JP2016091711A - 二次電池および二次電池の製造方法 - Google Patents

二次電池および二次電池の製造方法 Download PDF

Info

Publication number
JP2016091711A
JP2016091711A JP2014223061A JP2014223061A JP2016091711A JP 2016091711 A JP2016091711 A JP 2016091711A JP 2014223061 A JP2014223061 A JP 2014223061A JP 2014223061 A JP2014223061 A JP 2014223061A JP 2016091711 A JP2016091711 A JP 2016091711A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
secondary battery
external terminal
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014223061A
Other languages
English (en)
Inventor
連 新東
Ren Shinto
連 新東
賢三 池田
Kenzo Ikeda
賢三 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2014223061A priority Critical patent/JP2016091711A/ja
Publication of JP2016091711A publication Critical patent/JP2016091711A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

【課題】二次電池の特性を向上させる。
【解決手段】電極群を収容する円筒状で、底部と側部と開口部とを有する電池缶10と、電池缶10の開口部を封口する電池蓋30と、を有するようにリチウムイオン二次電池を構成する。そして、電池缶10は、アルミニウムを含有する材料よりなり、この電池缶10の底部に、凸部(正極外部端子)10aが設けられ、電池蓋30の側に、外側突起部(負極外部端子)51aが設けられ、凸部(正極外部端子)10aの厚さは、電池缶10の側部の厚さより厚い。このように、凸部(正極外部端子)10aを厚く形成することで、二次電池の正極外部端子における接続抵抗を低減することができる。また、このような電池缶10は、インパクト成型法により形成することができる。
【選択図】図6

