JP2016084512A - Plated steel wire excellent in adhesiveness to rubber and rubber composite using the same, and production method therefor - Google Patents

Plated steel wire excellent in adhesiveness to rubber and rubber composite using the same, and production method therefor Download PDF

Info

Publication number
JP2016084512A
JP2016084512A JP2014218298A JP2014218298A JP2016084512A JP 2016084512 A JP2016084512 A JP 2016084512A JP 2014218298 A JP2014218298 A JP 2014218298A JP 2014218298 A JP2014218298 A JP 2014218298A JP 2016084512 A JP2016084512 A JP 2016084512A
Authority
JP
Japan
Prior art keywords
plating
rubber
steel wire
wire
plated steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014218298A
Other languages
Japanese (ja)
Other versions
JP6379999B2 (en
Inventor
児玉 順一
Junichi Kodama
順一 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014218298A priority Critical patent/JP6379999B2/en
Publication of JP2016084512A publication Critical patent/JP2016084512A/en
Application granted granted Critical
Publication of JP6379999B2 publication Critical patent/JP6379999B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/0666Reinforcing cords for rubber or plastic articles the wires being characterised by an anti-corrosive or adhesion promoting coating
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3007Carbon
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3067Copper (Cu)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive plated steel wire that is produced without deteriorating productivity and is excellent in adhesiveness to rubber in which Co salt is not blended, and that has little deterioration of adhesive strength.SOLUTION: There is provided an extra fine plated steel wire which has a wire diameter of 0.1 to 0.4 mm and has on the surface thereof, a plating layer 2 having average thickness of 50 to 500 nm, and in which the plating layer contains, by mass%, carbon black of 1 (hereafter described as CB) of 0.1 to 5 mass% and the balance Cu with inevitable impurities and average diameter of a primary particle of the CB is 10 to 100 nm. There are also provided a rubber composite using the extra fine plated steel wire and a production method for the plated steel wire. This enables the extra fine plated steel wire to have improved strength of adhesion to rubber in which Co salt is not blended and enables the extra fine plated steel wire to have suppressed long-term deterioration of the adhesive strength.SELECTED DRAWING: Figure 1

Description

本発明は、スチールコードなど、タイヤを始めとする各種ゴム製品の補強材に使用される、表面にめっき処理が施された極細鋼線であって、ゴムとの接着性に優れた極細めっき鋼線、ゴム複合体および極細めっき鋼線の製造方法に関するものである。   The present invention is an ultrafine steel wire having a surface plated and used as a reinforcing material for various rubber products including tires such as steel cords, and has an excellent adhesion to rubber. The present invention relates to a method for manufacturing a wire, a rubber composite, and an ultrafine plated steel wire.

ゴム補強材、例えば、タイヤの補強材として使用されているスチールコードの表面には、ブラスめっきが形成されている。このスチールコードを、未加硫ゴムに埋め込み、加硫処理することにより、スチールコードとゴムとを接着させる。なお、加硫処理は、ゴム製品を製造する際の最終工程であり、150〜200℃に20〜40分間加圧、加熱する工程である。   Brass plating is formed on the surface of a rubber reinforcing material, for example, a steel cord used as a reinforcing material for a tire. The steel cord is embedded in unvulcanized rubber and vulcanized to bond the steel cord and rubber. In addition, a vulcanization process is a final process at the time of manufacturing a rubber product, and is a process of pressurizing and heating at 150 to 200 ° C. for 20 to 40 minutes.

加硫によって、ゴムの架橋とともにスチールコードのブラスめっきとゴムとの界面に接着層が生成する。この接着層は、ブラスめっきのCu及びZnとゴムに含まれるS(硫黄)との反応によって形成された硫化物である。   By vulcanization, an adhesive layer is formed at the interface between the steel cord brass plating and the rubber together with the crosslinking of the rubber. This adhesive layer is a sulfide formed by a reaction between Cu and Zn of brass plating and S (sulfur) contained in the rubber.

このように、スチールコードとゴムとは、加硫時に生成する硫化物によって接着される。このため、ブラスめっきの組成は加硫処理後の初期接着性とその後の接着劣化を適正に制御するためにCu比率を62〜65%程度の比較的狭い範囲に制御されている。   As described above, the steel cord and the rubber are bonded together by the sulfide generated during vulcanization. For this reason, the composition of the brass plating is controlled in a relatively narrow range of about 62 to 65% in order to appropriately control the initial adhesion after vulcanization and the subsequent adhesion deterioration.

このブラスめっきの製造工程は通常、熱処理後の鋼線に電気銅めっきを行い、さらに、引き続き電気亜鉛めっきを行い層状のめっきとした後に加熱することで、合金化反応を行いブラスめっきとしている。この製造工程では2回の電気めっきと加熱拡散工程が必要となり、エネルギーコストが大きくなる。   In the brass plating manufacturing process, the steel wire after the heat treatment is usually subjected to electrolytic copper plating, and subsequently subjected to electrogalvanization to form a layered plating, followed by heating, thereby performing an alloying reaction to form brass plating. This manufacturing process requires two electroplating and heat diffusion steps, which increases energy costs.

また、ゴム中には、硫化物の生成を促進する触媒としてCoを含む有機コバルト塩が配合されることがある。Coは、スチールコードとゴムとの初期の接着強度を確保するためには有用である。しかし、タイヤなどを高温、高湿環境で使用すると、ブラスめっきのCu及びZnとゴムに含まれるSとの反応が進行する。その結果、接着層が厚くなり、硫化物の組成が変化し、スチールコードとゴムとの接着強度が低下する。   Further, in the rubber, an organic cobalt salt containing Co may be blended as a catalyst for promoting the formation of sulfide. Co is useful for ensuring the initial bond strength between the steel cord and rubber. However, when a tire or the like is used in a high-temperature and high-humidity environment, the reaction between brass and Cu and Zn and S contained in the rubber proceeds. As a result, the adhesive layer becomes thick, the sulfide composition changes, and the adhesive strength between the steel cord and rubber decreases.

さらに、有機コバルト塩は、ゴム分子の二重結合を切断し、ゴムを劣化させるという問題がある。また、CuとSとの加硫反応の触媒として作用するCoは希少金属であり、ゴムにCoを含有させると、コストが非常に高くなる。そのため、タイヤなどのゴムから有機コバルト塩を削減することが望まれている。   Furthermore, the organic cobalt salt has a problem of breaking rubber double bonds and deteriorating rubber. Further, Co acting as a catalyst for the vulcanization reaction between Cu and S is a rare metal, and if Co is contained in rubber, the cost becomes very high. Therefore, it is desired to reduce organic cobalt salts from rubber such as tires.

