JP2016103433A - Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery - Google Patents

Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2016103433A
JP2016103433A JP2014241753A JP2014241753A JP2016103433A JP 2016103433 A JP2016103433 A JP 2016103433A JP 2014241753 A JP2014241753 A JP 2014241753A JP 2014241753 A JP2014241753 A JP 2014241753A JP 2016103433 A JP2016103433 A JP 2016103433A
Authority
JP
Japan
Prior art keywords
negative electrode
granulated particles
wet granulated
active material
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014241753A
Other languages
Japanese (ja)
Inventor
高志 木下
Takashi Kinoshita
高志 木下
橋本 達也
Tatsuya Hashimoto
達也 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014241753A priority Critical patent/JP2016103433A/en
Publication of JP2016103433A publication Critical patent/JP2016103433A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a negative electrode for a nonaqueous electrolyte secondary battery, by which the delamination of a positive electrode mixture layer can be prevented.SOLUTION: A method for manufacturing a negative electrode for a nonaqueous electrolyte secondary battery comprises the steps of: preparing first wet granulated particles having a first solid content concentration by kneading a negative electrode active material and a binding agent in a solvent; preparing second wet granulated particles having a second solid content concentration lower than the first solid content concentration by adding a solvent to the first wet granulated particles; and transferring the second wet granulated particles to a surface of a negative electrode current collector.SELECTED DRAWING: None

Description

本発明は、非水電解質二次電池用負極の製造方法に関する。   The present invention relates to a method for producing a negative electrode for a nonaqueous electrolyte secondary battery.

特許文献1(特開平10−55801号公報)には、活物質を担持可能な担持体粉末を含有する湿潤合剤を用いて負極を製造することが記載されている。   Patent Document 1 (Japanese Patent Laid-Open No. 10-55801) describes that a negative electrode is produced using a wet mixture containing a carrier powder capable of carrying an active material.

特開平10−55801号公報JP-A-10-55801

湿潤合剤の作製時に結着剤が凝集することがある。結着剤が凝集した湿潤合剤を用いて負極を製造すると、負極合剤層と負極集電体との接着強度を確保することができず、よって、製造された負極において負極合剤層が負極集電体から剥離することがある。本発明では、負極合剤層の剥離を防止可能な負極の製造方法の提供を目的とする。   The binder may agglomerate during preparation of the wet mixture. If a negative electrode is produced using a wet mixture in which the binder is agglomerated, the adhesive strength between the negative electrode mixture layer and the negative electrode current collector cannot be ensured. May peel from the negative electrode current collector. An object of the present invention is to provide a method for producing a negative electrode capable of preventing peeling of the negative electrode mixture layer.

本発明の非水電解質二次電池用負極の製造方法(以下では「負極の製造方法」と記す)は、負極活物質と結着剤とを溶媒中で混練することにより、第1固形分濃度を有する第1湿潤造粒粒子を作製する工程と、第1湿潤造粒粒子に溶媒を添加することにより、第1固形分濃度よりも低い第2固形分濃度を有する第2湿潤造粒粒子を作製する工程と、第2湿潤造粒粒子を負極集電体の表面に転写する工程とを備える。   The method for producing a negative electrode for a non-aqueous electrolyte secondary battery of the present invention (hereinafter referred to as “negative electrode production method”) comprises mixing a negative electrode active material and a binder in a solvent to obtain a first solid content concentration. A first wet granulated particle having a second solid content concentration lower than the first solid content concentration by adding a solvent to the first wet granulated particle. And a step of transferring the second wet granulated particles to the surface of the negative electrode current collector.

第1湿潤造粒粒子の方が第2湿潤造粒粒子よりも固形分濃度が高いので、第1湿潤造粒粒子に含まれる溶媒の量の方が第2湿潤造粒粒子に含まれる溶媒の量よりも少ない。つまり、溶媒の量が相対的に少ない環境下において負極活物質と結着剤とを混練するので、混練時における結着剤の凝集を防止できる。   Since the first wet granulated particles have a higher solid content concentration than the second wet granulated particles, the amount of the solvent contained in the first wet granulated particles is the amount of the solvent contained in the second wet granulated particles. Less than the amount. That is, since the negative electrode active material and the binder are kneaded in an environment where the amount of the solvent is relatively small, aggregation of the binder during kneading can be prevented.

本発明では、結着剤の凝集が抑制された湿潤造粒粒子を負極集電体の表面に転写するので、製造された負極における負極合剤層の剥離を防止できる。   In the present invention, since the wet granulated particles in which the aggregation of the binder is suppressed are transferred to the surface of the negative electrode current collector, it is possible to prevent peeling of the negative electrode mixture layer in the manufactured negative electrode.

本発明の負極の製造方法の一工程を示す断面図である。It is sectional drawing which shows 1 process of the manufacturing method of the negative electrode of this invention. 実施例の結果を示すグラフである。It is a graph which shows the result of an Example. 実施例の結果を示すグラフである。It is a graph which shows the result of an Example. 実施例の結果を示すグラフである。It is a graph which shows the result of an Example.

以下、本発明について図面を用いて説明する。なお、本発明の図面において、同一の参照符号は、同一部分又は相当部分を表すものである。また、長さ、幅、厚さ、深さ等の寸法関係は図面の明瞭化と簡略化のために適宜変更されており、実際の寸法関係を表すものではない。   The present invention will be described below with reference to the drawings. In the drawings of the present invention, the same reference numerals represent the same or corresponding parts. In addition, dimensional relationships such as length, width, thickness, and depth are changed as appropriate for clarity and simplification of the drawings, and do not represent actual dimensional relationships.

<負極の製造>
負極の製造方法としては、負極ペーストを負極集電体の表面に塗工するという方法(以下では「塗工法」と記す)が知られている。この塗工法では、まず、負極活物質と結着剤と溶媒とを含む負極ペーストを負極集電体の表面に塗布し、負極集電体の表面に形成された負極ペースト層を乾燥させる。このようにして、負極合剤層が負極集電体の表面に形成されてなる極板が得られる。得られた極板を圧延すれば、負極が得られる。
<Manufacture of negative electrode>
As a method for producing a negative electrode, a method of applying a negative electrode paste to the surface of a negative electrode current collector (hereinafter referred to as “coating method”) is known. In this coating method, first, a negative electrode paste containing a negative electrode active material, a binder, and a solvent is applied to the surface of the negative electrode current collector, and the negative electrode paste layer formed on the surface of the negative electrode current collector is dried. In this way, an electrode plate in which the negative electrode mixture layer is formed on the surface of the negative electrode current collector is obtained. If the obtained electrode plate is rolled, a negative electrode is obtained.