Description

本発明は、二次電池に関するものである。
リチウムイオン二次電池は、高エネルギー密度の二次電池であり、その特性を活かして、ノートパソコンや携帯電話等のポータブル機器の電源に使用されている。リチウムイオン二次電池の形状には種々のものがあるが、円筒形のリチウムイオン二次電池は、正極板、負極板およびセパレータの捲回式構造を採用している。例えば、2枚の帯状の金属箔に正極材料および負極材料をそれぞれ塗着し、その間にセパレータを挟み込み、これらの積層体を渦巻状に捲回することで捲回群を形成する。この捲回群を、電池容器となる円筒形の電池缶内に収納し、電解液を注液後、封口することで、円筒形のリチウムイオン二次電池が形成される。
近年、リチウムイオン二次電池は、ポータブル機器用等の民生用途にとどまらず、太陽光や風力発電といった自然エネルギー向け大規模蓄電システム用途への展開が期待されている。大規模蓄電システムにおいては、システムあたりの電力量が数MWhのオーダーで必要となる。
このような大容量の二次電池においては、その構成および製造方法について、種々の改良が望まれる。
例えば、下記特許文献1には、アルミニウム板を金型で成型し、電池缶を形成する方法が開示されている。
特開2006−338992号公報
前述した大容量の二次電池を用いる場合には、電池1本あたりの容量が大きく、また、システムとして複数の電池を用いる場合があるため、電池缶の構成材料やその構造などを含めた総合的な改良が必要である。
特に、電池缶の構成材料を薄膜化し、システムとして複数の電池を接続した場合に、外部接続抵抗が高くなってしまう。
特に、外部端子を薄膜化や小型化した場合には、電流が流れる面積が小さくなるため、抵抗が高くなってしまう。
本願において開示される代表的な実施の形態に示す二次電池は、以下のとおりである。
電極群を収容する円筒状の電池容器であって、底部と側部と開口部とを有する電池容器と、電池容器の開口部を封口する電池蓋と、を有する。そして、電池容器は、アルミニウムを含有する材料よりなり、電池容器の底部に、正極外部端子が設けられ、電池蓋の側に、負極外部端子が設けられ、正極外部端子の高さ方向の肉厚は、電池容器の側部の厚さより厚い。
本願において開示される代表的な実施の形態に示す二次電池の製造方法は、以下のとおりである。
(a)正極板と負極板とをセパレータを介して捲回することにより電極群を形成する工程、(b)円筒状の電池容器であって、底部と側部と開口部とを有する電池容器に電極群の正極側が底部に接触するように電極群を電池缶に収納する工程、(c)電池容器の開口部を電池蓋により封口する工程、を有する。そして、電池容器は、アルミニウムを含有する材料よりなり、電池容器の底部に、正極外部端子が設けられ、正極外部端子の厚さは、電池容器の側部の厚さより厚い。
また、電池容器は、インパクト成型法により形成される。例えば、電池容器は、アルミニウムを含有する材料に、棒状部材を打ち込んだ際の衝撃によりアルミニウムを含有する材料を流動変形させ、棒状部材の側面に沿ってアルミニウムを含有する材料を上昇させることにより形成される。
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
本発明によれば、二次電池の特性を向上させることができる。特に、二次電池の正極外部端子における接続抵抗を低減することができる。
実施の形態1のリチウムイオン二次電池用の電池缶の構成を示す模式図である。 実施の形態1のリチウムイオン二次電池の構成を示す模式図である。 インパクト成型法による電池缶の製造工程を示す断面図である。 インパクト成型法による電池缶の製造工程を示す断面図である。 電池缶の製造工程の他の例を示す断面図である。 実施の形態2のリチウムイオン二次電池の構成を示す図であり、(A)は、断面図、(B)は、上側から見た平面図、(C)は、下側から視た平面図である。 (A)および(B)は、実施の形態2のリチウムイオン二次電池の製造工程を示す斜視図である。 実施の形態2のリチウムイオン二次電池の製造工程を示す断面図である。 実施の形態2のリチウムイオン二次電池の製造工程を示す断面図である。 実施の形態2のリチウムイオン二次電池の製造工程を示す断面図である。 実施の形態2のリチウムイオン二次電池の製造工程を示す断面図である。 実施の形態2のリチウムイオン二次電池の製造工程を示す断面図である。 インパクト成型法による電池缶の製造工程を示す断面図である。 実施の形態3のリチウムイオン二次電池の構成を示す断面図である。
(実施の形態1)
図1は、本実施の形態のリチウムイオン二次電池用の電池缶の構成を示す模式図である。図2は、本実施の形態のリチウムイオン二次電池の構成を示す模式図である。
図1に示す電池缶(電池容器ともいう)10は、円筒状の容器であり、底面(底部ともいう)、側面(側部ともいう)および上部の開口部を有する。電池缶10は、その底面に正極外部端子となる凸部(厚膜部、外側突起、正極外部端子ともいう)10aを有する。凸部10aにおける電池缶の厚さTaは、側面における電池缶の厚さTbより大きい(Ta>Tb)。図1に示す電池缶10は、アルミニウム材料よりなる。
このような、電池缶10に、電極群20が挿入され(収容され)、電池缶10の開口部に電池蓋30を溶接することにより、電池容器の開口部を封口し、電池が形成される(図2)。この際、電極群20のプラス側を下側(底面側)として挿入し、電極群20と凸部10aとを電気的に接続する。また、電極群20のマイナス側は上側(電池蓋30側)となり、例えば、電池蓋30の開口部(孔ともいう)から負極外部端子となる負極極柱部を突出させる。なお、電池の製造工程については、実施の形態2において詳細に説明する。