このような問題に対して、各種ブラスめっきが提案されており、非シアン浴による合金ブラスめっき(特許文献1)が提案されているが、高電流密度での製造や、めっき液に有機系添加剤を用いるため薬剤のコストが高くなり、実用性に課題があった。また、接着性改善を目的にブラスめっきにCoを含むめっき組成(特許文献2)、Niをブラスめっきに含むもの(特許文献3)、また、スチールコードの耐食性を改善するためにCu比率を低下し、Znの犠牲防食を利用するもの(特許文献4)、CuとZnの多層めっき後拡散処理を行いブラスめっきにするもの(特許文献5)等各種提案されているが、いずれもCuとZnめっき組成あるいはこのブラスめっき組成にCo、Niの微量成分を含むもので、加熱、拡散処理が必要である。   Various types of brass plating have been proposed for such problems, and alloy brass plating using a non-cyan bath (Patent Document 1) has been proposed. However, manufacturing at a high current density and addition of an organic system to the plating solution are proposed. Since the agent is used, the cost of the drug increases, and there is a problem in practicality. Also, for the purpose of improving adhesion, the plating composition containing Co in the brass plating (Patent Document 2), the one containing Ni in the brass plating (Patent Document 3), and reducing the Cu ratio in order to improve the corrosion resistance of the steel cord Various proposals have been made, such as those using sacrificial corrosion protection of Zn (Patent Document 4) and those subjected to diffusion treatment after multilayer plating of Cu and Zn to make brass plating (Patent Document 5). The plating composition or this brass plating composition contains trace amounts of Co and Ni and requires heating and diffusion treatment.

さらに、非合金組成のめっきとしてはコンベアベルト用補強材としてZnめっきスチールコード(特許文献6)が提案されているが、Znめっきとゴム界面に生成する硫化物はCu硫化物に比べ接着強度が低いため、ベルトコンベア以外には適用されていない。   Furthermore, Zn plating steel cord (Patent Document 6) has been proposed as a reinforcing material for conveyor belts as a non-alloy composition plating, but the sulfide produced at the Zn plating and rubber interface has an adhesive strength compared to Cu sulfide. Because it is low, it is not applied to anything other than belt conveyors.

特開2009−127097号公報JP 2009-127097 A 特開平1−98632号公報JP-A-1-98632 特開平1−259040号公報JP-A-1-259040 特開2007−100119号公報JP 2007-100119 A 特開2009−248102号公報JP 2009-248102 A 特開2006−312744号公報JP 2006-31744 A

本発明は、生産性を損なわず、低コストでCo塩を配合しないゴムとの接着性に優れ、かつ時間が経過しても接着強度の劣化が少ない、めっき鋼線およびゴム複合体、めっき鋼線の製造方法を提供するものである。   The present invention is a plated steel wire, rubber composite, and plated steel that is excellent in adhesiveness with rubber that does not impair productivity, is low-cost, and does not contain a Co salt, and has little deterioration in adhesive strength over time. A method of manufacturing a wire is provided.

本発明者は、上記課題を解決するために鋭意研究し、Cuめっきを主体とし、1工程で製造でき、ゴムとの接着反応を制御可能なめっき層の形態について検討した。その結果、Cuを母相とし、カーボンブラック(以下CBと記載)をめっき中に分散させることで、めっき線の伸線加工性を確保し、ゴムとの加硫接着時にCuの反応を制御するとともに、CB粒子とゴム界面に強固な反応層が形成され、その結果、ゴム中にCo塩を配合することなく、接着強度を向上させ、かつ、接着強度の経年劣化を抑制することが可能となることを見出して本発明を完成した。   The present inventor has intensively studied in order to solve the above-mentioned problems, and studied the form of the plating layer that can be manufactured in one process mainly with Cu plating and can control the adhesion reaction with rubber. As a result, Cu is used as a parent phase, and carbon black (hereinafter referred to as CB) is dispersed during plating to ensure the drawing workability of the plated wire and to control the reaction of Cu during vulcanization adhesion to rubber. At the same time, a strong reaction layer is formed at the interface between the CB particles and the rubber, and as a result, it is possible to improve the adhesive strength and suppress the deterioration of the adhesive strength over time without blending Co salt in the rubber. As a result, the present invention was completed.

本発明の要旨は以下のとおりである。
(1)線径が0.1〜0.4mmであり、表面に、平均厚さが50〜500nmであるめっき層を有し、該めっき層が、質量%で、カーボンブラック(以下CBと記載):0.1〜5%を含有し、残部がCu及び不可避的不純物からなることを特徴とするゴムとの接着性に優れた極細めっき鋼線。
(2)Cuめきに分散したCBの一次粒子の平均径が10nm〜100nmであることを特徴とする(1)のゴムとの接着性に優れた極細めっき鋼線。
(3)ゴム組成物に(1)又は(2)記載の極細めっき鋼線が埋設されたゴム複合体。
(4)ゴム組成物には有機酸コバルト塩を含まないことを特徴とした(3)記載のゴム複合体。
(5)CB粒子が分散したCuめっき鋼線を湿式伸線を行う場合、鋼線とプーリー間の滑りがなく、逆張力を鋼線の破断荷重の5〜30%付与しつつ湿式伸線を行うことを特徴とする、CB分散Cuめっき極細鋼線の製造方法。
The gist of the present invention is as follows.
(1) It has a plating layer having a wire diameter of 0.1 to 0.4 mm and an average thickness of 50 to 500 nm on the surface, and the plating layer is in mass% and is carbon black (hereinafter referred to as CB). ): An ultrafine plated steel wire excellent in adhesiveness to rubber, characterized by containing 0.1 to 5%, the balance being made of Cu and inevitable impurities.
(2) The ultrafine plated steel wire excellent in adhesiveness with rubber according to (1), wherein the average diameter of primary particles of CB dispersed in Cu plating is 10 nm to 100 nm.
(3) A rubber composite in which the ultrafine plated steel wire according to (1) or (2) is embedded in a rubber composition.
(4) The rubber composite according to (3), wherein the rubber composition does not contain an organic acid cobalt salt.
(5) When wet-drawing a Cu-plated steel wire in which CB particles are dispersed, there is no slip between the steel wire and the pulley, and wet drawing is performed while applying reverse tension to 5 to 30% of the breaking load of the steel wire. A method for producing a CB-dispersed Cu-plated extra fine steel wire, which is performed.

