JP2016093910A - Gear and manufacturing method of gear - Google Patents

Gear and manufacturing method of gear Download PDF

Info

Publication number
JP2016093910A
JP2016093910A JP2014230122A JP2014230122A JP2016093910A JP 2016093910 A JP2016093910 A JP 2016093910A JP 2014230122 A JP2014230122 A JP 2014230122A JP 2014230122 A JP2014230122 A JP 2014230122A JP 2016093910 A JP2016093910 A JP 2016093910A
Authority
JP
Japan
Prior art keywords
tooth
gear
region
resin
inner periphery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014230122A
Other languages
Japanese (ja)
Other versions
JP2016093910A5 (en
JP6512794B2 (en
Inventor
和憲 元田
Kazunori Motoda
和憲 元田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014230122A priority Critical patent/JP6512794B2/en
Publication of JP2016093910A publication Critical patent/JP2016093910A/en
Publication of JP2016093910A5 publication Critical patent/JP2016093910A5/en
Application granted granted Critical
Publication of JP6512794B2 publication Critical patent/JP6512794B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Gears, Cams (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an injection molding resin gear with high accuracy while suppressing deterioration of gear accuracy resulting from an uneven arrangement of a flow channel connecting to a rim.SOLUTION: At a point where a center line of, among a plurality of connection parts, a connection part abutting on an inner periphery of at least one tooth part abuts on the inner periphery of the tooth part, an angle formed by a tangent line of the inner periphery of the tooth part and the center line is smaller on a larger tooth part region side of tooth part regions neighboring with each other interposing at least one connection part.SELECTED DRAWING: Figure 1

Description

本発明は外周に多数の歯とそれを支持する環状のリムによりなる歯部と、歯車の回転運動をさせるための軸部とを持ち、キャビティ内に樹脂を流入するためのゲートと、前記ゲートから歯部への樹脂の流路を備えた歯車に関するものである。   The present invention has a tooth portion formed of a large number of teeth and an annular rim for supporting the outer periphery, a shaft portion for rotating the gear, and a gate for injecting resin into the cavity. The present invention relates to a gear having a resin flow path from the tooth to the tooth portion.

従来、複写機、プリンター等の動力伝達部品として射出成形樹脂歯車が多数使用されている。こうした利用分野では、印刷の品質を高めるため、これら射出成形樹脂歯車の精度要求が非常に高まっている。   Conventionally, many injection molded resin gears have been used as power transmission parts for copying machines, printers and the like. In these fields of use, the accuracy requirements for these injection-molded resin gears are greatly increasing in order to improve the quality of printing.

射出成形樹脂歯車はキャビティ面に開口する多点ゲートから樹脂を注入して成形を行っている。例えば、特許文献1に記載されているように、環状歯部と軸部と両者を結合する分岐しないリブとを持つプラスチックス歯車が考案されている。   The injection-molded resin gear is molded by injecting resin from a multipoint gate that opens to the cavity surface. For example, as described in Patent Document 1, a plastic gear having an annular tooth portion, a shaft portion, and a non-branching rib connecting the both has been devised.

特開平11−325221号公報JP 11-325221 A

しかし、射出成形樹脂歯車は高精度化だけでなく、高機能化も進み、リブ形状や穴形状などを歯車に付加しなければならない場合があり、ゲートから歯部への流路が均等な間隔で設置できないことがある。この場合、歯車周方向で、流動距離が不均一になることにより樹脂の合流のタイミングが不均一となり、歯先の真円度や噛合い誤差(JGMA116−02)等で規格される歯面精度に悪影響を及ぼす。   However, injection-molded resin gears are not only highly accurate but also highly functional, and it may be necessary to add rib shapes, hole shapes, etc. to the gears, and the flow paths from the gate to the teeth are evenly spaced. May not be installed. In this case, in the circumferential direction of the gear, the flow distance becomes non-uniform, so the timing of resin merging becomes non-uniform, and the tooth surface accuracy specified by the roundness of the tooth tip, the meshing error (JGMA116-02), etc. Adversely affect.

特許文献1の方法では、ゲートから歯部へのリブが均等な間隔で設置できないことによる樹脂流動をコントロールすることは困難であり、歯面精度が悪化してしまうという課題があった。   In the method of Patent Document 1, it is difficult to control the resin flow due to the fact that the ribs from the gate to the tooth portion cannot be installed at equal intervals, and there is a problem that the tooth surface accuracy deteriorates.

本発明は、多点ゲートを用いた射出成形樹脂歯車のゲートと歯部を接続するリブの不均等配置に起因する歯部への樹脂の合流のタイミングの不均一を抑制する。そして、射出成形樹脂歯車を高精度化するとともに、歯面精度に影響を与えない射出成形樹脂歯車を提供することを目的とする。   The present invention suppresses non-uniformity in the timing of resin merging to the tooth portion due to non-uniform arrangement of ribs connecting the gate and tooth portion of an injection molded resin gear using a multipoint gate. It is another object of the present invention to provide an injection-molded resin gear that has high accuracy and that does not affect the tooth surface accuracy.