図1に示す電池缶10は、インパクト成型法により形成される。図3および図4は、インパクト成型法による電池缶の製造工程を示す断面図である。まず、図3に示すように、アルミニウム材料(アルミニウム塊)101をキャビティ(雌部、ダイスともいう)100にセットする(図3の左図)。次いで、電池缶の内径に対応する径を有するパンチ棒(雄部、パンチ部、棒状部材ともいう)103を、アルミニウム材料101に打ち込む(図3の中央図)。パンチ棒103が打ち込まれた衝撃によりアルミニウム材料101が流動変形し、パンチ棒103とキャビティ100との隙間からパンチ棒103の側面に沿って上昇する(図3の右図)。この際、キャビティの中央部に凹部100aを設けておくことにより、凹部100aの近傍においては、パンチ棒103の衝撃が伝わり難くなる。このため、キャビティ100の中央部のアルミニウム膜は、パンチ棒103の側面に沿って形成されるアルミニウム膜より厚くなる。この後、図4に示すように、パンチ棒103およびキャビティ100からアルミニウム材料101を引き剥がすことにより、電池缶10を形成する。
このように、インパクト成型法によれば、短工程で、迅速に電池缶10を形成することができる。また、材料としてアルミニウムを用いることで、電池缶10の軽量化を図ることができる。特に、アルミニウムは、展延性が高く、電池缶10の薄膜化が可能となる。この点においても、電池缶10の軽量化を図ることができる。
また、インパクト成型法によれば、正極外部端子となる凸部10aを、一体成型することが可能である。このため、正極外部端子を他の材料で形成し、電気的に接続する場合と比較し、電気抵抗を低減することができる。また、電池缶10の側面を薄膜化し、底面も同様に薄膜化した場合には、外部接続抵抗が高くなる。これに対し、正極外部端子となる凸部10aにおいては、アルミニウム膜を厚膜化することで、外部接続抵抗を低減することができる。
また、電池缶10側を正極、即ち、電極群20のプラス側と接続することにより、アルミニウム材料を正極板として用いる電極群20と電池缶10の材料が同一材料となり、これらの電気的安定性や電気的接続性が良好となる。例えば、正極板と電池缶とを異なる材料で構成した場合と比較し、電池缶の腐食などを抑制することができる。特に、大容量のリチウムイオン二次電池においては、正極における充放電反応が活発に行われるため、正極における電気的安定性を向上させることの効果は大きい。
なお、インパクト成型法においては、パンチ棒103による衝撃とアルミニウム材料101の流動変形の程度の調整により、凸部10aの形状や厚さを調整することが可能である。但し、この調整が困難な場合には、図5に示すように、凸部10aを形成した後、凸部10aを切削加工し、凸部10aの形状や厚さのさらなる調整を行ってもよい。図5は、電池缶の製造工程の他の例を示す断面図である。
次いで、電池缶の内部構成について説明する。上記電池缶10の内部に封入される電極群20は、正極板、負極板、およびセパレータを有している。正極板と負極板との間にセパレータを挟んで軸芯の周りに捲回することにより電極群20が形成される。また、電池缶10の内部には、電解液が封入される。
リチウムイオン二次電池を充電する際には、正極と負極との間に充電器を接続する。充電時においては、正極活物質内に挿入されているリチウムイオンが脱離し、電解液中に放出される。電解液中に放出されたリチウムイオンは、電解液中を移動し、微多孔質膜からなるセパレータを通過して、負極に到達する。この負極に到達したリチウムイオンは、負極を構成する負極活物質内に挿入される。
放電する際には、正極と負極の間に外部負荷を接続する。放電時においては、負極活物質内に挿入されていたリチウムイオンが脱離して電解液中に放出される。このとき、負極から電子が放出される。そして、電解液中に放出されたリチウムイオンは、電解液中を移動し、微多孔質膜からなるセパレータを通過して、正極に到達する。この正極に到達したリチウムイオンは、正極を構成する正極活物質内に挿入される。このとき、正極活物質にリチウムイオンが挿入することにより、正極に電子が流れ込む。このようにして、負極から正極に電子が移動することにより放電が行われる。
このように、リチウムイオンを正極活物質と負極活物質との間で挿入・脱離することにより、充放電することができる。
次いで、本実施の形態のリチウムイオン二次電池の構成要素である正極板、負極板、セパレータおよび電解液について以下に説明する。
1.正極
正極板は、集電体およびその上部に形成された正極合材よりなる。正極合材は、集電体の上部に設けられた少なくとも正極活物質を含む層である。この正極合材は、例えば、集電体の両面に形成(塗布)される。
正極活物質としては、マンガン酸リチウム、リン酸鉄リチウム等を用いることができる。
2.負極
負極板は、集電体およびその両面に形成された負極合材よりなる。負極合材は、電気化学的にリチウムイオンを吸蔵・放出可能な負極活物質を含有する。
負極活物質としては、炭素質材料、酸化錫や酸化ケイ素等の金属酸化物、金属複合酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金、SnやSi等のリチウムと合金形成可能な金属等を用いることができる。これらは、1種を単独で用いてもよく、2種以上のものを組み合わせて用いてもよい。中でも、炭素質材料またはリチウム複合酸化物が安全性の観点から好ましい。
金属複合酸化物としては、リチウムを吸蔵・放出可能なものであれば特に制限はないが、Ti(チタン)、Li(リチウム)またはTiおよびLiの双方を含有するものが、高電流密度充放電特性の観点で好ましい。
3.セパレータ
セパレータは、正極板と負極板との間を電子的には絶縁しつつもイオン透過性を有し、かつ、正極側における酸化性および負極側における還元性に対する耐性を備えるものであれば特に制限はない。このような特性を満たすセパレータの材料(材質)としては、樹脂、無機物、ガラス繊維等が用いられる。
4.電解液
本実施の形態の電解液は、リチウム塩(電解質)と、これを溶解する非水系溶媒から構成される。必要に応じて、添加材を加えてもよい。