本発明のめっき鋼線をスチールコードとして使用すれば、ゴムとの接着強度が、加硫直後から良好であり、かつ、タイヤの使用時などの高温および多湿の環境で時間が経過しても接着強度の劣化が小さく、優れたゴムとの接着性を確保することができ、補強効果が高いゴム複合体を得ることができる。また、ゴムに有機Co塩を含有させる必要がない。さらに、1工程のめっき処理のみで製造が可能で、合金化させる加熱拡散処理も不要となり、Cuの加工性、CBの固体潤滑性により伸線加工性も悪化しないため製造コストの削減が可能となり、産業上の貢献が極めて顕著である。   If the plated steel wire of the present invention is used as a steel cord, the adhesive strength with rubber is good immediately after vulcanization, and it adheres even when time passes in a high temperature and high humidity environment such as when using a tire. It is possible to obtain a rubber composite that is less deteriorated in strength, can secure excellent adhesion to rubber, and has a high reinforcing effect. Moreover, it is not necessary to make the rubber contain an organic Co salt. In addition, it is possible to manufacture with only one plating process, no heat diffusion treatment to alloy is required, and wire drawing workability is not deteriorated due to Cu workability and CB solid lubricity, thereby reducing production costs. The industrial contribution is very remarkable.

本発明のめっき層の模式図である。It is a schematic diagram of the plating layer of this invention. CBのストラクチャーの模式図Schematic diagram of CB structure 本発明と従来のめっき線の製造工程を示すThe manufacturing process of this invention and the conventional plated wire is shown.

めっき鋼線とゴムとの接着は、鋼線表面のめっき層に含まれるCuとゴムに含まれるSが加硫処理時に反応し、接着層を形成することで発現する。接着強度は接着層のCu硫化物の生成状況に依存し、接着反応層の密度が高い場合は反応層の組成がCu2Sに近い組成となり、高い強度が得られるが、過剰に反応した場合は接着反応層の密度が低下し、CuSに近い組成となり、接着強度は低下すると考えられている。しかし、Cu単相めっきでは加硫初期に過剰に反応し、接着層の反応密度が低下し、CuSに近い組成となるため、接着強度が大きく低下する。 The adhesion between the plated steel wire and the rubber is manifested when Cu contained in the plated layer on the surface of the steel wire and S contained in the rubber react during the vulcanization treatment to form an adhesive layer. Adhesive strength depends on the state of Cu sulfide formation in the adhesive layer. When the density of the adhesive reaction layer is high, the composition of the reaction layer becomes a composition close to Cu 2 S and high strength is obtained, but when it reacts excessively Is considered to decrease the density of the adhesion reaction layer, become a composition close to CuS, and decrease the adhesive strength. However, Cu single-phase plating reacts excessively at the initial stage of vulcanization, the reaction density of the adhesive layer is reduced, and the composition is close to that of CuS, so that the adhesive strength is greatly reduced.

本発明者らは、Cu単相めっきでのCuとゴム中Sの反応制御について検討を行った。その結果、Cuとゴム中のSの反応を制御するためにはCu中にCBの微粒子を分散させることが有効であることを知見した。   The present inventors examined the reaction control between Cu and S in rubber in Cu single-phase plating. As a result, it has been found that it is effective to disperse CB fine particles in Cu in order to control the reaction between Cu and S in rubber.

さらに詳細に、検討を行った結果、Cuめっき中のCBには適正な配合率、粒子径の範囲があり、これらを適正に制御することでCuとSの反応が適切に制御できることがわかった。   As a result of further detailed investigation, it was found that CB in Cu plating has an appropriate blending ratio and a range of particle diameter, and the reaction between Cu and S can be appropriately controlled by appropriately controlling these. .

また、Cuめっき中に分散されたCBは、伸線加工時にはダイスとの接触面に於いて固体潤滑性能を発揮し、摩擦係数を低下する効果を有し、ゴムとの加硫接着時にはCBがCuの拡散障壁となり、Cuの過剰反応を抑制するとともにめっき表面に露出したCBはゴムとの加熱、加圧による加硫工程で、ゴムとの界面に強固な反応層を形成し、ゴムとめっき層の接着をより強固にする。この反応層は熱や水分の影響を受けず、接着劣化が発生しにくいことも明らかになった。   In addition, CB dispersed in Cu plating exhibits solid lubricating performance at the contact surface with the die at the time of wire drawing, and has an effect of reducing the friction coefficient. CB exposed to the plating surface while serving as a Cu diffusion barrier and suppressing excessive reaction of Cu forms a strong reaction layer at the interface with the rubber in the vulcanization process by heating and pressurizing with the rubber. Strengthen layer adhesion. It was also found that this reaction layer is not affected by heat and moisture, and adhesion deterioration hardly occurs.

また、Cuめっき中にCBが分散しためっき層を有する鋼線を伸線加工を行った後でも、同様なめっき構造を維持するためには伸線時にめっき層に作用する摩擦力を低減することが効果的であり、ダイスとの摩擦低減とともに引抜きプーリーと鋼線間での摩擦を低減することで、めっき層の構造の変化がなく、極細鋼線に伸線してもめっき層構造を維持でき、ゴムとの接着性を制御できることを知見し、本発明を完成するに至った。   In addition, to maintain the same plating structure even after drawing a steel wire having a plating layer in which CB is dispersed during Cu plating, the frictional force acting on the plating layer during drawing should be reduced. Is effective, and by reducing friction between the drawing pulley and steel wire as well as reducing friction with the die, there is no change in the structure of the plating layer, and the plating layer structure is maintained even if the wire is drawn to an ultrafine steel wire. It was possible to control the adhesiveness with rubber, and the present invention was completed.

以下、本発明について、詳細に説明する。   Hereinafter, the present invention will be described in detail.

線径:0.1〜0.4mm
めっき鋼線の線径は、しなやかさを得るために、0.4mm以下とする。これは、線径が0.4mmより太くなり、しなやかさが低下すると、タイヤのゴム補強材に使用した場合に、自動車の乗り心地が低下するためである。また、線径が太くなると、伸線加工による加工強化代が小さくなり、十分な補強効果が得られない。したがって、極細めっき鋼線の線径は0.4mm以下が好ましい。一方、線径を細くすると、製造工程が長くなり、最終製品の生産性も低下するために製造に時間とコストがかかる。さらに、めっき線の比表面積が増加し、ゴム中Sとめっき中Cuの反応が進行し、CB分散による反応制御性が低下し、十分な接着性を確保できなくなるため、極細めっき鋼線の線径の下限を0.1mm以上とすることが好ましい。極細鋼線の線径は、より好ましくは0.17〜0.34mmである。
Wire diameter: 0.1-0.4mm
The diameter of the plated steel wire is set to 0.4 mm or less in order to obtain flexibility. This is because when the wire diameter is thicker than 0.4 mm and the flexibility is lowered, the ride comfort of the automobile is lowered when used as a rubber reinforcing material for a tire. Moreover, when the wire diameter is increased, the machining strengthening allowance by wire drawing processing is reduced, and a sufficient reinforcing effect cannot be obtained. Therefore, the wire diameter of the ultrafine plated steel wire is preferably 0.4 mm or less. On the other hand, if the wire diameter is reduced, the manufacturing process becomes longer, and the productivity of the final product also decreases, so that manufacturing takes time and cost. Furthermore, the specific surface area of the plated wire increases, the reaction between S in rubber and Cu in plating proceeds, the reaction controllability due to CB dispersion decreases, and sufficient adhesion cannot be secured. The lower limit of the diameter is preferably 0.1 mm or more. The wire diameter of the ultra fine steel wire is more preferably 0.17 to 0.34 mm.