前記課題を解決するために、本発明による歯車は、環状のリムの外周に歯が形成された歯部と、中心部に形成された軸部と、前記歯部と前記軸部とを接続する複数の接続部を有し、前記複数の接続部の中心線によって前記歯部を複数の歯部領域に分割した時、前記歯の数が異なる少なくとも一つの歯部領域を有する歯車であって、前記複数の接続部のうちの少なくとも一つの接続部の中心線が前記歯部の内周と接する点における前記歯部の内周の接線と前記中心線とのなす角度は、前記少なくとも一つの接続部を挟んで隣接する前記歯部領域のうちの大きい歯部領域側の方が小さいことを特徴とする。   In order to solve the above-described problems, a gear according to the present invention connects a tooth portion having teeth formed on the outer periphery of an annular rim, a shaft portion formed in a central portion, and the tooth portion and the shaft portion. A gear having a plurality of connecting portions and having at least one tooth portion region having a different number of teeth when the tooth portion is divided into a plurality of tooth portion regions by a center line of the plurality of connecting portions; The angle between the tangent of the inner periphery of the tooth portion and the center line at the point where the center line of at least one of the plurality of connection portions contacts the inner periphery of the tooth portion is the at least one connection. Of the tooth regions adjacent to each other with the portion interposed therebetween, the larger tooth region side is smaller.

本発明による歯車の製造方法は、外周に歯が形成され前記歯の裏側に形成されたリムによる歯部と、中心部に形成された軸部と、前記歯部と前記軸部とを接続する複数の接続部を有し、前記複数の接続部によって前記歯部を複数の歯部領域に分割した時、大きさが異なる少なくとも一つの歯部領域を有する歯車の製造方法であって、前記歯部を成形する空間、前記軸部を成形する空間、および前記複数の接続部を成形するための空間を有するキャビティの、前記複数の接続部を成形するための空間のそれぞれから樹脂を注入し、前記大きさが異なる少なくとも一つの歯部領域と、隣り合う歯部領域とには、前記大きさが異なる少なくとも一つの歯部領域と、隣り合う歯部領域のうち、大きい歯部領域の方に傾いている前記一つの接続部を成形するための空間から、前記歯部を成形する空間に樹脂が注入されることを特徴とする。   The gear manufacturing method according to the present invention connects a tooth portion formed by a rim formed on the outer periphery of the tooth and formed on the back side of the tooth, a shaft portion formed in the center, and the tooth portion and the shaft portion. A method of manufacturing a gear having a plurality of connecting portions and having at least one tooth portion region having a different size when the tooth portion is divided into a plurality of tooth portion regions by the plurality of connecting portions. Resin is injected from each of the space for molding the plurality of connection portions of the cavity having the space for molding the portion, the space for molding the shaft portion, and the space for molding the plurality of connection portions, The at least one tooth region having a different size and the adjacent tooth region have at least one tooth region having a different size and a larger tooth region among the adjacent tooth regions. Molding the one connecting part that is inclined From because of space, characterized in that the resin is injected into the space for molding the teeth.

多点ゲートを用いた射出成形樹脂歯車のゲートと歯部を接続する流路の不均等配置に起因する歯部への樹脂の合流のタイミングの不均一を抑制できる。   It is possible to suppress non-uniformity in the timing of the resin merging to the tooth part due to the non-uniform arrangement of the flow path connecting the gate and the tooth part of the injection-molded resin gear using a multipoint gate.

本発明の実施の形態に係わる歯車の概略図Schematic of gear according to an embodiment of the present invention 図1の一部拡大図Partial enlarged view of FIG. 本発明の実施の形態に係わる歯車の製造方法を説明する概略図Schematic explaining the manufacturing method of the gear concerning embodiment of this invention 比較例に係る歯車の概略図Schematic of gear according to comparative example 流れの性質を説明する図Diagram explaining the nature of the flow 実施例17を説明する図The figure explaining Example 17

図1、図2は本発明における実施の形態の一例を表す歯車を説明する図である。図1(a)は、本発明における実施の形態の一例を表す射出成形樹脂歯車の上面図であり、図1(b)は、図1(a)のA−A断面図である。図2は図1(a)における第1の接続部41の拡大図である。   1 and 2 are diagrams for explaining a gear representing an example of an embodiment of the present invention. FIG. 1A is a top view of an injection-molded resin gear representing an example of an embodiment in the present invention, and FIG. 1B is a cross-sectional view taken along line AA in FIG. FIG. 2 is an enlarged view of the first connecting portion 41 in FIG.

1は歯車の歯でありリムの外周に環状に形成される。2は歯車のリムであり歯車の軸、あるいは、歯車に挿入される軸(不図示)に対して同軸に構成される。ここでは、歯1とリム2を歯部と称する。3は溶融樹脂の注入口であるゲートの痕であり、ここでは、後述する接続部に一つずつ、リムと同心円上に配置されている。41、42、43は、歯部と後述する軸部とを接続する第1の接続部、第2の接続部、第3の接続部であり、複数の接続部によって歯部と後述する軸部とを接続する。ここでは接続部を3か所形成することによって歯部と軸部とを接続する例を示しているがこれに限ることはない。第1の接続部41と、第2の接続部43は、ゲートが配置されている部分で屈曲し、くの字形状をしている例を示している。5は歯車の中心部に形成された軸部であり、軸部5は、歯車に挿入される軸を支えるため歯車の中心部に形成されたリブであってもよいし、歯車の中心部に形成された軸であってもよい。   Reference numeral 1 denotes a gear tooth, which is formed in an annular shape on the outer periphery of the rim. Reference numeral 2 denotes a gear rim which is coaxial with a shaft of the gear or a shaft (not shown) inserted into the gear. Here, the teeth 1 and the rim 2 are referred to as tooth portions. Reference numeral 3 denotes a trace of a gate which is an injection port of a molten resin, and here, one is disposed on a concentric circle with a rim, one for each connecting portion described later. Reference numerals 41, 42, and 43 denote a first connection portion, a second connection portion, and a third connection portion that connect the tooth portion and a shaft portion that will be described later, and the tooth portion and the shaft portion that will be described later by a plurality of connection portions. And connect. Here, an example is shown in which the tooth portion and the shaft portion are connected by forming three connection portions, but the present invention is not limited to this. The 1st connection part 41 and the 2nd connection part 43 have shown the example which bends in the part in which the gate is arrange | positioned, and has a dogleg shape. Reference numeral 5 denotes a shaft portion formed at the center portion of the gear, and the shaft portion 5 may be a rib formed at the center portion of the gear to support the shaft inserted into the gear, or at the center portion of the gear. It may be a formed shaft.