リチウム塩としては、リチウムイオン電池用の非水系電解液の電解質として使用可能なリチウム塩であれば特に制限はないが、例えば以下に示す無機リチウム塩、含フッ素有機リチウム塩やオキサラトボレート塩等が挙げられる。
無機リチウム塩としては、LiPF、LiBF、LiAsF、LiSbF等の無機フッ化物塩や、LiClO、LiBrO、LiIO等の過ハロゲン酸塩や、LiAlCl等の無機塩化物塩等が挙げられる。
含フッ素有機リチウム塩としては、LiCFSO等のパーフルオロアルカンスルホン酸塩;LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)等のパーフルオロアルカンスルホニルイミド塩;LiC(CFSO等のパーフルオロアルカンスルホニルメチド塩;Li[PF(CFCFCF)]、Li[PF(CFCFCF]、Li[PF(CFCFCF]、Li[PF(CFCFCFCF)]、Li[PF(CFCFCFCF]、Li[PF(CFCFCFCF]等のフルオロアルキルフッ化リン酸塩等が挙げられる。
オキサラトボレート塩としては、リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート等が挙げられる。
これらのリチウム塩は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。中でも、溶媒に対する溶解性、二次電池とした場合の充放電特性、出力特性、サイクル特性等を総合的に判断すると、ヘキサフルオロリン酸リチウム(LiPF)が好ましい。
(実施の形態2)
図6(A)〜(C)は、本実施の形態のリチウムイオン二次電池の構成を示す図である。(A)は、断面図、(B)は、上側から見た平面図、(C)は、下側から視た平面図である。本実施の形態のリチウムイオン二次電池においても、実施の形態1の場合と同様に、電池缶10に、電極群20が挿入され、電池缶10の開口部に電池蓋30を溶接することにより、電池が形成されている。
即ち、図6に示す電池缶(電池容器ともいう)10は、円筒状の容器であり、底面(底部ともいう)、側面(側部ともいう)および上部の開口部を有する。電池缶10の底面において、外側の中央部には、正極外部端子となる凸部10aを有する。凸部10aには、凹部(溝)11が設けられている。この凹部11は、ボルト(図14参照)との接続部となり、その側面には、ネジ溝(図示せず)が形成されている。凸部10aの直径は、24mm、凹部11の直径は、5〜10mmである。
また、電池缶10の底面において、内側の中央部には、凸部(内側突起ともいう)12が設けられている。凸部12の直径は、15〜25mmである。凸部12は、正極集電リング40の凹部(図8の凹部42参照)にはめ込まれる。そして、本実施の形態の電池缶10においても、凸部10aにおける電池缶の厚さ(Ta)は、側面における電池缶の厚さ(Tb)より大きい(図10参照)。このように、正極外部端子となる凸部10aにおいて、アルミニウム膜を厚膜化することで、外部接続抵抗を低減することができる。また、本実施の形態においては、電池缶10の内側にも凸部12が設けられているため、外部接続抵抗を低減することができる。凸部12の厚さはTcである(図10参照)。
このような電池缶10に、電極群20が挿入され(収容され)、電池缶10の開口部に電池蓋30を溶接することにより、電池容器の開口部を封口し、電池が形成される(図6)。この際、電極群20のプラス側を下側(底面側)として挿入し、電極群20と凸部10aとを電気的に接続する。また、電極群20のマイナス側は上側(電池蓋30側)となり、例えば、電池蓋30の開口部(孔ともいう)から負極外部端子となる負極極柱部を突出させる。電極群20は、実施の形態1の場合と同様に、正極板、負極板、およびセパレータを有している。正極板と負極板との間にセパレータを挟んで軸芯の周りに捲回することにより電極群20が形成される。また、電池缶10の内部には、電解液が封入される。正極板、負極板、セパレータおよび電解液としては、実施の形態1で説明した材料を適宜用いることができる。
図7〜図12は、本実施の形態のリチウムイオン二次電池の製造工程を示す図であり、図7は、斜視図、図8〜図12は、断面図である。図7〜図12を参照しながら、本実施の形態のリチウムイオン二次電池の製造方法を説明するとともに、リチウムイオン二次電池(図6)の構成をより明確にする。
1.正極板の形成
図7(A)に示すように、正極板21は、集電体21aおよびその上部に形成された正極合剤21bを有する。集電体21aの端部には、正極リード片21cが設けられている。
集電体21aは、アルミニウムまたはアルミニウム合金よりなる薄い平板(アルミニウム箔ともいう)である。正極合剤21bは、正極活物質であるリチウム化合物を有する層である。
正極板21の形成方法の一例を説明する。例えば、短辺(幅)が350mmの矩形状であり、その厚さが、20μm程度のアルミニウム箔を準備する。次いで、アルミニウム箔上に、300mm程度の幅で正極材料を塗布する。この正極材料は、アルミニウム箔の一方の長辺に沿って塗布され、他方の長辺に沿った50mmの幅の領域は未塗布部とする。その後、乾燥処理を施し、プレスにより圧密化する。次いで、裁断することにより、幅350mmの正極板を形成することができる。上記裁断の際、上記未塗布部に切り欠きを入れ、切り欠き残部を正極リード片21cとする。正極リード片21cの幅は、例えば、10mm程度、隣り合う正極リード片21cの間隔は20mm程度である。
2.負極板の形成
図7(A)に示すように、負極板22は、集電体22aおよびその上部に形成された負極合剤22bを有する。集電体22aの端部には、負極リード片22cが設けられている。
集電体22aは、銅または銅合金よりなる薄い平板(銅箔ともいう)である。負極合剤22bは、負極活物質を有する層である。
