JP2016092307A - Processing method of resin substrate - Google Patents

Processing method of resin substrate Download PDF

Info

Publication number
JP2016092307A
JP2016092307A JP2014227423A JP2014227423A JP2016092307A JP 2016092307 A JP2016092307 A JP 2016092307A JP 2014227423 A JP2014227423 A JP 2014227423A JP 2014227423 A JP2014227423 A JP 2014227423A JP 2016092307 A JP2016092307 A JP 2016092307A
Authority
JP
Japan
Prior art keywords
resin substrate
hole
main surface
substrate
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014227423A
Other languages
Japanese (ja)
Inventor
洋介 坂尾
Yosuke Sakao
洋介 坂尾
森川 泰宏
Yasuhiro Morikawa
泰宏 森川
宗之 佐藤
Muneyuki Sato
宗之 佐藤
谷 典明
Noriaki Tani
典明 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2014227423A priority Critical patent/JP2016092307A/en
Publication of JP2016092307A publication Critical patent/JP2016092307A/en
Pending legal-status Critical Current

Links

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a processing method of a resin substrate capable of controlling a surface shape of a main surface of a resin substrate and a surface shape of an inner side surface and an inner bottom surface of a through hole when a through hole is formed from one main surface of a resin substrate toward a conductor included in the resin substrate.SOLUTION: A processing method of a resin substrate according to the present invention is a processing method of a resin substrate in which a resin substrate 2 is used, the resin substrate including inorganic members 2a that form fillers and are dispersed into an organic member 2b, and a through hole is formed from one main surface of the resin substrate toward a conductor 3 included in the resin substrate. The processing method includes a step A of removing an inner bottom surface 4 of a non through hole by a dry etching method with respect to a resin substrate where the non through hole is preliminarily formed from the one main surface in a region where the through hole is to be provided, and the flatness of the one main surface of the resin substrate is maintained.SELECTED DRAWING: Figure 1

Description

本発明は、ドライエッチング法を用いて樹脂基板に貫通孔を形成する樹脂基板の加工方法に関する。   The present invention relates to a method for processing a resin substrate in which a through hole is formed in the resin substrate using a dry etching method.

近年、プリント基板用途の樹脂基板として、プリプレグと呼ばれるガラス布にエポキシ樹脂を含浸した材料を用いて、その上に、ビルドアップフィルムを用いて、回路を形成する方法が用いられている。このような樹脂基板は、寸法変化が小さく、高周波特性や絶縁抵抗が高いことから、絶縁性や機械強度が高く長寿命という特長を有している。しかしながら、樹脂基板は、ガラス布にエポキシ樹脂を含浸した材料ゆえに、その加工は難しいことが知られている。   In recent years, a method for forming a circuit using a build-up film on a glass cloth called a prepreg impregnated with an epoxy resin has been used as a resin substrate for printed circuit boards. Such a resin substrate has the features of high insulation and mechanical strength and long life because of small dimensional change and high frequency characteristics and insulation resistance. However, it is known that the resin substrate is difficult to process because it is a material in which a glass cloth is impregnated with an epoxy resin.

搭載される機器の小型・軽量化に伴い、樹脂基板における貫通配線を含む導電部についても、さらなる細線化や高密度化が求められている。従来、樹脂基板に貫通配線を含む導電部の形成法としてめっき法が用いられ、この要求に応えてきた(特許文献1、2)。
たとえば、従来の手法では、図11に示すように、樹脂基板102に備えた導体103に向けて、貫通孔を設ける領域に一方の主面102sから、所望の手法(ドリル加工やレーザー加工などの既知の手法)により、予め非貫通孔105が形成された基板101を用意し、該樹脂基板の一方の主面102sからエッチング液を用いて貫通孔を形成した後、該樹脂基板をめっき液に浸漬することにより、貫通孔にめっき液を充填し、貫通孔内に薄膜の導電部を形成する。しかしながら、貫通孔の小径化に伴い、貫通孔内に残存するエッチング液を除去する一連の操作(いわゆる、ウェットプロセス)が困難になりつつある。すなわち、めっき液の残渣が貫通孔内から抜けず、その後の工程に影響を及ぼすことが懸念されている。
Along with the reduction in size and weight of the equipment to be mounted, further thinning and higher density are required for the conductive portion including the through wiring in the resin substrate. Conventionally, a plating method has been used as a method for forming a conductive portion including a through wiring on a resin substrate, and this requirement has been met (Patent Documents 1 and 2).
For example, in the conventional method, as shown in FIG. 11, a desired method (such as drilling or laser processing) is performed from one main surface 102s in the region where the through hole is provided toward the conductor 103 provided on the resin substrate 102. The substrate 101 in which the non-through hole 105 is previously formed is prepared by a known method), and the through hole is formed from one main surface 102s of the resin substrate using an etching solution, and then the resin substrate is used as a plating solution. By dipping, the through hole is filled with a plating solution, and a conductive portion of a thin film is formed in the through hole. However, as the diameter of the through hole is reduced, a series of operations (so-called wet process) for removing the etching solution remaining in the through hole is becoming difficult. That is, there is a concern that the residue of the plating solution does not escape from the inside of the through hole and affects subsequent processes.

また、貫通孔の小径化により、アスペクト比[貫通孔の深さ/開口径(幅)]が増大し、導電部の薄膜化が求められている。これに伴い、導電部において、貫通孔内において接する部位(貫通孔の内底面、内側面をなす樹脂基板の表面)や、この部位から貫通孔外に延びる貫通孔の開口部近傍に位置する部位(開口部が設けられた樹脂基板の一主面をなす表面において開口部の周縁付近の部位)における粗さが、配線長を増長し、デバイスの高周波特性を劣化させる影響が顕在化した。   In addition, the reduction in the diameter of the through hole increases the aspect ratio [depth of the through hole / opening diameter (width)], and there is a demand for thinning of the conductive portion. Along with this, in the conductive part, the part that is in contact with the inside of the through hole (the inner bottom surface of the through hole, the surface of the resin substrate that forms the inner side surface), or the part that is located near the opening of the through hole that extends from this part The effect of roughness in the portion near the periphery of the opening on the surface forming one main surface of the resin substrate provided with the opening increases the wiring length and degrades the high-frequency characteristics of the device.

図11(c)は、エッチング液を用いて処理された樹脂基板上に、めっき法により形成した導電部の表面プロファイルを示すSEM写真である。図11(c)の写真から明らかなように、ウェットプロセスにより形成されためっき膜の表面は、エッチング液により形成された樹脂基板のプロファイルが反映される。すなわち、エッチング後の樹脂基板の表面は、有機部材が積極的に削られており、有機部材に分散して含まれる無機部材(フィラー)が有機部材のなす面から突出してなるプロファイル102Asとなる。ゆえに、その上に形成されるめっき膜も、このエッチング液で処理された後の樹脂基板の表面プロファイルを反映した表面形状にならざるを得ない。   FIG. 11C is an SEM photograph showing a surface profile of a conductive portion formed by plating on a resin substrate treated with an etching solution. As is apparent from the photograph of FIG. 11C, the profile of the resin substrate formed by the etching solution is reflected on the surface of the plating film formed by the wet process. That is, the surface of the resin substrate after the etching has a profile 102As in which the organic member is actively cut and the inorganic member (filler) dispersed and contained in the organic member protrudes from the surface formed by the organic member. Therefore, the plating film formed thereon must also have a surface shape reflecting the surface profile of the resin substrate after being treated with this etching solution.

このようなエッチング後の樹脂基板の表面プロファイルに関する問題は、樹脂基板の一主面のみならず、貫通孔の内側面や内底面においても同様に解決されるべき課題である。
したがって、従来のウェットプロセスを用いた製法では、貫通孔の小径化に伴い、膜厚が薄く、かつ、平坦な導電膜を、樹脂基板上に形成することは極めて困難であり、これを打開する新たな製法の開発が期待されていた。
Such a problem concerning the surface profile of the resin substrate after etching is a problem to be solved not only on one main surface of the resin substrate but also on the inner side surface and the inner bottom surface of the through hole.
Therefore, in the manufacturing method using the conventional wet process, it is extremely difficult to form a thin and flat conductive film on the resin substrate as the diameter of the through hole is reduced. Development of a new manufacturing method was expected.

特開2002−217536号公報JP 2002-217536 A 特開2004−146533号公報JP 2004-146533 A

本発明は、このような従来の実情に鑑みて考案されたものであり、樹脂基板に備えた導体に向けて、該樹脂基板の一方の主面から貫通孔を形成した際に、樹脂基板の主面や、貫通孔の内側面および内底面における表面形状(プロファイル)を制御することが可能な、樹脂基板の加工方法を提供することを目的とする。   The present invention has been devised in view of such a conventional situation, and when a through hole is formed from one main surface of the resin substrate toward a conductor provided in the resin substrate, the resin substrate It is an object of the present invention to provide a method for processing a resin substrate capable of controlling the main surface and the surface shapes (profiles) on the inner side surface and inner bottom surface of a through hole.