R1、R2、R3は、歯部の内周と歯部の内周に接続する接続部の中心線との交点を示す。θ1は、歯部の内周と歯部の内周に接続する接続部の中心線T1(図2参照)との交点R1と歯車の中心Oを結んだ線と、歯部の内周と歯部の内周に接続する接続部の中心線との交点R2と歯車の中心Oを結んだ線とのなす角度である。この間の歯部の領域を第1の歯部領域とする。θ2は、歯部の内周と歯部の内周に接続する接続部の中心線との交点R2と歯車の中心Oを結んだ線と、歯部の内周と歯部の内周に接続する接続部の中心線との交点R3と歯車の中心Oを結んだ線とのなす角度である。この間の歯部の領域を第2の歯部領域とする。θ3は、歯部の内周と歯部の内周に接続する接続部の中心線との交点R3と歯車の中心Oを結んだ線と、歯部の内周と歯部の内周に接続する接続部の中心線との交点R1と歯車の中心Oを結んだ線とのなす角度である。この間の歯部の領域を第3の歯部領域とする。歯部の内周と歯部の内周に接続する接続部の中心線との交点は等間隔で形成されていることが理想である。つまり、第1の歯部、第2の歯部、第3の歯部の大きさが同じ(つまり歯数が等しい、あるいは内周の長さが同じ)であることが理想であるが、本実施形態では、設計上等の理由から、θ1、θ2に比べてθ3が大きい(長い)例を示している。ただ、θ1、θ2、θ3の、隣り合う角度の角度差のうちの少なくとも一つが、6°以上45°より小さい場合に、より効果が発揮される。6°より小さい、または、45°以上となってしまうと、樹脂充填の不均一差を改善する効果は少ない。   R1, R2, and R3 indicate intersections between the inner periphery of the tooth portion and the center line of the connection portion connected to the inner periphery of the tooth portion. θ1 is a line connecting the intersection R1 of the inner periphery of the tooth portion and the center line T1 (see FIG. 2) of the connecting portion connected to the inner periphery of the tooth portion and the center O of the gear, the inner periphery of the tooth portion, and the tooth It is an angle formed by the line connecting the intersection R2 with the center line of the connecting portion connected to the inner periphery of the portion and the center O of the gear. The region of the tooth part in the meantime is defined as a first tooth region. θ2 is connected to the line connecting the intersection R2 between the inner periphery of the tooth portion and the center line of the connecting portion connected to the inner periphery of the tooth portion and the center O of the gear, and the inner periphery of the tooth portion and the inner periphery of the tooth portion. It is an angle formed by the line connecting the intersection R3 with the center line of the connecting portion and the center O of the gear. The region of the tooth part in the meantime is defined as a second tooth region. θ3 is connected to the line connecting the intersection R3 of the inner periphery of the tooth portion and the center line of the connecting portion connected to the inner periphery of the tooth portion and the center O of the gear, the inner periphery of the tooth portion, and the inner periphery of the tooth portion. It is an angle formed by the line connecting the intersection R1 with the center line of the connecting portion and the center O of the gear. The region of the tooth part during this period is defined as a third tooth region. Ideally, the intersections between the inner periphery of the tooth portion and the center line of the connecting portion connected to the inner periphery of the tooth portion are formed at equal intervals. In other words, it is ideal that the first tooth portion, the second tooth portion, and the third tooth portion have the same size (that is, the number of teeth is equal or the inner circumference length is the same). The embodiment shows an example in which θ3 is larger (longer) than θ1 and θ2 for reasons such as design. However, when at least one of the angle differences between the adjacent angles of θ1, θ2, and θ3 is 6 ° or more and less than 45 °, the effect is more exerted. If it is smaller than 6 ° or 45 ° or more, the effect of improving the non-uniform difference in resin filling is small.

図2において、N1は、交点R1におけるリム(歯部)の内周の接線である。α1およびα2は、リム(歯部)の内周に接続する接続部の中心線T1とリム(歯部)の接線とのなす角度である。α1は、第1の接続部に隣接する第3の歯部領域側の角度であり、α2は隣接する第1の歯部領域側の角度を示している。本実施形態は、α1の角度はα2の角度に比べて小さいことを特徴としている。交点R1を有する接続部に隣接する第1の歯部領域と第3の歯部領域の大きさを比べると第3の歯部領域の方が大きい。つまり、隣接する歯部領域の大きさが大きい側の角度を小さくすることを特徴としている。   In FIG. 2, N1 is a tangent to the inner periphery of the rim (tooth portion) at the intersection R1. α1 and α2 are angles formed by the center line T1 of the connecting portion connected to the inner periphery of the rim (tooth portion) and the tangent of the rim (tooth portion). α1 is an angle on the side of the third tooth region adjacent to the first connecting portion, and α2 is an angle on the side of the first tooth region adjacent to the first connection portion. The present embodiment is characterized in that the angle α1 is smaller than the angle α2. Comparing the sizes of the first tooth region and the third tooth region adjacent to the connecting portion having the intersection R1, the third tooth region is larger. That is, it is characterized in that the angle on the side where the size of the adjacent tooth region is large is reduced.