DBP(dibutyl phthalate)吸油量が60(ml/100g)以上の黒鉛を負極活物質として用いて上記塗工法により負極を製造する場合、負極ペーストの固形分濃度を45%以下としなければ負極ペーストを作製できない。しかし、固形分濃度が45%以下である負極ペーストでは、溶媒の含有率が高い。そのため、固形分濃度が45%以下である負極ペーストを用いて負極を作製すると、負極ペースト層の乾燥時に結着剤が負極ペースト層の表面側に移動し易くなる(結着剤の偏析)。これにより、負極合剤層と負極集電体との界面近傍に存在する結着剤の量が減少するので、負極合剤層の剥離を引き起こす。   When a negative electrode is produced by the above coating method using graphite having a DBP (dibutyl phthalate) oil absorption of 60 (ml / 100 g) or more as a negative electrode active material, the negative electrode paste is used unless the solid content concentration of the negative electrode paste is 45% or less. It cannot be made. However, the negative electrode paste having a solid content concentration of 45% or less has a high solvent content. Therefore, when a negative electrode is produced using a negative electrode paste having a solid content concentration of 45% or less, the binder easily moves to the surface side of the negative electrode paste layer when the negative electrode paste layer is dried (segregation of the binder). As a result, the amount of the binder present in the vicinity of the interface between the negative electrode mixture layer and the negative electrode current collector is reduced, which causes peeling of the negative electrode mixture layer.

負極合剤層の剥離を防止するために負極ペーストにおける結着剤の含有率を高めると、結着剤が負極活物質の表面に被覆され易くなるので、負極活物質へのリチウムイオンの挿入又は脱離が起こり難くなる。そのため、負極の抵抗が増加する。このような非水電解質二次電池に対して低温環境下で大電流で充放電を行うと、負極活物質の表面においてリチウムイオンの還元反応が起こり易くなる。その結果、充放電反応に寄与するリチウムイオンの量が低下するので、電池容量の低下を引き起こす。   When the content of the binder in the negative electrode paste is increased to prevent the peeling of the negative electrode mixture layer, the binder is easily coated on the surface of the negative electrode active material. Desorption is unlikely to occur. For this reason, the resistance of the negative electrode increases. When such a non-aqueous electrolyte secondary battery is charged and discharged with a large current under a low temperature environment, a reduction reaction of lithium ions easily occurs on the surface of the negative electrode active material. As a result, the amount of lithium ions contributing to the charge / discharge reaction is reduced, which causes a reduction in battery capacity.

一方、特許文献1等に記載の湿潤合剤(後述の比較例7、8の第3湿潤造粒粒子)では、固形分濃度を高めることができるので、結着剤の偏析を防止できる。よって、湿潤合剤における結着剤の含有率を高めることなく負極を製造できる。しかし、湿潤合剤において結着剤が凝集することがあるので、負極合剤層と負極集電体との接着強度を確保することができない。そのため、この場合も、負極合剤層の剥離を引き起こす。   On the other hand, in the wet mixture described in Patent Document 1 (third wet granulated particles in Comparative Examples 7 and 8 described later), the solid content concentration can be increased, so that segregation of the binder can be prevented. Therefore, a negative electrode can be manufactured without increasing the content of the binder in the wet mixture. However, since the binder may agglomerate in the wet mixture, the adhesive strength between the negative electrode mixture layer and the negative electrode current collector cannot be ensured. Therefore, also in this case, peeling of the negative electrode mixture layer is caused.

しかし、本実施形態では、負極活物質と結着剤とを溶媒中で混練することによって第1湿潤造粒粒子を作製し、第1湿潤造粒粒子に溶媒を添加することによって第2湿潤造粒粒子を作製し、その第2湿潤造粒粒子を負極集電体の表面に転写する。これにより、溶媒の量が相対的に少ない環境下において負極活物質と結着剤とを混練することとなるので、結着剤の凝集を招くことなく第1湿潤造粒粒子を作製できる。よって、第2湿潤造粒粒子における結着剤の凝集を防止できるので、結着剤の凝集が防止された第2湿潤造粒粒子を負極集電体の表面に転写できる。したがって、製造された負極において負極合剤層が負極集電体から剥離することを防止できるので、このような負極を用いて製造された非水電解質二次電池に対して充放電を繰り返し行っても電池容量を高く維持できる。以上より、本実施形態の負極の製造方法は、例えばハイブリッド自動車若しくは電気自動車等の自動車用電源、工場用電源又は家庭用電源等に使用される大型電池の負極の製造方法に好適である。以下、各工程を示す。   However, in this embodiment, the first wet granulated particles are prepared by kneading the negative electrode active material and the binder in a solvent, and the second wet granulated particles are added by adding a solvent to the first wet granulated particles. Particle particles are produced, and the second wet granulated particles are transferred to the surface of the negative electrode current collector. Thereby, since the negative electrode active material and the binder are kneaded in an environment where the amount of the solvent is relatively small, the first wet granulated particles can be produced without causing the binder to aggregate. Therefore, since the aggregation of the binder in the second wet granulated particles can be prevented, the second wet granulated particles in which the aggregation of the binder is prevented can be transferred to the surface of the negative electrode current collector. Therefore, since the negative electrode mixture layer can be prevented from peeling off from the negative electrode current collector in the manufactured negative electrode, charging and discharging are repeatedly performed on the nonaqueous electrolyte secondary battery manufactured using such a negative electrode. Can maintain high battery capacity. From the above, the negative electrode manufacturing method of the present embodiment is suitable for a negative electrode manufacturing method for large batteries used for power sources for automobiles such as hybrid cars or electric cars, factory power supplies, or household power supplies. Hereafter, each process is shown.

(第1湿潤造粒粒子の作製)
負極活物質と結着剤とを溶媒中で混練することにより、第1固形分濃度を有する第1湿潤造粒粒子を作製する。「湿潤造粒粒子(moist powder)」とは、粒子(例えば、負極活物質、又は、溶媒に分散している結着剤)と粒子(例えば、負極活物質、又は、溶媒に分散している結着剤)との間に存在する溶媒の表面張力によって粒子と粒子とが互いに接着されて構成された造粒体を意味する。
(Preparation of first wet granulated particles)
By kneading the negative electrode active material and the binder in a solvent, first wet granulated particles having a first solid content concentration are produced. “Moist granulated particles” are particles (for example, a negative electrode active material or a binder dispersed in a solvent) and particles (for example, a negative electrode active material or a solvent). It means a granulated body formed by adhering particles to each other by the surface tension of the solvent existing between them.

「第1固形分濃度」とは、第1湿潤造粒粒子の質量に対する第1固形分の質量の割合を意味する。第1固形分には負極活物質と結着剤とが含まれる。第1湿潤造粒粒子において結着剤が溶媒に溶解している場合であっても、その結着剤は第1固形分に含まれる。第1固形分濃度は、好ましくは80質量%以上であり、より好ましく85質量%以上である。   The “first solid content concentration” means the ratio of the mass of the first solid content to the mass of the first wet granulated particles. The first solid content includes a negative electrode active material and a binder. Even in the case where the binder is dissolved in the solvent in the first wet granulated particles, the binder is included in the first solid content. The first solid content concentration is preferably 80% by mass or more, and more preferably 85% by mass or more.

