設置台1は楕円筒状であって、その長軸方向の径長が約14mで短軸の方向の径長は約10mで高さ14m程で、中間の隔壁1aで内部は上下に仕切られている。上方は中空室となっている。
Next, this installation base 1 has a large buoyancy of about 800 tons with the upper half as a hollow chamber, and a plurality of windlass 1g are arranged inside the lower part of the installation base 1 immersed in seawater, and wound around the windlass. An anchor weight 1i with a floating tank 1j is attached to the lower end of the wedge 1h and arranged as an anchor on the sea bottom. The buoyancy of the installation base 1 and the anchor force due to the anchor weight 1i and the own weight of the fixed guide frame 2, the rotating body 3, the mounting frame 5, and the pressure receiving plate 6 and the downward force, upward force, and rotational force therefrom are balanced. The installation base 1, the rotating body 3, the mounting frame 5, and the pressure receiving plate 6 are held in the sea.
The installation base 1 has an elliptical cylindrical shape, and the major axis has a diameter of about 14 m, the minor axis has a diameter of about 10 m, and a height of about 14 m. ing. The upper part is a hollow chamber.

図面に示す発電装置は潮流を主たる対象にしているが、海流の強い海域に設置すると海流発電装置としても使用できるものである。その場合、海中深くに設置すると通行筒は海面下となって海面上に突出することがないので、補修・点検する場合はウィンドラス装置でアンカー長さを長くして、設置台・回転体を浮力で海面近くまで浮上させることができ、これによって海面上の突出した通行筒から設置台内部に人の出入が可能となる。電力を発生させるときは、逆の操作でウィンドラス装置を使って通行筒を閉塞して設置台・回転体を所定の深さまで沈降させることで、電力を発生させる深い水深位置に戻せる。   Although the power generator shown in the drawing is mainly intended for tidal currents, it can also be used as a sea current power generator when installed in a strong sea current. In such a case, if the unit is installed deep in the sea, the traffic tube will be below the sea level and will not protrude above the sea level.When repairing or inspecting, increase the anchor length with the windlass device, and install the installation base / rotary body. It is possible to ascend to near the sea surface by buoyancy, so that people can enter and exit from the protruding traffic tube on the sea surface inside the installation table. When power is generated, it is possible to return to a deep water depth position where electric power is generated by closing the passage cylinder using a windlass device in the reverse operation and sinking the installation base / rotary body to a predetermined depth.

(回転体の取付構造)
図中特に図9〜15に設置台1に対する回転体3の取付け構造を示している。図中、2は楕円状の設置台1の外側の上段,下段位置に設けた円環状の固定ガイドフレーム、2aは同固定ガイドフレームを設置台1の外周壁に支持するブラケットで長軸方向のブラケットは短く、短軸方向のブラケットの長さは長い。2bはブラケットの先端に設けられた固定ガイドフレーム2の円環状ガイド溝、3は上段,下段の固定ガイドフレーム2の位置の上方に設けた円環状の回転体であって、H型鋼を横向きにして環状にしたもので、3aは同回転体の下部に設けた脚部、3bは同脚部の下方に取付けられたポリ四ふっ化エチレン等の滑動抵抗が小さい材質で製作された走行シューであり、固定ガイドフレーム2のガイド溝2b内に拘束されて回転体3を固定ガイドフレーム2に沿って周回運動可能にしている。尚、走行シュー3bに代えてローラー・ボール・タイヤ等でも使用可能である。3cは上段の回転体3の内側に設けた回転体3の回転を固定された設置台1に伝達するための大径のラック歯車である。
(Rotating body mounting structure)
In particular, FIGS. 9 to 15 show the structure for attaching the rotating body 3 to the installation base 1. In the figure, 2 is an annular fixed guide frame provided at the upper and lower positions on the outer side of the elliptical installation base 1, and 2a is a bracket for supporting the fixed guide frame on the outer peripheral wall of the installation base 1 in the longitudinal direction. The bracket is short and the length of the bracket in the short axis direction is long. 2b is an annular guide groove of the fixed guide frame 2 provided at the tip of the bracket, 3 is an annular rotating body provided above the position of the upper and lower fixed guide frames 2, and the H-shaped steel is turned sideways. 3a is a leg provided at the lower part of the same rotating body, 3b is a running shoe made of a material having a low sliding resistance such as polytetrafluoroethylene attached below the leg. The rotating body 3 is constrained in the guide groove 2 b of the fixed guide frame 2 so that the rotating body 3 can move around the fixed guide frame 2. In place of the traveling shoe 3b, a roller, a ball, a tire, or the like can be used. Reference numeral 3c denotes a large-diameter rack gear for transmitting the rotation of the rotating body 3 provided inside the upper rotating body 3 to the fixed installation base 1.

(取付枠の構造)
回転体3からその円周に沿って45°毎に8組半径方向に突出させた各取付枠5は、水平長さ約17m程で高さ7m程の寸法で、図9〜15に示すように上下の2段の半径方向に水平に延びた横フレーム5aと、同横フレームを上下に連結する複数の縦フレーム5bと、各段の横フレーム5aと略同じ高さで且つ横フレーム5aの近くで半径方向に突出させた補助横フレーム5cと、同補助横フレームと横フレーム5aとを三角形の二長辺となすように連結する連結材5dとからなっていて強い構造強度を有する。横フレーム5aは断面偏平状の外形状を有して、水の抵抗を小さくしている。又、この上段の横フレーム5aに対して直角且つ略水平に取付けた4本のストッパ取付部材8に上固定ストッパ7e・回転ストッパ7a・電動シリンダー71e等が取付けられ、又下段の横フレーム5aには下ストッパ7u等が回転ズレがなく強固に取付けられている。又、各取付枠5を突設した回転体3部分の下部には下段の固定ガイドフレーム2のガイド溝2bに沿って走行する脚部3aと走行シュー3bがそれぞれ取付けられている。回転体3と取付枠5と受圧板6は環状の固定ガイドフレーム2に沿って周回運動できるようになっている。
(Mounting frame structure)
Each of the mounting frames 5 protruded from the rotating body 3 in the radial direction at 45 ° intervals along the circumference of the rotating body 3 has a horizontal length of about 17 m and a height of about 7 m, as shown in FIGS. A horizontal frame 5a extending horizontally in two upper and lower radial directions, a plurality of vertical frames 5b connecting the horizontal frames up and down, and substantially the same height as the horizontal frame 5a in each step and of the horizontal frame 5a. The auxiliary horizontal frame 5c that protrudes in the radial direction in the vicinity and a connecting member 5d that connects the auxiliary horizontal frame and the horizontal frame 5a so as to form two long sides of the triangle have strong structural strength. The horizontal frame 5a has an outer shape with a flat cross section to reduce water resistance. The upper fixing stopper 7e, the rotation stopper 7a, the electric cylinder 71e, etc. are attached to the four stopper mounting members 8 mounted at right angles and substantially horizontally to the upper horizontal frame 5a, and the lower horizontal frame 5a. The lower stopper 7u and the like are firmly attached with no rotational deviation. Further, leg portions 3a and running shoes 3b that run along the guide grooves 2b of the lower fixed guide frame 2 are respectively attached to the lower portions of the rotating body 3 portions where the mounting frames 5 are projected. The rotating body 3, the mounting frame 5, and the pressure receiving plate 6 can be moved around the annular fixed guide frame 2.

(受圧板の構造)
一枚の受圧板6は、図16〜18に示すように6.5m×5mで最大厚みが0.3m程であり、横フレーム5aに横3列の受圧板6の先端を揺動可能に枢支している。受圧板6の表面材としてステンレス鋼板6aが使用され、内部に硬質発泡樹脂6cが充填され、受圧板6の比重は0.99としている。6bは受圧板6内部の翼桁である。
受圧板6は先端に枢支軸6dを有し、これは横フレーム5a側の軸受部5fで軸支されて、揺動自在となっている。そして、この3枚の受圧板6の側辺に隣接するようにストッパ取付部材8が4本上段の横フレーム5aに直角方向に且つ回転軌跡面に略平行に取付けられている。又、受圧板6の自由端には小さな下向きのフラップ6eが取付けられている。
(Pressure plate structure)
Each of the pressure receiving plates 6 is 6.5 m × 5 m and has a maximum thickness of about 0.3 m as shown in FIGS. 16 to 18, and the front ends of the three pressure receiving plates 6 in the horizontal frame 5 a can be swung. It is pivotally supported. A stainless steel plate 6a is used as a surface material of the pressure receiving plate 6, the inside thereof is filled with a hard foamed resin 6c, and the specific gravity of the pressure receiving plate 6 is 0.99. 6 b is a blade girder inside the pressure receiving plate 6.
The pressure receiving plate 6 has a pivot shaft 6d at the tip, which is pivotally supported by a bearing portion 5f on the side of the horizontal frame 5a and is swingable. A stopper mounting member 8 is mounted on the four upper horizontal frames 5a so as to be adjacent to the sides of the three pressure receiving plates 6 in a direction perpendicular to the rotation trajectory plane. A small downward flap 6 e is attached to the free end of the pressure receiving plate 6.

(受圧板制動手段の構造)
図10,19〜30に示す実施例の受圧板制動手段7は受圧板6を枢支した横フレーム5aに直角方向に延び且つ回転軌跡面と略平行としたストッパ取付部材8を各受圧板の左右側辺に隣接するように4本設けている。各ストッパ取付部材8は斜め補強部材8aで横フレーム5aを強固に取付けている。この4本のストッパ取付部材8に受圧板6の上面と当接すると受圧板6を回転軌跡面と同じ0°に保持する上固定ストッパ7eがストッパ取付部材8と直角となるように設けられている。又、各ストッパ取付部材8には1個又は2個の回転ストッパ7aが設けられていて、回転ストッパ7aは上下に受圧板6の厚みより少し長い間隔をもって上板7bと下板7bとを有する。回転ストッパ7aを直角方向に回転すると、その上板7bと下板7bとの間に受圧板6を挟むことができ、受圧板6を0°の固定状態にする。又、回転ストッパ7aの下板7bの下面で受圧板6の上面と当接させると、受圧板6は4°の下げ角度θでもって受圧板6のこれ以上の浮き上りを抑止し、受圧板6を揺動可能状態とする。
(Structure of pressure plate braking means)
10 and 19-30, the pressure-receiving plate braking means 7 includes a stopper mounting member 8 extending in a direction perpendicular to the horizontal frame 5a pivotally supporting the pressure-receiving plate 6 and substantially parallel to the rotational locus surface of each pressure-receiving plate. Four are provided so as to be adjacent to the left right side. Each stopper mounting member 8 is firmly attached to the horizontal frame 5a by an oblique reinforcing member 8a. When the four stopper mounting members 8 come into contact with the upper surface of the pressure receiving plate 6, an upper fixing stopper 7 e that holds the pressure receiving plate 6 at the same 0 ° as the rotation locus surface is provided to be perpendicular to the stopper mounting member 8. Yes. Each stopper mounting member 8 is provided with one or two rotation stoppers 7a. The rotation stopper 7a has an upper plate 7b and a lower plate 7b which are vertically spaced apart from each other by a little longer than the thickness of the pressure receiving plate 6. . When the rotation stopper 7a is rotated in a right angle direction, the pressure receiving plate 6 can be sandwiched between the upper plate 7b and the lower plate 7b, and the pressure receiving plate 6 is set to a fixed state of 0 °. Further, when the lower surface of the lower plate 7b of the rotation stopper 7a is brought into contact with the upper surface of the pressure receiving plate 6, the pressure receiving plate 6 suppresses further lifting of the pressure receiving plate 6 with a lowered angle θ of 4 °. 6 is in a swingable state.