次に、本発明の歯車の製造方法の一例について図3を用いて説明する。   Next, an example of the manufacturing method of the gear of this invention is demonstrated using FIG.

図3は、図1(a)で示した本発明の歯車の一実施形態を製造するための金型の断面図である。図3において、51は金型である。52は、金型51に形成された、歯車を形成するための空間であるキャビティである。53は、キャビティに樹脂を注入するためのゲートである。61はキャビティの一部分であり、歯車の外周に形成される歯部の一部である歯を成形するため空間である。62はキャビティの一部分であり、歯車の歯部の一部であり、歯の裏側に形成されるリムを成形するための空間である。63は、キャビティの一部分であり、軸部を成形するための空間である。軸部は、歯車に挿入される軸を支えるため歯車の中心部に形成されたリブであってもよいし、歯車の中心部に形成された軸であってもよい。64は、キャビティの一部分であり、歯部と軸部とを接続するための接続部を形成するための空間であり、ゲート53から歯部と軸部とに樹脂を流しこむための流路となる。歯車は、ポリアセタール、ポリブチレンテレフタレート、ポリフェニレンスルフィド、ポリアミド、ナイロン、ハイトレルのいずれかを含む樹脂材料を用いて、射出成形で製造される。樹脂材料を溶融させ、溶融させた樹脂材料はゲートから接続部を形成するための空間を介して歯部を形成するための空間に流れ込ませる。そして歯部が成形される。   FIG. 3 is a sectional view of a mold for manufacturing an embodiment of the gear of the present invention shown in FIG. In FIG. 3, 51 is a metal mold | die. Reference numeral 52 denotes a cavity formed in the mold 51, which is a space for forming a gear. 53 is a gate for injecting resin into the cavity. Reference numeral 61 denotes a part of a cavity, which is a space for forming a tooth that is a part of a tooth portion formed on the outer periphery of the gear. Reference numeral 62 denotes a part of the cavity, which is a part of the tooth portion of the gear, and is a space for molding a rim formed on the back side of the tooth. Reference numeral 63 denotes a part of the cavity, which is a space for forming the shaft portion. The shaft portion may be a rib formed at the center portion of the gear to support the shaft inserted into the gear, or may be a shaft formed at the center portion of the gear. 64 is a part of the cavity, and is a space for forming a connection part for connecting the tooth part and the shaft part, and a flow path for flowing resin from the gate 53 into the tooth part and the shaft part. Become. The gear is manufactured by injection molding using a resin material containing any one of polyacetal, polybutylene terephthalate, polyphenylene sulfide, polyamide, nylon, and hytrel. The resin material is melted, and the melted resin material flows from the gate into the space for forming the tooth portion through the space for forming the connection portion. Then, the tooth part is formed.

図3においては、接続部および接続部に形成されるゲートは、一つしか図示していないが、接続部およびゲートは、複数形成されている。そして、キャビティ52は、複数の接続部によって前記歯部を複数の歯部領域に分割した時、大きさが異なる少なくとも一つの歯部領域を形成するための空間を有している。それぞれの前記複数の接続部を成形するための空間に形成されたゲート53から樹脂を注入する。接続部を成形するための空間は、大きさが異なる少なくとも一つの歯部領域と、隣り合う歯部領域のうち、大きい歯部領域の方に傾くように形成されている。そして、前記大きさが異なる少なくとも一つの歯部領域と、隣り合う歯部領域のうち、大きい歯部領域の方に傾いている前記一つの接続部を成形するための空間から、前記歯部を成形する空間に樹脂が注入される。   In FIG. 3, only one connection portion and one gate formed in the connection portion are illustrated, but a plurality of connection portions and gates are formed. The cavity 52 has a space for forming at least one tooth part region having a different size when the tooth part is divided into a plurality of tooth part regions by a plurality of connection parts. Resin is injected from a gate 53 formed in a space for molding each of the plurality of connection portions. The space for forming the connecting portion is formed to be inclined toward at least one tooth region having a different size and a large tooth region among adjacent tooth regions. And, from the space for forming the one connecting portion that is inclined toward the large tooth portion region among the adjacent tooth portion regions having different sizes, the tooth portion is Resin is injected into the space to be molded.