従来公知の造粒装置を用いて第1湿潤造粒粒子を作製できる。負極活物質としては、非水電解質二次電池の負極活物質として従来公知の材料を用いることができる。好ましくはDBP吸油量が60(ml/100g)以上の炭素材料を用いることであり、より好ましくはDBP吸油量が60(ml/100g)以上190(ml/100g)以下の炭素材料(例えば黒鉛)を用いることである。これにより、負極活物質の導電性を高めることができる。JIS K 6221に準拠して負極活物質のDBP吸油量を測定できる。また、結着剤としては、例えばCMC(carboxymethyl cellulose)を用いることができる。また、溶媒としては、水を用いることができる。   The first wet granulated particles can be produced using a conventionally known granulator. As a negative electrode active material, a conventionally well-known material can be used as a negative electrode active material of a nonaqueous electrolyte secondary battery. Preferably, a carbon material having a DBP oil absorption of 60 (ml / 100 g) or more is used, and more preferably a carbon material (for example, graphite) having a DBP oil absorption of 60 (ml / 100 g) to 190 (ml / 100 g). Is to use. Thereby, the electroconductivity of a negative electrode active material can be improved. The DBP oil absorption of the negative electrode active material can be measured according to JIS K 6221. As the binder, for example, CMC (carboxymethyl cellulose) can be used. Moreover, water can be used as a solvent.

第1湿潤造粒粒子の固形分における負極活物質及び結着剤の含有量は、それぞれ、非水電解質二次電池の負極合剤層における負極活物質及び結着剤の含有量として従来公知の含有量であることが好ましい。結着剤の含有量は、負極活物質の含有量に対して、好ましくは0.3質量%以上であり、より好ましくは0.3質量%以上1質量%以下である。結着剤の含有量が上記範囲内であっても負極合剤層の剥離を防止できる。   The contents of the negative electrode active material and the binder in the solid content of the first wet granulated particles are conventionally known as the contents of the negative electrode active material and the binder in the negative electrode mixture layer of the nonaqueous electrolyte secondary battery, respectively. The content is preferable. The content of the binder is preferably 0.3% by mass or more and more preferably 0.3% by mass or more and 1% by mass or less with respect to the content of the negative electrode active material. Even when the content of the binder is within the above range, peeling of the negative electrode mixture layer can be prevented.

(第2湿潤造粒粒子の作製)
第1湿潤造粒粒子に溶媒を添加することにより、第1固形分濃度よりも低い第2固形分濃度を有する第2湿潤造粒粒子を作製する。「第2固形分濃度」とは、第2湿潤造粒粒子の質量に対する第2固形分の質量の割合を意味する。第2固形分には負極活物質と結着剤とが含まれる。第2湿潤造粒粒子において結着剤が溶媒に溶解している場合であっても、その結着剤は第2固形分に含まれる。
(Preparation of second wet granulated particles)
By adding a solvent to the first wet granulated particles, second wet granulated particles having a second solid content concentration lower than the first solid content concentration are produced. The “second solid content concentration” means the ratio of the mass of the second solid content to the mass of the second wet granulated particles. The second solid content includes a negative electrode active material and a binder. Even if the binder is dissolved in the solvent in the second wet granulated particles, the binder is contained in the second solid content.

好ましくは第2固形分濃度が70質量%以上80質量%未満となるように、より好ましくは第2固形分濃度が70質量%以上78質量%以下となるように、第1湿潤造粒粒子に溶媒を添加する。第1湿潤造粒粒子に溶媒を添加する方法は特に限定されない。添加する溶媒としては水を用いることができる。   Preferably, the first wet granulated particles have a second solid content concentration of 70% by mass or more and less than 80% by mass, more preferably a second solid content concentration of 70% by mass or more and 78% by mass or less. Add solvent. The method for adding a solvent to the first wet granulated particles is not particularly limited. Water can be used as the solvent to be added.

(転写)
第2湿潤造粒粒子を負極集電体の表面に転写する。好ましくは、第2湿潤造粒粒子を負極集電体の表面に圧着した後、乾燥させる。例えば、図1に示す成形転写装置を用いて第2湿潤造粒粒子を負極集電体の表面に転写できる。
(Transcription)
The second wet granulated particles are transferred to the surface of the negative electrode current collector. Preferably, the second wet granulated particles are pressed onto the surface of the negative electrode current collector and then dried. For example, the second wet granulated particles can be transferred to the surface of the negative electrode current collector using the molding transfer apparatus shown in FIG.

第2湿潤造粒粒子21を第1ロールRaと第2ロールRbとの間に供給すると、第1ロールRaと第2ロールRbとによって圧縮されて成形体23が形成される。成形体23は、第2ロールRb上を搬送されて第2ロールRbと第3ロールRcとの間まで移動し、第2ロールRbと第3ロールRcとの間で負極集電体11の一方の表面に圧着される。その後、成形体23を乾燥させることにより、成形体23に含まれる溶媒が除去される。これにより、負極合剤層が負極集電体11の一方の表面に形成される。上述の方法にしたがって負極集電体11の他方の表面にも負極合剤層を形成できる。   If the 2nd wet granulation particle | grains 21 are supplied between 1st roll Ra and 2nd roll Rb, it will be compressed by 1st roll Ra and 2nd roll Rb, and the molded object 23 will be formed. The formed body 23 is transported on the second roll Rb to move between the second roll Rb and the third roll Rc, and one of the negative electrode current collectors 11 is interposed between the second roll Rb and the third roll Rc. Crimped to the surface. Then, the solvent contained in the molded body 23 is removed by drying the molded body 23. Thereby, the negative electrode mixture layer is formed on one surface of the negative electrode current collector 11. A negative electrode mixture layer can also be formed on the other surface of the negative electrode current collector 11 according to the method described above.

以下、実施例を挙げて本発明をより詳細に説明するが、本発明は以下に限定されない。
<実施例1>
(負極の製造)
(第1湿潤造粒粒子の作製)
負極活物質として、天然黒鉛粒子の表面が非晶質炭素膜でコートされて形成された炭素材料(球形、DBP吸油量が35(ml/100g))を準備した。この負極活物質とCMC(結着剤)とを1分間、乾式環境下で混練した。CMCの配合量(質量)が負極活物質の配合量(質量)の1質量%となるように、負極活物質の配合量(質量)及びCMCの配合量(質量)を調整した。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to the following.
<Example 1>
(Manufacture of negative electrode)
(Preparation of first wet granulated particles)
As the negative electrode active material, a carbon material (spherical, DBP oil absorption 35 (ml / 100 g)) formed by coating the surface of natural graphite particles with an amorphous carbon film was prepared. This negative electrode active material and CMC (binder) were kneaded in a dry environment for 1 minute. The blending amount (mass) of the negative electrode active material and the blending amount (mass) of CMC were adjusted so that the blending amount (mass) of CMC was 1% by mass of the blending amount (mass) of the negative electrode active material.

得られた混練物と水とをハイフレックスグラル(株式会社アーステクニカ製、品番「LHF−GS−2J」)に入れた。アジテーター羽根の回転数を800rpm(rotation per minute)とし、チョッパー羽根の回転数を2000rpmとし、上記混練物と水とを5分間、撹拌した。このようにして第1湿潤造粒粒子(固形分濃度が80質量%)が得られた。   The obtained kneaded material and water were put into Hiflex glal (product number “LHF-GS-2J” manufactured by Earth Technica Co., Ltd.). The rotational speed of the agitator blade was 800 rpm (rotation per minute), the rotational speed of the chopper blade was 2000 rpm, and the kneaded material and water were stirred for 5 minutes. In this way, first wet granulated particles (solid content concentration 80% by mass) were obtained.