前の受圧板制動手段7の他の回転ストッパ7aの構造として、図23,24に示すように断面コ字状部材の下板7bのみをその基端で回転自在にするとともに下板7bの上面・下面を離して、その回転ストッパ7aの下板の上面で受圧板6の下面と当接させることで、上固定ストッパ7eとこの回転ストッパ7aの下板7bの上面とで受圧板6を略水平に固定して固定状態とする。又、この回転ストッパ7aの下板7bの下面を受圧板6上面と当接させると、受圧板6の下げ角度θを4°で抑止し、これ以上自由端を浮き上げられないように抑止させ揺動可能状態とする構造がある。   As the structure of the other rotation stopper 7a of the previous pressure receiving plate braking means 7, as shown in FIGS. 23 and 24, only the lower plate 7b of the U-shaped cross-section member is rotatable at its base end and the upper surface of the lower plate 7b. By separating the lower surface and bringing the upper surface of the lower plate of the rotation stopper 7a into contact with the lower surface of the pressure receiving plate 6, the upper receiving stopper 7e and the upper surface of the lower plate 7b of the rotation stopper 7a substantially Fix horizontally and fix. Further, when the lower surface of the lower plate 7b of the rotation stopper 7a is brought into contact with the upper surface of the pressure receiving plate 6, the lowering angle θ of the pressure receiving plate 6 is suppressed at 4 °, and the free end is further prevented from being lifted. There is a structure that can swing.

実施例の回転ストッパ7aはいずれもストッパ取付部材8の長手方向(受圧板6の上下の動きをフリーにする方向)と、これに直角方向にして受圧板6を拘束する位置にする回転ストッパ7aの回動手段を各ストッパ取付部材8に設けている。
そして、回転ストッパ7aを長手方向(受圧板を回転可能とするフリー状態)と、直角方向(受圧板の固定状態又は上限角のある揺動可能状態)に切替可能とする受圧板制御手段7は、回転ストッパ7aを両引きの電動シリンダー71eで回動させて長手方向及び直角方向に切替える。電動シリンダー71eの進退するシリンダーロッド71fの先端と回転ストッパ7aの回転軸に軸着した回動アーム71aとはリンク71bで連結され、シリンダーロッド71fの進退で回転ストッパ7aをその回転軸まわりに90°回転できるようにしている。
Any of the rotation stoppers 7a of the embodiment is a rotation stopper 7a in which the pressure receiving plate 6 is constrained in a longitudinal direction of the stopper mounting member 8 (a direction in which the vertical movement of the pressure receiving plate 6 is free) and a direction perpendicular thereto. Is provided on each stopper mounting member 8.
And the pressure receiving plate control means 7 which makes it possible to switch the rotation stopper 7a between the longitudinal direction (a free state in which the pressure receiving plate can rotate) and a right angle direction (a fixed state of the pressure receiving plate or a swingable state with an upper limit angle). The rotation stopper 7a is rotated by the double-drawing electric cylinder 71e to switch between the longitudinal direction and the right-angle direction. The tip of the cylinder rod 71f where the electric cylinder 71e advances and retreats and the rotation arm 71a pivotally attached to the rotation shaft of the rotation stopper 7a are connected by a link 71b, and the rotation stopper 7a is moved around the rotation axis by the advancement and retreat of the cylinder rod 71f. ° It can be rotated.

尚、回転ストッパ7aは直角方向に保持するため、スプリング71sを設けている。従って、電動シリンダー71eでもって直角方向から長手方向に回動トルクを与える場合は、スプリング71sの復原力に坑して回動できるだけの力を与える。逆に、長手方向から直角方向に両引きの電動シリンダー71sで与える操作トルク(操作力)は、スプリング71sの付勢力の分だけ小さな力・トルクで済むようになっている。スプリング71sは電動シリンダー71eを常時通電せずにも回転ストッパ7aを直角方向の状態を維持できるようにして電力の消費を少なくしている。   In addition, in order to hold | maintain the rotation stopper 7a at a right angle direction, the spring 71s is provided. Therefore, when a rotational torque is applied from the perpendicular direction to the longitudinal direction with the electric cylinder 71e, a force sufficient to rotate is applied to the restoring force of the spring 71s. Conversely, the operating torque (operating force) applied by the double-cylinder electric cylinder 71s from the longitudinal direction to the right-angled direction requires only a small force / torque corresponding to the urging force of the spring 71s. The spring 71s reduces the power consumption by allowing the rotation stopper 7a to maintain a right angle state without always energizing the electric cylinder 71e.

(発電機への回転伝達手段の機構)
次に、回転体3の回転を設置台1内の発電機Hへ伝達する回転伝達手段4について説明する(図9〜12参照)。
回転体3の上部の内側には大径のラック歯車3cが設けられている。又、同ラック歯車3cとピン4cで噛合するピン車の回転盤4dが楕円状の設置台1の長軸側の両方の先端部(回転位相で0°,180°の位置)に設けられて、回転体3の回転はそのラック歯車3cが回転盤4dのピン4cと係合して回転盤4dの回転軸4aに伝達されている。同回転盤4dの垂直な回転軸4aは常時はOFFのブレーキ装置4k,常時は連結のONの状態のクラッチ4i,傘歯車4eを介して発電機Hの入力軸に連動されている。4gは回転軸4aと強制回転モータ4fを連動させる平歯車で、4jは平歯車4gの噛合のON/OFF作動させるクラッチ機能のシリンダーである。
(Mechanism of rotation transmission means to the generator)
Next, the rotation transmission means 4 which transmits rotation of the rotary body 3 to the generator H in the installation stand 1 is demonstrated (refer FIGS. 9-12).
A large-diameter rack gear 3 c is provided inside the upper portion of the rotating body 3. Further, a rotating wheel 4d of a pin wheel that meshes with the rack gear 3c and a pin 4c is provided at both front end portions (positions of 0 ° and 180 ° in rotational phase) of the elliptical installation base 1. The rotation of the rotating body 3 is transmitted to the rotating shaft 4a of the rotating disk 4d by the rack gear 3c engaging with the pin 4c of the rotating disk 4d. The vertical rotating shaft 4a of the rotating disk 4d is interlocked with the input shaft of the generator H through a brake device 4k that is normally OFF, a clutch 4i that is normally ON, and a bevel gear 4e. Reference numeral 4g denotes a spur gear that interlocks the rotary shaft 4a and the forced rotation motor 4f, and 4j denotes a clutch function cylinder that performs ON / OFF operation of meshing of the spur gear 4g.

(設置台内の電力)
設置台1内には、発電機Hで発生する電力を配電装置Cで所定電圧・周波数の交流として防水型の水中電力ケーブルKで近くの陸上へ送電するとともに、一部の交流電力は設置台1の配電装置C,制御盤B,ウインドラス1g,1次コイルL,無線送受信器WSR,警告灯WL,監視カメラWC,照明灯SS,水中音波送受信器SSSR,これらの付属回路等の電気機器の為の交流電力として使用できるようにしている。又、その一部の交流電力は整流器SRFで整流し、バッテリーSBに充電され、バッテリーSBから所定電圧の直流電源を直流コイルSL等の電子機器に給電している。このように、発電装置Gには陸上に向けて電力ケーブルKで発電電力の大部分を送電するとともに、発電装置Gで使用するための交流電源及び直流電源を保有している。これとは別に緊急用バッテリーを備えて、上記電源が使用できない場合でも緊急情報の送受信が行えるようにすることが好ましい。
(Power in the installation base)
In the installation base 1, the power generated by the generator H is transmitted to the nearby land using a waterproof underwater power cable K as an alternating current of a predetermined voltage and frequency by the power distribution device C, and some AC power is installed on the installation base 1 power distribution device C, control panel B, windlass 1g, primary coil L 1 , wireless transceiver WSR, warning lamp WL, surveillance camera WC, illumination lamp SS, underwater acoustic wave transmitter / receiver SSSR, and their associated circuits It can be used as AC power for equipment. Further, a part of the AC power is rectified by the rectifier SRF, charged in the battery SB, and a DC power source having a predetermined voltage is supplied from the battery SB to an electronic device such as the DC coil SL. As described above, the power generation apparatus G transmits most of the generated power to the land using the power cable K, and has an AC power source and a DC power source for use in the power generation apparatus G. In addition to this, it is preferable to provide an emergency battery so that emergency information can be transmitted and received even when the power source cannot be used.

(電力伝達構造)
設置台1から回転体側への電力の伝達は、設置台1の外周に環状に設けた固定ガイドフレーム2の円周上方に沿って45°間隔でコア付1次コイルLを8個所設けている。そのコアL1Cはコ字状となって、両端面は回転体3に向いて設置されている。この1次コイルLには設置台1内の所要電圧の交流電力が開閉器RLSを介して印加されている。この開閉器RLSは、設置台内での手操作の他に無線又は水中音波・水中超音波・水中無線等を使用して、陸上施設GB又は近くの船舶SHIPからでも1次コイルへの電流の開閉の遠隔操作ができるようになっている。
次に、環状をした回転体3の円周に沿って45°間隔で配置された8個の各取付枠5の上段の横フレーム5a近くの回転体3の上方位置で1次コイルLの設置高さと同じ高さ位置にコア付2次コイルLを設けている。この2次コイルLのコアL2Cもコ字状をしていて、その両端面は回転体3の回転によって1次コイルLのコアL1Cの端面に数cm程の近さで対向できるようにしている。
この2次コイルLに発生する2次電力は、回転体側に設けた整流器KRFで直流に変換され、充電器KCによってバッテリーKBに充電させるようにしている。
そして、このバッテリーKBの直流電力を使って前記電動シリンダー71e並びにその開閉器KSW・制御回路KCON・警告灯KW,水中音波送受信器KSSR等電気機器を作動可能としている。
(Power transmission structure)
Transfer of power from the installation base 1 to the rotary section is provided with a core with primary coil L 1 8 location at 45 ° intervals along the circumference above the stationary guide frame 2 provided annularly on the outer periphery of the mount base 1 Yes. The core L 1 C is U-shaped, and both end surfaces are installed facing the rotating body 3. AC power of a required voltage in the installation base 1 is applied through the switch RLS in the primary coil L 1. This switch RLS uses radio or underwater sonic waves, underwater ultrasonic waves, underwater radio waves, etc. in addition to manual operation in the installation table, and allows the current to be supplied to the primary coil even from the land facility GB or a nearby ship SHIP. It can be opened and closed remotely.
Next, the primary coil L 1 is positioned above the rotating body 3 near the upper horizontal frame 5 a of each of the eight mounting frames 5 arranged at 45 ° intervals along the circumference of the annular rotating body 3. the core with the secondary coil L 2 is provided at the same height as the installation height. The core L 2C of the secondary coil L 2 is also U-shaped, and its both end faces can be opposed to the end face of the core L 1C of the primary coil L 1 by a few centimeters by the rotation of the rotating body 3. I am doing so.
Secondary power generated to the secondary coil L 2 is converted to DC by the rectifier KRF provided on the rotation side, and so as to charge the battery KB by charger KC.
The electric cylinder 71e, its switch KSW, control circuit KCON, warning light KW, underwater acoustic wave transmitter / receiver KSSR, and the like can be operated using the DC power of the battery KB.