大きさが異なる歯部領域がある時、樹脂の充填が完了するまでの速度に差ができてしまい、これが歯面精度に悪影響を及ぼしてしまう要因の一つであった。これを解消するために、隣接する歯部領域の大きさが大きい側の樹脂の流入角度を小さくする。こうすることで、歯部領域の大きさが大きい側への樹脂の流れを促進し、小さい側への樹脂の流れを抑制することで、充填完了速度の差を少なくすることができる。これは、歯部領域を成形するための空間と、接続部を成形するための空間との間の角度が鋭角の場合は、樹脂の流れを促進することができるという樹脂の流れの性質によるものである。逆に、歯部領域を成形するための空間と、接続部を成形するための空間との間の角度が鈍角の場合は、流れが抑制されるという樹脂の流れの性質によるものである。図5は、この樹脂の流れの性質を示した図である。角度が鋭角の場合(A)は、分岐点より、流動先端までの長さが長く、樹脂の流れが促進されていることがわかる。また、角度が鈍角の場合(B,C)は、分岐点より流動先端までの長さが短く、樹脂の流れが抑制されていることがわかる。(参考文献:成形加工 第9巻 第7号 1997『ガラスインサート金型によるランナー分岐部流動挙動の解析』東京大学 横井秀俊)この現象を、本金型に適用することにより、充填完了速度の差を少なくすることができることを見出したものである。   When there are tooth regions having different sizes, there is a difference in the speed until resin filling is completed, which is one of the factors that adversely affect the tooth surface accuracy. In order to solve this problem, the inflow angle of the resin on the side where the size of the adjacent tooth region is larger is reduced. By doing so, the difference in filling completion speed can be reduced by accelerating the flow of the resin toward the side where the size of the tooth region is large and suppressing the flow of the resin toward the small side. This is due to the property of the resin flow that the flow of the resin can be promoted when the angle between the space for molding the tooth region and the space for molding the connecting portion is an acute angle. It is. Conversely, when the angle between the space for forming the tooth region and the space for forming the connecting portion is an obtuse angle, this is due to the property of the resin flow that the flow is suppressed. FIG. 5 is a diagram showing the nature of this resin flow. When the angle is acute (A), it can be seen that the length from the branch point to the flow tip is longer, and the resin flow is promoted. Further, when the angle is obtuse (B, C), the length from the branch point to the flow front is short, and it can be seen that the resin flow is suppressed. (Reference: Molding, Vol. 9, No. 7, 1997 "Analysis of flow behavior of runner bifurcation by glass insert mold" Hidetoshi Yokoi, University of Tokyo) By applying this phenomenon to this mold, the difference in filling completion speed It has been found that it is possible to reduce the number of

このように、本発明は、樹脂流動を制御するために、リムの肉厚を不均一にすることによる収縮の不均一差を発生させることなく、また成形サイクルの増加やゲート点数の増加など付加を伴わずに流動を改善することができる。よって、材料の使用量を削減できるだけでなく、射出成形樹脂歯車のコストを低価格に抑えることが可能となる。   Thus, in order to control the resin flow, the present invention does not generate a non-uniform difference in shrinkage due to non-uniform rim wall thickness, and increases the number of molding cycles and gate points. It is possible to improve the flow without accompanying. Therefore, not only the amount of material used can be reduced, but also the cost of the injection molded resin gear can be reduced.

また、スポークギヤの様な穴の空いたギヤにおいても、本発明を用いることで、歯面上へ発生するウェルド位置を容易に移動することが可能であり、ウェルドに起因する歯面の精度改善することができる。   Further, even in a gear with a hole such as a spoke gear, by using the present invention, the weld position generated on the tooth surface can be easily moved, and the accuracy of the tooth surface caused by the weld is improved. be able to.

〔実施例1〕
実施例1として、上述した実施の形態の一例を表す射出成形樹脂歯車を作製した。そして、小さい歯部領域を流れる樹脂の先端が合流した時点で、大きい歯部領域を流れる樹脂の先端と先端との距離を中心からの角度で表し評価した。
[Example 1]
As Example 1, an injection molded resin gear representing an example of the above-described embodiment was produced. And when the front-end | tip of the resin which flows through a small tooth | gear part area | region merged, the distance between the front-end | tip of the resin which flows through a large tooth | gear part area | region was represented and evaluated by the angle from a center.

歯車は歯先円直径Φ26.18、モジュール0.7、圧力角14.5°、歯数32、圧力角20°、ねじれ角25°とした。リムと接続する流路の幅は1mm、高さは、1mmとし、歯部領域の角度をθ1=θ2=115°、θ3=130°とした。また、α1の値を60°とした。樹脂材料は、ポリアセタールを用いた。   The gear had a tip diameter Φ26.18, module 0.7, pressure angle 14.5 °, number of teeth 32, pressure angle 20 °, and helix angle 25 °. The width of the flow path connected to the rim was 1 mm, the height was 1 mm, and the angles of the tooth region were θ1 = θ2 = 115 ° and θ3 = 130 °. The value of α1 was 60 °. Polyacetal was used as the resin material.

比較例1として、図3に示す従来技術を用いた射出成形樹脂歯車を製造した。図4(a)は上面図、図4(b)は図4(a)のC−C断面図である。図4に示すように、歯面に対して直角に接続部を配置し、ゲート41から樹脂を注入した。歯部領域の角度をθ1=θ2=115°、θ3=130°とした。そして、小さい歯部領域を流れる樹脂の先端421が合流した時点で、大きい歯部領域を流れる樹脂の先端422と先端422との距離(流動距離差)を中心からの角度で表し評価した。判定は、比較例と比べて流動距離差が少なくなった場合、効果ありとして○とした。   As Comparative Example 1, an injection molded resin gear using the prior art shown in FIG. 4A is a top view, and FIG. 4B is a cross-sectional view taken along the line CC in FIG. 4A. As shown in FIG. 4, the connecting portion was disposed at a right angle to the tooth surface, and the resin was injected from the gate 41. The angle of the tooth region was set to θ1 = θ2 = 115 ° and θ3 = 130 °. Then, when the resin tip 421 flowing through the small tooth region joined, the distance (flow distance difference) between the resin tip 422 and the tip 422 flowing through the large tooth region was expressed as an angle from the center and evaluated. In the judgment, when the difference in the flow distance was smaller than that in the comparative example, it was evaluated as “good”.