極細めっき鋼線の強度は、ゴム製品の補強効果を得るため、3200MPa以上であることが好ましい。鋼線の成分は必ずしも限定はされないが、強度を確保するため、C含有量を、0.7〜1.2質量%とすることが好ましい。また、鋼線の金属組織は、パーライト組織が面積率で95%以上で、粒界にフェライトやセメンタイトの析出を抑制することで、伸線加工性が良好で高強度のめっき線が製造可能となり、好ましい。   The strength of the ultrafine plated steel wire is preferably 3200 MPa or more in order to obtain a reinforcing effect of the rubber product. Although the component of a steel wire is not necessarily limited, in order to ensure intensity | strength, it is preferable that C content shall be 0.7-1.2 mass%. In addition, the steel wire has a pearlite structure with an area ratio of 95% or more, and by suppressing the precipitation of ferrite and cementite at the grain boundaries, it is possible to produce high strength plated wires with good wire drawing workability. ,preferable.

本発明の極細めっき鋼線は、熱間圧延材を伸線加工によって製造され、伸線途中で、熱処理、めっき後に拡散加熱処理なしで、更に伸線加工を行い、所定の線径の極細鋼線を得ることができる。例えば、線径が3〜5.5mmの鋼線を熱間圧延によって製造し、これを線径1〜3mmまで伸線加工する。次に、線径1〜3mmの鋼線に、必要に応じてパテンティング熱処理を行い、湿式めっきを施して、Cuめっき中にCBが分散しためっき鋼線を得る。更に湿式伸線により、線径が0.1〜0.4mmになるように伸線加工を行う。鋼線の引張強さは、熱処理以降の伸線加工の加工度によって調整する。   The ultra-fine plated steel wire of the present invention is manufactured by drawing a hot-rolled material, and during the drawing, heat treatment, and after wire plating, without further heat treatment, the wire is further drawn to obtain an ultra-fine steel having a predetermined wire diameter. You can get a line. For example, a steel wire having a wire diameter of 3 to 5.5 mm is manufactured by hot rolling, and this is drawn to a wire diameter of 1 to 3 mm. Next, if necessary, a steel wire having a wire diameter of 1 to 3 mm is subjected to a patenting heat treatment and wet-plated to obtain a plated steel wire in which CB is dispersed in Cu plating. Further, the wire drawing is performed by wet drawing so that the wire diameter becomes 0.1 to 0.4 mm. The tensile strength of the steel wire is adjusted according to the degree of wire drawing after the heat treatment.

本発明の極細めっき鋼線のめっき層は、図1に示すようにCu母相にCBが分散しためっきである。上述のとおり、本発明のめっき層は、Cuとゴムとの接着性を向上させるための接着反応を適正に制御するとともに、CBが直接ゴムと反応層を形成し、強固な接着を可能とするものである。さらに、1工程でめっきを行いかつ、拡散のための熱処理が不要となることを最大の特徴とする。以下、好ましいめっき組成、形態について説明する。なお、めっき組成の「%」は、「質量%」を意味する。   The plating layer of the ultrafine plated steel wire of the present invention is a plating in which CB is dispersed in a Cu matrix as shown in FIG. As described above, the plating layer of the present invention appropriately controls the adhesion reaction for improving the adhesion between Cu and rubber, and CB directly forms a reaction layer with rubber, thereby enabling strong adhesion. Is. Further, the greatest feature is that plating is performed in one step and no heat treatment for diffusion is required. Hereinafter, preferable plating compositions and forms will be described. Note that “%” in the plating composition means “mass%”.

CB:0.1〜5%
CBはCu母相に分散しており、Cuとゴムに含まれるS加硫処理時に形成する硫化物相の過剰形成を抑制する効果を有する。また、めっき層の表層に露出したCBは加硫処理時に、ゴムとの接着面で緻密な反応層を形成し、直接接着作用を発揮する。この結果、Cuを主体とするめっき層でもゴムとの高い接着強度が得られるものである。Cuは展伸性に富み、湿式伸線時の潤滑性を改善し、伸線加工性を向上させる効果があるが、CBを含むことで、CBの固体潤滑性能によりさらに潤滑性が改善される。Cuめっきに分散したCBによるこれらの効果を得るためにはCuめっき中のCB分散量を、0.1%以上にすることが好ましい。一方、CBが多く分散するとCuとSとの反応が阻害され、めっき表面に露出したCBとゴムの反応層のみの接着効果しかなくなり十分な接着強度が得られないため、Cuめっき中のCB分散量は5%以下にすることが好ましい。伸線加工性と、ゴムとの初期接着と接着劣化性をより改善するにはCBの配合量を0.7〜3%にすることがより好ましい。
CB: 0.1 to 5%
CB is dispersed in the Cu matrix and has the effect of suppressing the excessive formation of the sulfide phase formed during the S vulcanization treatment contained in Cu and rubber. In addition, CB exposed on the surface layer of the plating layer forms a dense reaction layer on the adhesive surface with rubber during the vulcanization treatment, and directly exerts an adhesive action. As a result, even with a plating layer mainly composed of Cu, high adhesion strength with rubber can be obtained. Cu is rich in malleability and has the effect of improving the lubricity at the time of wet drawing and improving the wire drawing workability. By including CB, the lubricity is further improved by the solid lubricating performance of CB. . In order to obtain these effects due to CB dispersed in Cu plating, the amount of CB dispersed in Cu plating is preferably 0.1% or more. On the other hand, when a large amount of CB is dispersed, the reaction between Cu and S is hindered, and only the reaction effect of the reaction layer of CB and rubber exposed on the plating surface is lost, so that sufficient adhesive strength cannot be obtained. The amount is preferably 5% or less. In order to further improve the wire drawing workability, initial adhesion to rubber, and adhesion deterioration, it is more preferable to adjust the amount of CB to 0.7 to 3%.

なお、極細めっき鋼線のCuめっき層中に分散したCB量は、めっき線をアンモニア原液に過硫酸アンモニウムを10%混合したアルカリ溶液に浸漬してめっき層を溶解し、めっき全質量を求め、溶解液中のCuをICP(誘導結合プラズマ発光分光分析)あるいは原子吸光分析により求め、全めっき量からCuの質量を差し引いた値をCBの質量とし、全めっき質量に対する比率として算出した。   The amount of CB dispersed in the Cu plating layer of the ultrafine-plated steel wire is obtained by immersing the plating wire in an alkaline solution in which 10% ammonium persulfate is mixed in an ammonia stock solution to dissolve the plating layer, and the total mass of the plating is obtained and dissolved. Cu in the solution was obtained by ICP (inductively coupled plasma emission spectroscopy) or atomic absorption analysis, and the value obtained by subtracting the mass of Cu from the total plating amount was defined as the mass of CB, and calculated as a ratio to the total plating mass.