回転体3側の回転する2次コイルLのコアL2Cが設置台1の固定ガイドフレーム2の1次コイルLのコアL1Cと接近して、1次コイルLの磁束がコアL1Cを介して2次コイルLに作用するようにして、コアが近接している短い時間だけ2次コイルLに交流電力が発生させる。その2次コイルLの交流電力は整流器KRFによって直流に変換されて、バッテリーKBに直流電力として充分な電力量まで蓄積される。このバッテリーKBの直流電力で電動シリンダー71e・制御回路KCON・情報信号伝達回路等電気機器を作動できるようになっている。
回転ストッパ7aを回動するのは、発電状態(回転ストッパ7aが直角方向維持の状態)から回転体3の回転及び受圧板6の揺動を止めて発電を停止させる場合及び発電停止状態から発電させる場合のみが中心になるので、その切替操作は少ない回数であり、バッテリーKBの放電(使用)の方の回数が多くなることはなく、発電している電力で常時バッテリーKBは充分な電力量を貯えている充電状態にある。
The core L 2C of the rotating secondary coil L 2 on the rotating body 3 side approaches the core L 1C of the primary coil L 1 of the fixed guide frame 2 of the installation base 1, and the magnetic flux of the primary coil L 1 becomes the core L. 1C so as to act on the secondary coil L 2 via the AC power is generated only the secondary coil L 2 short time the core is close. AC power of the secondary coil L 2 is converted into a direct current by the rectifier KRF, accumulated to a sufficient amount of power as DC power to the battery KB. Electric equipment such as the electric cylinder 71e, the control circuit KCON, and the information signal transmission circuit can be operated by the direct current power of the battery KB.
The rotation stopper 7a is rotated when the power generation is stopped by stopping the rotation of the rotating body 3 and the swing of the pressure receiving plate 6 from the power generation state (the state in which the rotation stopper 7a is maintained at a right angle) and the power generation from the power generation stop state. Therefore, the switching operation is a small number of times, and the number of times of discharging (use) of the battery KB is not increased, and the battery KB always has a sufficient amount of power generated by the generated power. The battery is charged.

本発明の発電装置の受圧板6,取付枠5,回転体3を回転停止した静止位置に於いて、設置台1側の1次コイルLと回転体側の2次コイルLとが対向する位相で停止させる。実施例では、設置台1に1次コイルLが45°毎に設けられていて、しかも取付枠5も回転体3の円周に沿って45°毎に設けているので、全てのコイルLとコイルLとを対向した位置で静止できるようになっている。この静止位置で設置台1内のバッテリーSBの直流電源をDC/AC変換器で所定電圧の交流に変換した後、1次コイルLにこの交流電流を印加すれば(又は設置台1に陸上からの商用電源が海底ケーブルKを介して供給している場合はその交流を印加すれば)、回転体側に2次コイルLを介して交流電源が供給され、整流器KRF,充電器KCを介して回転体側のバッテリーKBに運転前に充分に充電させることができる。
この電力を用いて、回転ストッパ7aを長手方向に動かし、受圧板6を強制回転モータ4fによって強制回転させ、その回転位相が45°となった時に回転ストッパ7aを直角方向にすることで、受圧板6は固定状態から揺動可能状態となって回転体3・受圧板6は回転開始して、発電を始めることができる。
The pressure receiving plate 6 of the power generation device of the present invention, the mounting frame 5, at the rotating body 3 stops rotating stationary position, the installation base 1 side of the primary coil L 1 and the secondary coil L 2 of the rotating body side faces Stop at phase. In the embodiment, the primary coil L 1 is provided on the installation base 1 every 45 °, and the mounting frame 5 is also provided every 45 ° along the circumference of the rotating body 3. and to be able to rest in a position facing one and the coil L 2. After a DC power source of a battery SB in the installation base 1 and converted into AC of a predetermined voltage at a DC / AC converter in this rest position, by applying the alternating current to the primary coil L 1 (or shore installation stand 1 utility power by applying the alternating current If is supplied through a submarine cable K), an AC power source via the secondary coil L 2 to the rotating body side is supplied from the rectifier KRF, the charger KC via Thus, the battery KB on the rotating body side can be sufficiently charged before operation.
Using this electric power, the rotation stopper 7a is moved in the longitudinal direction, the pressure receiving plate 6 is forcibly rotated by the forcible rotation motor 4f, and when the rotation phase reaches 45 °, the rotation stopper 7a is set at a right angle to The plate 6 changes from the fixed state to the swingable state, and the rotating body 3 and the pressure receiving plate 6 start to rotate and can start power generation.

(状態操作手段)
実施例Gの状態操作手段の送信器として無接触の電磁気を用いて信号情報を発信するコア付直流コイルSLを使用し、このコア付直流コイルが発生する磁気に感応してスイッチが閉路する常開の磁気スイッチMSを回転体3に設けている。この磁気スイッチMSが無接触方式の信号伝達の受信器とした。この磁気スイッチMSが周回運動して設置台1に固設した直流コイルSLのコアSLと対向した時、磁気スイッチMSが作動させるようにしている。この作動で、電動シリンダー71eを押し又は引き方向に作動させ、回転ストッパ7aを長手方向又は直角方向に回動させる。
(State operation means)
As the transmitter of the state operation means of the embodiment G, a cored DC coil SL that transmits signal information using contactless electromagnetics is used, and the switch is closed in response to the magnetism generated by the cored DC coil. An open magnetic switch MS is provided on the rotating body 3. This magnetic switch MS is a contactless signal transmission receiver. When the magnetic switch MS has core SL C facing the DC coil SL fixedly provided on the installation base 1 orbital movement to the magnetic switch MS is to actuate. By this operation, the electric cylinder 71e is operated in the pushing or pulling direction, and the rotation stopper 7a is rotated in the longitudinal direction or the right angle direction.

実施例Gでは、設置台1外周の環状の固定ガイドフレーム2上方で、その回転位相の55°付近の位置,回転位相100°程の位置,回転位相235°付近の位置,回転位相280°に近い位置にコア付直流コイルSLを配置している。直流コイルSLのコアSLの方向は固定ガイドフレーム2の半径方向にあって、その先端の端面は回転体側に向っている。この直流コイルSLには、信号送信の開閉器RLSとそれを外部からの操作命令を受けて同開閉器RLSを開閉させる制御回路RCCとを設けている。一方、回転体3側には2次コイルLの設置位置から正回転側に回転位相が10°進んだ位置に、前記直流コイルSLの磁気を感知して作動する磁気スイッチMSを設けている。この磁気スイッチMSが作動すると、その直流コイルSLに対応する操作命令の電気信号が磁気スイッチMSによって発生させるようにしている。この磁気スイッチMSの閉信号は各電動シリンダー71eを引き押しいずれかの方に作動させ、回転ストッパ7aを長手方向又は直角方向に回転させる(図27,28,29参照)。 In Example G, above the annular fixed guide frame 2 on the outer periphery of the mounting base 1, the position of the rotation phase is near 55 °, the rotation phase is about 100 °, the rotation phase is about 235 °, and the rotation phase is 280 °. A DC coil with core SL is arranged at a close position. Direction of the core SL C DC coil SL In the radial direction of the fixed guide frame 2, the end surface of the tip is towards the rotary section. The DC coil SL is provided with a signal transmission switch RLS and a control circuit RCC that opens and closes the switch RLS in response to an operation command from the outside. On the other hand, on the rotating body 3 side, a magnetic switch MS that senses and operates the magnetism of the DC coil SL is provided at a position where the rotational phase has advanced 10 ° from the installation position of the secondary coil L 2 to the positive rotation side. . When the magnetic switch MS is activated, an electric signal of an operation command corresponding to the DC coil SL is generated by the magnetic switch MS. This closing signal of the magnetic switch MS pulls each electric cylinder 71e to actuate either direction, and rotates the rotation stopper 7a in the longitudinal direction or the perpendicular direction (see FIGS. 27, 28, and 29).

これによって、図30に示すように各取付枠5の回転位相が回転位相45°及び225°に(磁気スイッチMSの回転位相が55°及び235°に)到れば、直流コイルSLによって磁気スイッチMSが作動して電動シリンダー71eで回転ストッパ7aは直角方向から長手方向になり、回転ストッパ7aの拘束がなくなり、受圧板6は水力・浮力に応じて自由に動けるようになる。受圧板6が45°の位相では水流の背面からの力が大きくなって垂直状態の方向になり、回転位相90°で略垂直となる。
又、受圧板6が225°付近では、受圧板6は浮力で水平方向になって、上固定ストッパ7eで受圧板6は受け止められ、270°の回転位相では略水平状態となる。この時の磁気スイッチMSの回転位相は280°となっていて、この回転位相に配置された直流コイルSLを通電させると磁気が作用してこの回転位相にある磁気スイッチMSが作動し、電動シリンダー71eを作動させて回転ストッパ7aを長手方向から直角方向に回転させる。
Thus, as shown in FIG. 30, when the rotation phase of each mounting frame 5 reaches the rotation phases 45 ° and 225 ° (the rotation phases of the magnetic switch MS reach 55 ° and 235 °), the magnetic switch is operated by the DC coil SL. When the MS is activated, the rotation stopper 7a is moved from the perpendicular direction to the longitudinal direction in the electric cylinder 71e, the restriction of the rotation stopper 7a is removed, and the pressure receiving plate 6 can move freely according to hydraulic power / buoyancy. When the pressure receiving plate 6 has a phase of 45 °, the force from the back surface of the water flow becomes large and becomes a vertical direction, and becomes substantially vertical at a rotation phase of 90 °.
Further, when the pressure receiving plate 6 is around 225 °, the pressure receiving plate 6 becomes horizontal due to buoyancy, and the pressure receiving plate 6 is received by the upper fixing stopper 7e, and becomes substantially horizontal at a rotational phase of 270 °. At this time, the rotational phase of the magnetic switch MS is 280 °. When the DC coil SL arranged in this rotational phase is energized, magnetism acts to activate the magnetic switch MS in this rotational phase, and the electric cylinder 71e is operated and the rotation stopper 7a is rotated from the longitudinal direction to the right angle direction.

回転停止から発電状態にする命令の場合は、回転位相55°と100°の回転位相の位置に配置された二つの直流コイルSLの通電作動で磁気スイッチMSにその命令(最初は長手方向へ、後で直角方向へ回動の命令)が伝達される。
これによって、取付枠5の回転位相の90°付近での作動では、回転ストッパ7aは長手方向から直角方向に回転しても受圧板6は略垂直状態であるので受圧板6と接触することなく直角方向にできる。そして、直角方向にある回転ストッパ7aは受圧板6が下げ角度θの4°以上に上方にならないように規制し、下ストッパ7uで90°以上揺動しないようになって受圧板6は揺動可能状態となる。
In the case of a command for switching from the rotation stop to the power generation state, the command (initially in the longitudinal direction) is supplied to the magnetic switch MS by energization operation of the two DC coils SL arranged at the rotation phase positions of 55 ° and 100 °. Later, a rotation command in a right-angle direction is transmitted.
As a result, in operation near 90 ° of the rotation phase of the mounting frame 5, the pressure receiving plate 6 is in a substantially vertical state even if the rotation stopper 7 a rotates in the direction perpendicular to the longitudinal direction, so that it does not contact the pressure receiving plate 6. Can be perpendicular. Then, the rotation stopper 7a in the right angle direction regulates the pressure receiving plate 6 so that it does not rise above 4 ° of the lowering angle θ, and the lower stopper 7u does not swing 90 ° or more so that the pressure receiving plate 6 swings. It becomes possible.