表1に示すように、比較例1では、15°程度流動距離差があったが、歯面に対する接続部の角度α1を変化させることで、7°程度に抑えられることが確認され、樹脂充填の不均一差を改善する効果がみられた。   As shown in Table 1, in Comparative Example 1, there was a difference in flow distance of about 15 °, but it was confirmed that it was suppressed to about 7 ° by changing the angle α1 of the connecting portion with respect to the tooth surface, and the resin filling The effect of improving the non-uniformity difference was observed.

〔実施例2、3〕
次に、実施例1で製作した射出成形樹脂歯車の、歯面に対する接続部の角度α1を80、60、45と変化させた。それ以外は実施例1と同様の方法で射出成形樹脂歯車を製作し、評価した。判定は、比較例と比べて流動距離差が少なくなった場合、効果ありとして○とした。
[Examples 2 and 3]
Next, the angle α1 of the connection portion with respect to the tooth surface of the injection molded resin gear manufactured in Example 1 was changed to 80, 60, and 45. Otherwise, an injection-molded resin gear was manufactured and evaluated in the same manner as in Example 1. In the judgment, when the difference in the flow distance was smaller than that in the comparative example, it was evaluated as “good”.

表2に示すように、歯面に対する接続部の角度α1を変化させることで、比較例1では、15°程度流動距離差があったが、接続部の角度α1を小さくすることで、流動距離差が小さくなり、樹脂充填の不均一差を改善する効果がみられた。   As shown in Table 2, there was a flow distance difference of about 15 ° in Comparative Example 1 by changing the angle α1 of the connecting portion with respect to the tooth surface, but the flow distance was reduced by reducing the angle α1 of the connecting portion. The difference was reduced, and the effect of improving the non-uniform difference in resin filling was observed.

〔実施例5〜14〕
次に、実施例1で製作した射出成形樹脂歯車の、歯部領域角度をθ1=θ2=105°、θ3=150°に変更した。また、θ1=θ2=110°、θ3=130°に変更した。さらに、θ1=θ2=118°、θ3=124に変更した。また、歯面に対する接続部の角度α1を80、60、45、30と変化させた。それ以外は実施例1と同様の方法で射出成形樹脂歯車を製作し、評価した。判定は、比較例と比べて流動距離差が少なくなった場合、効果ありとして○と判定し、流動距離差がないものを◎とした。
[Examples 5 to 14]
Next, the tooth region angle of the injection molded resin gear manufactured in Example 1 was changed to θ1 = θ2 = 105 ° and θ3 = 150 °. Further, θ1 = θ2 = 110 ° and θ3 = 130 ° were changed. Further, θ1 = θ2 = 118 ° and θ3 = 124 were changed. Further, the angle α1 of the connecting portion with respect to the tooth surface was changed to 80, 60, 45, and 30. Otherwise, an injection-molded resin gear was manufactured and evaluated in the same manner as in Example 1. In the determination, when the difference in flow distance was smaller than that in the comparative example, it was determined as “good” as having an effect, and “◎” was determined as having no difference in flow distance.

表3に示すように、本提案形状のように、歯部領域角度θ1、θ2、θ3が変化した場合であっても、歯面に対する接続部の角度α1を変化させることで、樹脂充填の不均一差を改善する効果が確認された。しかし、歯部領域角度が、θ1=θ2=105°、θ3=150°である、歯部領域角度の差が45°と大きい実施例5〜8では、樹脂充填の不均一差を改善する効果は少ない。   As shown in Table 3, even when the tooth region angles θ1, θ2, and θ3 are changed as in the proposed shape, the resin filling is prevented by changing the angle α1 of the connecting portion with respect to the tooth surface. The effect of improving the uniformity difference was confirmed. However, in Examples 5 to 8 in which the tooth region angle is θ1 = θ2 = 105 ° and θ3 = 150 ° and the difference in the tooth region angle is as large as 45 °, the effect of improving the uneven difference in resin filling There are few.

〔実施例15、16〕
次に、実施例1、実施例2、比較例1と同様の方法で射出成型歯車を製造し、歯車の歯先の真円度を比較した。不図示の真円度測定機(東京精密製 ロンコム65A)で歯先真円度を測定した。
[Examples 15 and 16]
Next, injection molded gears were manufactured in the same manner as in Example 1, Example 2, and Comparative Example 1, and the roundness of the tooth tips of the gears was compared. The roundness of the tooth tip was measured with a roundness measuring machine (not shown) (Roncom 65A manufactured by Tokyo Seimitsu).

この測定結果を表4に示す。   The measurement results are shown in Table 4.

表4に示されるように、比較例5では、歯先真円度は、62μmであったが、実施例15、16では、歯先真円度が36μm、22μmとなり改善効果がみられた。表4に示すように、本発明の実施により樹脂流動の不均一差を改善することで、歯先真円度は、比較例5より改善されることが確認された。   As shown in Table 4, in the comparative example 5, the tip roundness was 62 μm, but in the examples 15 and 16, the tip roundness was 36 μm and 22 μm, and an improvement effect was seen. As shown in Table 4, it was confirmed that the roundness of the tooth tip was improved as compared with Comparative Example 5 by improving the non-uniform difference in resin flow by carrying out the present invention.