本発明の請求項1に記載の樹脂基板の加工方法は、フィラーをなす無機部材が有機部材に分散して含まれてなる樹脂基板を用い、該樹脂基板に備えた導体に向けて、該樹脂基板の一方の主面から貫通孔を形成する樹脂基板の加工方法であって、前記貫通孔を設ける領域に前記一方の主面から、(所望の手法によって)予め非貫通孔が形成された樹脂基板に対して、ドライエッチング法により前記非貫通孔の内底面を除去し、該樹脂基板の一方の主面を平坦化する工程Aを含むことを特徴とする。
本発明の請求項2に記載の樹脂基板の加工方法は、請求項1において、前記工程Aは、前記樹脂基板の一方の主面が、前記有機部材から前記無機部材が欠落した凹部を含む表面プロファイルを形成することを特徴とする。
本発明の請求項3に記載の樹脂基板の加工方法は、請求項1において、前記工程Aは、前記樹脂基板の一方の主面が、前記有機部材から前記無機部材が突出した凸部を含む表面プロファイルを形成することを特徴とする。
本発明の請求項4に記載の樹脂基板の加工方法は、請求項1において、前記工程Aは、前記樹脂基板の一方の主面が、前記有機部材に前記無機部材が局在し、かつ、該有機部材の領域と該無機部材の領域が面一をなす表面プロファイルを形成することを特徴とする。
本発明の請求項5に記載の樹脂基板の加工方法は、フィラーをなす無機部材が有機部材に分散して含まれてなる樹脂基板を用い、該樹脂基板に備えた導体に向けて、該樹脂基板の一方の主面から貫通孔を形成する樹脂基板の加工方法であって、前記貫通孔を設ける領域にあたる前記一方の主面に保護シートを設けてから、(所望の手法によって)予め非貫通孔が形成された樹脂基板に対して、ドライエッチング法により前記非貫通孔の内底面を除去し、前記非貫通孔の内側面を平坦化する工程Bを含むことを特徴とする。
本発明の請求項6に記載の樹脂基板の加工方法は、フィラーをなす無機部材が有機部材に分散して含まれてなる樹脂基板を用い、該樹脂基板に備えた導体に向けて、該樹脂基板の一方の主面から貫通孔を形成する樹脂基板の加工方法であって、前記貫通孔を設ける領域にあたる前記一方の主面にマスクを設けてから、ドライエッチング法により前記貫通孔を形成し、前記非貫通孔の内側面を平坦化する工程Cを含むことを特徴とする。
本発明の請求項7に記載の樹脂基板の加工方法は、請求項1乃至6のいずれか一項において、前記工程A乃至Cは、前記導体を露呈させ、かつ該導体の露呈部の平坦化も行うことを特徴とする。
The method of processing a resin substrate according to claim 1 of the present invention uses a resin substrate in which an inorganic member forming a filler is dispersed and contained in an organic member, and the resin substrate is directed toward a conductor provided in the resin substrate. A method of processing a resin substrate in which a through hole is formed from one main surface of a substrate, wherein a non-through hole is previously formed (by a desired method) from the one main surface in a region where the through hole is provided The method includes a step A of removing the inner bottom surface of the non-through hole from the substrate by a dry etching method and flattening one main surface of the resin substrate.
According to a second aspect of the present invention, there is provided the method for processing a resin substrate according to the first aspect, wherein in the step A, one main surface of the resin substrate includes a concave portion in which the inorganic member is missing from the organic member. A profile is formed.
According to a third aspect of the present invention, there is provided the method for processing a resin substrate according to the first aspect, wherein in the step A, one main surface of the resin substrate includes a convex portion in which the inorganic member protrudes from the organic member. A surface profile is formed.
The method for processing a resin substrate according to claim 4 of the present invention is the method of processing a resin substrate according to claim 1, wherein in the step A, the one main surface of the resin substrate has the inorganic member localized in the organic member, and The organic member region and the inorganic member region form a surface profile that is flush with each other.
The method for processing a resin substrate according to claim 5 of the present invention uses a resin substrate in which an inorganic member forming a filler is dispersed and contained in an organic member, and the resin substrate is directed toward a conductor provided in the resin substrate. A method of processing a resin substrate in which a through hole is formed from one main surface of a substrate, wherein a protective sheet is provided on the one main surface corresponding to a region where the through hole is provided, and then a non-penetrating in advance (by a desired method) The method includes a step B of removing the inner bottom surface of the non-through hole by a dry etching method and flattening the inner surface of the non-through hole with respect to the resin substrate in which the hole is formed.
The method for processing a resin substrate according to claim 6 of the present invention uses a resin substrate in which an inorganic member forming a filler is dispersed and included in an organic member, and the resin substrate is directed toward a conductor provided in the resin substrate. A method of processing a resin substrate in which a through hole is formed from one main surface of a substrate, wherein a mask is provided on the one main surface corresponding to a region where the through hole is provided, and then the through hole is formed by a dry etching method. And a step C of flattening the inner surface of the non-through hole.
According to a seventh aspect of the present invention, there is provided the method for processing a resin substrate according to any one of the first to sixth aspects, wherein the steps A to C expose the conductor and planarize an exposed portion of the conductor. Is also performed.

本発明は、予め非貫通孔が形成された樹脂基板に対して、ドライエッチング法により前記非貫通孔の内底面を除去し、該樹脂基板の一方の主面を平坦化する工程Aを備えることにより、樹脂基板の主面や、貫通孔の内側面および内底面における表面形状(プロファイル)を制御することが可能である。これにより、上記工程Aによれば、樹脂基板の主面とともに、その主面に形成された貫通孔の内側面や内底面についても、各面の平坦化を図ることができる。
したがって、本発明は、「樹脂基板に備えた導体に向けて、該樹脂基板の一方の主面から貫通孔を形成した際に、樹脂基板の主面や、貫通孔の内側面および内底面における表面形状(プロファイル)を制御することが可能な樹脂基板の加工方法」の提供に貢献する。
The present invention includes a step A for removing a inner bottom surface of the non-through hole by a dry etching method and flattening one main surface of the resin substrate with respect to a resin substrate in which a non-through hole is formed in advance. Thus, it is possible to control the surface shape (profile) of the main surface of the resin substrate and the inner side surface and inner bottom surface of the through hole. Thereby, according to the said process A, each surface can be planarized also about the inner surface and inner bottom face of the through-hole formed in the main surface with the main surface of the resin substrate.
Therefore, according to the present invention, when the through hole is formed from one main surface of the resin substrate toward the conductor provided in the resin substrate, the main surface of the resin substrate, the inner side surface and the inner bottom surface of the through hole are formed. This contributes to the provision of a “resin substrate processing method capable of controlling the surface shape (profile)”.

本発明に係る樹脂基板の加工方法で形成された樹脂基板の断面図と基板表面のSEM写真、及びエッチング条件を示すグラフ。Sectional drawing of the resin substrate formed with the processing method of the resin substrate which concerns on this invention, the SEM photograph of a substrate surface, and the graph which shows etching conditions. 本発明に係るエッチング法で用いるエッチング装置の一例を示す断面図。Sectional drawing which shows an example of the etching apparatus used with the etching method which concerns on this invention. 本発明に係る第一実施形態を示す断面図と基板表面のSEM写真。Sectional drawing which shows 1st embodiment which concerns on this invention, and the SEM photograph of a substrate surface. 本発明に係る第二実施形態を示す断面図と基板表面のSEM写真。Sectional drawing which shows 2nd embodiment which concerns on this invention, and the SEM photograph of a substrate surface. 本発明に係る第三実施形態を示す断面図と基板表面のSEM写真。Sectional drawing which shows 3rd embodiment which concerns on this invention, and the SEM photograph of a substrate surface. 本発明に係る第四実施形態を示す断面図と基板表面のSEM写真。Sectional drawing which shows 4th embodiment which concerns on this invention, and the SEM photograph of a substrate surface. 本発明に係る第五実施形態を示す断面図と基板表面のSEM写真。Sectional drawing which shows 5th embodiment which concerns on this invention, and the SEM photograph of a substrate surface. 貫通孔の内側面の観察方法を説明する図。The figure explaining the observation method of the inner surface of a through-hole. 貫通孔の内底面を観察したSEM写真と組成分析結果。The SEM photograph and composition analysis result which observed the inner bottom face of the through-hole. 貫通孔の内側面および内底面を観察した断面SEM写真。The cross-sectional SEM photograph which observed the inner surface and inner bottom face of the through-hole. 従来の方法で形成された樹脂基板の断面図と基板表面のSEM写真。Sectional drawing of the resin substrate formed by the conventional method, and the SEM photograph of the substrate surface.

以下では、本発明に係るエッチング方法が適用される一実施形態について、図面に基づいて説明する。   Hereinafter, an embodiment to which an etching method according to the present invention is applied will be described with reference to the drawings.

図1は、本発明に係る樹脂基板の加工方法で形成された樹脂基板の断面図(a)と基板表面のSEM写真(b)、及びエッチング条件を示すグラフ(c)である。
本発明は、フィラーをなす無機部材2aが有機部材2bに分散して含まれてなる樹脂基板2と、該樹脂基板2に備えた導体3とから構成される基板1を用い、該樹脂基板2の一方の主面2s(図1においては上面)から前記導体3に向けて貫通孔6を形成する樹脂基板の加工方法である。図1は、導体3が樹脂基板2の他方の主面2rに設けた構成を示しているが、樹脂基板2と導体3との位置関係はこれに限定されるものではなく、導体3が樹脂基板2の中に配置された構成としてもよい。
FIG. 1 is a cross-sectional view (a) of a resin substrate formed by the method for processing a resin substrate according to the present invention, an SEM photograph (b) of the substrate surface, and a graph (c) showing etching conditions.
The present invention uses a substrate 1 composed of a resin substrate 2 in which an inorganic member 2a serving as a filler is dispersed and contained in an organic member 2b, and a conductor 3 provided on the resin substrate 2, and the resin substrate 2 This is a method of processing a resin substrate in which a through hole 6 is formed from one main surface 2s (upper surface in FIG. 1) toward the conductor 3. FIG. 1 shows a configuration in which the conductor 3 is provided on the other main surface 2r of the resin substrate 2. However, the positional relationship between the resin substrate 2 and the conductor 3 is not limited to this, and the conductor 3 is made of resin. It is good also as a structure arrange | positioned in the board | substrate 2. FIG.