(第2湿潤造粒粒子の作製)
上記ハイフレックスグラルに水を添加した。アジテーター羽根の回転数を800rpmとし、チョッパー羽根の回転数を2000rpmとし、第1湿潤造粒粒子と水とを5分間、撹拌した。このようにして第2湿潤造粒粒子(固形分濃度が70質量%)が得られた。目の粗さ(目開き)が300μmである篩を用いて、得られた第2湿潤造粒粒子を分級した。
(Preparation of second wet granulated particles)
Water was added to the high flex glal. The rotational speed of the agitator blade was 800 rpm, the rotational speed of the chopper blade was 2000 rpm, and the first wet granulated particles and water were stirred for 5 minutes. In this way, second wet granulated particles (solid content concentration of 70% by mass) were obtained. The obtained second wet granulated particles were classified using a sieve having a mesh roughness (opening) of 300 μm.

(転写)
図1に示す成形転写装置を用いて、篩を通過した第2湿潤造粒粒子を負極集電体の表面に転写した。具体的には、Cu箔(負極集電体、厚さが10μm)を第2ロールRbと第3ロールRcとの間に通して矢印の方向に搬送させた状態で、第2湿潤造粒粒子を第1ロールRaと第2ロールRbとの間に供給した。これにより、第2湿潤造粒粒子は、第1ロールRaと第2ロールRbとにより圧縮されて層状に成形され、得られた成形体は、第2ロールRbと第3ロールRcとの間で負極集電体の一方の表面に圧着された。
(Transcription)
The second wet granulated particles that passed through the sieve were transferred to the surface of the negative electrode current collector using the molding transfer apparatus shown in FIG. Specifically, the second wet granulated particles in a state where a Cu foil (negative electrode current collector, thickness 10 μm) is passed between the second roll Rb and the third roll Rc and conveyed in the direction of the arrow. Was supplied between the first roll Ra and the second roll Rb. Thus, the second wet granulated particles are compressed by the first roll Ra and the second roll Rb and formed into a layer shape, and the obtained molded body is between the second roll Rb and the third roll Rc. It was crimped to one surface of the negative electrode current collector.

負極集電体の一方の表面に圧着された成形体を乾燥させた後、負極集電体の他方の表面にも成形体を圧着させて、かかる成形体を乾燥させた。得られた積層体を、所定の厚さとなるように圧延してから、所定の大きさに切断した。このようにして負極合剤層が負極集電体の両面に形成された負極を得た。   After drying the molded body pressure-bonded to one surface of the negative electrode current collector, the molded body was pressure-bonded to the other surface of the negative electrode current collector, and the molded body was dried. The obtained laminate was rolled to a predetermined thickness and then cut into a predetermined size. Thus, the negative electrode in which the negative electrode mixture layer was formed on both surfaces of the negative electrode current collector was obtained.

なお、負極集電体が第2湿潤造粒粒子から露出する部分(負極露出部)が負極集電体の幅方向一端に形成されるように、成形体を負極集電体の各面に圧着させた。   In addition, the molded body is pressure-bonded to each surface of the negative electrode current collector so that a portion where the negative electrode current collector is exposed from the second wet granulated particles (negative electrode exposed portion) is formed at one end in the width direction of the negative electrode current collector. I let you.

(剥離強度の測定)
JIS Z0237:2009(粘着テープ・粘着シート試験方法)に準拠して180度剥離試験を負極に対して行って、負極合剤層が負極集電体から剥離する強度(以下では「負極合剤層の剥離強度」と記す)を求めた。その結果を表1に示す。負極合剤層の剥離強度が高い方が、負極合剤層が負極集電体から剥離し難いと言える。
(Measurement of peel strength)
In accordance with JIS Z0237: 2009 (adhesive tape / adhesive sheet test method), a 180 ° peel test is performed on the negative electrode, and the strength at which the negative electrode mixture layer peels from the negative electrode current collector (hereinafter referred to as “negative electrode mixture layer”). The peel strength of the film was determined. The results are shown in Table 1. It can be said that the higher the peel strength of the negative electrode mixture layer, the harder the negative electrode mixture layer peels from the negative electrode current collector.

Figure 2016103433
Figure 2016103433

表1では、「DBP吸油量」は、負極活物質のDBP吸油量を意味する。「NV濃度」は固形分濃度を意味する。「剥離強度」は、負極合剤層の剥離強度を意味する。これらについては表2及び表3においても言える。また、「CMCの含有率」は、負極活物質の配合量(質量)に対するCMC(結着剤)の配合量(質量)の割合を意味する。また、「80→70」は、固形分濃度が80質量%である湿潤造粒粒子(第1湿潤造粒粒子)を作製した後に、溶媒を添加して固形分濃度が70質量%である湿潤造粒粒子(第2湿潤造粒粒子)を作製することを意味する。   In Table 1, “DBP oil absorption” means the DBP oil absorption of the negative electrode active material. “NV concentration” means the solid content concentration. “Peel strength” means the peel strength of the negative electrode mixture layer. These can also be said in Tables 2 and 3. The “content ratio of CMC” means the ratio of the amount (mass) of CMC (binder) to the amount (mass) of the negative electrode active material. Further, “80 → 70” is a wet granulation particle (first wet granulation particle) having a solid content concentration of 80% by mass, and then added with a solvent, and the solid content concentration is 70% by mass. It means producing granulated particles (second wet granulated particles).

(正極の製造)
正極活物質として、Liと3種の遷移金属元素(Co、NiおよびMn)とを含む複合酸化物からなる粉末を準備した。質量比で90:8:2となるように正極活物質とアセチレンブラック(導電剤)とPVDF(結着剤)とを混ぜ、NMP(N-methylpyrrolidone)で希釈して、正極合剤ペーストを得た。
(Manufacture of positive electrode)
As a positive electrode active material, a powder made of a composite oxide containing Li and three transition metal elements (Co, Ni, and Mn) was prepared. The positive electrode active material, acetylene black (conductive agent) and PVDF (binder) are mixed so that the mass ratio is 90: 8: 2, and diluted with NMP (N-methylpyrrolidone) to obtain a positive electrode mixture paste. It was.

Al箔(正極集電体、厚さが15μm)の幅方向一端が露出するように、正極合剤ペーストをAl箔の両面に塗布してから乾燥させた。これにより、正極合剤層がAl箔の両面に形成された。その後、ロール圧延機を用いて正極合剤層及びAl箔を圧延した後、所定の大きさに切断した。このようにして正極合剤層が正極集電体の両面に形成された正極を得た。   The positive electrode mixture paste was applied to both sides of the Al foil and dried so that one end in the width direction of the Al foil (positive electrode current collector, thickness: 15 μm) was exposed. Thereby, the positive mix layer was formed on both surfaces of the Al foil. Thereafter, the positive electrode mixture layer and the Al foil were rolled using a roll mill, and then cut into a predetermined size. Thus, the positive electrode in which the positive electrode mixture layer was formed on both surfaces of the positive electrode current collector was obtained.