〔実施例17〕
次に実施例17として、歯面に対する接続部を4つとし、図4に示す射出成形樹脂歯車を製造した。図6(a)は上面図、図6(b)は図6(a)のB−B断面図である。
Example 17
Next, as Example 17, there were four connecting portions to the tooth surface, and an injection molded resin gear shown in FIG. 4 was manufactured. 6A is a top view, and FIG. 6B is a cross-sectional view taken along the line BB in FIG. 6A.

歯部領域の角度をθ4=θ5=90°、θ6=100°、θ7=80°とし、角度Σ1を60°とした。それ以外は実施例1と同様の方法で射出成形樹脂歯車を製作し、評価した。   The angles of the tooth region were θ4 = θ5 = 90 °, θ6 = 100 °, θ7 = 80 °, and the angle Σ1 was 60 °. Otherwise, an injection-molded resin gear was manufactured and evaluated in the same manner as in Example 1.

表5に示すように、比較例6では、20°程度流動距離差があったが、歯面に対するスポークの角度Σ1の値を60°とすることで樹脂充填の不均一差を改善する効果がみられた。また、射出成形で得られた樹脂歯車を、不図示の真円度測定機(東京精密製 ロンコム65A)で歯先真円度を測定した。比較例6の樹脂歯車も同様に歯先真円度を測定した。   As shown in Table 5, in Comparative Example 6, there was a flow distance difference of about 20 °, but the effect of improving the nonuniformity in resin filling by setting the value of the angle Σ1 of the spoke to the tooth surface to 60 °. It was seen. Further, the roundness of the tooth tip of the resin gear obtained by injection molding was measured with a roundness measuring machine (not shown) (Roncom 65A manufactured by Tokyo Seimitsu). The tooth roundness of the resin gear of Comparative Example 6 was measured in the same manner.

表5に示すように、比較例6では、歯先真円度は、65μmであったが、本発明では、歯先真円度が21μmとなり改善効果がみられた。   As shown in Table 5, in Comparative Example 6, the tip roundness was 65 μm, but in the present invention, the tip roundness was 21 μm, and an improvement effect was seen.

1 歯
2 リム
3 ゲートの痕
4 接続部
5 軸部
41 ゲート
42 樹脂流動の先端部
θ1 歯部領域角度
θ2 歯部領域角度
θ3 歯部領域角度
1 tooth 2 rim 3 gate mark 4 connecting portion 5 shaft portion 41 gate 42 tip portion of resin flow θ1 tooth portion region angle θ2 tooth portion region angle θ3 tooth portion region angle

Claims (5)

環状のリムの外周に歯が形成された歯部と、中心部に形成された軸部と、前記歯部と前記軸部とを接続する複数の接続部を有し、前記複数の接続部の中心線によって前記歯部を複数の歯部領域に分割した時、前記歯の数が異なる少なくとも一つの歯部領域を有する歯車であって、
前記複数の接続部のうちの少なくとも一つの接続部の中心線が前記歯部の内周と接する点における前記歯部の内周の接線と前記中心線とのなす角度は、
前記少なくとも一つの接続部を挟んで隣接する前記歯部領域のうちの大きい歯部領域側の方が小さいことを特徴とする歯車。
A tooth portion having teeth formed on the outer periphery of an annular rim, a shaft portion formed at a center portion, and a plurality of connection portions connecting the tooth portions and the shaft portion; A gear having at least one tooth region having a different number of teeth when the tooth portion is divided into a plurality of tooth region by a center line;
The angle formed between the tangent line of the inner periphery of the tooth part and the center line at the point where the center line of at least one of the plurality of connection parts contacts the inner periphery of the tooth part is:
A gear having a larger tooth portion region side of the tooth portion regions adjacent to each other with the at least one connection portion interposed therebetween is smaller.
前記接続部は3か所に形成されることを特徴とする請求項1記載の歯車。   The gear according to claim 1, wherein the connection portion is formed at three positions. 前記歯部の内周と接する前記3か所の接続部の中心線が前記歯部の内周と接する点と、歯車の中心Oを結んだ線の間の角度の差が、6°以上であって、45°より小さいことを特徴とする請求項1または2記載の歯車。   The difference in angle between the point where the center line of the three connecting portions in contact with the inner periphery of the tooth part contacts the inner periphery of the tooth part and the line connecting the center O of the gear is 6 ° or more. The gear according to claim 1, wherein the gear is smaller than 45 °. 外周に歯が形成され前記歯の裏側に形成されたリムによる歯部と、中心部に形成された軸部と、前記歯部と前記軸部とを接続する複数の接続部を有し、前記複数の接続部によって前記歯部を複数の歯部領域に分割した時、大きさが異なる少なくとも一つの歯部領域を有する歯車の製造方法であって、
前記歯部を成形する空間、前記軸部を成形する空間、および前記複数の接続部を成形するための空間を有するキャビティの、
前記複数の接続部を成形するための空間のそれぞれから樹脂を注入し、
前記大きさが異なる少なくとも一つの歯部領域と、隣り合う歯部領域とには、前記大きさが異なる少なくとも一つの歯部領域と、隣り合う歯部領域のうち、大きい歯部領域の方に傾いている前記一つの接続部を成形するための空間から、前記歯部を成形する空間に樹脂が注入されることを特徴とする歯車の製造方法。
A tooth portion formed by a rim formed on the outer periphery and formed on the back side of the tooth, a shaft portion formed in a central portion, and a plurality of connection portions connecting the tooth portion and the shaft portion; When the tooth part is divided into a plurality of tooth part regions by a plurality of connecting parts, a manufacturing method of a gear having at least one tooth part region having a different size,
A cavity having a space for forming the tooth portion, a space for forming the shaft portion, and a space for forming the plurality of connection portions,
Injecting resin from each of the spaces for molding the plurality of connecting portions,
The at least one tooth region having a different size and the adjacent tooth region have at least one tooth region having a different size and a larger tooth region among the adjacent tooth regions. A gear manufacturing method, wherein a resin is injected into a space for forming the tooth portion from a space for forming the one connecting portion that is inclined.
前記樹脂は、ポリアセタール、ポリブチレンテレフタレート、ポリフェニレンスルフィド、ポリアミド、ナイロン、ハイトレルのいずれかを含む樹脂であることを特徴とする請求項4記載の歯車の製造方法。   The gear manufacturing method according to claim 4, wherein the resin is a resin containing any one of polyacetal, polybutylene terephthalate, polyphenylene sulfide, polyamide, nylon, and hytrel.
JP2014230122A 2014-11-12 2014-11-12 Gear, method of manufacturing gear, copier, and printer Active JP6512794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014230122A JP6512794B2 (en) 2014-11-12 2014-11-12 Gear, method of manufacturing gear, copier, and printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014230122A JP6512794B2 (en) 2014-11-12 2014-11-12 Gear, method of manufacturing gear, copier, and printer