上述した樹脂基板の加工方法では、樹脂基板2の一方の主面2sにおいて、貫通孔6を設ける領域に前記一方の主面2sから、所望の手法(ドリル加工やレーザー加工などの既知の手法)により、予め非貫通孔5が形成された樹脂基板2を用いる。非貫通孔5が設けられた樹脂基板2に対して、ドライエッチング法を用い、非貫通孔5の内底面4を除去するとともに、樹脂基板2の一方の主面2sは平坦性を保つ工程Aを含んでいる。
ここで、樹脂基板2としては、例えば、シリカなどから構成される無機部材2aが、エポキシなどから構成される有機部材2bに、分散して含まれたものが好適に用いられる。
In the resin substrate processing method described above, a desired method (a known method such as drilling or laser processing) is performed from the one main surface 2s in the region where the through hole 6 is provided on one main surface 2s of the resin substrate 2. Thus, the resin substrate 2 in which the non-through holes 5 are formed in advance is used. A process A is used to remove the inner bottom surface 4 of the non-through hole 5 from the resin substrate 2 provided with the non-through hole 5 and to keep the one main surface 2s of the resin substrate 2 flat. Is included.
Here, as the resin substrate 2, for example, an inorganic member 2 a made of silica or the like and dispersed in an organic member 2 b made of epoxy or the like is preferably used.

ドライエッチング法において用いるプロセスガスとしては、フッ素を含むガス(以下、F系ガスとも呼ぶ)が好ましく、例えば、SF、NF、CF、CHF、CH、CHF、C、C、Cなどが挙げられる。
また、上記プロセスガスに添加するガスとしては、例えば、O、N、OとNの混合ガスなどが挙げられる。
As the process gas used in the dry etching method, a gas containing fluorine (hereinafter also referred to as F-based gas) is preferable. For example, SF 6 , NF 3 , CF 4 , CHF 3 , CH 2 F 2 , CH 3 F, C 2 F 6 , C 3 F 8 , C 4 F 8 and the like.
Examples of the gas added to the process gas include O 2 , N 2 , and a mixed gas of O 2 and N 2 .

本発明に係る樹脂基板の加工方法は、ドライエッチング法を用いた工程Aを採用したことにより、図1(樹脂基板の断面図、基板表面のSEM写真)に示すように、樹脂基板2の一方の主面2sが異なる3種類の表面形状(α形状、β形状、γ形状)をもつように、加工処理することができる。   Since the processing method of the resin substrate according to the present invention employs the process A using the dry etching method, as shown in FIG. 1 (sectional view of the resin substrate, SEM photograph of the substrate surface), one of the resin substrates 2 is processed. The main surface 2s can be processed so as to have three different surface shapes (α shape, β shape, γ shape).

α形状は、樹脂基板2のうち、無機部材2aの方が有機部材2bに比べて積極的にエッチングされてなる表面プロファイルであり、無機部材2aが欠落した凹部を有する有機部材2bから表面が構成されている。   The α shape is a surface profile in which the inorganic member 2 a is more actively etched than the organic member 2 b in the resin substrate 2, and the surface is formed from the organic member 2 b having a recess from which the inorganic member 2 a is missing. Has been.

γ形状は、前記α形状とは逆に、樹脂基板2のうち、有機部材2bの方が無機部材2aに比べて積極的にエッチングされてなる表面プロファイルであり、無機部材2aが局所的に突出した有機部材2bから表面が構成されている。   Contrary to the α shape, the γ shape is a surface profile in which the organic member 2b of the resin substrate 2 is more actively etched than the inorganic member 2a, and the inorganic member 2a protrudes locally. The surface is composed of the organic member 2b.

β形状は、α形状とγ形状の間に位置しており、樹脂基板2のうち、無機部材2aと有機部材2bが同レベルでエッチングされてなる表面プロファイルであり、平坦に削れられた無機部材2aが平坦な有機部材2bの中に離散して表面が構成されている。ゆえに、β形状は、α形状やγ形状に比べて優れた平坦性を有する。   The β shape is located between the α shape and the γ shape, and is a surface profile formed by etching the inorganic member 2 a and the organic member 2 b at the same level in the resin substrate 2, and the inorganic member is cut flat. The surface is constituted by 2a being dispersed in the flat organic member 2b. Therefore, the β shape has superior flatness compared to the α shape and the γ shape.

上述した3種類の異なる表面形状α、β、γは、ドライエッチング法におけるエッチング条件、たとえば添加ガス流量を調整することにより、安定して作り分けることが可能である。図1(c)のグラフは、プロセスガスがCFとCHFの混合ガスであり、添加ガスとしてOを用いた場合の結果である。
たとえば、(プロセスガス/添加ガス)の比は、表面形状αとする場合「<(400/20)」、表面形状βとする場合「(400/20)〜(400/60)」、表面形状γとする場合「>(400/60)」とすればよい。
このように添加ガス流量を調整するとともに、プロセス圧力4Paにて、13.56MHzの高周波電源を用い、2.5kWの投入パワーにて、樹脂基板を処理した。
The three different types of surface shapes α, β, and γ described above can be formed stably by adjusting the etching conditions in the dry etching method, for example, the additive gas flow rate. The graph of FIG. 1C shows the results when the process gas is a mixed gas of CF 4 and CHF 3 and O 2 is used as the additive gas.
For example, the ratio of (process gas / added gas) is “<(400/20)” when the surface shape α is set, and “(400/20) to (400/60)” when the surface shape β is set, the surface shape When γ, “> (400/60)” may be used.
In this way, the flow rate of the additive gas was adjusted, and the resin substrate was processed at a process pressure of 4 Pa using a high frequency power supply of 13.56 MHz and a power of 2.5 kW.

図1(c)のグラフは、横軸が添加ガスの流量[sccm]、縦軸がエッチング速度[nm/min]である。図1(c)において、◇印は無機部材(熱酸化膜で代用)、□印は有機部材(フォトレジストで代用)の結果である。無機部材は、添加ガスの流量が増加するに伴い、エッチング速度が単調に減少する傾向を示した。これに対して、有機部材は、添加ガスの流量が増加するに伴い、エッチング速度が単調に増加する傾向を示した。   In the graph of FIG. 1C, the horizontal axis represents the flow rate [sccm] of the additive gas, and the vertical axis represents the etching rate [nm / min]. In FIG. 1 (c), the symbol ◇ indicates the result of an inorganic member (substitute with a thermal oxide film), and the symbol □ indicates the result of an organic member (substitute with a photoresist). The inorganic member tended to monotonously decrease the etching rate as the flow rate of the additive gas increased. On the other hand, the organic member showed a tendency that the etching rate monotonously increased as the flow rate of the additive gas increased.

つまり、このような無機部材と有機部材の相反する傾向を利用することにより、添加ガスの流量を増加するだけで、樹脂基板の表面形状を 「α形状→β形状→γ形状」と変化させることが可能あることが明らかとなった。この結果から、添加ガスの流量を増加するだけで、樹脂基板の表面形状が、「α形状→β形状→γ形状」と変化する理由として、以下のメカニズムが推定される。   In other words, the surface shape of the resin substrate can be changed from “α shape → β shape → γ shape” simply by increasing the flow rate of the additive gas by utilizing the conflicting tendency between the inorganic member and the organic member. It became clear that this is possible. From this result, the following mechanism is estimated as the reason why the surface shape of the resin substrate changes from “α shape → β shape → γ shape” only by increasing the flow rate of the additive gas.

添加ガスの流量が小さい条件[α領域(SF:Silica Fast)]では、フィラーをなす無機部材2aに対するエッチング速度が高く、有機部材2bに対するエッチング速度が低くなる傾向がある。これにより、樹脂基板の表面から無機部材2aが積極的に除去され、その除去された部分が有機部材2bに凹部として樹脂基板の表面に痕跡として残存する表面形状が得られる。すなわち、α領域におけるエッチング速度は、「Epoxy<Silica」 という関係にある。   Under conditions where the flow rate of the additive gas is small [α region (SF: Silica Fast)], the etching rate for the inorganic member 2a forming the filler tends to be high and the etching rate for the organic member 2b tends to be low. Thereby, the inorganic member 2a is positively removed from the surface of the resin substrate, and a surface shape in which the removed portion remains as a trace on the surface of the resin substrate as a recess in the organic member 2b is obtained. That is, the etching rate in the α region has a relationship of “Epoxy <Silica”.

これとは逆に、添加ガスの流量が大きい条件[γ領域(OP:Org Fast)]では、フィラーをなす無機部材2aに対するエッチング速度が低く、有機部材2bに対するエッチング速度が高くなる傾向がある。これにより、樹脂基板の表面から有機部材2bが積極的に除去され、その除去された有機部材2bから無機部材2aが突出して凸部をなす表面形状が得られる。すなわち、γ領域におけるエッチング速度は、「Epoxy>Silica」 という関係にある。   On the contrary, under the condition where the flow rate of the additive gas is large [γ region (OP: Org Fast)], the etching rate for the inorganic member 2a forming the filler tends to be low and the etching rate for the organic member 2b tends to be high. Thereby, the organic member 2b is positively removed from the surface of the resin substrate, and a surface shape in which the inorganic member 2a protrudes from the removed organic member 2b to form a convex portion is obtained. That is, the etching rate in the γ region has a relationship of “Epoxy> Silica”.

添加ガスの流量が、前記α領域と前記γ領域の中間となる条件[β領域(SM:Smooth)]では、フィラーをなす無機部材2aに対するエッチング速度と、有機部材2bに対するエッチング速度とが、ほぼ同等になる傾向がある。これにより、樹脂基板の表面から無機部材2aと有機部材2bがほぼ均等に除去されることになり、最終的には、有機部材2bの平坦な加工面と面一をなすように、平坦な加工面をもつ無機部材2aが、有機部材2bの中に散在してなる表面が得られる。すなわち、β領域におけるエッチング速度は、「Epoxy≒Silica」 という関係にある。   Under the condition [β region (SM: Smooth)] where the flow rate of the additive gas is intermediate between the α region and the γ region, the etching rate with respect to the inorganic member 2a forming the filler and the etching rate with respect to the organic member 2b are approximately There is a tendency to be equivalent. As a result, the inorganic member 2a and the organic member 2b are almost uniformly removed from the surface of the resin substrate, and finally flat processing is performed so as to be flush with the flat processing surface of the organic member 2b. A surface in which the inorganic member 2a having a surface is scattered in the organic member 2b is obtained. That is, the etching rate in the β region has a relationship of “Epoxy≈Silica”.