負極板22の形成方法の一例を説明する。例えば、短辺(幅)が350mmの矩形状であり、その厚さが、10μm程度の銅箔を準備する。次いで、銅箔上に、例えば、300mm程度の幅で負極材料を塗布する。この負極材料は、銅箔の一方の長辺に沿って塗布され、他方の長辺に沿った50mmの幅の領域は未塗布部とする。その後、乾燥処理を施し、プレスにより圧密化する。次いで、裁断することにより、幅350mmの負極板を形成することができる。上記裁断の際、上記未塗布部に切り欠きを入れ、切り欠き残部を負極リード片22cとする。例えば、負極リード片22cの幅は、10mm程度、隣り合う負極リード片22cの間隔は20mm程度である。
3.電極群の形成
図7(B)に示すように、上記正極板21と上記負極板22とを、これらが直接接触しないようにセパレータ23、24を挟んで軸芯25の周りに捲回する。セパレータ23、24としては、例えば、厚さ30μm程度のポリエチレン製のセパレータを用いる。軸芯25は、筒状であり、例えば、ポリプロピレン材料よりなる。この捲回の際、正極板21と負極板22とを、それぞれのリード片(21c、22c)が互いに反対側の端部から突出するよう重ねて捲回する。正極板21、負極板22およびセパレータ23、24の長さを調整し、電極群径を、例えば、40mm〜65mm程度とする。このようにして、電極群20を形成する。
4.正極集電リングおよび負極集電部材の接続
図8に示すように、正極リード片21cと正極集電リング40とを電気的に接続する。正極集電リング40は、円板状の導電材料(例えば、アルミニウムまたはアルミニウム合金)よりなる。正極集電リング40は、中央部40aと外輪部40bとを有する。正極集電リング40の第1面側(図8中の上面)の中央部40aには、軸芯25がはめ込まれる浅い凹部41が設けられ、第1面側と逆側の第2面側(図8中の下面)の中央部40aには、凹部42が設けられている。凹部42には、後述する電池缶10の凸部(内側突起)12がはめ込まれる。正極集電リング40の第1面側(図8中の上面)の外輪部40bに、正極リード片21cが溶接される。なお、第2面側(図8中の下面)の外輪部40bにも、凹部が設けられている。
また、図8に示すように、負極リード片22cと負極集電部材50とを電気的に接続する。負極集電部材50は、導電材料(例えば、銅または銅合金)よりなる。負極集電部材50は、極柱部51および鍔部(リング部ともいう)52を有する。極柱部51は、負極外部端子となる外側突起部51aと内側突起部51bとを有する。外側突起部51aは、負極外部端子となる。内側突起部51bは、軸芯25中にはめ込まれる。鍔部52の底面(内側突起部51b側の面)に、負極リード片22cが溶接される。なお、鍔部52の上面(外側突起部51a側の面)にも、凹部が設けられている。
この後、図9に示す一体となった正極集電リング40、電極群20および負極集電部材50の側部を粘着テープで何重にも巻くことにより、絶縁被覆(図示せず)を形成する。粘着テープとしては、例えば、基材がポリイミドで、その片面にヘキサメタアクリレートからなる粘着材を塗布した粘着テープを用いる。粘着テープで覆われた電極群20の最大径部が電池缶の内径よりも僅かに小さくなるように絶縁被覆の厚さ(粘着テープの巻き数)を調整する。
5.電池缶への電極群の挿入
絶縁被覆で覆われ一体となった正極集電リング40、電極群20および負極集電部材50を、電池缶内に挿入する。電池缶の外径は67mm、内径は66mmである。よって、この場合、側面における電池缶の厚さTbは、0.5〜1mm程度となる。
図10に示す電池缶10は、底面、側面および開口部を有する。電池缶10の底面において、外側の中央部には、正極外部端子となる凸部10aを有する。凸部10aには、凹部11が設けられている。この凹部11は、ボルトとの接続部となり(図14参照)、その側面には、ネジ溝(図示せず)が形成されている。
また、電池缶の底面において、内側の中央部には、凸部(内側突起ともいう)12を有する。凸部12は、正極集電リング40の凹部42にはめ込まれる。また、電池缶10の底面の外周部には、安全弁13が設けられている。安全弁13は、電池缶10の底面の外周部に設けられた凹部であり、当該部位においては、電池缶の厚さが、側面における電池缶の厚さより小さくなっている(図6(C)も参照)。安全弁13は、電池の内圧上昇に応じて開裂する。開裂圧は、例えば、13〜18kgf/cmである。
このような、電池缶10も、実施の形態1の場合と同様に、インパクト成型法により形成される。但し、凹部11やその側面のネジ溝、安全弁13を構成する凹部などは、電池缶10をインパクト成型法により形成した後、切削加工により形成することが好ましい。
次いで、図11に示すように、上記電池缶10の開口部から、正極集電リング40側を下側として、電極群20を挿入し、電池缶の底面の凸部12を、正極集電リング40の凹部42にはめ込む。次いで、電池缶の底面の凸部12と正極集電リング40との接触部をレーザー溶接などにより接続する。
6.電池蓋の取り付け
次いで、電池缶の開口部に電池蓋を取り付ける(図12)。電池缶の開口部から突出した負極集電部材50の外側突起部(負極外部端子)51aに、セラミックワッシャ31、電池蓋30およびワッシャ32を順次はめ込む。セラミックワッシャ31は、アルミナ製であり、電池蓋30の裏面と当接する部分の厚さが2mm、内径16mm、外径25mmである。ワッシャ32は、例えば、セラミックスまたは樹脂製である。
次いで、電池蓋30の周端面を電池缶10の開口部に嵌合し、双方の接触部の全域を溶接させて接合する。この際、負極集電部材50の外側突起部(負極外部端子)51aは、電池蓋30の中心にある穴(孔)を貫通して電池蓋30の外部に突出している。
次いで、ワッシャ32を、負極集電部材50の外側突起部(負極外部端子)51aに、はめ込む。ワッシャ32は、ナット33の底面より平滑な材料よりなる。次いで、金属製のナット33を外側突起部(負極外部端子)51aにねじ込む(螺着する)。
7.電解液の注入および封止