(電極体の作製、挿入)
PE(polyethylene)からなるセパレータ(厚さ25μm)を準備した。Al箔が正極合剤層から露出する部分(正極露出部)とCu箔が負極合剤層から露出する部分(負極露出部)とがAl箔の幅方向においてセパレータから互いに逆向きに突出するように、正極と負極とセパレータとを配置した。その後、Al箔の幅方向(又はCu箔の幅方向)に対して平行となるように巻回軸を配置し、その巻回軸を用いて正極、セパレータ及び負極を巻回させた。このようにして得られた円筒型電極体に対して互いに逆向きの圧力を与え、扁平な電極体を得た。
(Production and insertion of electrode body)
A separator (thickness 25 μm) made of PE (polyethylene) was prepared. A portion where the Al foil is exposed from the positive electrode mixture layer (positive electrode exposed portion) and a portion where the Cu foil is exposed from the negative electrode mixture layer (negative electrode exposed portion) protrude from the separator in opposite directions in the width direction of the Al foil. In addition, a positive electrode, a negative electrode, and a separator were disposed. Then, the winding axis | shaft was arrange | positioned so that it might become parallel with respect to the width direction of Al foil (or the width direction of Cu foil), and the positive electrode, the separator, and the negative electrode were wound using the winding axis. The cylindrical electrode bodies thus obtained were given pressures in opposite directions to obtain a flat electrode body.

次に、ケース本体と蓋体とを有する電池ケースを準備した。蓋体に設けられた正極端子を正極露出部に接続し、蓋体に設けられた負極端子を負極露出部に接続した。このようにして蓋体が接続された扁平な電極体をケース本体の凹部に入れ、蓋体でケース本体の開口を塞いだ。   Next, a battery case having a case body and a lid was prepared. A positive electrode terminal provided on the lid was connected to the positive electrode exposed portion, and a negative electrode terminal provided on the lid was connected to the negative electrode exposed portion. Thus, the flat electrode body to which the lid body was connected was put in the recess of the case body, and the opening of the case body was closed with the lid body.

(非水電解液の調製、注入)
体積比で3:3:4となるように、EC(ethylene carbonate)とDMC(dimethyl carbonate)とEMC(ethyl methyl carbonate)とを混合した。得られた混合溶媒にLiPF6を追加した。このようにして非水電解液(LiPF6の濃度が1.0mol/L)を得た。
(Preparation and injection of non-aqueous electrolyte)
EC (ethylene carbonate), DMC (dimethyl carbonate), and EMC (ethyl methyl carbonate) were mixed so that the volume ratio was 3: 3: 4. LiPF 6 was added to the obtained mixed solvent. In this way, a non-aqueous electrolyte (LiPF 6 concentration of 1.0 mol / L) was obtained.

得られた非水電解液を、蓋体に形成された注液用孔からケース本体の凹部へ注入した。ケース本体内を減圧した後、注液用孔を封止した。このようにして本実施例のリチウムイオン二次電池を得た。   The obtained non-aqueous electrolyte was poured into the recess of the case body from the injection hole formed in the lid. After depressurizing the inside of the case body, the injection hole was sealed. Thus, the lithium ion secondary battery of the present Example was obtained.

(容量維持率の測定)
まず、リチウムイオン二次電池に対して、25℃で、1C(4.5A)の電流で電池電圧が4.2Vとなるまで充電を行い、5分間、休止し、電池電圧が2.5Vとなるまで放電を行った後、5分間、休止した。その後、CC−CV(constant current-constant voltage)充電とCC−CV放電とを行った。CC−CV充電では、1Cの電流で電池電圧が4.2Vとなるまで定電流(CC(constant current))充電を行った後、電流が0.01Cとなるまで定電圧(CV(constant voltage))充電を行った。CC−CV放電では、1Cの電流で電池電圧が3.0Vとなるまで定電流(CC)放電を行った後、電流が0.01Cとなるまで定電圧(CV)放電を行った。このようにして初期の電池容量を求めた。
(Measurement of capacity maintenance rate)
First, a lithium-ion secondary battery is charged at 25 ° C. with a current of 1 C (4.5 A) until the battery voltage reaches 4.2 V, rests for 5 minutes, and the battery voltage becomes 2.5 V. After discharging until the end, it was stopped for 5 minutes. Then, CC-CV (constant current-constant voltage) charge and CC-CV discharge were performed. In CC-CV charging, a constant current (CC (constant current)) charging is performed until the battery voltage reaches 4.2 V with a current of 1 C, and then a constant voltage (CV (constant voltage)) until the current reaches 0.01 C. ) Charged. In the CC-CV discharge, a constant current (CC) discharge was performed with a current of 1 C until the battery voltage reached 3.0 V, and then a constant voltage (CV) discharge was performed until the current reached 0.01 C. Thus, the initial battery capacity was determined.

次に、−10℃で、リチウムイオン二次電池に対してハイレート充放電試験を行った。この試験では、リチウムイオン二次電池のSOC(state of charge)を60%に調整した後、10Cの電流での充電(10秒間)と5分間の休止と1Cの電流での放電(100秒間)と5分間の休止とを1サイクルとして1000サイクル行った。ハイレート充放電試験の終了後、25℃で、リチウムイオン二次電池の電池容量(試験後の電池容量)を測定した。そして、下記式を用いて容量維持率を求めた。その結果を表1に示す。容量維持率が高いほど、リチウムイオン二次電池に対してハイレート充放電を繰り返し行った場合であってもその性能が高く維持されている、と言える。
(容量維持率)=(試験後の電池容量)÷(初期の電池容量)×100。
Next, a high-rate charge / discharge test was performed on the lithium ion secondary battery at −10 ° C. In this test, after adjusting the SOC (state of charge) of the lithium ion secondary battery to 60%, charging at a current of 10 C (10 seconds), resting for 5 minutes, and discharging at a current of 1 C (100 seconds) And a 5-minute pause were performed for 1000 cycles. After completion of the high-rate charge / discharge test, the battery capacity of the lithium ion secondary battery (battery capacity after the test) was measured at 25 ° C. And the capacity | capacitance maintenance factor was calculated | required using the following formula. The results are shown in Table 1. It can be said that the higher the capacity retention rate, the higher the performance is maintained even when the high-rate charge / discharge is repeatedly performed on the lithium ion secondary battery.
(Capacity maintenance ratio) = (Battery capacity after test) ÷ (Initial battery capacity) × 100.

<実施例2〜7>
DBP吸油量が表1に示す負極活物質を用いたことを除いては実施例1に記載の方法にしたがって、負極を製造し、負極合剤層の剥離強度を測定し、リチウムイオン二次電池を製造し、製造されたリチウムイオン二次電池の容量維持率を測定した。その結果を表1に示す。
<Examples 2 to 7>
A negative electrode was produced according to the method described in Example 1 except that the negative electrode active material shown in Table 1 was used for the DBP oil absorption, and the peel strength of the negative electrode mixture layer was measured. And the capacity retention rate of the manufactured lithium ion secondary battery was measured. The results are shown in Table 1.

<実施例8〜14>
DBP吸油量が表1に示す負極活物質を用い、且つ、CMC(結着剤)の配合量(質量)を負極活物質の配合量(質量)の0.3質量%としたことを除いては実施例1に記載の方法にしたがって、負極を製造し、負極合剤層の剥離強度を測定し、リチウムイオン二次電池を製造し、製造されたリチウムイオン二次電池の容量維持率を測定した。その結果を表1に示す。
<Examples 8 to 14>
Except that the negative electrode active material shown in Table 1 is used for the DBP oil absorption, and the blending amount (mass) of CMC (binder) is 0.3% by mass of the blending amount (mass) of the negative electrode active material. Manufactured the negative electrode according to the method described in Example 1, measured the peel strength of the negative electrode mixture layer, manufactured a lithium ion secondary battery, and measured the capacity retention rate of the manufactured lithium ion secondary battery did. The results are shown in Table 1.