CBの粒子サイズ:10〜100nm
CBは図2に模式的に示すように単一粒子が凝集したストラクチャーを形成する。しかし、伸線加工時にめっき層に作用する大きな面圧によりストラクチャー構造は変形と分断により、一次粒子が並んだ分散状況になる。従って、めっき中のCuの拡散パスに影響を及ぼすCBの粒径は単一の一次粒子となる。この一次粒子径が小さい場合はCuの拡散抑制効果が得られないとともに、ダイスとCB表面の接触面積が低下し、伸線時にダイスと鋼線間の摩擦低減効果も小さくなるため、CB粒子サイズは10nm以上が好ましい。一方、CBの粒径が大きい場合は伸線によりCuめっき母相中のCB粒子が粗な状態で分散するために、Cuの拡散制御が不均一となり、接着反応層の形成が局部的に変化し、接着強度ばらつきが大きくなるとともに安定した潤滑性改善効果が得られないためCBの平均粒径は100nm以下が好ましい。より好ましくは20〜80nmである。
CB particle size: 10 to 100 nm
CB forms a structure in which single particles are aggregated as schematically shown in FIG. However, due to the large surface pressure acting on the plating layer during wire drawing, the structure structure is in a dispersed state in which primary particles are aligned due to deformation and fragmentation. Therefore, the particle size of CB that affects the Cu diffusion path during plating is a single primary particle. When the primary particle size is small, the Cu diffusion suppressing effect cannot be obtained, the contact area between the die and the CB surface is reduced, and the friction reducing effect between the die and the steel wire is reduced at the time of wire drawing. Is preferably 10 nm or more. On the other hand, when the particle size of CB is large, CB particles in the Cu plating matrix phase are dispersed in a rough state due to wire drawing, so Cu diffusion control becomes uneven and formation of the adhesion reaction layer changes locally. The average particle size of CB is preferably 100 nm or less because the dispersion of adhesive strength becomes large and a stable lubricity improvement effect cannot be obtained. More preferably, it is 20-80 nm.

CBの粒子サイズはめっき断面のSEM(走査型電子顕微鏡)あるいはTEM(透過型電子顕微鏡)観察で、分散粒子を観察し、その画像の粒子を画像解析により、円換算して粒子分布を求め、面積率が50%となる粒子径を平均粒子径として求めることができる。   The particle size of the CB is obtained by observing the dispersed particles by SEM (scanning electron microscope) or TEM (transmission electron microscope) observation of the plating cross section, and calculating the particle distribution by converting the particles of the image into a circle by image analysis, The particle diameter at which the area ratio is 50% can be determined as the average particle diameter.

本発明で用いるCBは一般的な、各種製法によるものが利用可能で、製造方法は熱分解によるサーマル法、アセチレン分解、不完全燃焼法:コンタクト法、ランプ法、ガスファーネス法、オイルファーネス法によるものが使用可能である。   CB used in the present invention can be obtained by various general manufacturing methods, and the manufacturing method is a thermal method by thermal decomposition, acetylene decomposition, incomplete combustion method: contact method, lamp method, gas furnace method, oil furnace method. Things can be used.

また、粒子径の異なるCBはそれぞれ異なる種類のCBを使用することで変えることが可能で、例えば、ISAF、HAF、FEF、GPF、SRFの略号で示され、平均粒径が10nm〜100nmのものが使用可能である。   In addition, CBs having different particle sizes can be changed by using different types of CBs, for example, those represented by abbreviations of ISAF, HAF, FEF, GPF, and SRF and having an average particle size of 10 nm to 100 nm. Can be used.

めっき厚さ:50〜100nm
CBが分散したCuめっきが薄すぎると、めっきを施す前の鋼線の表面の凹凸に起因して、めっき鋼線の表面に、局所的に地鉄が露出した部分(Fe露出部)が生じることがある。このFe露出部では、ゴムと接着しないのみではなく、伸線時にダイスとの直接接触による焼き付きが発生し、伸線材の著しい延性の低下、傷の発生、ダイスの割損等のトラブルとなる。したがって、CBが分散したCuめっきの平均厚さを50nm以上にすることが好ましい。一方、めっきが厚すぎると、使用時に接着層に供給されるCu量が増加し、時間の経過とともに、接着層が成長し、Cu硫化物の組成がCuSに近くなり、接着強度が低下することがある。したがって、極細めっき鋼線とゴムとの接着強度の経年劣化を抑制するには、CBが分散したCuめっきの平均厚さを500nm以下にすることが好ましい。さらに好ましくはCBが分散したCuめっきの平均厚さは150〜350nmである。
Plating thickness: 50-100nm
If the Cu plating in which CB is dispersed is too thin, a portion (Fe exposed portion) where the ground iron is locally exposed on the surface of the plated steel wire is generated due to the unevenness of the surface of the steel wire before plating. Sometimes. This exposed Fe portion not only does not adhere to the rubber, but also seizes due to direct contact with the die during wire drawing, resulting in troubles such as a marked decrease in ductility of the wire drawing material, scratches, and die breakage. Therefore, the average thickness of Cu plating in which CB is dispersed is preferably 50 nm or more. On the other hand, if the plating is too thick, the amount of Cu supplied to the adhesive layer during use increases, and as time passes, the adhesive layer grows, the composition of Cu sulfide becomes close to CuS, and the adhesive strength decreases. There is. Therefore, in order to suppress the aging deterioration of the adhesive strength between the ultrafine plated steel wire and the rubber, the average thickness of the Cu plating in which CB is dispersed is preferably 500 nm or less. More preferably, the average thickness of Cu plating in which CB is dispersed is 150 to 350 nm.