その後、電池蓋30に設けられた注液口30a(図6(B)参照)から電解液を電池缶10内に注入し、注液口を封止する。電解液としては、例えば、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートを、それぞれの体積比2:3:2で混合した混合溶液中へ、6フッ化リン酸リチウム(LiPF)を1.2mol/L溶解したものを用いることができる。
以上の工程により、円筒形のリチウムイオン電池を形成することができる。
このように、本実施の形態においても、電池缶10の材料としてアルミニウムを用いることで、電池缶10の軽量化を図ることができる。特に、アルミニウムは、展延性が高く、電池缶10の薄膜化が可能となる。この点においても、電池缶10の軽量化を図ることができる。
また、電池缶10の側面を薄膜化(例えば、厚さ0.1〜3.0mm程度)しつつ、正極外部端子となる凸部10aにおいては、アルミニウム膜を厚膜化(例えば、厚さ10〜50mm程度)することで、外部接続抵抗を低減することができる。別の言い方をすれば、正極外部端子の高さ方向の肉厚を厚膜化(例えば、厚さ10〜50mm程度)することで、外部接続抵抗を低減することができる。
また、電池缶10側を正極、即ち、電極群20のプラス側と接続することにより、アルミニウム材料を正極板として用いる電極群20と電池缶10の材料が同一材料となり、これらの電気的安定性や電気的接続性が良好となる。例えば、正極板と電池缶とを異なる材料で構成した場合と比較し、電池缶の腐食などを抑制することができる。特に、大容量のリチウムイオン二次電池においては、正極における充放電反応が活発に行われるため、正極における電気的安定性を向上させることの効果は大きい。
さらに、インパクト成型法により、電池缶10を形成することで、短工程で、迅速に電池缶10を形成することができる。図13は、インパクト成型法による電池缶の製造工程を示す断面図である。本実施の形態の電池缶を形成する場合も、実施の形態1(図3)と同様に、アルミニウム材料101にパンチ棒103を打ち込むことにより、電池缶を形成する。但し、ここでは、底部の中央部に中空部(凹部ともいう)103aを有するパンチ棒103を用いる。中空部103aの深さは、凸部12の高さより大きくする。
具体的には、図13に示すように、まず、アルミニウム材料101をキャビティ100にセットする(図13の左図)。次いで、電池缶10の内径に対応する径を有し、底部に中空部103aを有するパンチ棒103を、アルミニウム材料101に打ち込む(図13の中央図)。パンチ棒103が打ち込まれた衝撃によりアルミニウム材料101が流動変形し、パンチ棒103とキャビティ100との隙間からパンチ棒103の側面に沿って上昇する(図13の右図)。さらに、パンチ棒103の中空部103a内にアルミニウム材料101が入り込む。パンチ棒103の側面に沿って上昇したアルミニウム材料101が筒状の側面となる。また、パンチ棒103の中空部103a内に入り込んだアルミニウム材料101が凸部12となる。さらに、キャビティの中央部に凹部100aのアルミニウム材料101が正極外部端子となる凸部10aとなる。この後、パンチ棒103およびキャビティ100からアルミニウム材料101を引き剥がすことにより、電池缶10を形成することができる。
このように、本実施の形態においても、インパクト成型法により、電池缶10を形成することで、短工程で、迅速に電池缶10を形成することができる。また、凸部12および正極外部端子となる凸部10aを、インパクト成型法により、一括して形成することにより、さらに、短工程で、迅速に電池缶10を形成することができる。
(実施の形態3)
実施の形態1および2においては、1つの電池について説明したが、ナット33および凹部11にはめ込まれるボルト60を用いて、複数の電池を並列に接続してもよい。
図14は、本実施の形態のリチウムイオン二次電池の構成を示す断面図である。図14に示すように、複数の電池を並列に接続する。
例えば、複数の開口部を有する矩形状の導電材料(例えば、銅または銅合金)よりなる板(連結部材、バスバーともいう)70を用い、複数の電池を接続する。各開口部に、ワッシャ32を介して各電池の外側突起部(負極外部端子ともいう)51aを差し込み、ナット33を外側突起部51aにねじ込むことにより、固定する。一方、正極側については、複数の開口部を有する矩形状の導電材料(例えば、アルミニウムまたはアルミニウム合金)よりなる板状部材61を用い、各開口部と各電池の凹部11とを位置合わせする。凹部11にはネジ溝(図示せず)が設けられている。この凹部11に、ボルト60をねじ込むことにより、固定する。
このように、複数の電池を接続する場合においても、正極外部端子となる凸部10aのアルミニウム膜を厚膜化することで、外部接続抵抗を低減することができる。特に、複数の電池を接続する場合においては、各電池における外部接続抵抗の影響が大きく、例えば、20本以上の電池を用いる大規模蓄電システムなどにおいては、本実施の形態の構成を用いて効果的である。
以上、本発明者によってなされた発明をその実施の形態および実施例に基づき具体的に説明したが、本発明は上記実施の形態および実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
本発明は、リチウムイオン二次電池に適用して有効である。
10 電池缶
10a 凸部
11 凹部
12 凸部
13 安全弁
20 電極群
21 正極板
21a 集電体
21b 正極合剤
21c 正極リード片
22 負極板
22a 集電体
22b 負極合剤
22c 負極リード片
23、24 セパレータ
25 軸芯
30 電池蓋
30a 注液口
31 セラミックワッシャ
32 ワッシャ
33 ナット
40 正極集電リング
40a 中央部
40b 外輪部
41 凹部
42 凹部
50 負極集電部材
51 極柱部
51a 外側突起部
51b 内側突起部
52 鍔部
60 ボルト
61 板状部材
70 板
100 キャビティ
100a 凹部
101 アルミニウム材料
103 パンチ棒
103a 中空部