一方、取付枠5の回転位相270°付近での作動の場合では、回転ストッパ7aを長手方向からその後直角方向への動作で、受圧板6が浮力で略水平状態となっているので、回転ストッパ7aの下板は受圧板6の下方となり、上固定ストッパ7eと協同して受圧板6を0°の位置で略水平に保持する固定状態となる。この操作は、回転位相270°付近での磁気スイッチMSが255°及び280°の回転位相で二つの直流コイルSLに通電することで、その操作命令(最初は長手方向に動かし、後で直角方向に動かす命令)が磁気スイッチMSに伝達されることによってできる。   On the other hand, in the case of operation near the rotational phase of 270 ° of the mounting frame 5, the rotation stopper 7 a is moved from the longitudinal direction to the right angle thereafter, and the pressure receiving plate 6 is in a substantially horizontal state by buoyancy. The lower plate of 7a is below the pressure receiving plate 6 and is in a fixed state in which the pressure receiving plate 6 is held substantially horizontally at the 0 ° position in cooperation with the upper fixing stopper 7e. In this operation, the magnetic switch MS in the vicinity of the rotational phase 270 ° is energized to the two DC coils SL at the rotational phases of 255 ° and 280 °, so that the operation command (initially moved in the longitudinal direction and later in the perpendicular direction). Can be transmitted to the magnetic switch MS.

尚、上記操作は設置台1の長軸が水流の主たる流れの方向の場合であるが、水流の流れの方向が主なる水流の流れから変った時点でも切替えることが必要な場合は、水流方向センサーを設置台側に設け、又直流コイルを設置台の外周に多く配置し、水流方向センサーから水流の流れ方向を決定し、これを回転位相0°として、上記の回転位相に対応する直流コイルを作動させれるようにすればよい。あるいは、回転体側に回転位相を計測する手段を設けて、計測された回転位相の値に応じてその操作命令に応じた電動シリンダー71eの作動を制御することでも可能である。   In addition, although the said operation is a case where the long axis of the installation base 1 is the direction of the main flow of a water flow, when it is necessary to switch even when the direction of a water flow changes from the flow of the main water flow, A sensor is provided on the installation table side, and a large number of DC coils are arranged on the outer periphery of the installation table, the flow direction of the water flow is determined from the water flow direction sensor, and this is defined as a rotation phase of 0 °. Can be operated. Alternatively, it is also possible to provide a means for measuring the rotational phase on the rotating body side and control the operation of the electric cylinder 71e according to the operation command in accordance with the measured rotational phase value.

実施例では、上記の磁気スイッチMSの作動でその取付枠5の3個の受圧板6を全部揺動可能状態か又は略水平の固定状態の同じ状態にするものである。
しかし、同じ取付枠5の中の一部の受圧板の状態を変更しないように制御することも可能である。
In the embodiment, the operation of the magnetic switch MS makes the three pressure receiving plates 6 of the mounting frame 5 all in a swingable state or in a substantially horizontal fixed state.
However, it is also possible to control so as not to change the state of some of the pressure receiving plates in the same mounting frame 5.

尚、実施例では発電中の受圧板6の揺動角度範囲は−4°〜−90°であるが、回転ストッパ7aを長手方向に保持した状態で運転させれば、受圧板6はその下げ角度θの上限角0°(δ)の角度となり、上固定ストッパ7eと下ストッパ7uとの間で揺動し、その揺動角度を0°〜−90°となり、この状態で発電させることも可能である。このときは、受圧板6のフラップ6eが下げ角度θに代わる重要な働きをする。   In the embodiment, the swing angle range of the pressure receiving plate 6 during power generation is −4 ° to −90 °. However, if the rotary stopper 7a is operated in the longitudinal direction, the pressure receiving plate 6 is lowered. The upper limit angle of the angle θ is 0 ° (δ), and it swings between the upper fixed stopper 7e and the lower stopper 7u, and the swing angle is 0 ° to -90 °. Is possible. At this time, the flap 6e of the pressure receiving plate 6 performs an important function in place of the lowering angle θ.

(陸上施設,海上船舶,設置台1及び回転体側との情報制御信号の伝達方法)
本実施例では、設置台1の通行筒1fに海中に没しない無線アンテナ1antを高く設けている。設置台内に無線アンテナ1antの信号の無線送受信器WSRを設け、変調器,又は周波数変調器,復調器を介して情報信号の送受を可能としている。これらの無線で伝達された制御信号,電気機器の状態信号,監視カメラ60の画像情報,電力発電状態は地上施設GBに無線で送られて、地上施設GBで海中の発電装置Gの状況・状態を監視できるようになっている。又、無線で発電装置Gへの操作命令・制御命令を発信して遠隔操作可能としている。又、地上施設GBから又は付近の海上の船舶SHIPから無線で同様に状況の監視と制御操作を可能としている(図33,34,38参照)。
尚、電力ケーブルKと一緒に陸上の商用電源線が発電装置Gまで配電されている場合は、設置台1ではその商用電源を交流電源として使用可能となる。
又、電力ケーブルKと一緒に信号線が配装されていれば、陸上施設GBと発電装置Gとの間での情報及び制御操作信号をこの信号をもって伝達できる。
(Transmission method of information control signal between land facility, marine vessel, installation base 1 and rotating body side)
In the present embodiment, a radio antenna 1 ant that is not submerged in the sea is provided at a high height in the passing tube 1 f of the installation base 1. A radio transmitter / receiver WSR for the signal of the radio antenna 1 ant is provided in the installation table, and information signals can be transmitted and received via a modulator, a frequency modulator, and a demodulator. These wirelessly transmitted control signals, status signals of electrical equipment, image information of the monitoring camera 60, and power generation status are sent to the ground facility GB by radio, and the status / state of the power generator G in the sea at the ground facility GB Can be monitored. Further, an operation command / control command to the power generator G can be transmitted wirelessly to enable remote operation. Similarly, the situation can be monitored and controlled by radio from the ground facility GB or from a nearby marine vessel SHIP (see FIGS. 33, 34 and 38).
When the on-shore commercial power line is distributed to the power generator G together with the power cable K, the installation base 1 can use the commercial power as an AC power source.
If a signal line is provided together with the power cable K, information and control operation signals between the land facility GB and the power generation device G can be transmitted with this signal.

設置台1と回転体3との制御信号の画像情報の送受信は、水中音波又は水中超音波の水中音波送受信器SSSRを用いて行うこともできる。又、近接の電磁誘導・水中無線又はレーザー光の投受光器等を用いて情報・信号の授受も可能であり、最適な方法を採用すればよい。
回転体3には、外部に危険であることを示す警告灯の点滅・点灯及び小型水中カメラ・水流計等を取付けること及び制御コンピュータが将来取付ける場合でも、回転体3にはそれらの為の電力を確保できるので、それら機器の設置も容易である。
Transmission / reception of the image information of the control signal between the installation base 1 and the rotating body 3 can also be performed using an underwater acoustic wave transmitter / receiver SSSR of underwater acoustic waves or underwater ultrasonic waves. In addition, information and signals can be exchanged using a nearby electromagnetic induction / underwater radio or laser beam projector / receiver, and an optimum method may be adopted.
Even if the rotating body 3 is equipped with a flashing / lighting of a warning light indicating that it is dangerous to the outside, a small underwater camera, a hydrometer, etc. and a control computer will be installed in the future, the rotating body 3 will have electric power for them. Therefore, it is easy to install these devices.

(発電装置の保護・安全対策)
本発明の水中にある発電装置に、中型・大型の魚・哺乳動物が接触して、発電装置Gが破損・故障を生起すること、魚体・動物を傷つけることを防止する為、大型海藻・漂流物が回転する取付枠5・受圧板6に付着・接触することを防止する為、及び人・小型ボートが発電装置Gに近づいて回転している取付枠5・受圧板6と接触して、人身事故を生起することを予防する為に、図35〜38に示すように発電装置Gの外周を囲うように中型・大型の魚・哺乳動物・人の進入を防止できる粗目の網目の定置網50を海中にアンカーブロック51と大型フロート52で設置し、又その大型フロートの海面上にも満潮時でも中・大型の魚・哺乳動物・人の進入を防止する海面柵部を海面から突出させることが好ましい(図35,36,37参照)。
(Protection and safety measures for power generation equipment)
In order to prevent the power generator G from being in contact with the power generator in the water of the present invention and causing the power generator G to be damaged or damaged, or to injure the fish body / animal, In order to prevent an object from adhering to or contacting the mounting frame 5 or pressure receiving plate 6, and when a person or small boat approaches the power generator G and contacts the rotating mounting frame 5 or pressure receiving plate 6, In order to prevent the occurrence of personal injury, a stationary net 50 having a coarse mesh that can prevent entry of medium-sized / large fish / mammals / humans so as to surround the outer periphery of the power generation device G as shown in FIGS. An anchor block 51 and a large float 52 are installed in the sea, and a sea fence that protrudes from the surface of the large float to prevent the entry of medium, large fish, mammals and humans even at high tide. Preferred (see FIGS. 35, 36, and 37)

図35〜38において、50は高さ40m程の網目が15cm平方程の定置網、51は同定置網を海底に固定するアンカーブロック、52は定置網上辺に取付けた大型フロート、52aは大型フロート52の下部に定置網50の上辺ロープを係止する係止部、52bは同係止部に一端を結着した大型フロート52が発電装置G方向に移動しないようにする引張ワイヤ、52cは同引張ワイヤの下端を海底に固定するアンカーブロック、52dは隣り合う大型フロート52同士の連結金具、52eは大型フロート52の海面上に50cm程突出した海面柵部、52fは同海面柵部に形成した空気通過窓、52gはアンカーブロック52cに下端を結着したワイヤ52hで係留された小型の警告フロートである。   35 to 38, 50 is a stationary net having a height of about 40 m and a mesh of about 15 cm square, 51 is an anchor block for fixing the identification net to the seabed, 52 is a large float attached to the upper side of the stationary net, and 52a is a lower part of the large float 52. A locking portion for locking the upper rope of the stationary net 50, a tension wire 52b for preventing the large float 52 having one end bound to the locking portion from moving in the direction of the power generator G, and 52c for a lower end of the tension wire. Anchor block for fixing the seafloor to the seabed, 52d is a connecting metal fitting between adjacent large floats 52, 52e is a sea surface fence portion protruding about 50 cm above the sea surface of the large float 52, 52f is an air passage window formed on the sea surface fence portion, 52g is a small warning float moored by a wire 52h having a lower end bound to the anchor block 52c.

定置網50の垂直の網面の一部に魚・哺乳動物の逃し用の縮径していく筒状の逃し口筒網部54を設けることが好ましい。逃し口筒網部54の先端の逃し口54aの口縁には外部から魚・哺乳動物の進入を防ぐ反し片(図示せず)を設け、定置網50内部からこの逃し口筒網部54へ入り込んで逃し口54aから外海へ逃げられるようにすることが好ましい。   It is preferable to provide a cylindrical relief tube net 54 with a reduced diameter for fish / mammal escape on a part of the vertical mesh surface of the stationary net 50. A warping piece (not shown) for preventing the entry of fish and mammals from the outside is provided on the rim of the escape port 54a at the tip of the escape tube network part 54, and enters the escape tube network part 54 from the inside of the stationary net 50. It is preferable to escape from the escape port 54a to the open sea.