上述した3つの領域α、β、γを作り分けることが可能なエッチング方法は、「ドライエッチング法により、樹脂基板に設けられた非貫通孔の内底面を除去し、該樹脂基板の一方の主面は平坦性を保つ工程Aを備えたエッチング方法」として最適である。何故ならば、樹脂基板の内底面を除去して貫通孔を形成した後、貫通孔を通じて樹脂基板の両面が電気的な接続をするように、貫通孔内に導通部材を埋設する必要がある。その際、下地として薄膜のシード層を設ける必要があるが、シード層の被膜性能は、樹脂基板の表面形状に依存するからである。シード層の膜厚や材料、層構成などの各条件に適宜対応するためには、上述した3つの領域からなる表面形状を、自在に構築できる製法の開発が期待されていた。求められていた。従来のウェットエッチング法では、本発明で言うところのγ領域の表面形状しか得られないため、シード層の各条件に十分に対応することは難しい状況にあった。本発明は、この課題を解消することに寄与するものである。   The above-mentioned etching method capable of separately creating the three regions α, β, and γ is as follows: “By dry etching, the inner bottom surface of the non-through hole provided in the resin substrate is removed and one main surface of the resin substrate is removed. The surface is optimal as an etching method including the step A for maintaining flatness. This is because, after the inner bottom surface of the resin substrate is removed and the through hole is formed, it is necessary to embed a conductive member in the through hole so that both surfaces of the resin substrate are electrically connected through the through hole. At that time, it is necessary to provide a thin seed layer as a base, because the coating performance of the seed layer depends on the surface shape of the resin substrate. In order to appropriately cope with various conditions such as the film thickness, material, and layer configuration of the seed layer, development of a manufacturing method capable of freely constructing the surface shape composed of the three regions described above has been expected. It was sought after. In the conventional wet etching method, only the surface shape of the γ region referred to in the present invention can be obtained, so that it has been difficult to sufficiently cope with each condition of the seed layer. The present invention contributes to solving this problem.

本発明係るエッチング方法は、例えば、図2に示した上方からガスを導入してプラズマを生成し、下方の基板をエッチング加工する平行平板プラズマエッチング装置10を使用して実施できる。図2において、符号11はガスボンベ等のガスの供給源12a,12bに接続されたガス導入系12と、真空ポンプに接続された排気系13を有するチャンバを示す。なお、図2においては、各ガスの供給源12a,12bごとに設けられるバルブや流量計などは省略して描写してある。しかしながら、後述するとおり、図2の平行平板プラズマCVD装置10においても、ガス導入の開閉制御や流量制御を行うことから、ガス導入系12の必要な箇所に、バルブや流量は適宜備えている。   The etching method according to the present invention can be carried out, for example, using the parallel plate plasma etching apparatus 10 that generates a plasma by introducing a gas from the upper side shown in FIG. 2 and etches the lower substrate. In FIG. 2, reference numeral 11 denotes a chamber having a gas introduction system 12 connected to gas supply sources 12a and 12b such as a gas cylinder and an exhaust system 13 connected to a vacuum pump. In FIG. 2, the valves and flow meters provided for the gas supply sources 12a and 12b are omitted. However, as will be described later, the parallel plate plasma CVD apparatus 10 of FIG. 2 also performs opening / closing control and flow rate control of gas introduction, so that valves and flow rates are appropriately provided at necessary portions of the gas introduction system 12.

チャンバ11内には、平板状の電極14,15が上下に平行して設けられており、上方に位置する電極14には高周波電力を与える高周波電源16aが、下方に位置する電極15にはバイアス電力を与えるバイアス電源16bが、それぞれ電気的に接続されている。下方に位置する電極15の上には、エッチング処理される基板Sub(前述した「予め非貫通孔5が形成された樹脂基板2」に相当)が搭載される。   Flat electrodes 14 and 15 are provided in the chamber 11 in parallel in the vertical direction. A high-frequency power source 16a for applying high-frequency power to the upper electrode 14 and a bias for the lower electrode 15 are provided. Bias power supplies 16b for supplying power are electrically connected to each other. On the electrode 15 positioned below, a substrate Sub to be etched (corresponding to the above-described “resin substrate 2 in which the non-through holes 5 are formed in advance”) is mounted.

上方の電極14をその前面にシャワープレート18を備えた中空の電極で構成し、その中空部19に該ガス導入系12を接続して該中空部19内へ導入した反応ガスを該シャワープレート18に形成した多数のガス噴出口18aからチャンバ11内へ均一に噴出させるようにした。また、下方の電極15は基板Subを加熱するヒーターとしての機能を具備する。ガス導入系12には、エッチング処理をおこなう際に供給される、プロセスガスの供給源12aと、添加ガスの供給源12bとが具備されており、これらのガスを各々、流量調整して導入可能とされている。   The upper electrode 14 is constituted by a hollow electrode provided with a shower plate 18 on the front surface thereof, and the reaction gas introduced into the hollow portion 19 by connecting the gas introduction system 12 to the hollow portion 19 is introduced into the shower plate 18. It was made to eject uniformly into the chamber 11 from the many gas ejection ports 18a formed in the above. Further, the lower electrode 15 has a function as a heater for heating the substrate Sub. The gas introduction system 12 is provided with a process gas supply source 12a and an additive gas supply source 12b which are supplied when performing the etching process, and these gases can be introduced by adjusting their flow rates. It is said that.

真空排気されたチャンバ11内に、ガス導入系12から所望のガス(プロセスガス+添加ガス)を導入し、所定の圧力に調整した後、高周波電源16aから例えば13.56MHz等の高周波電力を投入して両電極14,15間にプラズマを発生させる。また、必要に応じて、電極15には、バイアス電源16bからバイアス電力として高周波電力を印加する。その際、電極15に載置された基板Subが、所定の温度となるように制御した状態とする。   A desired gas (process gas + additive gas) is introduced from the gas introduction system 12 into the evacuated chamber 11 and adjusted to a predetermined pressure, and then a high frequency power such as 13.56 MHz is input from the high frequency power supply 16a. Thus, plasma is generated between the electrodes 14 and 15. Further, as necessary, high frequency power is applied to the electrode 15 as bias power from the bias power supply 16b. At that time, the substrate Sub placed on the electrode 15 is controlled to have a predetermined temperature.

これにより、電極15に載置された基板Subは、所望の時間だけプラズマに曝されることにより、基板Subの一方の面側(上方に位置する電極14と対向する面側)がエッチングされる。すなわち、基板Sub(予め非貫通孔が形成された樹脂基板)のち、非貫通孔の開口部の周囲をなす一方の主面とともに、非貫通孔の内底面がエッチングされる。このエッチング処理は、非貫通孔の内底面がエッチングにより加工され、3が露呈して、非貫通孔が貫通孔となるまで行われる。その際、非貫通孔の開口部の周囲をなす一方の主面も、エッチング処理の影響を受けることになる。   As a result, the substrate Sub placed on the electrode 15 is exposed to plasma for a desired time, whereby one surface side of the substrate Sub (surface side facing the electrode 14 positioned above) is etched. . That is, after the substrate Sub (resin substrate on which a non-through hole is formed in advance), the inner bottom surface of the non-through hole is etched together with one main surface that forms the periphery of the opening of the non-through hole. This etching process is performed until the inner bottom surface of the non-through hole is processed by etching, 3 is exposed, and the non-through hole becomes a through hole. At this time, one main surface surrounding the opening of the non-through hole is also affected by the etching process.

貫通孔が形成された後、導電部材で貫通孔を埋設するため、貫通孔の開口部の周囲をなす一方の主面とともに、貫通孔の内側面および内底面に対して、薄膜のシード層を予め形成する必要がある。薄膜のシード層による被覆状況は、その被覆面をなす「貫通孔の開口部の周囲をなす一方の主面」及び「貫通孔の内側面および内底面」の表面形状(プロファイル)の影響を受ける。ゆえに、これらの各面における表面プロファイルを、所望の形状に制御する技術が重要となる。
以下では、上述した3つの領域α、β、γについて、図3〜5を参照し、より詳細に説明する。
After the through hole is formed, in order to embed the through hole with the conductive member, a thin film seed layer is formed on the inner side surface and the inner bottom surface of the through hole together with one main surface surrounding the opening of the through hole. It is necessary to form in advance. The coating condition of the thin film seed layer is affected by the surface shape (profile) of the "one main surface surrounding the opening of the through hole" and the "inner surface and inner bottom surface of the through hole" forming the coated surface. . Therefore, a technique for controlling the surface profile on each of these surfaces to a desired shape is important.
Hereinafter, the three regions α, β, and γ described above will be described in more detail with reference to FIGS.

<第一実施形態>
図3は、本発明に係る第一実施形態を示す断面図と基板表面のSEM写真であり、領域αを形成する場合を表している。図3において、(a)は樹脂基板が未処理の状態、(b)は非貫通孔が形成された状態、(c)は工程Aにより貫通孔が形成された状態、(d)はシード層が形成された状態、を各々表している。(b)と(c)において断面図の右側に配置した写真は、各状態における基板表面のSEM写真である。
<First embodiment>
FIG. 3 is a cross-sectional view showing the first embodiment according to the present invention and an SEM photograph of the substrate surface, and shows the case where the region α is formed. 3A is a state in which the resin substrate is not processed, FIG. 3B is a state in which a non-through hole is formed, FIG. 3C is a state in which a through hole is formed in Step A, and FIG. 3D is a seed layer. Represents the state in which is formed. The photographs arranged on the right side of the sectional views in (b) and (c) are SEM photographs of the substrate surface in each state.