Publications (3)

Publication Number Publication Date
JP2016093910A true JP2016093910A (en) 2016-05-26
JP2016093910A5 JP2016093910A5 (en) 2017-12-21
JP6512794B2 JP6512794B2 (en) 2019-05-15

Family

ID=56070392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014230122A Active JP6512794B2 (en) 2014-11-12 2014-11-12 Gear, method of manufacturing gear, copier, and printer

Country Status (1)

Country Link
JP (1) JP6512794B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189054A1 (en) * 2018-03-27 2019-10-03 Ntn株式会社 Annular resin molded body and composite member
CN113681948A (en) * 2020-05-18 2021-11-23 住友重机械工业株式会社 Method for manufacturing gear, and flexible engagement type gear device
WO2024004372A1 (en) * 2022-06-29 2024-01-04 Dic株式会社 Gear, robot, and gear production method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914581A (en) * 1995-06-27 1997-01-17 Ricoh Co Ltd Drive transmitting device
JPH0986717A (en) * 1995-09-29 1997-03-31 Canon Inc Gear, sheet feeder, and image reader

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914581A (en) * 1995-06-27 1997-01-17 Ricoh Co Ltd Drive transmitting device
JPH0986717A (en) * 1995-09-29 1997-03-31 Canon Inc Gear, sheet feeder, and image reader

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189054A1 (en) * 2018-03-27 2019-10-03 Ntn株式会社 Annular resin molded body and composite member
CN113681948A (en) * 2020-05-18 2021-11-23 住友重机械工业株式会社 Method for manufacturing gear, and flexible engagement type gear device
US11845205B2 (en) 2020-05-18 2023-12-19 Sumitomo Heavy Industries, Ltd. Method for producing gear, gear, and bending meshing type gear device
WO2024004372A1 (en) * 2022-06-29 2024-01-04 Dic株式会社 Gear, robot, and gear production method

Also Published As

Publication number Publication date
JP6512794B2 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
JP5768486B2 (en) Resin cage for bearing and method for manufacturing the same
JP6278693B2 (en) Injection molded resin gear and method for manufacturing the same
JP2016093910A (en) Gear and manufacturing method of gear
JP6108916B2 (en) Molded product manufacturing method and molding die
JP2009154463A (en) Method for molding injection molded resin gear and injection molded resin gear
JP2020041570A (en) Manufacturing method of rotary power transmission member
JP6632921B2 (en) Resin gear, resin gear injection molding method, resin toothed belt pulley, and resin rotating body
JP2018003872A (en) Manufacturing method of synthetic resin-made cage and synthetic resin-made cage
JP6108547B2 (en) Fiber reinforced resin gear, fiber reinforced resin gear injection molding method, fiber reinforced resin rotating body, and fiber reinforced resin rotating body injection molding method
JP2006070914A (en) Plastic gear
JP2015224664A (en) Manufacturing method of cage for rolling bearing
JP2013024262A (en) Resin retainer for rolling bearing and manufacturing method thereof
US10377070B2 (en) Method for manufacturing bearing cage
JP2013046982A (en) Manufacturing method of annular resin product, resin retainer for rolling bearing, rolling bearing, and mold
CN103291880B (en) Plastic gear and manufacture method thereof
JP2008221687A (en) Molding die of resin helical gear and resin helical gear molded using the same
JP5517345B2 (en) Manufacturing method of resin molded products
JP2017056655A (en) Injection molding machine
JP2013075504A (en) Sprue bush, pinpoint gate bush and molding die
JP4874560B2 (en) Mold
JP2011031470A (en) Resin molding
JP3959637B2 (en) Weld line generation method
JP5760555B2 (en) Aperture array manufacturing apparatus and manufacturing method
JP5994448B2 (en) Synthetic resin comb cage for cylindrical roller bearing and method for manufacturing the same
JP6818571B2 (en) Resin tubular body, resin tubular body manufacturing mold, and resin tubular body manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190409

R151 Written notification of patent or utility model registration

Ref document number: 6512794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151