Claims (11)

  1. 電極群を収容する円筒状の電池容器であって、底部と側部と開口部とを有する電池容器と、
    前記電池容器の前記開口部を封口する電池蓋と、を有し、
    前記電池容器は、アルミニウムを含有する材料よりなり、
    前記電池容器の底部に、正極外部端子が設けられ、
    前記電池蓋の側に、負極外部端子が設けられ、
    前記正極外部端子の高さ方向の肉厚は、前記電池容器の側部の厚さより厚い、二次電池。
  2. 請求項1記載の二次電池において、
    前記二次電池は、リチウムイオン二次電池である、二次電池。
  3. 請求項2記載の二次電池において、
    前記電極群は、正極板を有し、
    前記正極板は、アルミニウムを含有する材料よりなる集電体を有し、
    前記集電体の端部には、正極リード片が設けられ、
    前記正極リード片が、前記電池容器の底部の前記正極外部端子と電気的に接続される、二次電池。
  4. 請求項3記載の二次電池において、
    前記正極外部端子に、凹部が設けられ、
    前記凹部と接続されるボルトを有する、二次電池。
  5. (a)正極板と負極板とをセパレータを介して捲回することにより電極群を形成する工程、
    (b)円筒状の電池容器であって、底部と側部と開口部とを有する電池容器に、前記電極群の正極側が前記底部に接触するように、前記電極群を前記電池容器に収納する工程、
    (c)前記電池容器の前記開口部を電池蓋により封口する工程、を有し、
    前記電池容器は、アルミニウムを含有する材料よりなり、
    前記電池容器の底部に、正極外部端子が設けられ、
    前記正極外部端子の厚さは、前記電池容器の側部の厚さより厚い、二次電池の製造方法。
  6. 請求項5記載の二次電池の製造方法において、
    前記二次電池は、リチウムイオン二次電池である、二次電池の製造方法。
  7. 請求項6記載の二次電池の製造方法において、
    前記電池容器は、インパクト成型法により形成される、二次電池の製造方法。
  8. 請求項7記載の二次電池の製造方法において、
    前記電池容器は、前記アルミニウムを含有する材料に、棒状部材を打ち込んだ際の衝撃により前記アルミニウムを含有する材料を流動変形させ、前記棒状部材の側面に沿って前記アルミニウムを含有する材料を上昇させることにより形成される、二次電池の製造方法。
  9. 請求項8記載の二次電池の製造方法において、
    前記正極板は、アルミニウムを含有する材料よりなる集電体を有し、
    前記集電体の端部には、正極リード片が設けられ、
    前記(b)工程において、前記正極リード片が、前記電池容器の底部の前記正極外部端子と電気的に接続される、二次電池の製造方法。
  10. 請求項8記載の二次電池の製造方法において、
    前記棒状部材は、前記アルミニウムを含有する材料が配置されたキャビティに打ち込まれ、
    前記キャビティは、凹部を有し、
    前記正極外部端子は、前記凹部と対応して形成される、二次電池の製造方法。
  11. 請求項8記載の二次電池の製造方法において、
    前記棒状部材は、中空部を有し、
    前記正極外部端子に、前記中空部と対応する凸部が形成される、二次電池の製造方法。
JP2014223061A 2014-10-31 2014-10-31 二次電池および二次電池の製造方法 Pending JP2016091711A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014223061A JP2016091711A (ja) 2014-10-31 2014-10-31 二次電池および二次電池の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014223061A JP2016091711A (ja) 2014-10-31 2014-10-31 二次電池および二次電池の製造方法