図3(a)は、フィラーをなす無機部材2aが有機部材2bに分散して含まれてなる樹脂基板2と、該樹脂基板2に備えた導体3とから構成される基板1を示している。
図3(b)は、図3(a)の基板1を用い、樹脂基板2の一方の主面2s(図3においては上面)において、貫通孔を設ける領域に前記一方の主面2sから、所望の手法(ドリル加工やレーザー加工などの既知の手法)により、予め非貫通孔5が形成された樹脂基板2を示している。図3(b)の写真は、樹脂基板2の一方の主面2sであり、若干凹部が見られるが、有機部材2bのみからなる平坦な表面形状が観測された。
FIG. 3A shows a substrate 1 composed of a resin substrate 2 in which an inorganic member 2a serving as a filler is dispersed and contained in an organic member 2b, and a conductor 3 provided in the resin substrate 2. .
3 (b) uses the substrate 1 of FIG. 3 (a), and in the one main surface 2s (upper surface in FIG. 3) of the resin substrate 2, the one main surface 2s The resin substrate 2 in which the non-through holes 5 are formed in advance by a desired method (a known method such as drilling or laser processing) is shown. The photograph in FIG. 3 (b) is one main surface 2s of the resin substrate 2, and a slight concave portion is seen, but a flat surface shape consisting only of the organic member 2b was observed.

図3(c)は、上述した「添加ガスの流量が小さい条件[α領域(SF:Silica Fast)]」により、本発明の工程Aを実施した結果を示している。図3(c)の写真から明らかなように、ドライエッチングにより、樹脂基板2は、その厚さが減少するに伴い、表面に露呈した筈の無機部材2aが欠落し、その欠落した箇所に凹部2as(α)が形成された部位と、有機部材2bの部位2bs(α)とから構成された表面2Asとなる。これと同時に、非貫通孔5の内底面4が除去されることにより、貫通孔5(α)が形成され、貫通孔5(α)の底に導体3の露呈部6(α)が生じる。
図3(d)は、工程Aの後に、2層構造のシード層9a、9bを形成した状態を示している。貫通孔5(α)の内側面や内底面に沿って被覆するシード層9a、9bは、樹脂基板2の一方の主面2Asにおいては、前述した凹部2as(α)を反映したものとなる。
FIG. 3C shows the result of carrying out the step A of the present invention under the above-mentioned “conditions where the flow rate of the additive gas is small [α region (SF: Silica Fast)]”. As is clear from the photograph of FIG. 3C, as the thickness of the resin substrate 2 is reduced by dry etching, the inorganic member 2a that is exposed on the surface is missing, and a recess is formed in the missing portion. It becomes surface 2As comprised from the site | part in which 2as ((alpha)) was formed, and the site | part 2bs ((alpha)) of the organic member 2b. At the same time, the inner bottom surface 4 of the non-through hole 5 is removed to form the through hole 5 (α), and the exposed portion 6 (α) of the conductor 3 is generated at the bottom of the through hole 5 (α).
FIG. 3D shows a state in which the seed layers 9 a and 9 b having a two-layer structure are formed after the process A. The seed layers 9a and 9b covering the inner surface and the inner bottom surface of the through-hole 5 (α) reflect the above-described recess 2as (α) on one main surface 2As of the resin substrate 2.

<第二実施形態>
図4は、本発明に係る第二実施形態を示す断面図と基板表面のSEM写真であり、領域αを形成する場合を表している。図4において、(a)は樹脂基板が未処理の状態、(b)は非貫通孔が形成された状態、(c)は工程Aにより貫通孔が形成された状態、(d)はシード層が形成された状態、を各々表している。(b)と(c)において断面図の右側に配置した写真は、各状態における基板表面のSEM写真である。
<Second embodiment>
FIG. 4 is a cross-sectional view showing a second embodiment according to the present invention and an SEM photograph of the substrate surface, and shows a case where the region α is formed. 4A is a state in which the resin substrate is not processed, FIG. 4B is a state in which a non-through hole is formed, FIG. 4C is a state in which a through hole is formed in Step A, and FIG. 4D is a seed layer. Represents the state in which is formed. The photographs arranged on the right side of the sectional views in (b) and (c) are SEM photographs of the substrate surface in each state.

図4(a)は、フィラーをなす無機部材2aが有機部材2bに分散して含まれてなる樹脂基板2と、該樹脂基板2に備えた導体3とから構成される基板1を示している。
図4(b)は、図4(a)の基板1を用い、樹脂基板2の一方の主面2s(図4においては上面)において、貫通孔を設ける領域に前記一方の主面2sから、所望の手法(ドリル加工やレーザー加工などの既知の手法)により、予め非貫通孔5が形成された樹脂基板2を示している。図4(b)の写真は、樹脂基板2の一方の主面2sであり、若干凹部が見られるが、有機部材2bのみからなる平坦な表面形状が観測された。
FIG. 4A shows a substrate 1 composed of a resin substrate 2 in which an inorganic member 2a serving as a filler is dispersed and contained in an organic member 2b, and a conductor 3 provided in the resin substrate 2. .
4 (b) uses the substrate 1 of FIG. 4 (a), and in the one main surface 2s (the upper surface in FIG. 4) of the resin substrate 2, the one main surface 2s The resin substrate 2 in which the non-through holes 5 are formed in advance by a desired method (a known method such as drilling or laser processing) is shown. The photograph of FIG. 4 (b) is one main surface 2s of the resin substrate 2, and a slight concave portion is seen, but a flat surface shape consisting only of the organic member 2b was observed.

図4(c)は、上述した「添加ガスの流量が大きい条件[γ領域(OP:Org Fast)]
」により、本発明の工程Aを実施した結果を示している。図4(c)の写真から明らかなように、ドライエッチングにより、樹脂基板2は、その厚さが減少するに伴い、有機部材2bが積極的にエッチングされる。その結果、無機部材2aが露呈した状態となり、無機部材2aからなる凸部2as(γ)が、有機部材2bの部位2bs(γ)から突出した形状をなす表面2Asとなる。
図4(d)は、工程Aの後に、2層構造のシード層9a、9bを形成した状態を示している。貫通孔5(γ)の内側面や内底面に沿って被覆するシード層9a、9bは、樹脂基板2の一方の主面2sにおいては、前述した凸部2as(γ)を反映した形状を備えるものとなる。
FIG. 4C shows the above-mentioned “conditions where the flow rate of the additive gas is large [γ region (OP: Org Fast)].
] Shows the result of carrying out step A of the present invention. As is clear from the photograph of FIG. 4C, the organic member 2b is positively etched by dry etching as the thickness of the resin substrate 2 decreases. As a result, the inorganic member 2a is exposed, and the convex portion 2as (γ) made of the inorganic member 2a becomes the surface 2As having a shape protruding from the portion 2bs (γ) of the organic member 2b.
FIG. 4D shows a state in which the seed layers 9a and 9b having a two-layer structure are formed after the process A. The seed layers 9a and 9b covering the inner side surface and the inner bottom surface of the through hole 5 (γ) have a shape reflecting the above-described convex portion 2as (γ) on one main surface 2s of the resin substrate 2. It will be a thing.

<第三実施形態>
図5は、本発明に係る第三実施形態を示す断面図と基板表面のSEM写真であり、領域αを形成する場合を表している。図5において、(a)は樹脂基板が未処理の状態、(b)は非貫通孔が形成された状態、(c)は工程Aにより貫通孔が形成された状態、(d)はシード層が形成された状態、を各々表している。(b)と(c)において断面図の右側に配置した写真は、各状態における基板表面のSEM写真である。
<Third embodiment>
FIG. 5 is a cross-sectional view showing a third embodiment according to the present invention and an SEM photograph of the substrate surface, and shows a case where a region α is formed. In FIG. 5, (a) is a state in which the resin substrate is not processed, (b) is a state in which a non-through hole is formed, (c) is a state in which a through hole is formed in Step A, and (d) is a seed layer. Represents the state in which is formed. The photographs arranged on the right side of the sectional views in (b) and (c) are SEM photographs of the substrate surface in each state.

図5(a)は、フィラーをなす無機部材2aが有機部材2bに分散して含まれてなる樹脂基板2と、該樹脂基板2に備えた導体3とから構成される基板1を示している。
図5(b)は、図5(a)の基板1を用い、樹脂基板2の一方の主面2s(図5においては上面)において、貫通孔を設ける領域に前記一方の主面2sから、所望の手法(ドリル加工やレーザー加工などの既知の手法)により、予め非貫通孔5が形成された樹脂基板2を示している。図5(b)の写真は、樹脂基板2の一方の主面2sであり、若干凹部が見られるが、有機部材2bのみからなる平坦な表面形状が観測された。
FIG. 5A shows a substrate 1 composed of a resin substrate 2 in which an inorganic member 2 a serving as a filler is dispersed and contained in an organic member 2 b and a conductor 3 provided in the resin substrate 2. .
5 (b) uses the substrate 1 of FIG. 5 (a), and the one main surface 2s (the upper surface in FIG. 5) of the resin substrate 2 has a through hole in a region where the through hole is provided. The resin substrate 2 in which the non-through holes 5 are formed in advance by a desired method (a known method such as drilling or laser processing) is shown. The photograph of FIG. 5 (b) is one main surface 2s of the resin substrate 2, and a slight concave portion is seen, but a flat surface shape consisting only of the organic member 2b was observed.