更に、図38に示すように本発明の発電装置の設置台1の通行筒1f付近に設けた無線アンテナ1antの支柱部には海面上から水中の回転する取付枠5・受圧板6の状況及び設置した定置網50の上方海面の大型フロート52の海面上付近の人・船の近接を撮影する監視カメラ60が複数方向の撮影の為に複数台取付けられ、又支持部には警告灯61及び夜間照明灯62を設けることが好ましい。   Further, as shown in FIG. 38, the support frame portion of the wireless antenna 1ant provided near the passing tube 1f of the installation stand 1 of the power generator of the present invention has a situation of the mounting frame 5 and the pressure receiving plate 6 that rotate underwater from the sea surface. A plurality of surveillance cameras 60 for photographing the proximity of people and ships near the surface of the large float 52 above the surface of the installed fixed net 50 are mounted for photographing in a plurality of directions. An illumination lamp 62 is preferably provided.

又、実施例の無接触の信号情報伝達に代えて状態操作手段を物理的な接触で操作信号を設置台1から回転体3へ伝達させる例を図39に示している。固定ガイドフレーム2側に電動シリンダー80を設け、そのシリンダーロッド81を進退させ、同シリンダーロッド81先端に加圧板82を取付ける。そして、回転体3側に上記加圧板82によって押圧されると、防水パッケージされた近接スイッチLSWを閉路するスイッチを設ける方式でもよい。その電動シリンダー80と近接スイッチLSWの設置位置は実施例の直流コイルSLと磁気スイッチMSの配置位置と同じくとする。   FIG. 39 shows an example in which the operation signal is transmitted from the installation base 1 to the rotating body 3 by physical contact with the state operation means instead of the non-contact signal information transmission of the embodiment. An electric cylinder 80 is provided on the fixed guide frame 2 side, the cylinder rod 81 is advanced and retracted, and a pressure plate 82 is attached to the tip of the cylinder rod 81. Then, a system may be provided in which a switch that closes the proximity switch LSW that is waterproof packaged when pressed by the pressure plate 82 on the rotating body 3 side may be used. The installation position of the electric cylinder 80 and the proximity switch LSW is the same as the arrangement position of the DC coil SL and the magnetic switch MS in the embodiment.

本発明は主に海中に設置され、陸地近くの海域の潮流を利用して発電することを主対象とするが、速い潮流域又は流速が速い海流域において設置することでより高い発電量を得ることができる。更に、大きな流速がある水深の深い河川に設置しても発電を得ることができる。   The present invention is mainly installed in the sea and is mainly intended to generate power using the tidal currents near the land, but it can obtain higher power generation by installing it in a fast tidal area or an ocean current area where the flow velocity is high. be able to. Furthermore, power generation can be obtained even when installed in a deep river with a large flow velocity.

G 実施例の発電装置
A 空調装置
AK 空中電力線
B 制御盤
Batt バッテリー
C 配電装置
CH 水素ガス加圧充填装置
,F フロート基地
電力中継フロート
H 発電機
HP 水素製造装置
K 電力ケーブル
Gb 水素ガス高圧貯蔵容器
GB 陸上施設
SH,SB 船
SH 水素製造装置
SH 真水タンク
SH 水素ガス高圧貯蔵容器(水素ガス高圧容器)
SH 水素ガス加圧充填装置
SHank アンカー
SBA 可動アーム装置
SA 伸縮シリンダー
SA 起伏シリンダー
SA 空中電力線の支持部
SAD 可動アーム装置
SHIP 船舶
SJ 変圧器
KB バッテリー(回転体側)
KC 充電器(回転体側)
KRF 整流器(回転体側)
KSW 開閉器(回転体側)
KCON 制御回路(回転体側)
KW 警告灯(回転体側)
KSSR 水中音波送受信器(回転体側)
1次コイル
1C 1次コイルのコア
1S 取付台
2次コイル
2C 2次コイルのコア
2S 取付台
RAL 交流電源切替器
SL 直流コイル(送信器)
SL 直流コイルのコア
RLS 開閉器
RCC 制御回路
WSR 無線送受信器
SSSR 水中音波送受信器
ST 変圧器(設置台側)
SRF 整流器(設置台側)
SC 充電器(設置台側)
SB バッテリー(設置台側)
MS 磁気スイッチ(受信器/回転体側)
1 設置台
1a 隔壁
1ant 無線アンテナ
1f 通行筒
1g ウインドラス
1h くさり
1i アンカーウエイト
1j 浮きタンク
2 固定ガイドフレーム(上,下段)
2a ブラケット
2b ガイド溝
3 回転体
3a 脚部
3b 走行シュー
3c ラック歯車
4 回転伝達手段
4a 回転軸
4b 軸受
4c ピン
4d 回転盤
4e 傘歯車
4f 強制回転モータ
4g 平歯車
4i クラッチ
4j クラッチ用シリンダー
4k ブレーキ装置
5 取付枠
5a 横フレーム(上,下段)
5b 縦フレーム
5c 補助横フレーム
5d 連結材
5e 取付アーム
5f 軸受部
5g 取付補強板
6 受圧板
6a ステンレス鋼板
6b 翼桁
6c 硬質発泡樹脂
6d 枢支軸
6e フラップ
7 受圧板制動手段
7a 回転ストッパ
7b 回転ストッパの上・下の板
7d ゴム層
7e 上固定ストッパ
7u 下ストッパ
71a 回動アーム
71b リンク
71e 電動シリンダー
71f シリンダーロッド
71s 引張スプリング
8 ストッパ取付部材
8a 斜め補強部材
50 定置網
51 アンカーブロック
52 大型フロート
52a 係止部
52b 引張ワイヤ
52c アンカーブロック
52d 連結金具
52e 海面柵部
52f 空気通過窓
52g 警告フロート
52h ワイヤ
54 逃し口筒網部
54a 逃し口
60 監視カメラ(設置台上)
61 警告灯
62 夜間照明灯
配電盤
接続コネクター
フロート基地本体
ウィンチ装置
アンカー
防舷材
fp ポール
fr 運転操作室
Scc 接続コネクター
Sb バッテリー充電装置



G Power generation device of embodiment A Air conditioning device AK Aerial power line B Control panel Batt Battery C Distribution device CH Hydrogen gas pressurization and filling device F 1 , F 2 float base F 3 Power relay float H Generator HP Hydrogen production device K Power cable Gb Hydrogen gas high-pressure storage container GB Land facility SH, SB ship SH 1 Hydrogen production equipment SH 2 Fresh water tank SH 3 Hydrogen gas high-pressure storage container (hydrogen gas high-pressure container)
SH 4 Hydrogen gas pressure filling device SHank anchor SBA movable arm device SA 1 telescopic cylinder SA 2 undulating cylinder SA 3 support part of air power line SAD movable arm device SHIP ship SJ transformer KB battery (rotating body side)
KC charger (rotating body side)
KRF rectifier (rotating body side)
KSW switch (rotating body side)
KCON control circuit (rotating body side)
KW warning light (rotating body side)
KSSR Underwater sound wave transmitter / receiver (rotating body side)
L 1 1 primary coil L 1C 1 primary coil of the core L 1S mount L 2 of the secondary coil L 2C secondary coil core L 2S mount RAL AC power source switch SL DC coils (transmitter)
SL C DC coil core RLS switch RCC control circuit WSR radio transceiver SSSR underwater sound transceiver ST transformer (installation table side)
SRF rectifier (installation base side)
SC charger (installation base side)
SB battery (installation base side)
MS magnetic switch (receiver / rotor side)
DESCRIPTION OF SYMBOLS 1 Installation stand 1a Bulkhead 1ant Radio antenna 1f Traffic tube 1g Windlass 1h Overhead 1i Anchor weight 1j Floating tank 2 Fixed guide frame (upper and lower tiers)
2a Bracket 2b Guide groove 3 Rotating body 3a Leg 3b Traveling shoe 3c Rack gear 4 Rotation transmission means 4a Rotating shaft 4b Bearing 4c Pin 4d Rotary disk 4e Bevel gear 4f Forced rotating motor 4g Spur gear 4i Clutch 4j Clutch cylinder 4k Brake device 5 Mounting frame 5a Horizontal frame (upper, lower)
5b Vertical frame 5c Auxiliary horizontal frame 5d Connecting material 5e Mounting arm 5f Bearing part 5g Mounting reinforcement plate 6 Pressure receiving plate 6a Stainless steel plate 6b Wing girder 6c Rigid foam resin 6d Pivoting shaft 6e Flap 7 Pressure receiving plate braking means 7a Rotation stopper 7b Rotation stopper Upper and lower plates 7d Rubber layer 7e Upper fixed stopper 7u Lower stopper 71a Rotating arm 71b Link 71e Electric cylinder 71f Cylinder rod 71s Tension spring 8 Stopper mounting member 8a Diagonal reinforcement member 50 Stationary net 51 Anchor block 52 Large float 52a Locking Portion 52b Tensile wire 52c Anchor block 52d Connecting bracket 52e Sea surface fence portion 52f Air passage window 52g Warning float 52h Wire 54 Outlet tube network portion 54a Outlet port 60 Surveillance camera (on installation base)
61 warning light 62 night illumination light f 1 switchboard f 2 connection connector f 4 float base body f 5 winch device f 6 anchor f 7 fender fp pole fr driving operation room Scc connection connector Sb 1 battery charging device



Claims (18)