極細めっき鋼線のめっき層の平均厚さは、めっき線をアンモニア原液に過硫酸アンモニウムを10%混合したアルカリ溶液に浸漬してめっき層を溶解し、めっき全質量を求め、溶解液中のCuをICP(誘導結合プラズマ発光分光分析)あるいは原子吸光分析により求め、全めっき量からCuの質量を差し引いた値をCBの質量とし、Cu、CBの比重から以下の式でめっきの平均厚さを求める。
めっき厚t=W/(A×ρ) (1)
ただし、t:平均めっき厚さ、W:単位長さのめっき質量、A:単位長さのめっき層の表面積、ρ:めっき層の平均比重である。めっき層の平均比重ρは、下記式によって算出することができる。
ρ=ρCu×WCu+ρCB×WCB (2)
ただし、ρCu:Cuの比重、ρCB:CBの比重、WCu:めっき中Cuの質量比、WCB:めっき中CBの質量比である。
The average thickness of the plating layer of the ultra-fine plated steel wire is determined by immersing the plating wire in an alkaline solution in which 10% ammonium persulfate is mixed in an ammonia stock solution to dissolve the plating layer, obtaining the total mass of the plating, and determining the Cu in the solution. Obtained by ICP (Inductively Coupled Plasma Emission Spectroscopy) or atomic absorption spectrometry, the value obtained by subtracting the mass of Cu from the total plating amount is taken as the mass of CB, and the average thickness of plating is obtained from the specific gravity of Cu and CB by the following formula. .
Plating thickness t = W / (A × ρ) (1)
Here, t: average plating thickness, W: plating mass of unit length, A: surface area of plating layer of unit length, and ρ: average specific gravity of plating layer. The average specific gravity ρ of the plating layer can be calculated by the following formula.
ρ = ρ Cu × W Cu + ρ CB × W CB (2)
However, ρ Cu : specific gravity of Cu, ρ CB : specific gravity of CB, W Cu : mass ratio of Cu in plating, W CB : mass ratio of CB in plating.

次に、本発明の極細めっき鋼線の製造工程の例について説明する。図3の製造工程のブロック図に示すように、まず、熱間圧延によって製造した線径が3〜5.5mmの鋼線を、デスケーリングして、これを線径1〜3mmまで伸線加工(乾式伸線)して、コイルに巻き取る。次に、コイルから繰り出した線径1〜3mmの鋼線に、パテンティング熱処理を施し、加工の影響を除去することが好ましい。さらに、必要に応じて、酸洗によるデスケーリング、脱脂のめっき前処理を施す。   Next, the example of the manufacturing process of the ultra fine plated steel wire of this invention is demonstrated. As shown in the block diagram of the manufacturing process in FIG. 3, first, a steel wire with a wire diameter of 3 to 5.5 mm manufactured by hot rolling is descaled and drawn to a wire diameter of 1 to 3 mm. (Dry wire drawing) and wind it on a coil. Next, it is preferable to perform a patenting heat treatment on a steel wire with a wire diameter of 1 to 3 mm fed from a coil to remove the influence of processing. Furthermore, if necessary, descaling by pickling and degreasing pretreatment for plating are performed.

従来はめっき前処理に引き続き、湿式Cuめっきを行い、その後、湿式Znめっきを行い、温度480〜550℃に5〜10s加熱してCuとZnを拡散により、合金化処理を行わせ、ブラスめっきとし、さらに伸線を行い、極細鋼線を製造する。   Conventionally, following the pre-plating treatment, wet Cu plating is performed, followed by wet Zn plating, heating to a temperature of 480 to 550 ° C. for 5 to 10 s, diffusion of Cu and Zn, alloying treatment is performed, and brass plating is performed. Then, the wire is further drawn to produce an extra fine steel wire.

一方、本発明は前処理後、CBが分散したCuイオンが溶解しためっき浴により湿式電気めっきを行い、めっき層中にCB粒子が分散しためっきとし、めっき後は、全く熱処理を行わず、さらに伸線加工を行い、極細鋼線を製造するものである。   On the other hand, in the present invention, after pretreatment, wet electroplating is performed with a plating bath in which Cu ions in which CB is dispersed are dissolved, and CB particles are dispersed in the plating layer. After the plating, no heat treatment is performed. Wire drawing is performed to produce an ultra fine steel wire.

CB粒子が分散したCuめっきは、例えばピロリン酸銅めっき浴中に、CB粒子を添加し、攪拌したものを電気めっきすることで得られる。また、高電流密度でめっきを行う場合は、めっき浴流速を1m/s以上とすることで、30A/dm2でもめっき焼けが発生せず、通電のON/OFFを周期的に繰り返す、パルスめっきを行うことで、より安定した分散めっきを得ることが可能となる。 Cu plating in which CB particles are dispersed can be obtained, for example, by adding CB particles to a copper pyrophosphate plating bath and electroplating the mixture after stirring. Also, when plating at high current density, pulse plating with a plating bath flow rate of 1 m / s or higher does not cause plating burn even at 30 A / dm 2 and periodically repeats ON / OFF of energization. By performing the step, it becomes possible to obtain a more stable dispersion plating.

パルスめっきを行う場合は、duty(=ton/(ton+toff)×100)を30〜70%とし、電硫の印加時間を0.1ms〜100msで制御することが好ましい。ここで、tonとは通電印加時間を意味し、toffとは通電停止時間を意味する。 When performing pulse plating, and 30 to 70% of duty (= t on / (t on + t off) × 100), it is preferable to control the application time of Den硫in 0.1Ms~100ms. Here, t on means the energization application time, and t off means the energization stop time.

CBが分散したCuめっき鋼線はさらに湿式伸線により線径が0.1〜0.4mmまで伸線する。ここで、湿式伸線はめっきの剥離を抑制し、めっき層の構造変化をなくするために伸線材表面の摩擦力を低減して伸線することが好ましい。具体的にはダイスと鋼線の間の潤滑性能を高めるために低摩擦係数となる湿式潤滑剤を使用する。特にめっき表面に露出したCBは固体潤滑機能により伸線時の摩擦を低減し、伸線加工性を改善する。この結果、めっき層は伸線加工により長手方向に延びていくが、同時に厚さも薄くなるため、めっき層中のCBのストラクチャーが変形、分断することで、単一粒子の分散状況はめっき時の状態が維持されるため、CBの効果が極細伸線後も十分確保される。   The Cu-plated steel wire in which CB is dispersed is further drawn to a diameter of 0.1 to 0.4 mm by wet drawing. Here, it is preferable that the wet wire drawing is performed by suppressing the peeling of the plating and reducing the frictional force on the surface of the wire drawing material in order to eliminate the structural change of the plating layer. Specifically, a wet lubricant having a low coefficient of friction is used in order to enhance the lubrication performance between the die and the steel wire. In particular, CB exposed on the plating surface reduces friction during wire drawing by a solid lubricating function and improves wire drawing workability. As a result, the plating layer extends in the longitudinal direction by wire drawing, but at the same time the thickness is reduced, so that the CB structure in the plating layer is deformed and divided, so that the dispersion state of single particles is Since the state is maintained, the effect of CB is sufficiently ensured even after ultra fine wire drawing.

また、引抜キャプスタンと鋼線の間のスリップがないノンスリップ式伸線を行うことで伸線加工時のめっきの剥離が抑制される。従来のスリップ式伸線ではめっきの剥離が大きいため、伸線後にはめっき中のCBの分散状況は粗になり、粒子密度が低下し、目的の効果が得にくい。   Moreover, peeling of the plating at the time of a wire drawing process is suppressed by performing the non-slip type | mold wire drawing without the slip between a drawing capstan and a steel wire. In conventional slip-type wire drawing, the peeling of the plating is large. Therefore, after the wire drawing, the state of CB dispersion during plating becomes rough, the particle density decreases, and the desired effect is difficult to obtain.