図5(c)は、上述した「添加ガスの流量が前記α領域と前記γ領域の中間となる条件[β領域(SM:Smooth)]」により、本発明の工程Aを実施した結果を示している。ドライエッチングにより、樹脂基板2は、その厚さが減少するに伴い、樹脂基板の表面から無機部材2aと有機部材2bがほぼ均等にエッチングされる。その結果、有機部材2bの平坦な加工面2bs(β)と面一をなすように、平坦な加工面をもつ無機部材2aの加工面2as(β)が形成された表面2Asが得られる。
図5(d)は、工程Aの後に、2層構造のシード層9a、9bを形成した状態を示している。貫通孔5(γ)の内側面や内底面に沿って被覆するシード層9a、9bは、樹脂基板2の一方の主面2sにおいても、前述した加工面2bs(β)、2as(β)を反映した平坦な形状を備えるものとなる。
FIG. 5C shows the result of carrying out the step A of the present invention according to the above-mentioned “condition that the flow rate of the additive gas is intermediate between the α region and the γ region [β region (SM: Smooth)]”. ing. As the thickness of the resin substrate 2 is reduced by dry etching, the inorganic member 2a and the organic member 2b are etched almost uniformly from the surface of the resin substrate. As a result, a surface 2As on which the processed surface 2as (β) of the inorganic member 2a having a flat processed surface is formed so as to be flush with the flat processed surface 2bs (β) of the organic member 2b is obtained.
FIG. 5D shows a state in which the seed layers 9 a and 9 b having a two-layer structure are formed after the process A. The seed layers 9a and 9b covering the inner surface and the inner bottom surface of the through-hole 5 (γ) have the processed surfaces 2bs (β) and 2as (β) described above also on one main surface 2s of the resin substrate 2. The reflected flat shape is provided.

<第四実施形態>
図6は、本発明に係る第四実施形態を示す断面図と基板表面のSEM写真である。第四実施形態では、非貫通孔を加工する際に、樹脂基板2の一方の面2sを保護シート7により被覆した点が、上述した第一乃至第三実施形態と異なる。図6において、(a)は樹脂基板が未処理の状態、(b)は保護シート7が設けられた状態、(c)は非貫通孔が形成された状態、(d)は工程Bにより貫通孔が形成された状態、(e)は保護シートが除去された状態、(f)はシード層が形成された状態、を各々表している。(c)と(e)において断面図の右側に配置した写真は、各状態における基板表面のSEM写真である。
<Fourth embodiment>
FIG. 6 is a cross-sectional view showing a fourth embodiment according to the present invention and an SEM photograph of the substrate surface. The fourth embodiment differs from the first to third embodiments described above in that one surface 2s of the resin substrate 2 is covered with the protective sheet 7 when the non-through hole is processed. 6A is a state in which the resin substrate is not processed, FIG. 6B is a state in which the protective sheet 7 is provided, FIG. 6C is a state in which a non-through hole is formed, and FIG. A state in which holes are formed, (e) represents a state in which the protective sheet has been removed, and (f) represents a state in which a seed layer has been formed. The photographs arranged on the right side of the sectional views in (c) and (e) are SEM photographs of the substrate surface in each state.

すなわち、第四実施形態は、「前記貫通孔を設ける領域にあたる前記一方の主面に保護シートを設けてから、(所望の手法によって)予め非貫通孔が形成された樹脂基板に対して、ドライエッチング法により前記非貫通孔の内底面を除去し、前記非貫通孔の内側面を平坦化する工程B」を含む、樹脂基板の加工方法である。その際、エッチング条件については、α、β、γの何れを選択しても構わないが、以下の説明では条件βを用いて説明している。   That is, in the fourth embodiment, “a protective sheet is provided on the one main surface corresponding to the region where the through hole is provided, and then a resin substrate on which a non-through hole is previously formed (by a desired method) is dried. This is a method for processing a resin substrate, including a step B ”of removing the inner bottom surface of the non-through hole by an etching method and flattening the inner surface of the non-through hole. At this time, any of α, β, and γ may be selected as the etching condition, but the following description is made using the condition β.

図6(a)は、フィラーをなす無機部材2aが有機部材2bに分散して含まれてなる樹脂基板2と、該樹脂基板2に備えた導体3とから構成される基板1を示している。
図6(b)は、図6(a)の基板1を用い、樹脂基板2の一方の主面2s(図6においては上面)に保護シート7を設けた状態を示している。保護シート7としては、例えば、PET樹脂フィルム[PET(ポリエチレンテレフタレート)樹脂からなる高分子フィルム]などが好適である。
FIG. 6A shows a substrate 1 composed of a resin substrate 2 in which an inorganic member 2a serving as a filler is dispersed and contained in an organic member 2b, and a conductor 3 provided in the resin substrate 2. .
FIG. 6B shows a state in which the substrate 1 of FIG. 6A is used and a protective sheet 7 is provided on one main surface 2s (upper surface in FIG. 6) of the resin substrate 2. As the protective sheet 7, for example, a PET resin film [polymer film made of PET (polyethylene terephthalate) resin] is suitable.

図6(c)は、図6(b)の保護シート7を設けた基板1を用い、樹脂基板2の一方の主面2s(図6においては上面)において、貫通孔を設ける領域に保護シート7で被覆された状態にある前記一方の主面2sから、所望の手法(ドリル加工やレーザー加工などの既知の手法)により、予め非貫通孔5が形成された樹脂基板2を示している。図6(c)の写真は、保護シート7を除去した樹脂基板2の一方の主面2sであり、若干凹部が見られるが、有機部材2bのみからなる平坦な表面形状が観測された。つまり、非貫通孔5を形成する前後において、樹脂基板2の一方の主面2sは、その表面形状に変化は無かった。   6 (c) uses the substrate 1 provided with the protective sheet 7 of FIG. 6 (b), and the protective sheet is provided in the region where the through hole is provided on one main surface 2s (upper surface in FIG. 6) of the resin substrate 2. 7 shows the resin substrate 2 in which the non-through holes 5 are formed in advance from the one main surface 2s covered with 7 by a desired method (a known method such as drilling or laser processing). The photograph in FIG. 6 (c) is one main surface 2s of the resin substrate 2 from which the protective sheet 7 has been removed, and a slight concave portion is seen, but a flat surface shape consisting only of the organic member 2b was observed. That is, before and after forming the non-through hole 5, the surface shape of one main surface 2s of the resin substrate 2 did not change.

図6(d)は、上述した「添加ガスの流量が前記α領域と前記γ領域の中間となる条件[β領域(SM:Smooth)]」により、本発明の工程Bを実施した結果を示している。ドライエッチングにより、樹脂基板2は、その厚さが減少すること無く、非貫通孔の内部(内側面と内底面)のみが、無機部材2aと有機部材2bがほぼ均等にエッチングされる。その結果、貫通孔の内側面5(δ)は、有機部材2bの平坦な加工面と面一をなすように、平坦な加工面をもつ無機部材2aの加工面が形成された表面2Asが得られる。   FIG. 6 (d) shows the result of carrying out the step B of the present invention according to the above-mentioned “condition that the flow rate of the additive gas is intermediate between the α region and the γ region [β region (SM: Smooth)]”. ing. By dry etching, the thickness of the resin substrate 2 is not reduced, and the inorganic member 2a and the organic member 2b are etched almost uniformly only inside the non-through holes (inner side surface and inner bottom surface). As a result, the inner surface 5 (δ) of the through hole is a surface 2As on which the processed surface of the inorganic member 2a having a flat processed surface is formed so as to be flush with the flat processed surface of the organic member 2b. It is done.

図6(e)は、図6(d)の基板1から保護シート7を除去した状態を示している。写真から明らかなように、貫通孔の作製中には、樹脂基板2の一方の主面2sが保護シート7により守られていたので、貫通孔を作製した後でも、樹脂基板2の一方の主面2sの表面形状に変化は無かった。
図6(f)は、工程Bの後に、2層構造のシード層9a、9bを形成した状態を示している。貫通孔の内側面5(δ)や内底面6(δ)に沿って被覆するシード層9a、9bは、樹脂基板2の一方の主面2s(未処理の樹脂基板2の表面2s)と同様に、前述した平坦な形状を備えるものとなる。
FIG. 6E shows a state where the protective sheet 7 is removed from the substrate 1 of FIG. As is apparent from the photograph, since one main surface 2s of the resin substrate 2 was protected by the protective sheet 7 during the production of the through hole, one main surface of the resin substrate 2 was produced even after the through hole was produced. There was no change in the surface shape of the surface 2s.
FIG. 6 (f) shows a state in which the seed layers 9 a and 9 b having a two-layer structure are formed after the process B. The seed layers 9a and 9b covering the inner surface 5 (δ) and the inner bottom surface 6 (δ) of the through hole are the same as the one main surface 2s of the resin substrate 2 (the surface 2s of the untreated resin substrate 2). In addition, the above-described flat shape is provided.

<第五実施形態>
図7は、本発明に係る第五実施形態を示す断面図と基板表面のSEM写真である。第五実施形態では、樹脂基板2の一方の面2sをマスク8により被覆し、非貫通孔を加工すること無く、一気に貫通孔を形成した点が、上述した第一乃至第四実施形態と異なる。図7において、(a)は樹脂基板が未処理の状態、(b)はマスク8が設けられた状態、(c)はマスク8に貫通孔が形成された状態、(d)は工程Cにより樹脂基板2に貫通孔が形成された状態、(e)はマスク8が除去された状態、(f)はシード層が形成された状態、を各々表している。(a)と(e)において断面図の右側に配置した写真は、各状態における基板表面のSEM写真である。
<Fifth embodiment>
FIG. 7 is a cross-sectional view showing a fifth embodiment according to the present invention and an SEM photograph of the substrate surface. The fifth embodiment is different from the first to fourth embodiments described above in that one surface 2s of the resin substrate 2 is covered with a mask 8 and through holes are formed at once without processing non-through holes. . 7A is a state in which the resin substrate is not processed, FIG. 7B is a state in which a mask 8 is provided, FIG. 7C is a state in which a through-hole is formed in the mask 8, and FIG. The state where the through-hole is formed in the resin substrate 2, (e) shows the state where the mask 8 is removed, and (f) shows the state where the seed layer is formed. The photographs arranged on the right side of the cross-sectional views in (a) and (e) are SEM photographs of the substrate surface in each state.

すなわち、第五実施形態は、「前記貫通孔を設ける領域にあたる前記一方の主面にマスクを設けてから、ドライエッチング法により前記貫通孔を形成し、前記非貫通孔の内側面を平坦化する工程C」を含む、樹脂基板の加工方法である。その際、エッチング条件については、α、β、γの何れを選択しても構わないが、以下の説明では条件βを用いて説明している。   That is, in the fifth embodiment, “a mask is provided on the one main surface corresponding to the region where the through hole is provided, then the through hole is formed by dry etching, and the inner surface of the non-through hole is flattened. This is a method for processing a resin substrate, including “Step C”. At this time, any of α, β, and γ may be selected as the etching condition, but the following description is made using the condition β.