潮流又は海流の水流エネルギーで発電する発電装置を海中に設置し、海水又は水中に設置された前記発電装置の外周を囲うように且つ海底面から海面まで延びた中・大型の魚・哺乳動物の進入を阻止する定置網を設け、同定置網を上方に引張するフロートの上部に海面より上方に突出する海面柵部を設け、発電装置への中・大型の魚と動物の進入及び人の無断進入を防止するようにして発電装置・動物と人の安全を確保し、しかも前記定置網の外側の海域の近くの所定位置の海面に浮ぶフロート基地を1基又は複数基設け、同フロート基地に前記発電装置で発生させた電力の送電線を配線し、同フロート基地において発電装置の電力が使用できるように又はフロート基地からフロート基地に近接した位置で停船する船又は作業船に対し、フロート基地に送られた送電線の電力を中継して給電できるようにしたことを特徴とする、海域での発電設備。   A power generator that generates power using tidal currents or ocean current energy is installed in the sea, and it surrounds the outer periphery of the power generator installed in seawater or underwater, and extends from the sea floor to the sea surface. A stationary net that prevents entry is provided, and a sea surface fence that protrudes above the sea level is provided above the float that pulls the identification net upward. One or a plurality of float bases floating on the sea surface at a predetermined position near the sea area outside the stationary net are provided so as to prevent the power generation apparatus / animals and people from being prevented, and the power generation apparatus is provided in the float base The power transmission line of the generated power is wired so that the power of the power generator can be used at the float base, or to a ship or work ship that stops at a position close to the float base from the float base. Wherein the power transmission line sent to preparative base and to be powered by a relay, power generation equipment in the waters. 前記フロート基地が送電線の中継の基地であって、発電装置とフロート基地の送電線が海中の送電線で配線し、フロート基地と近接して停船する船又は作業船に対し、フロート基地の送電線を空中で送電できるようにした、請求項1記載の海域での発電設備。   The float base is a relay base for the power transmission line, and the power transmission device and the float base transmission line are wired by an underwater power transmission line. The power generation facility in the sea area according to claim 1, wherein an electric wire can be transmitted in the air. フロート基地に近接した位置で停船する船又は作業船がフロート基地からの送電線の電力を使用して、真水から水を電気分解して水素を発生して、発生した水素を水素高圧貯蔵容器に充填する水素製造装置を備えたものである、請求項1又は2記載の海域での発電設備。   A ship or work boat that stops at a position close to the float base uses the power of the transmission line from the float base to electrolyze water from fresh water to generate hydrogen, and the generated hydrogen is stored in a hydrogen high-pressure storage container. The power generation facility in the sea area according to claim 1 or 2, comprising a hydrogen production device to be filled. フロート基地に近接した位置で停船する船又は作業船がフロート基地から送電線で給電される電力を使用して、船又は作業船にあるバッテリー充電装置で複数のバッテリーを充電するようにした、請求項1又は2記載の海域での発電設備。   Claims that a ship or work ship that is stopped at a position close to the float base is charged with a plurality of batteries using the battery charging device on the ship or work ship using the power supplied from the float base by the transmission line. Item 1. Power generation facility in the sea area according to item 1 or 2. フロート基地自体に発電装置からの送電線の電力を使用して真水の電気分解で水素を発生して、その水素を水素高圧貯蔵容器へ充填する水素発生装置を備えた、請求項1〜4いずれか記載の海域での発電設備。   Any one of Claims 1-4 which provided the hydrogen generator which generate | occur | produces hydrogen by electrolysis of fresh water using the electric power of the power transmission line from a power generator in a float base itself, and fills the hydrogen into a hydrogen high pressure storage container Power generation facilities in the sea area. フロート基地自体に発電装置からの送電線の電力を使用して複数のバッテリーに電力を充電するバッテリー充電装置を備えた、請求項1〜4いずれか記載の海域での発電設備。   The power generation facility in the sea area according to any one of claims 1 to 4, wherein the float base itself is provided with a battery charger that charges power to a plurality of batteries using power from a power transmission line from the power generator. 請求項1〜6記載の発電装置が下記の構成のものである、請求項1〜6いずれか記載の海域での発電設備。