さらに、湿式伸線でめっきを剥離することなく、伸線するために逆張力を制御することが好ましい。伸線材の破断荷重に対する割合(逆張力比)で、5%以上の逆張力を負荷することで、ダイスとの接触部で面圧が低減し、伸線材表面に作用する摩擦力が減少し、めっき層に加わる力が低減されるためにめっきの剥離が少なくなり、均一なめっき層の分散状態を維持したままでの伸線加工が可能となり、好ましい。一方、逆張力比が30%を越えるとワイヤにかかる負荷が大きくなり、断線が発生し易くなるため、30%の逆張力比を上限とすることが好ましい。より好ましくは5〜20%の逆張力比を付与して湿式伸線を行う条件である。   Furthermore, it is preferable to control the reverse tension in order to draw the wire without peeling the plating by wet drawing. By applying a reverse tension of 5% or more as a ratio (reverse tension ratio) to the breaking load of the wire drawing material, the surface pressure is reduced at the contact portion with the die, and the frictional force acting on the surface of the wire drawing material is reduced. Since the force applied to the plating layer is reduced, peeling of the plating is reduced, and wire drawing can be performed while maintaining a uniform dispersed state of the plating layer, which is preferable. On the other hand, if the reverse tension ratio exceeds 30%, the load applied to the wire increases and breakage is likely to occur. Therefore, it is preferable to set the reverse tension ratio of 30% as the upper limit. More preferably, the reverse tension ratio of 5 to 20% is applied and wet wire drawing is performed.

湿式伸線時の逆張力の付与する方法は特に限定はされないが、ダンサー式あるいはモーターのトルク制御により逆張力の制御が可能である。特にダンサー式の逆張力の制御方法はリアルタイムに制御できるため、より高精度の逆張力制御が可能となり、好ましい伸線時の逆張力制御方法である。   The method of applying reverse tension during wet drawing is not particularly limited, but reverse tension can be controlled by a dancer type or motor torque control. In particular, since the dancer-type reverse tension control method can be controlled in real time, it is possible to perform reverse tension control with higher accuracy and is a preferable reverse tension control method during wire drawing.

本発明の極細めっき鋼線を補強材としてタイヤに適用する場合は、タイヤの走行性能にあわせて適宜複数本撚り合わせ、スチールコードとしてゴムとCB、硫黄、酸化亜鉛、その他各種添加剤を配合した原材料を練ったシート状ゴムに埋め込み、補強ベルト構造とする。その後、タイヤ構成部材を貼り合わせて加硫機にセットし、プレス、加熱し、ゴムの強度を発現するための架橋と同時にゴムとスチールコードとの接着を行い、ゴムとスチールコードからなるゴム複合体を得ることができる。   When the ultra fine plated steel wire of the present invention is applied to a tire as a reinforcing material, a plurality of wires are appropriately twisted according to the running performance of the tire, and rubber and CB, sulfur, zinc oxide, and other various additives are blended as steel cords. The raw material is embedded in kneaded sheet-like rubber to form a reinforced belt structure. After that, the tire components are bonded together, set in a vulcanizer, pressed and heated, and the rubber and steel cord are bonded together at the same time as crosslinking to develop the strength of the rubber. You can get a body.

また、ゴム配合原料にはブラスめっきとの接着促進剤として配合される、有機酸Co塩(例えば、ナフテン酸コバルト、ステアリン酸コバルト、ネオデカン酸コバルト等)を含まなくても、Cuめっき中に分散されたCBの作用により十分な接着反応層を形成するために、高い接着強度のゴム複合体を得ることが可能である。   Even if the rubber compounding raw material does not contain organic acid Co salt (for example, cobalt naphthenate, cobalt stearate, cobalt neodecanoate, etc.) blended as an adhesion promoter with brass plating, it is dispersed in Cu plating. In order to form a sufficient adhesion reaction layer by the action of the formed CB, it is possible to obtain a rubber composite having high adhesive strength.

本発明の鋼材成分は特に限定はされないが、C:0.72〜1.2質量%、Si:0.2〜0.5質量%、Mn:0.2〜0.6質量%、P:0.01質量%以下、S:0.01質量%以下、Cr:0.01〜0.35質量%の成分を有し、パーライト面積率が95%以上からなる材料が極細線の強度を確保し、ゴム複合体の補強効果を発揮させるのに好ましい。   Although the steel material component of this invention is not specifically limited, C: 0.72-1.2 mass%, Si: 0.2-0.5 mass%, Mn: 0.2-0.6 mass%, P: A material having components of 0.01% by mass or less, S: 0.01% by mass or less, Cr: 0.01 to 0.35% by mass, and a pearlite area ratio of 95% or more ensures the strength of the ultrafine wires. However, it is preferable for exerting the reinforcing effect of the rubber composite.

以下、本発明の実施例について説明する。なお、本実施例に記載の内容により本発明の内容は制限されない。   Examples of the present invention will be described below. In addition, the content of this invention is not restrict | limited by the content as described in a present Example.

表1に示す成分を有する鋼材を図3に示す製造工程に従い、線径が5.5mmの熱間圧延線材を原材料とし、熱間圧延線材を酸洗し、スケールを除去した後、石灰処理を行い、ステアリン酸Naを主体とした乾式潤滑剤を用いて1.5mmまで伸線加工した。この伸線材に、熱処理として1000℃の加熱炉に導入し、45s保持し、金属組織をオーステナイトにした後、600℃の鉛浴に6s浸漬するパテンティング処理を行った。   The steel material having the components shown in Table 1 is manufactured in accordance with the manufacturing process shown in FIG. 3. The hot rolled wire material having a wire diameter of 5.5 mm is used as a raw material, the hot rolled wire material is pickled, the scale is removed, and lime treatment is performed. The wire was drawn to 1.5 mm using a dry lubricant mainly composed of Na stearate. The wire drawing material was introduced into a heating furnace at 1000 ° C. as a heat treatment, held for 45 s, and after making the metal structure austenitic, a patenting treatment was performed by immersing in a lead bath at 600 ° C. for 6 s.