図7(a)は、フィラーをなす無機部材2aが有機部材2bに分散して含まれてなる樹脂基板2と、該樹脂基板2に備えた導体3とから構成される基板1を示している。
図7(b)は、図6(a)の基板1を用い、樹脂基板2の一方の主面2s(図6においては上面)にマスク8を設けた状態を示している。マスク8としては、例えば、ドライフィルムレジスト、液レジストなどが好適である。
FIG. 7A shows a substrate 1 composed of a resin substrate 2 in which an inorganic member 2a serving as a filler is dispersed and contained in an organic member 2b, and a conductor 3 provided in the resin substrate 2. .
FIG. 7B shows a state in which the substrate 1 of FIG. 6A is used and a mask 8 is provided on one main surface 2s (upper surface in FIG. 6) of the resin substrate 2. As the mask 8, for example, a dry film resist or a liquid resist is suitable.

図7(c)は、図7(b)のマスク8を設けた基板1を用い、樹脂基板2の一方の主面2sの露呈部2bs(ε)が確認されるまで、ドライエッチングにより、マスク8に貫通孔8Is(ε)を形成した状態を示している。
図7(d)は、樹脂基板2の一方の主面2sの露呈部2bs(ε)に対して、ドライエッチングにより、樹脂基板2にに貫通孔5(ε)を形成した状態を示している。その際、図7(b)のマスク8は除去せず、マスク8が樹脂基板2の一方の主面2sを被覆した状態を維持する。
7C uses the substrate 1 provided with the mask 8 of FIG. 7B, and performs dry etching until the exposed portion 2bs (ε) of one main surface 2s of the resin substrate 2 is confirmed. 8 shows a state in which a through hole 8Is (ε) is formed.
FIG. 7D shows a state in which the through hole 5 (ε) is formed in the resin substrate 2 by dry etching with respect to the exposed portion 2bs (ε) of one main surface 2s of the resin substrate 2. . At that time, the mask 8 in FIG. 7B is not removed, and the state in which the mask 8 covers one main surface 2s of the resin substrate 2 is maintained.

図7(e)は、図7(d)のドライエッチング後に、マスク8を除去した状態を表している。すなわち、上述した「添加ガスの流量が前記α領域と前記γ領域の中間となる条件[β領域(SM:Smooth)]」により、本発明の工程Cを実施した結果を示している。ドライエッチングにより、樹脂基板2は、その厚さが減少すること無く、非貫通孔の内部(内側面と内底面)のみが、無機部材2aと有機部材2bがほぼ均等にエッチングされる。その結果、貫通孔の内側面5(ε)は、有機部材2bの平坦な加工面と面一をなすように、平坦な加工面をもつ無機部材2aの加工面が形成された表面2Asが得られる。   FIG. 7E shows a state in which the mask 8 is removed after the dry etching of FIG. That is, the result of carrying out the step C of the present invention under the above-mentioned “condition that the flow rate of the additive gas is intermediate between the α region and the γ region [β region (SM: Smooth)]” is shown. By dry etching, the thickness of the resin substrate 2 is not reduced, and the inorganic member 2a and the organic member 2b are etched almost uniformly only inside the non-through holes (inner side surface and inner bottom surface). As a result, the inner surface 5 (ε) of the through hole is a surface 2As on which the processed surface of the inorganic member 2a having a flat processed surface is formed so as to be flush with the flat processed surface of the organic member 2b. It is done.

図7(e)の写真は、図7(d)の基板1から保護シート7を除去した状態を示している。この写真から明らかなように、貫通孔の作製中には、樹脂基板2の一方の主面2sがマスク8により守られていたので、貫通孔を作製した後でも、樹脂基板2の一方の主面2sの表面形状に変化は無かった。
図7(f)は、工程Cの後に、2層構造のシード層9a、9bを形成した状態を示している。貫通孔の内側面5(ε)や内底面6(ε)に沿って被覆するシード層9a、9bは、樹脂基板2の一方の主面2s(未処理の樹脂基板2の表面2s)と同様に、前述した平坦な形状を備えるものとなる。
The photograph in FIG. 7E shows a state where the protective sheet 7 is removed from the substrate 1 in FIG. As is clear from this photograph, since one main surface 2s of the resin substrate 2 was protected by the mask 8 during the production of the through hole, one main surface of the resin substrate 2 was produced even after the through hole was produced. There was no change in the surface shape of the surface 2s.
FIG. 7F shows a state in which the seed layers 9a and 9b having a two-layer structure are formed after the process C. The seed layers 9a and 9b covering the inner side surface 5 (ε) and the inner bottom surface 6 (ε) of the through hole are the same as one main surface 2s of the resin substrate 2 (the surface 2s of the untreated resin substrate 2). In addition, the above-described flat shape is provided.

<貫通孔の内面の観察結果>
図8は、貫通孔の内側面の観察方法を説明する図である。走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いて、本発明に係る樹脂基板の加工方法により形成された貫通孔を、次の2つの角度から観測した。
View−A(Top)とは、樹脂基板の一方の面および貫通孔の内底面に対して垂直をなす方向から観測した場合である。
View−B(Tilt60°)とは、樹脂基板の一方の面および貫通孔の内底面に対して60°傾斜した方向から観測した場合である。View−Bの場合のみ、低倍率(Low)と高倍率(High)の2条件にて観測した。
<Observation result of inner surface of through hole>
FIG. 8 is a diagram illustrating an observation method of the inner surface of the through hole. Using a scanning electron microscope (SEM), the through holes formed by the resin substrate processing method according to the present invention were observed from the following two angles.
View-A (Top) is a case where observation is made from a direction perpendicular to one surface of the resin substrate and the inner bottom surface of the through hole.
View-B (Tilt 60 °) is a case of observation from a direction inclined by 60 ° with respect to one surface of the resin substrate and the inner bottom surface of the through hole. Only in the case of View-B, observation was performed under two conditions of low magnification (Low) and high magnification (High).

図9は、貫通孔の内底面を観察したSEM写真と組成分析結果である。(a)は貫通孔を形成する前、すなわち非貫通孔の例であり、(b)、(c)、(d)が順に、エッチング処理時間が4、7、10[min]の例である。(a)〜(d)において、上段はView−A(Top)による低倍率の写真、中段はView−A(Top)による高倍率の写真、下段は組成分析結果のグラフ、をそれぞれ示している。   FIG. 9 shows an SEM photograph of the inner bottom surface of the through hole and a composition analysis result. (A) is an example of a non-through hole before forming a through hole, that is, (b), (c), and (d) are examples of etching processing times of 4, 7, and 10 [min] in order. . In (a) to (d), the upper part shows a low-magnification photograph by View-A (Top), the middle part shows a high-magnification photograph by View-A (Top), and the lower part shows a graph of the composition analysis result. .

下段に示した組成分析結果のグラフから、本発明に係る樹脂基板の加工方法を行うことにより、貫通孔の内底面に残存する有機成分に起因する信号(C,O)が激減することが明らかとなった。また、エッチング処理時間の増加に伴い、貫通孔の内底面に残存する有機成分がさらに低減する様子も確認された。図9に示した例では、エッチング処理時間を7[min]以上とすれば、貫通孔の内底面から有機成分を十分に除去できることが分かった。   From the graph of the composition analysis result shown in the lower part, it is clear that the signal (C, O) due to the organic component remaining on the inner bottom surface of the through hole is drastically reduced by performing the resin substrate processing method according to the present invention. It became. It was also confirmed that the organic component remaining on the inner bottom surface of the through hole was further reduced as the etching time increased. In the example shown in FIG. 9, it was found that the organic component can be sufficiently removed from the inner bottom surface of the through hole if the etching time is 7 [min] or longer.

図10は、貫通孔の内側面および内底面を観察した断面SEM写真である。(a)が低倍率の写真であり、(b)が(a)のサークル内を示す高倍率の写真である。
図10より、導体3からなる貫通孔の内底面4、及び、樹脂基板2からなる貫通孔の内側面5は、両者(内底面4、内側面5)の交点をなすコーナー部を含む全域において、平坦な表面形状が得られていることが確認された。
したがって、本発明は、樹脂基板の主面や、貫通孔の内側面および内底面における表面形状(プロファイル)を制御することが可能な、樹脂基板の加工方法の提供に貢献するものである。
FIG. 10 is a cross-sectional SEM photograph observing the inner side surface and the inner bottom surface of the through hole. (A) is a low-magnification photograph, and (b) is a high-magnification photograph showing the inside of the circle of (a).
From FIG. 10, the inner bottom surface 4 of the through hole made of the conductor 3 and the inner side surface 5 of the through hole made of the resin substrate 2 are in the whole area including the corner portion forming the intersection of both (the inner bottom surface 4 and the inner side surface 5). It was confirmed that a flat surface shape was obtained.
Therefore, the present invention contributes to the provision of a method for processing a resin substrate that can control the main surface of the resin substrate and the surface shapes (profiles) on the inner surface and inner bottom surface of the through hole.

以上、本発明の樹脂基板の加工方法について説明してきたが、本発明はこれに限定されるものではなく、発明の趣旨を逸脱しない範囲で、適宜変更が可能である。   As mentioned above, although the processing method of the resin substrate of this invention was demonstrated, this invention is not limited to this, In the range which does not deviate from the meaning of invention, it can change suitably.

本発明は、樹脂基板の加工方法に広く適用可能である。   The present invention can be widely applied to a method for processing a resin substrate.

1 基板、2 樹脂基板、2a 無機部材、2b 有機部材、2s 一方の主面、3 導体、4 内底面、5 非貫通孔、6 貫通孔。   1 substrate, 2 resin substrate, 2a inorganic member, 2b organic member, 2s one main surface, 3 conductor, 4 inner bottom surface, 5 non-through hole, 6 through hole.