海中又は水中で固定される設置台を設け、同設置台の外側に回転体を回転自在に取付けるとともに、同回転体の回転軸線を設置される海中又は水中の水流の流れと略直角となる縦方向に設定し、同回転体から円周に沿って複数の取付枠を放射状に取付け、その各取付枠の回転中心から半径方向に延びた上辺部材に平板状受圧板を複数個所定間隔離して配置するとともに各受圧板の一端を前記上辺部材に揺動自在に取付け、又同受圧板の質量をその容積の4℃の真水の質量で割った受圧板の比重を設置される海水又は水の比重より僅か小さくして海・水中で受圧板に浮力を発生しえるようにし、更に回転軸線まわりに回転する間に各受圧板の揺動の角度範囲が受圧板の自由端側が受圧板の取付け側の一端の回転軸線まわりの回転軌跡の面より少し下方となるように受圧板が下方に傾く所定の下げ角度θから、受圧板が回転体の略回転軸線方向となる自由端の最下位置までの角度範囲で受圧板が揺動できる揺動可能状態と、受圧板の姿勢を回転軸線まわりに回転する間に前記回転軌跡の面に対して0°か又は0°に近い小さな角度δで略水平となるように受圧板を常に固定する固定状態とのいずれの状態にも電力を動力源として切替できる受圧板制動手段を設け、同受圧板制動手段に受圧板の状態を他の状態に切替える操作命令を設置台側の機器又は遠隔地で操作する機器から回転体側の受圧板制動手段に非接触的方法又は接触を伴う方法で伝達して電気的制御信号に変換して操作命令の通りに受圧板制動手段を作動させる状態操作手段を備え、前記回転体の設置台に対する回転を設置台内の回転軸に伝達する回転伝達手段を設け、設置台内に前記回転軸の回転で発電する発電機を設け、同発電機の出力電力を有線で設置台近くの陸上又は海上あるいは水上船体に送電するようにし、しかも、回転体側にある受圧板制動手段の電力の動力源は、回転する回転体に近接した設置台の周縁部に巻線をコアに巻回した防水処理された1次コイルを1個所又は複数個所配置するとともに、回転体側の回転体又はこれに固設した取付枠であって前記の設置台の1次コイルと近接できる位置に巻線をコアに巻回した防水処理された2次コイルを複数個所又は1個所設け、前記1次コイルに交流を設置台の側の電源を用いて印加し、2次コイルが1次コイルに近接すると電磁誘導で2次コイルに電力を出力できるようにし、この2次コイルに発生する交流の電力でもって又は2次側の交流電圧を整流器で直流に変換してバッテリーに電力を充電させて同バッテリーの電力でもって受圧板制動手段に給電してこれを作動するものとし、受圧板を揺動可能状態とすると潮流又は水流によって受圧板に発生する力と受圧板の浮力と受圧板の角度制動とによって確実に回転体を回動させて発電でき、受圧板を固定状態とすることで回転体の回転を低速又は停止し易くした、発電装置。
The power generation facility in the sea area according to any one of claims 1 to 6, wherein the power generation device according to any one of claims 1 to 6 has the following configuration.
An installation base that is fixed in the sea or underwater is provided, and a rotating body is rotatably mounted on the outside of the installation base, and the rotation axis of the rotating body is substantially perpendicular to the flow of water in the sea or water. A plurality of mounting frames are mounted radially along the circumference from the same rotating body, and a plurality of flat plate-shaped pressure receiving plates are separated by a predetermined distance from the upper side member extending radially from the center of rotation of each mounting frame. Seawater or water in which one end of each pressure receiving plate is swingably attached to the upper side member, and the specific gravity of the pressure receiving plate obtained by dividing the mass of the pressure receiving plate by the mass of fresh water at 4 ° C. It is slightly smaller than the specific gravity of the pressure plate so that buoyancy can be generated in the pressure plate in the sea and water, and the angle range of oscillation of each pressure plate during rotation around the axis of rotation is the free end side of the pressure plate. From the surface of the rotation locus around the rotation axis at one end of the mounting side Oscillation in which the pressure receiving plate can swing within a range of angles from a predetermined lowering angle θ at which the pressure receiving plate is tilted downward so that the pressure receiving plate is slightly downward to the lowest position of the free end where the pressure receiving plate is substantially in the rotational axis direction of the rotating body. A fixed state in which the pressure receiving plate is always fixed so that it is substantially horizontal at a small angle δ of 0 ° or close to 0 ° with respect to the surface of the rotation trajectory while rotating the posture of the pressure receiving plate around the rotation axis. Pressure receiving plate braking means capable of switching electric power as a power source is provided in any of the states, and an operation command for switching the state of the pressure receiving plate to another state is sent to the pressure receiving plate braking means at a device on the installation base side or at a remote place. It is provided with a state operating means for transmitting the pressure receiving plate braking means from the operating device to the pressure receiving plate braking means on the rotating body side by a non-contact method or a method involving contact and converting it into an electric control signal to operate the pressure receiving plate braking means according to the operation command. Rotation of the rotating body with respect to the installation base A rotation transmission means for transmitting to the rotation shaft is provided, a generator for generating electricity by rotation of the rotation shaft is provided in the installation table, and the output power of the generator is wired to the land, sea or water hull near the installation table The power source of the power of the pressure-receiving plate braking means on the rotating body is a waterproof primary coil in which the winding is wound around the periphery of the installation base near the rotating body. Is disposed at one or more locations, and is a waterproof body in which a winding is wound around the core at a position close to the primary coil of the installation table, which is a rotating body on the rotating body side or a mounting frame fixed to the rotating body. A plurality of or one secondary coil is provided, and an alternating current is applied to the primary coil using a power supply on the installation base side. When the secondary coil is close to the primary coil, power is supplied to the secondary coil by electromagnetic induction. Output to this secondary coil. It is assumed that the AC voltage generated or the secondary side AC voltage is converted to DC by a rectifier, the battery is charged with power, and the battery power is supplied to the pressure receiving plate braking means to operate it. When the pressure receiving plate is in a swingable state, power can be generated by reliably rotating the rotating body by the force generated in the pressure receiving plate by tidal current or water flow, the buoyancy of the pressure receiving plate, and the angle braking of the pressure receiving plate, and the pressure receiving plate is in a fixed state. By doing so, the power generation device that makes the rotation of the rotating body slow or easy to stop.
請求項7記載の発電装置を使用し、その1次コイルのコアの端面が回転体側に臨み、又2次コイルのコアの端面は1次コイルのコアの端面に近接位置で対向するようにし、2次コイルの電力の伝達効率を高めた、請求項7記載の海域での発電設備。   The power generator according to claim 7, wherein the end face of the core of the primary coil faces the rotating body, and the end face of the core of the secondary coil faces the end face of the core of the primary coil at a close position, The power generation facility in the sea area according to claim 7, wherein the power transmission efficiency of the secondary coil is increased. 請求項7又は8記載において、その取付枠が回転体の回転中心から半径方向に延びた上下複数本の横フレームと、上下の横フレームを連結する複数本の縦フレームとからなり、受圧板は横フレームの上端に回動自在に取付けられ、
受圧板制動手段は受圧板の自由端が最下位置となる角度以上に受圧板が回転するのを防ぐ下ストッパを受圧板を取付けた横フレーム下方に設け、受圧板を取付けた横フレームの各受圧板の左右側辺近くの位置でしかも同横フレームから直角に且つ前記回転軌跡面に沿って略平行に延びたストッパ取付部材を複数設け、同ストッパ取付部材に回転軌跡の面に対して0°又は0°に近い小さな角δで受圧板の上面と当接して上方への回転を抑止する上固定ストッパを前記ストッパ取付部材から隣接する各受圧板に向けて略直角に取付け、又ストッパ取付部材の途中にストッパ取付部材の長手方向からストッパ取付部材の長手方向に対し略直角になる直角方向まで回転できる回転ストッパを枢支し、しかも同回転ストッパの回転する下板は上下方向に離れた上面と下面を有し、回転ストッパの下板の下面はこれと受圧板の上面が当接すると受圧板が前記の下げ角度θ以上に浮き上らないように規制して受圧板を揺動可能状態とし、一方回転ストッパの下板の上面は受圧板の下面と当接すると受圧板を前記上固定ストッパと協同して受圧板を略水平に固定するように規制する形状寸法として回転ストッパの下板の上面で受圧板を固定状態にできるようにし、同回転ストッパを長手方向と直角方向に回動させる電力を動力源として作動する回動手段を取付枠側に設け、同回動手段によって回転ストッパの下板を長手方向又は直角方向に切替える構造とし、
受圧板制動手段の状態操作手段は、設置台の海又は水の水流が流れてくる上流を回転位相0°とすると受圧板を取付けた横フレームが水流に対し略直角となる回転体の回転位相の90°又は270°となる前の少なくとも20°以上手前の位置で、回転ストッパを直角方向から長手方向にする操作命令を送った後、それから少し回転した回転位相90°又は270°に近い回転位相前後位置で回転ストッパを長手方向から直角方向にする操作命令を送るようにした、請求項7又は8記載の海域での発電設備。
9. The pressure frame according to claim 7 or 8, wherein the mounting frame includes a plurality of upper and lower horizontal frames extending in a radial direction from the rotation center of the rotating body, and a plurality of vertical frames connecting the upper and lower horizontal frames. It is attached to the upper end of the horizontal frame so that it can rotate freely.
The pressure plate braking means is provided with a lower stopper that prevents the pressure plate from rotating beyond the angle at which the free end of the pressure plate is at its lowest position. A plurality of stopper mounting members are provided at positions near the left and right sides of the pressure receiving plate and extending at right angles from the horizontal frame and substantially parallel to the rotation locus surface. Attach the upper fixing stopper, which contacts the upper surface of the pressure receiving plate at a small angle δ close to 0 ° or 0 °, and suppresses upward rotation from the stopper mounting member to each adjacent pressure receiving plate, and attaches the stopper. A rotating stopper that can rotate from the longitudinal direction of the stopper mounting member to a right angle that is substantially perpendicular to the longitudinal direction of the stopper mounting member is pivotally supported in the middle of the member, and the rotating lower plate of the rotating stopper is vertically moved. The lower surface of the lower plate of the rotation stopper is controlled so that the pressure receiving plate does not float above the lowering angle θ when the lower surface of the lower plate contacts the upper surface of the pressure receiving plate. When the upper surface of the lower plate of the rotation stopper comes into contact with the lower surface of the pressure receiving plate, the rotation stopper has a shape dimension that regulates the pressure receiving plate to be fixed substantially horizontally in cooperation with the upper fixing stopper. The pressure receiving plate can be fixed on the upper surface of the lower plate, and a rotating means is provided on the mounting frame side to operate with the electric power for rotating the rotation stopper in a direction perpendicular to the longitudinal direction. With the structure that the lower plate of the rotation stopper is switched to the longitudinal direction or the perpendicular direction,
The state operation means of the pressure receiving plate braking means is the rotational phase of the rotating body in which the horizontal frame on which the pressure receiving plate is attached is substantially perpendicular to the water flow when the upstream phase where the water flow of the sea or water flows is 0 °. After sending an operation command to move the rotation stopper from the perpendicular direction to the longitudinal direction at a position at least 20 ° or more before 90 ° or 270 ° of the rotation, the rotation phase is rotated slightly to 90 ° or 270 °. The power generation facility in the sea area according to claim 7 or 8, wherein an operation command for making the rotation stopper perpendicular to the longitudinal direction at a position before and after the phase is sent.
請求項7又は8記載において、その取付枠が回転体の回転中心から半径方向に延びた上下複数本の横フレームと、上下の横フレームを連結する複数本の縦フレームとからなり、受圧板は横フレームの上端に回動自在に取付けられ、
受圧板制動手段は受圧板の自由端が最下位置となる角度以上に受圧板が回転するのを防ぐ下ストッパを受圧板を取付けた横フレーム下方に設け、受圧板を取付けた横フレームの各受圧板の左右側辺近くの位置でしかも同横フレームから直角に且つ前記回転軌跡面に沿って略平行に延びたストッパ取付部材を複数設け、同ストッパ取付部材に回転軌跡の面に対して0°又は0°に近い小さな角δで受圧板の上面と当接して上方への回転を抑止する上固定ストッパを前記ストッパ取付部材から隣接する各受圧板に向けて略直角に取付け、又ストッパ取付部材の途中にストッパ取付部材の長手方向からストッパ取付部材の長手方向に対し略直角になる直角方向まで回転できる回転ストッパを枢支し、しかも同回転ストッパは受圧板の厚みより長く上下方向に離れた上板と下板を有し、回転ストッパの下板はこれと受圧板の上面が当接すると受圧板が前記の下げ角度θ以上に浮き上らないように規制して受圧板を揺動可能状態とし、且つ回転ストッパの上板と下板との間に受圧板を挟んで受圧板を略水平に固定できる形状寸法として回転ストッパの下板の上面で受圧板を固定状態にできるようにし、同回転ストッパを長手方向と直角方向に回動させる電力を動力源として作動する回動手段を取付枠側に設け、同回動手段によって回転ストッパを長手方向又は直角方向に切替える構造とし、
受圧板制動手段の状態操作手段は設置台の海又は水の水流が流れてくる上流を回転位相0°とすると受圧板を取付けた横フレームが水流に対し略直角となる回転体の回転位相の90°又は270°となる前の少なくとも20°以上手前の位置で、回転ストッパを直角方向から長手方向にする操作命令を送った後、それから少し回転した回転位相90°又は270°に近い回転位相前後位置で回転ストッパを長手方向から直角方向にする操作命令を送るようにした、請求項7又は8記載の海域での発電設備。
9. The pressure frame according to claim 7 or 8, wherein the mounting frame includes a plurality of upper and lower horizontal frames extending in a radial direction from the rotation center of the rotating body, and a plurality of vertical frames connecting the upper and lower horizontal frames. It is attached to the upper end of the horizontal frame so that it can rotate freely.
The pressure plate braking means is provided with a lower stopper that prevents the pressure plate from rotating beyond the angle at which the free end of the pressure plate is at its lowest position. A plurality of stopper mounting members are provided at positions near the left and right sides of the pressure receiving plate and extending at right angles from the horizontal frame and substantially parallel to the rotation locus surface. Attach the upper fixing stopper, which contacts the upper surface of the pressure receiving plate at a small angle δ close to 0 ° or 0 °, and suppresses upward rotation from the stopper mounting member to each adjacent pressure receiving plate, and attaches the stopper. A rotating stopper that can rotate from the longitudinal direction of the stopper mounting member to a right angle that is substantially perpendicular to the longitudinal direction of the stopper mounting member is pivotally supported in the middle of the member, and the rotational stopper is longer than the thickness of the pressure receiving plate. The lower plate of the rotation stopper is regulated so that the pressure receiving plate does not float above the lowering angle θ when the lower plate of the rotation stopper abuts the upper surface of the pressure receiving plate. The pressure receiving plate is fixed on the upper surface of the lower plate of the rotation stopper so that the pressure receiving plate can be fixed substantially horizontally with the pressure receiving plate sandwiched between the upper plate and the lower plate of the rotation stopper. A structure is provided on the mounting frame side that operates by using electric power for rotating the rotation stopper in a direction perpendicular to the longitudinal direction as a power source, and the rotation stopper is switched to the longitudinal direction or the perpendicular direction by the rotation means. age,
The state operation means of the pressure receiving plate braking means is the rotational phase of the rotating body in which the horizontal frame on which the pressure receiving plate is mounted is substantially perpendicular to the water flow when the upstream of the installation table where the water flow of the sea or water flows is 0 °. After sending an operation command to move the rotation stopper from the perpendicular direction to the longitudinal direction at a position before at least 20 ° before 90 ° or 270 °, the rotation phase is slightly rotated from that, and the rotation phase is close to 90 ° or 270 ° The power generation facility in the sea area according to claim 7 or 8, wherein an operation command for making the rotation stopper at a right angle direction from the longitudinal direction is sent at the front-rear position.
状態操作手段の機器が、設置台に電磁気・光・水中無線又は水中音波を用いて操作命令を発信する送信器を設け、回転体側にそれを受けて受圧板制動手段の電気制御信号に変換する受信器を設け、操作命令を前記送信器と受信器とによって設置台から回転体側の受圧板制動手段に電気制御信号として伝達するものである、請求項7〜10いずれか記載の海域での発電設備。   The equipment of the state operation means is provided with a transmitter that transmits an operation command using electromagnetic, light, underwater radio or underwater sound waves on the installation base, and receives it on the rotating body side and converts it into an electric control signal of the pressure receiving plate braking means 11. A power generation in a sea area according to any one of claims 7 to 10, wherein a receiver is provided, and an operation command is transmitted as an electric control signal from an installation base to a pressure-receiving plate braking means on a rotating body by the transmitter and the receiver. Facility. 状態操作手段の機器が、設置台に物理的力を与える加圧体を設け、回転体側に同加圧体で開閉する電気開閉器のスイッチを設け、設置台上の加圧体をアクチュエータで制動して、前記スイッチを作動させて回転体側の受圧板制動手段に電気的制御信号を送出する、請求項7〜10いずれか記載の海域での発電設備。   The equipment of the state operation means is provided with a pressurizing body that gives physical force to the installation base, an electrical switch that opens and closes with the same pressurization body is provided on the rotating body side, and the pressurization body on the installation base is braked with an actuator The power generation facility in the sea area according to claim 7, wherein the switch is operated to send an electrical control signal to the pressure-receiving plate braking means on the rotating body side. 設置台内の回転体の回転が伝達された回転軸の途中にその回転を減速させる外部から入切制御できる常時切のブレーキ装置を設けて入制御で回転体を減速又は静止させるようにし、更に同回転軸に常時伝動のクラッチを介して回転軸の回転を発電機の入力軸に回転を伝達し、更に強制回転用モータの出力軸の動力をクラッチを介して前記回転軸に回転を伝達できるようにして回転体を強制回転可能にした、請求項7〜12いずれか記載の海域での発電設備。   In the middle of the rotating shaft to which the rotation of the rotating body in the installation table is transmitted, a brake device that can be turned on and off from the outside to decelerate the rotation is provided, and the rotating body is decelerated or stopped by the on / off control. The rotation of the rotary shaft can be transmitted to the input shaft of the generator via a clutch that is always transmitted to the same rotary shaft, and the power of the output shaft of the forced rotation motor can be transmitted to the rotary shaft via the clutch. The power generation facility in the sea area according to any one of claims 7 to 12, wherein the rotating body can be forcibly rotated. 各受圧板の自由端にヘ字状に折曲したフラップを取付け、同フラップに作用する水流からの力によって回転位相90°に近づく位相では自由端が最下位置方向に早期に向かうようにし、回転位相270°に近づく位相で受圧板を早期に水平状態に近づけるようにした、請求項7〜13いずれか記載の海域での発電設備。   Attach a flap bent in the shape of a letter to the free end of each pressure receiving plate, and in the phase approaching the rotation phase 90 ° by the force from the water flow acting on the flap, the free end is directed toward the lowest position early. The power generation facility in the sea area according to any one of claims 7 to 13, wherein the pressure receiving plate is brought close to a horizontal state at an early stage with a phase approaching a rotational phase of 270 °. 受圧板の比重を設置される海水又は河川の水の比重の0.95〜0.99倍とし、しかも受圧板の取付け側の一端の回転軌跡面からの下げ角度θが3°〜6°の範囲であり、又受圧板の固定の角度δが前記回転軌跡面を0°とした−3°〜+3°の範囲である、請求項7〜14いずれか記載の海域での発電設備。   The specific gravity of the pressure plate is 0.95 to 0.99 times the specific gravity of the seawater or river water to be installed, and the angle θ lowered from the rotation trajectory surface at one end on the mounting side of the pressure plate is 3 ° to 6 °. The power generation facility in the sea area according to any one of claims 7 to 14, wherein the pressure range is within a range and a fixed angle δ of the pressure receiving plate is in a range of -3 ° to + 3 ° with the rotation locus plane being 0 °. 設置台の平面形状を楕円状とし、その長軸方向を設置される海中又は水中の主たる水流の流れ方向となるように設置台を海中又は水中に設置し、同設置台の外側に環状の固定ガイドフレームを上下方向に複数段設け、同固定ガイドフレームに回転体を回動自在に取付けた構造のものである、請求項7〜15いずれか記載の海域での発電設備。   The installation base is installed in the sea or underwater so that the major axis of the installation base is in the shape of an ellipse, and the major axis direction is the direction of the main water flow in the sea or underwater. The power generation facility in the sea area according to any one of claims 7 to 15, wherein a plurality of guide frames are provided in a vertical direction, and a rotating body is rotatably attached to the fixed guide frame. 設置台の甲板部に、設置される海又は川の最高水位でも筒上端が水沈しない設置台内へ人が出入できる開閉蓋付の通行筒を設けた、請求項7〜16いずれか記載の海域での発電設備。   The passage cylinder with an openable / closable lid is provided on the deck of the installation base, which allows a person to enter and exit the installation base where the upper end of the cylinder does not submerge even at the highest level of the sea or river to be installed. Power generation facilities in the sea area. 設置台の内部の一部を中空として、水中で大きな浮力を発生させ、しかも設置台から海底面又は水底面に投下したアンカーウェイトをくさりで係留して、設置台に取付けられた回転体と取付枠と受圧板とそれらの付属物及び設置台内に配置した機器の重さによる下方力とくさりの引張力と設置台の浮力とを平衝させて、発電装置を海中・水中で固定させた、請求項7〜17いずれか記載の海域での発電設備。   A part of the interior of the installation base is hollowed to generate a large buoyancy in the water, and the anchor weight dropped from the installation base to the bottom of the sea or the bottom of the water is moored with a punch to attach the rotating body attached to the installation base. The power generator was fixed in the sea and underwater by balancing the downward force due to the weight of the frame, pressure plate, their accessories, and the equipment placed in the installation table, the tensile force of the wedge, and the buoyancy of the installation table. The power generation equipment in the sea area of any one of Claims 7-17.
JP2016052689A 2014-11-20 2016-03-16 Power generation facility in ocean area for generating power using tidal flow or ocean flow Pending JP2016111925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016052689A JP2016111925A (en) 2014-11-20 2016-03-16 Power generation facility in ocean area for generating power using tidal flow or ocean flow