<比較例1>
次に示す方法にしたがって負極を作製したことを除いては実施例1に記載の方法にしたがって、リチウムイオン二次電池を製造し、製造されたリチウムイオン二次電池の容量維持率を測定した。その結果を表2に示す。
<Comparative Example 1>
A lithium ion secondary battery was produced according to the method described in Example 1 except that the negative electrode was produced according to the following method, and the capacity retention rate of the produced lithium ion secondary battery was measured. The results are shown in Table 2.

(負極の製造)
負極活物質として、実施例1で用いた炭素材料を準備した。この負極活物質とCMC(増粘剤)とを乾式環境下で混練した。水を追加して30分間、混練した。さらに水を追加して10分間混練した。その後、SBR(styrene-butadiene rubber、結着剤)の配合量(質量)が負極活物質の配合量(質量)の1質量%となるようにSBRが分散された水溶液をさらに添加し、10分間混練して、真空下で脱泡させた。このようにして負極合剤ペーストを得た。
(Manufacture of negative electrode)
The carbon material used in Example 1 was prepared as a negative electrode active material. This negative electrode active material and CMC (thickener) were kneaded in a dry environment. Water was added and kneaded for 30 minutes. Further, water was added and kneaded for 10 minutes. Thereafter, an aqueous solution in which SBR is dispersed so that the blending amount (mass) of SBR (styrene-butadiene rubber, binder) is 1% by mass of the blending amount (mass) of the negative electrode active material is further added for 10 minutes. Kneaded and degassed under vacuum. In this way, a negative electrode mixture paste was obtained.

実施例1で用いたCu箔の幅方向一端が露出するように、負極合剤ペーストをCu箔の両面に塗布してから乾燥させた。これにより、負極合剤層がCu箔の両面に形成された。その後、ロール圧延機を用い負極合剤層及びCu箔を圧延した後、所定の大きさに切断した。このようにして比較例1の負極が得られた。実施例1に記載の方法にしたがって、負極合剤層の剥離強度を測定した。   The negative electrode mixture paste was applied to both sides of the Cu foil and dried so that one end in the width direction of the Cu foil used in Example 1 was exposed. Thereby, the negative mix layer was formed in both surfaces of Cu foil. Thereafter, the negative electrode mixture layer and the Cu foil were rolled using a roll mill and then cut into a predetermined size. In this way, the negative electrode of Comparative Example 1 was obtained. According to the method described in Example 1, the peel strength of the negative electrode mixture layer was measured.

Figure 2016103433
Figure 2016103433

表2では、「SBRの含有率」は、負極活物質の配合量(質量)に対するSBR(結着剤)の配合量(質量)の割合を意味する。このことは表3においても言える。   In Table 2, “content ratio of SBR” means the ratio of the blending amount (mass) of SBR (binder) to the blending amount (mass) of the negative electrode active material. This is also true in Table 3.

<比較例2〜6>
DBP吸油量が表2に示す負極活物質を用いたことを除いては比較例1に記載の方法にしたがって負極を製造し、実施例1に記載の方法にしたがって負極合剤層の剥離強度を測定した。実施例1に記載の方法にしたがって、製造された負極を用いてリチウムイオン二次電池を製造し、製造されたリチウムイオン二次電池の容量維持率を測定した。その結果を表2に示す。
<Comparative Examples 2-6>
A negative electrode was manufactured according to the method described in Comparative Example 1 except that the negative electrode active material shown in Table 2 was used for the DBP oil absorption, and the peel strength of the negative electrode mixture layer was determined according to the method described in Example 1. It was measured. In accordance with the method described in Example 1, a lithium ion secondary battery was manufactured using the manufactured negative electrode, and the capacity retention rate of the manufactured lithium ion secondary battery was measured. The results are shown in Table 2.

<比較例7>
次に示す方法にしたがって負極を作製したことを除いては実施例1に記載の方法にしたがって、リチウムイオン二次電池を製造し、製造されたリチウムイオン二次電池の容量維持率を測定した。その結果を表3に示す。
<Comparative Example 7>
A lithium ion secondary battery was produced according to the method described in Example 1 except that the negative electrode was produced according to the following method, and the capacity retention rate of the produced lithium ion secondary battery was measured. The results are shown in Table 3.

(負極の製造)
(第3湿潤造粒粒子の作製)
負極活物質として、天然黒鉛粒子の表面が非晶質炭素膜でコートされて形成された炭素材料(球形、DBP吸油量が45(ml/100g))を準備した。この負極活物質とCMCとを1分間、乾式環境下で混練した。
(Manufacture of negative electrode)
(Preparation of third wet granulated particles)
As a negative electrode active material, a carbon material (spherical, DBP oil absorption 45 (ml / 100 g)) formed by coating the surface of natural graphite particles with an amorphous carbon film was prepared. This negative electrode active material and CMC were kneaded for 1 minute in a dry environment.

SBR(結着剤)の配合量(質量)が負極活物質の配合量(質量)の1質量%となるように、SBRが分散された水溶液と得られた混練物とをハイフレックスグラルに入れた。アジテーター羽根の回転数を800rpmとし、チョッパー羽根の回転数を2000rpmとし、上記水溶液と上記混練物とを5分間、撹拌した。このようにして第3湿潤造粒粒子(固形分濃度が70質量%)が得られた。目の粗さ(目開き)が300μmである篩を用いて、得られた第3湿潤造粒粒子を分級した。   The aqueous solution in which SBR is dispersed and the obtained kneaded material are put into a high flex glal so that the blending amount (mass) of SBR (binder) is 1 mass% of the blending amount (mass) of the negative electrode active material. It was. The rotational speed of the agitator blade was 800 rpm, the rotational speed of the chopper blade was 2000 rpm, and the aqueous solution and the kneaded material were stirred for 5 minutes. In this way, third wet granulated particles (solid content concentration of 70% by mass) were obtained. The obtained third wet granulated particles were classified using a sieve having a mesh size (aperture) of 300 μm.

(転写)
実施例1に記載の方法にしたがって、篩を通過した第3湿潤造粒粒子を負極集電体に転写した。このようにして比較例7の負極が得られた。実施例1に記載の方法にしたがって、負極合剤層の剥離強度を測定した。
(Transcription)
According to the method described in Example 1, the third wet granulated particles that passed through the sieve were transferred to the negative electrode current collector. In this way, the negative electrode of Comparative Example 7 was obtained. According to the method described in Example 1, the peel strength of the negative electrode mixture layer was measured.