Claims (7)

フィラーをなす無機部材が有機部材に分散して含まれてなる樹脂基板を用い、該樹脂基板に備えた導体に向けて、該樹脂基板の一方の主面から貫通孔を形成する樹脂基板の加工方法であって、
前記貫通孔を設ける領域に前記一方の主面から、予め非貫通孔が形成された樹脂基板に対して、ドライエッチング法により前記非貫通孔の内底面を除去し、該樹脂基板の一方の主面は平坦性を保つ工程Aを含むことを特徴とする樹脂基板の加工方法。
Processing of a resin substrate using a resin substrate in which an inorganic member forming a filler is dispersed and contained in an organic member, and forming a through hole from one main surface of the resin substrate toward a conductor provided in the resin substrate A method,
The inner bottom surface of the non-through hole is removed from the one main surface in the region where the through hole is previously formed by dry etching with respect to the resin substrate in which the non-through hole is formed in advance. A method for processing a resin substrate, wherein the surface includes a step A for maintaining flatness.
前記工程Aは、前記樹脂基板の一方の主面が、前記有機部材から前記無機部材が欠落した凹部を含む表面プロファイルを形成することを特徴とする請求項1に記載の樹脂基板の加工方法。   2. The method of processing a resin substrate according to claim 1, wherein in the step A, one main surface of the resin substrate forms a surface profile including a recess in which the inorganic member is missing from the organic member. 前記工程Aは、前記樹脂基板の一方の主面が、前記有機部材から前記無機部材が突出した凸部を含む表面プロファイルを形成することを特徴とする請求項1に記載の樹脂基板の加工方法。   2. The method for processing a resin substrate according to claim 1, wherein in the step A, one main surface of the resin substrate forms a surface profile including a convex portion in which the inorganic member protrudes from the organic member. . 前記工程Aは、前記樹脂基板の一方の主面が、前記有機部材に前記無機部材が局在し、かつ、該有機部材の領域と該無機部材の領域が面一をなす表面プロファイルを形成することを特徴とする請求項1に記載の樹脂基板の加工方法。   In the step A, one main surface of the resin substrate forms a surface profile in which the inorganic member is localized on the organic member, and the region of the organic member and the region of the inorganic member are flush with each other. The method for processing a resin substrate according to claim 1. フィラーをなす無機部材が有機部材に分散して含まれてなる樹脂基板を用い、該樹脂基板に備えた導体に向けて、該樹脂基板の一方の主面から貫通孔を形成する樹脂基板の加工方法であって、
前記貫通孔を設ける領域にあたる前記一方の主面に保護シートを設けてから、予め非貫通孔が形成された樹脂基板に対して、ドライエッチング法により前記非貫通孔の内底面を除去し、前記非貫通孔の内側面を平坦化する工程Bを含むことを特徴とする樹脂基板の加工方法。
Processing of a resin substrate using a resin substrate in which an inorganic member forming a filler is dispersed and contained in an organic member, and forming a through hole from one main surface of the resin substrate toward a conductor provided in the resin substrate A method,
After providing the protective sheet on the one main surface corresponding to the region where the through hole is provided, the inner bottom surface of the non-through hole is removed by a dry etching method on the resin substrate on which the non-through hole is formed in advance, A method for processing a resin substrate, comprising a step B of flattening an inner surface of a non-through hole.
フィラーをなす無機部材が有機部材に分散して含まれてなる樹脂基板を用い、該樹脂基板に備えた導体に向けて、該樹脂基板の一方の主面から貫通孔を形成する樹脂基板の加工方法であって、
前記貫通孔を設ける領域にあたる前記一方の主面にマスクを設けてから、ドライエッチング法により前記貫通孔を形成し、前記非貫通孔の内側面を平坦化する工程Cを含むことを特徴とする樹脂基板の加工方法。
Processing of a resin substrate using a resin substrate in which an inorganic member forming a filler is dispersed and contained in an organic member, and forming a through hole from one main surface of the resin substrate toward a conductor provided in the resin substrate A method,
The method includes a step C of providing a mask on the one main surface corresponding to the region where the through hole is provided, forming the through hole by a dry etching method, and flattening an inner surface of the non-through hole. Resin substrate processing method.
前記工程A乃至Cは、前記導体を露呈させ、かつ該導体の露呈部を平坦化することを特徴とする請求項1乃至6のいずれか一項に記載の樹脂基板の加工方法。   The method for processing a resin substrate according to any one of claims 1 to 6, wherein the steps A to C expose the conductor and flatten an exposed portion of the conductor.
JP2014227423A 2014-11-07 2014-11-07 Processing method of resin substrate Pending JP2016092307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014227423A JP2016092307A (en) 2014-11-07 2014-11-07 Processing method of resin substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014227423A JP2016092307A (en) 2014-11-07 2014-11-07 Processing method of resin substrate

Publications (1)

Publication Number Publication Date
JP2016092307A true JP2016092307A (en) 2016-05-23

Family

ID=56018965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014227423A Pending JP2016092307A (en) 2014-11-07 2014-11-07 Processing method of resin substrate

Country Status (1)

Country Link
JP (1) JP2016092307A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017041607A (en) * 2015-08-21 2017-02-23 株式会社アルバック Processing method of resin substrate
JP2018085394A (en) * 2016-11-22 2018-05-31 京セラ株式会社 Wiring board
JP2020043168A (en) * 2018-09-07 2020-03-19 株式会社アルバック Resin substrate processing method and plasma processing apparatus
JP2020053528A (en) * 2018-09-26 2020-04-02 株式会社アルバック Dry etching method and plasma processing apparatus
JP2021009911A (en) * 2019-07-01 2021-01-28 株式会社アルバック Method for manufacturing electronic component
JP2022039763A (en) * 2020-08-28 2022-03-10 味の素株式会社 Method for manufacturing printed wiring board

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121908A (en) * 1997-10-08 1999-04-30 Sumitomo Electric Ind Ltd Printed wiring board and its manufacture
JP2003273499A (en) * 2002-03-12 2003-09-26 Nippon Spindle Mfg Co Ltd Method of plasma cleaning printed-circuit board
JP2004087924A (en) * 2002-08-28 2004-03-18 Tdk Corp Method for manufacturing printed circuit board
JP2010010639A (en) * 2008-05-27 2010-01-14 Shinko Electric Ind Co Ltd Wiring substrate and method of manufacturing the same
JP2011023428A (en) * 2009-07-13 2011-02-03 Sumitomo Bakelite Co Ltd Method for manufacturing composite, and composite
WO2012042846A1 (en) * 2010-09-27 2012-04-05 太陽ホールディングス株式会社 Method for forming solder resist

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121908A (en) * 1997-10-08 1999-04-30 Sumitomo Electric Ind Ltd Printed wiring board and its manufacture
JP2003273499A (en) * 2002-03-12 2003-09-26 Nippon Spindle Mfg Co Ltd Method of plasma cleaning printed-circuit board
JP2004087924A (en) * 2002-08-28 2004-03-18 Tdk Corp Method for manufacturing printed circuit board
JP2010010639A (en) * 2008-05-27 2010-01-14 Shinko Electric Ind Co Ltd Wiring substrate and method of manufacturing the same
JP2011023428A (en) * 2009-07-13 2011-02-03 Sumitomo Bakelite Co Ltd Method for manufacturing composite, and composite
WO2012042846A1 (en) * 2010-09-27 2012-04-05 太陽ホールディングス株式会社 Method for forming solder resist

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017041607A (en) * 2015-08-21 2017-02-23 株式会社アルバック Processing method of resin substrate
JP2018085394A (en) * 2016-11-22 2018-05-31 京セラ株式会社 Wiring board
JP2020043168A (en) * 2018-09-07 2020-03-19 株式会社アルバック Resin substrate processing method and plasma processing apparatus
JP2020053528A (en) * 2018-09-26 2020-04-02 株式会社アルバック Dry etching method and plasma processing apparatus
JP7287767B2 (en) 2018-09-26 2023-06-06 株式会社アルバック Dry etching method
JP2021009911A (en) * 2019-07-01 2021-01-28 株式会社アルバック Method for manufacturing electronic component
JP2022039763A (en) * 2020-08-28 2022-03-10 味の素株式会社 Method for manufacturing printed wiring board

Similar Documents

Publication Publication Date Title
JP2016092307A (en) Processing method of resin substrate
TWI412081B (en) Method of enabling selective area plating on a substrate
JP2009064888A (en) Method of manufacturing wiring board
CN101351092B (en) Inside imbedded type line board technique with conductive hole
TWI538595B (en) Method and device of manufacturing printed circuit board
JP2006049885A (en) Dry etching process using selective polymer mask formed by co gas
KR20060107053A (en) Method of via fill plating for build-up pcb
TWI399143B (en) Circuit board and process for fabricating the same
CN104115570B (en) Printed circuit board and manufacturing methods
JP6521377B2 (en) Resin substrate processing method
US9420697B2 (en) Method for manufacturing printed wiring board
CN109716506B (en) Method for manufacturing electronic component
JP2000068653A (en) Smear removing method of multilayer board
JP2008302567A (en) Metal mask for printing
US20110260299A1 (en) Method for via plating in electronic packages containing fluoropolymer dielectric layers
JP7287767B2 (en) Dry etching method
JP2020043168A (en) Resin substrate processing method and plasma processing apparatus
US11510320B2 (en) Method of processing wiring substrate
KR102401424B1 (en) Cavity Printed Circuit Board Manufacturing Method Using Sand Blast
JP2004087924A (en) Method for manufacturing printed circuit board
JP4506432B2 (en) Circuit board manufacturing method
TWI490939B (en) Method for forming via
JP2010225665A (en) Paint coating system, paint coating device, and method of manufacturing printed wiring board
JP2009170500A (en) Method of manufacturing printed wiring board
JP2008047788A (en) Substrate production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181113