Publications (1)

Publication Number Publication Date
JP2016091711A true JP2016091711A (ja) 2016-05-23

Family

ID=56019515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014223061A Pending JP2016091711A (ja) 2014-10-31 2014-10-31 二次電池および二次電池の製造方法

Country Status (1)

Country Link
JP (1) JP2016091711A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU190388U1 (ru) * 2019-01-09 2019-07-01 Акционерное общество "Энергия" (АО "Энергия") ЦИЛИНДРИЧЕСКИЙ ЛИТИЙ-ИОННЫЙ АККУМУЛЯТОР С КАТОДОМ НА ОСНОВЕ LiCoO2, ТРЕХСЛОЙНЫМ СЕПАРАТОРОМ И САМОВОССТАНАВЛИВАЮЩИМСЯ ПРЕДОХРАНИТЕЛЕМ
WO2022177376A1 (ko) * 2021-02-19 2022-08-25 주식회사 엘지에너지솔루션 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU190388U1 (ru) * 2019-01-09 2019-07-01 Акционерное общество "Энергия" (АО "Энергия") ЦИЛИНДРИЧЕСКИЙ ЛИТИЙ-ИОННЫЙ АККУМУЛЯТОР С КАТОДОМ НА ОСНОВЕ LiCoO2, ТРЕХСЛОЙНЫМ СЕПАРАТОРОМ И САМОВОССТАНАВЛИВАЮЩИМСЯ ПРЕДОХРАНИТЕЛЕМ
WO2022177376A1 (ko) * 2021-02-19 2022-08-25 주식회사 엘지에너지솔루션 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차

Similar Documents

Publication Publication Date Title
KR101776885B1 (ko) 둘 이상의 케이스 부재들을 포함하는 각형 전지셀
US9203059B2 (en) Battery with insulating member including bus bar fixing section
JP5762537B2 (ja) 双極電極を有する角形単電池を有する組電池
JP5165482B2 (ja) 捲回式二次電池
JP6593344B2 (ja) 円筒形電池
JP6631626B2 (ja) 円筒形電池、並びにそれに用いる集電部材及びその製造方法
JP5525551B2 (ja) 角形電池
JP5173095B2 (ja) 密閉型電池
JP5396801B2 (ja) 電池
JP2008135374A (ja) 密閉型二次電池
JP5765404B2 (ja) リチウムイオン二次電池
US20140370379A1 (en) Secondary battery and manufacturing method thereof
KR101657334B1 (ko) 이차 전지
JP4984359B2 (ja) 密閉型電池およびその封口板
CN111183542B (zh) 非水电解质二次电池
JP2004171954A (ja) ラミネート二次電池、複数のラミネート二次電池からなる組電池モジュール、複数の組電池モジュールからなる組電池ならびにこれらいずれかの電池を搭載した電気自動車
JP2016091711A (ja) 二次電池および二次電池の製造方法
JP5044933B2 (ja) 電池
KR101722662B1 (ko) 파우치형 이차 전지
JP5639903B2 (ja) リチウムイオン二次電池
KR100601544B1 (ko) 캡 조립체 및 이를 구비하는 리튬 이차 전지
KR100624936B1 (ko) 이차 전지
KR100614398B1 (ko) 각형 리튬 이차 전지
JP2019029277A (ja) リード部材および蓄電デバイス
JP2012216460A (ja) 非水電解質二次電池