Figure 2016103433
Figure 2016103433

<比較例8>
DBP吸油量が表3に示す負極活物質を用いたことを除いては比較例7に記載の方法にしたがって負極を製造し、実施例1に記載の方法にしたがって負極合剤層の剥離強度を測定した。実施例1に記載の方法にしたがって、製造された負極を用いてリチウムイオン二次電池を製造し、製造されたリチウムイオン二次電池の容量維持率を測定した。その結果を表3に示す。
<Comparative Example 8>
A negative electrode was produced according to the method described in Comparative Example 7 except that the negative electrode active material shown in Table 3 was used for the DBP oil absorption, and the peel strength of the negative electrode mixture layer was determined according to the method described in Example 1. It was measured. In accordance with the method described in Example 1, a lithium ion secondary battery was manufactured using the manufactured negative electrode, and the capacity retention rate of the manufactured lithium ion secondary battery was measured. The results are shown in Table 3.

<考察>
図2には、実施例1〜7及び比較例1〜8(結着剤の含有率が1質量%である場合)における負極活物質のDBP吸油量と負極合剤層の剥離強度との関係を示す。
<Discussion>
FIG. 2 shows the relationship between the DBP oil absorption amount of the negative electrode active material and the peel strength of the negative electrode mixture layer in Examples 1 to 7 and Comparative Examples 1 to 8 (when the binder content is 1% by mass). Indicates.

実施例1〜7、比較例7及び比較例8の方が、比較例1〜6よりも、負極合剤層の剥離強度は高かった。比較例1〜6では、負極ペースト層の乾燥時において結着剤が偏析した。一方、実施例1〜7、比較例7及び比較例8では、成形体の乾燥時における結着剤の偏析を防止できた。よって、上記結果が得られたと考えられる。   In Examples 1 to 7, Comparative Example 7 and Comparative Example 8, the peel strength of the negative electrode mixture layer was higher than that of Comparative Examples 1 to 6. In Comparative Examples 1 to 6, the binder segregated when the negative electrode paste layer was dried. On the other hand, in Examples 1 to 7, Comparative Example 7 and Comparative Example 8, segregation of the binder during drying of the molded body could be prevented. Therefore, it is considered that the above results were obtained.

実施例2の方が比較例7よりも負極合剤層の剥離強度が高く、実施例5の方が比較例8よりも負極合剤層の剥離強度が高かった。比較例7、8では、第3湿潤造粒粒子の固形分濃度が低いので、その製造時に結着剤が凝集した。一方、実施例1〜7では、第1固形分濃度が高いので、第1湿潤造粒粒子の製造時における結着剤の凝集を防止できた。よって、上記結果が得られたと考えられる。   In Example 2, the peel strength of the negative electrode mixture layer was higher than that of Comparative Example 7, and in Example 5, the peel strength of the negative electrode mixture layer was higher than that of Comparative Example 8. In Comparative Examples 7 and 8, since the solid content concentration of the third wet granulated particles was low, the binder aggregated during the production. On the other hand, in Examples 1-7, since the first solid content concentration was high, aggregation of the binder during the production of the first wet granulated particles could be prevented. Therefore, it is considered that the above results were obtained.

実施例1〜6の方が、実施例7よりも、負極合剤層の剥離強度が更に高かった。この結果から、負極活物質のDBP吸油量は190(ml/100g)以下であることが好ましいことが分かった。   The peel strength of the negative electrode mixture layer was higher in Examples 1 to 6 than in Example 7. From this result, it was found that the DBP oil absorption of the negative electrode active material is preferably 190 (ml / 100 g) or less.

図3には、実施例1〜14及び比較例1〜3における負極活物質のDBP吸油量と容量維持率との関係を示す。   FIG. 3 shows the relationship between the DBP oil absorption amount and the capacity retention rate of the negative electrode active materials in Examples 1-14 and Comparative Examples 1-3.

実施例1〜14の方が、比較例1〜3よりも、容量維持率は高かった。負極活物質のDBP吸油量が互いに同じである比較例2、実施例2及び実施例9に着目すると、実施例2及び実施例9の方が比較例2よりも負極合剤層の剥離強度が高かった。そのため、上記結果が得られたと考えている。   Examples 1-14 were higher in capacity retention than Comparative Examples 1-3. When attention is paid to Comparative Example 2, Example 2 and Example 9 in which the DBP oil absorption amount of the negative electrode active material is the same, the peel strength of the negative electrode mixture layer is higher in Example 2 and Example 9 than in Comparative Example 2. it was high. Therefore, it is considered that the above results were obtained.

実施例3〜7の方が実施例1及び2よりも容量維持率が更に高く、実施例10〜14の方が実施例8及び9よりも容量維持率が更に高かった。この結果から、負極活物質のDBP吸油量は60(ml/100g)以上であることが好ましいことが分かった。   Examples 3 to 7 had a higher capacity retention rate than Examples 1 and 2, and Examples 10 to 14 had a higher capacity retention rate than Examples 8 and 9. From this result, it was found that the DBP oil absorption of the negative electrode active material is preferably 60 (ml / 100 g) or more.

比較例4〜8では、容量維持率を求めることはできなかった。その理由として、負極活物質の表面においてリチウムイオンの還元反応が起こったからであると考えている。   In Comparative Examples 4 to 8, the capacity retention rate could not be obtained. The reason is considered to be that a reduction reaction of lithium ions occurred on the surface of the negative electrode active material.

図4には、DBP吸油量が190(ml/100g)である負極活物質を用いた場合において結着剤の含有率と負極合剤層の剥離強度との関係を示す。図4に示す「実施例」では、DBP吸油量が190(ml/100g)である負極活物質を用いたこと、及び、結着剤の含有率(負極活物質の配合量(質量)に対するCMC(結着剤)の配合量(質量)の割合)が図4に示す縦軸の数値であることを除いては実施例1に記載の方法にしたがって、リチウムイオン二次電池を製造した。得られたリチウムイオン二次電池に対して、実施例1に記載の方法にしたがって負極合剤層の剥離強度及び容量維持率を測定した。   FIG. 4 shows the relationship between the binder content and the peel strength of the negative electrode mixture layer when a negative electrode active material having a DBP oil absorption of 190 (ml / 100 g) is used. In the “Example” shown in FIG. 4, the negative electrode active material having a DBP oil absorption of 190 (ml / 100 g) was used, and the content of the binder (CMC relative to the blending amount (mass) of the negative electrode active material) A lithium ion secondary battery was manufactured according to the method described in Example 1 except that the (blending amount (mass) ratio) of the (binder) was a numerical value on the vertical axis shown in FIG. With respect to the obtained lithium ion secondary battery, the peel strength and capacity retention rate of the negative electrode mixture layer were measured according to the method described in Example 1.

図4に示す「塗工」では、DBP吸油量が190(ml/100g)である負極活物質を用いたこと、及び、結着剤の含有率(負極活物質の配合量(質量)に対するSBR(結着剤)の配合量(質量)の割合)が図4に示す縦軸の数値であることを除いては比較例1に記載の方法にしたがって、リチウムイオン二次電池を製造した。得られたリチウムイオン二次電池に対して、実施例1に記載の方法にしたがって負極合剤層の剥離強度及び容量維持率を測定した。   In the “coating” shown in FIG. 4, the negative electrode active material having a DBP oil absorption of 190 (ml / 100 g) was used, and the SBR relative to the binder content (blending amount (mass) of the negative electrode active material). A lithium ion secondary battery was manufactured in accordance with the method described in Comparative Example 1 except that the (blending amount (mass) ratio) of (binder) was a numerical value on the vertical axis shown in FIG. With respect to the obtained lithium ion secondary battery, the peel strength and capacity retention rate of the negative electrode mixture layer were measured according to the method described in Example 1.