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014235740A JP5921647B1 (en) 2014-11-20 2014-11-20 Power generation equipment in the sea area that generates power using tidal currents or ocean currents
JP2016052689A JP2016111925A (en) 2014-11-20 2016-03-16 Power generation facility in ocean area for generating power using tidal flow or ocean flow

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014235740A Division JP5921647B1 (en) 2014-11-20 2014-11-20 Power generation equipment in the sea area that generates power using tidal currents or ocean currents

Publications (1)

Publication Number Publication Date
JP2016111925A true JP2016111925A (en) 2016-06-20

Family

ID=56015191

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014235740A Active JP5921647B1 (en) 2014-11-20 2014-11-20 Power generation equipment in the sea area that generates power using tidal currents or ocean currents
JP2016052689A Pending JP2016111925A (en) 2014-11-20 2016-03-16 Power generation facility in ocean area for generating power using tidal flow or ocean flow

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014235740A Active JP5921647B1 (en) 2014-11-20 2014-11-20 Power generation equipment in the sea area that generates power using tidal currents or ocean currents

Country Status (1)

Country Link
JP (2) JP5921647B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022544223A (en) * 2019-08-23 2022-10-17 山▲東▼鼎盛精工股▲フン▼有限公司 Single upright column moored wellhead production work platform

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029869A1 (en) * 2015-08-20 2017-02-23 株式会社コベルコ科研 Subsea buoy
CN106300538A (en) * 2016-09-08 2017-01-04 无锡同春新能源科技有限公司 A kind of charging pile waterborne
CN106208264B (en) * 2016-09-08 2018-05-25 无锡同春新能源科技有限公司 A kind of intelligence Overwater floating charging pile
CN106160129B (en) * 2016-09-08 2018-05-25 无锡同春新能源科技有限公司 A kind of solar photovoltaic powered charging pile waterborne by robot manipulation of swimming
CN106160127B (en) * 2016-09-08 2018-06-29 无锡同春新能源科技有限公司 A kind of charging pile waterborne powered to electronic seaplane
CN106329639A (en) * 2016-09-08 2017-01-11 无锡同春新能源科技有限公司 Internet of things water charging pile
CN106160128B (en) * 2016-09-08 2018-05-25 无锡同春新能源科技有限公司 Photovoltaic electric power and the Overwater floating charging pile of power supply network electric power rotation power supply by harbour
CN106130144A (en) * 2016-09-08 2016-11-16 无锡同春新能源科技有限公司 A kind of charging pile waterborne of band laser signal location
CN106208267A (en) * 2016-09-08 2016-12-07 无锡同春新能源科技有限公司 A kind of flip-shell floating on water surface charging pile
CN106274543A (en) * 2016-09-08 2017-01-04 无锡同春新能源科技有限公司 A kind of solar energy electric boat landing of band floatation type charging pile
CN106230072B (en) * 2016-09-08 2018-05-25 无锡同春新能源科技有限公司 A kind of charging pile waterborne of the unmanned navigator of band by wind-power electricity generation power supply
CN106160130A (en) * 2016-09-08 2016-11-23 无锡同春新能源科技有限公司 The floating charging pile waterborne that a kind of wind-powered electricity generation is powered
CN106300617A (en) * 2016-09-08 2017-01-04 无锡同春新能源科技有限公司 A kind of floating charging pile waterborne of photovoltaic power supply
CN106208265A (en) * 2016-09-08 2016-12-07 无锡同春新能源科技有限公司 A kind of floating type water charging pile
CN106329638A (en) * 2016-09-08 2017-01-11 无锡同春新能源科技有限公司 Water charging pile with radar
WO2019180323A1 (en) * 2018-03-21 2019-09-26 Kongsberg Maritime Finland Oy A barge for supplementing an energy storage of a moving vessel, and an offshore energy station
WO2020044601A1 (en) * 2018-08-31 2020-03-05 川崎重工業株式会社 Battery-electric propulsion ship power feeding system, offshore power feeding facility, and battery-electric propulsion ship
KR102097682B1 (en) * 2018-10-16 2020-04-06 국방과학연구소 Undersea power system and operation method thereof
WO2020186271A1 (en) 2019-03-14 2020-09-17 Marine Technologies LLC System and method for reduction of power consumption and emissions of marine vessels
CN111461479B (en) * 2020-01-19 2023-07-14 湖北省电力勘测设计院有限公司 Assessment method for confidence capacity of ocean island electricity conversion ship
US11391261B2 (en) * 2020-05-18 2022-07-19 Lone Gull Holdings, Ltd. Hydrogen production and conveyance system
JP2022090878A (en) * 2020-12-08 2022-06-20 株式会社神鋼環境ソリューション Hydrogen gas supply system
TW202245375A (en) * 2021-05-10 2022-11-16 日商帕瓦艾克司股份有限公司 System and method for transporting energy by ship
CN117426041A (en) * 2021-08-16 2024-01-19 株式会社帕瓦艾克司 Energy source conveying system and energy source conveying method through ship
CN114403072B (en) * 2022-03-07 2022-11-01 青岛黄海学院 Deep sea cultivation box, deep sea cultivation device and working method of deep sea cultivation device
CN114810462B (en) * 2022-04-27 2024-01-16 哈尔滨工程大学 Offshore comprehensive application platform comprehensively utilizing wind energy, salt energy and tidal current energy
CN114802626B (en) * 2022-04-30 2023-03-14 上海刊宝科技有限公司 Offshore photovoltaic power generation device with combined cable rod structure

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003072675A (en) * 2001-09-04 2003-03-12 Mitsubishi Heavy Ind Ltd Hydrogen recovery system provided with hydrogen manufacturing plant
JP2005220946A (en) * 2004-02-03 2005-08-18 Mitsubishi Heavy Ind Ltd Hydrogen transportation system
JP4513127B2 (en) * 2004-12-22 2010-07-28 住友電気工業株式会社 Hydrogen supply system
GB2431628B (en) * 2005-10-31 2009-01-28 Tidal Generation Ltd A deployment and retrieval apparatus for submerged power generating devices
WO2010042659A1 (en) * 2008-10-07 2010-04-15 Premium Power Corporation System and method for transporting energy
JP5414045B2 (en) * 2009-08-05 2014-02-12 独立行政法人海上技術安全研究所 Tidal current / ocean current power generation system and power transportation method
JP5754029B2 (en) * 2009-10-22 2015-07-22 剛治 國生 Ocean mobile solar power generation system
JP2011235674A (en) * 2010-05-06 2011-11-24 Mitsubishi Heavy Ind Ltd Redox flow battery ship
JP2013005593A (en) * 2011-06-16 2013-01-07 Ihi Corp Power supply apparatus and power supply system
JP2013199257A (en) * 2012-03-26 2013-10-03 Mineko Uchida Electricity production system by offshore platform
JP5347048B1 (en) * 2012-06-19 2013-11-20 親男 橋本 Power generation equipment using water energy
JP2014186965A (en) * 2013-03-25 2014-10-02 Sumitomo Electric Ind Ltd Power supply and demand system, and operation method for power supply and demand system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022544223A (en) * 2019-08-23 2022-10-17 山▲東▼鼎盛精工股▲フン▼有限公司 Single upright column moored wellhead production work platform
JP7340894B2 (en) 2019-08-23 2023-09-08 山▲東▼鼎盛精工股▲フン▼有限公司 Single Upright Pole Moored Wellhead Production Work Platform
US11820467B2 (en) 2019-08-23 2023-11-21 Shandong Dingsheng Electromechanical Equipment Inc. Single-upright-column mooring type wellhead production operation platform

Also Published As

Publication number Publication date
JP2016100970A (en) 2016-05-30
JP5921647B1 (en) 2016-05-24

Similar Documents

Publication Publication Date Title
JP5921647B1 (en) Power generation equipment in the sea area that generates power using tidal currents or ocean currents
US10578074B2 (en) Underwater energy generating system
US9745951B1 (en) Self-positioning robotic subsea power generation system
JP4813501B2 (en) Power generation device by water flow
AU2013346583B2 (en) Submerged, tethered water turbine assembly
US8169099B2 (en) Deep offshore floating wind turbine and method of deep offshore floating wind turbine assembly, transportation, installation and operation
US9059605B2 (en) Energy storage devices and methods of using same
US7470086B2 (en) Submersible tethered platform for undersea electrical power generation
JP5653557B1 (en) Power generation equipment using water energy
KR20180004188A (en) Systems and methods for tidal energy conversion and generation
TWI665385B (en) Systems and methods for offshore power generation using airborne power generating craft tethered to a floating structure
TWI548810B (en) Methods and means of installing and maintaining a water current power generation system
WO2009144493A2 (en) Submersible turbine apparatus
TWI638946B (en) Methods and systems for maintaining an offshore power plant having airborne power generating craft
KR20230012569A (en) Hydrogen Production and Return System
JP2016513776A (en) Energy storage system installed in water
AU2021229217B1 (en) Hydrogen transportation and storage system
TW201804076A (en) Systems and methods for offshore power generation using airborne power generating craft
US12006907B2 (en) Hydrodynamic power generator and system
JP2023131477A (en) Hydrogen production ship
CN115095466A (en) Ocean current-based sea anchor power generation device capable of automatically retracting and releasing and application method thereof