結着剤の含有率を0.3質量%以上として実施例1に記載の方法にしたがって負極を製造すれば、負極合剤層の剥離を防止できることが分かった(図4)。   It was found that if the negative electrode was produced according to the method described in Example 1 with the binder content of 0.3 mass% or more, peeling of the negative electrode mixture layer could be prevented (FIG. 4).

今回開示された実施の形態及び実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (1)

負極活物質と結着剤とを溶媒中で混練することにより、第1固形分濃度を有する第1湿潤造粒粒子を作製する工程と、
前記第1湿潤造粒粒子に前記溶媒を添加することにより、前記第1固形分濃度よりも低い第2固形分濃度を有する第2湿潤造粒粒子を作製する工程と、
前記第2湿潤造粒粒子を負極集電体の表面に転写する工程とを備える非水電解質二次電池用負極の製造方法。
A step of producing first wet granulated particles having a first solid content concentration by kneading a negative electrode active material and a binder in a solvent;
Producing the second wet granulated particles having a second solid content concentration lower than the first solid content concentration by adding the solvent to the first wet granulated particles;
A process for transferring the second wet granulated particles to the surface of the negative electrode current collector.
JP2014241753A 2014-11-28 2014-11-28 Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery Pending JP2016103433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014241753A JP2016103433A (en) 2014-11-28 2014-11-28 Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014241753A JP2016103433A (en) 2014-11-28 2014-11-28 Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2016103433A true JP2016103433A (en) 2016-06-02

Family

ID=56088059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014241753A Pending JP2016103433A (en) 2014-11-28 2014-11-28 Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2016103433A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017228428A (en) * 2016-06-22 2017-12-28 トヨタ自動車株式会社 Manufacturing method for negative electrode plate
JP2018037198A (en) * 2016-08-30 2018-03-08 トヨタ自動車株式会社 Manufacturing apparatus of electrode
CN108091827A (en) * 2016-11-21 2018-05-29 丰田自动车株式会社 The manufacturing method of the manufacturing method of granule aggregation, the manufacturing method of electrode plate and battery
JP2018113218A (en) * 2017-01-13 2018-07-19 トヨタ自動車株式会社 Method for manufacturing lithium ion secondary battery
JP2018125201A (en) * 2017-02-02 2018-08-09 トヨタ自動車株式会社 Method for manufacturing electrode
JP2018137087A (en) * 2017-02-21 2018-08-30 トヨタ自動車株式会社 Method for manufacturing electrode
JP2018147807A (en) * 2017-03-08 2018-09-20 トヨタ自動車株式会社 Method for manufacturing electrode for secondary battery
JP2019160609A (en) * 2018-03-14 2019-09-19 トヨタ自動車株式会社 Method for producing electrode sheet for sulfide all-solid battery
JP2022087649A (en) * 2020-12-01 2022-06-13 プライムプラネットエナジー&ソリューションズ株式会社 Manufacturing method of wet mixture

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017228428A (en) * 2016-06-22 2017-12-28 トヨタ自動車株式会社 Manufacturing method for negative electrode plate
JP2018037198A (en) * 2016-08-30 2018-03-08 トヨタ自動車株式会社 Manufacturing apparatus of electrode
US10897036B2 (en) 2016-11-21 2021-01-19 Toyota Jidosha Kabushiki Kaisha Method of producing granular aggregate, method of producing electrode plate, and method of producing battery
JP2018085177A (en) * 2016-11-21 2018-05-31 トヨタ自動車株式会社 Method for manufacturing mass of granulated material, method for manufacturing electrode plate, and method for manufacturing battery
CN108091827A (en) * 2016-11-21 2018-05-29 丰田自动车株式会社 The manufacturing method of the manufacturing method of granule aggregation, the manufacturing method of electrode plate and battery
CN108091827B (en) * 2016-11-21 2021-08-24 丰田自动车株式会社 Method for producing aggregate of granules, method for producing electrode plate, and method for producing battery
JP2018113218A (en) * 2017-01-13 2018-07-19 トヨタ自動車株式会社 Method for manufacturing lithium ion secondary battery
JP2018125201A (en) * 2017-02-02 2018-08-09 トヨタ自動車株式会社 Method for manufacturing electrode
JP2018137087A (en) * 2017-02-21 2018-08-30 トヨタ自動車株式会社 Method for manufacturing electrode
JP2018147807A (en) * 2017-03-08 2018-09-20 トヨタ自動車株式会社 Method for manufacturing electrode for secondary battery
JP2019160609A (en) * 2018-03-14 2019-09-19 トヨタ自動車株式会社 Method for producing electrode sheet for sulfide all-solid battery
JP2022087649A (en) * 2020-12-01 2022-06-13 プライムプラネットエナジー&ソリューションズ株式会社 Manufacturing method of wet mixture
JP7209446B2 (en) 2020-12-01 2023-01-20 プライムプラネットエナジー&ソリューションズ株式会社 Method for producing wet mixture

Similar Documents

Publication Publication Date Title
KR102382277B1 (en) Positive electrode for lithium ion secondary battery, graphene-positive electrode active material composite particle and method for manufacturing the same, and positive electrode paste for lithium ion secondary battery
US9780361B2 (en) Methods for forming porous materials
JP2016103433A (en) Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery
TWI458154B (en) Lithium secondary battery
JP2013012410A (en) Cathode material for nonaqueous electrolyte secondary battery and method for producing the same
JP6269369B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
CN112820869B (en) Negative electrode active material, electrochemical device, and electronic device
JP6380808B2 (en) Method for manufacturing electrode for secondary battery
JP2011146158A (en) Lithium secondary battery
KR20200030518A (en) Method for manufacturing battery
JP5807807B2 (en) Method for producing positive electrode plate of lithium ion secondary battery
JP2013062089A (en) Lithium ion secondary battery
JP6361928B2 (en) Method for producing positive electrode for non-aqueous electrolyte secondary battery
JP6156406B2 (en) Electrode manufacturing method
JP6878831B2 (en) Lithium-ion secondary battery and its manufacturing method
JP5679206B2 (en) Method for producing negative electrode for lithium ion secondary battery and method for producing lithium ion secondary battery
JP6844602B2 (en) electrode
JP5557619B2 (en) Nonaqueous electrolyte secondary battery
JPH10144302A (en) Manufacture of electrode for non-aqueous electrolytic battery and non-aqueous electrolytic battery employing this electrode
JP4971646B2 (en) Method for producing positive electrode mixture-containing composition, method for producing negative electrode mixture-containing composition, method for producing positive electrode for battery, method for producing negative electrode for battery, non-aqueous secondary battery and method for producing the same
KR102497879B1 (en) Method for manufacturing electrodes for electrochemical storage devices
JP2017117746A (en) Method for manufacturing positive electrode for nonaqueous electrolyte secondary battery
JP5725356B2 (en) Method for manufacturing electrode for secondary battery
JP2016091850A (en) Nonaqueous electrolyte secondary battery
CN115207287A (en) Method for producing electrode for secondary battery and wet powder