Figure 2016084512
Figure 2016084512

パテンティング処理を行った鋼線に、連続して、硫酸による電解酸洗とアルカリ溶液による電解脱脂を施し、ピロリン酸銅めっきにCB粒子が分散しためっき浴を用いて電気めっきを行った。この時のめっき液中のCB濃度、粒子サイズの異なるCBを用い、めっき中のCB濃度、CB粒子サイズの異なるCB分散Cuめっきを有する鋼線を得た。一部の比較例については、電気めっきとして前記に換えてCuめっきとZnめっきを行った後拡散熱処理を行い、Cu濃度が63%であるブラスめっき極細めっき鋼線とした。   The steel wire subjected to the patenting treatment was successively subjected to electrolytic pickling with sulfuric acid and electrolytic degreasing with an alkaline solution, and electroplating was performed using a plating bath in which CB particles were dispersed in copper pyrophosphate plating. At this time, CB having different CB concentration and particle size in the plating solution was used to obtain a steel wire having CB dispersed Cu plating having different CB concentration and CB particle size in plating. About some comparative examples, it changed into the above as electroplating, and after carrying out Cu plating and Zn plating, the diffusion heat treatment was performed, and it was set as the brass plating ultra-thin plating steel wire whose Cu concentration is 63%.

めっき後の湿式伸線については、ノンスリップ式のダンサーにより逆張力が制御可能な伸線機でエマルションタイプの湿式潤滑剤を用いて湿式伸線により、線径が0.1〜0.4mmになるように伸線加工を行い、極細めっき鋼線を製造した。一部実施例では、スリップ式湿式伸線によって極細めっき鋼線を製造した。湿式伸線加工性は、ダイス寿命と断線発生率によって評価し、ブラスめっき鋼線をスリップ式伸線機で伸線した場合(表2の比較例No.15)の伸線性を100とし、これに対する指数を極細めっき鋼線の伸線加工性として評価した。伸線性指数が90以上であれば合格とした。   For wet wire drawing after plating, the wire diameter becomes 0.1 to 0.4 mm by wet wire drawing using an emulsion type wet lubricant with a wire drawing machine whose reverse tension can be controlled by a non-slip dancer. Thus, wire drawing was performed to produce an ultrafine plated steel wire. In some examples, an ultrafine plated steel wire was manufactured by slip-type wet wire drawing. Wet wire drawing workability is evaluated based on the die life and the occurrence rate of wire breakage. The wire drawing property when a brass-plated steel wire is drawn with a slip-type wire drawing machine (Comparative Example No. 15 in Table 2) is defined as 100. Was evaluated as the drawing workability of the ultra-fine plated steel wire. If the drawability index was 90 or more, it was determined to be acceptable.

極細めっき鋼線から試料を採取し、レーザー式非接触線径測定装置によって極細めっき鋼線の線径を測定した。めっき厚さは、原液に過硫酸アンモニウムを10%混合したアルカリ溶液に浸漬し、めっきを溶解し、溶解液をICP分析でCu濃度を求め、めっき溶解質量中Cu量を求め、全めっき質量からCu質量を除いた質量をC質量として、めっき中C量をCB量とし、前記(1)式、(2)式より求めた。   A sample was taken from the ultrafine plated steel wire, and the wire diameter of the ultrafine plated steel wire was measured with a laser-type non-contact wire diameter measuring device. The plating thickness was immersed in an alkaline solution in which 10% ammonium persulfate was mixed with the stock solution, the plating was dissolved, the Cu concentration was determined by ICP analysis of the solution, the Cu amount in the plating dissolution mass was determined, and the Cu content was calculated from the total plating mass. The mass excluding the mass was defined as C mass, and the C amount during plating was defined as the CB amount, which was obtained from the above formulas (1) and (2).

さらに鋼線の断面を研磨し、めっき層をSEMで観察して、CB粒子の分散状況を確認した。CB粒子の分散しためっき層のSEM写真を用いて、写真中のCBストラクチャーを特定し、画像処理を行い、CB単一粒子の面積率、円相当の粒子サイズを求め、平均粒子径はCB粒子の面積率が50%となる粒子径とした。   Furthermore, the cross section of the steel wire was grind | polished and the plating layer was observed by SEM, and the dispersion | distribution condition of CB particle | grains was confirmed. Using the SEM photograph of the plating layer in which the CB particles are dispersed, the CB structure in the photograph is specified, image processing is performed, the area ratio of the CB single particles, the particle size corresponding to the circle is obtained, and the average particle size is CB particles The particle size was such that the area ratio was 50%.

表2に極細めっき鋼線の線径、鋼材、めっき性状(めっき組成、CB質量比、CB平均粒子径)、平均めっき厚さ、湿式伸線方法を示す。なお、極細めっき鋼線の強度は、試験No.22を除いて3200MPa以上であった。   Table 2 shows the wire diameter, steel material, plating properties (plating composition, CB mass ratio, CB average particle diameter), average plating thickness, and wet wire drawing method of the ultrafine plated steel wire. The strength of the ultra-fine plated steel wire Except for 22, it was 3200 MPa or more.

Figure 2016084512
Figure 2016084512

次に、極細めっき鋼線の性能を評価した。ゴムとの接着性は極細めっき鋼線4本を、5mmのピッチで撚り合わせてコードとし、金型にセットしてゴム組成物に埋め込み、160℃で、18分加熱するホットプレスにより加硫処理を行い、接着性評価用試料を製造した。ゴム組成物の組成として、表3に示すCo塩なしとCo塩ありとを用い、表2に示すように使い分けた。   Next, the performance of the ultrafine plated steel wire was evaluated. Adhesiveness to rubber is obtained by twisting 4 ultra-fine plated steel wires at a pitch of 5 mm to form a cord, setting it in a mold, embedding it in a rubber composition, and vulcanizing it with a hot press heated at 160 ° C. for 18 minutes. The sample for adhesive evaluation was manufactured. As the composition of the rubber composition, those having no Co salt and those having a Co salt shown in Table 3 were used, and they were properly used as shown in Table 2.

ゴム組成物からのコード引抜荷重を測定し、接着性を評価した。加硫直後の初期接着強度は、引張試験装置でコードをゴムから引き抜いた時の引抜力を測定し、最大引抜力で評価した。また、接着強度の経年劣化は、ゴムに埋設した試料を80℃の水に3日浸漬した後、初期接着強度と同様にして、コードをゴムから引き抜いた時の最大引抜力として評価した。なお、接着性は、比較例である試験NO.14のブラスめっき鋼線をCo塩を配合したゴム組成物と加硫接着した場合の初期接着強度を100とし、これに対する指数で評価した。初期接着指数は、評点75以上であれば良好、評点70以上であれば合格とした。劣化後の接着指数は、評点70以上であれば良好、評点60以上であれば合格とした。   The cord pull-out load from the rubber composition was measured to evaluate the adhesion. The initial bond strength immediately after vulcanization was evaluated by measuring the pulling force when the cord was pulled out of the rubber with a tensile tester and measuring the maximum pulling force. Further, the aging deterioration of the adhesive strength was evaluated as the maximum pulling force when the cord was pulled out from the rubber in the same manner as the initial adhesive strength after the sample embedded in the rubber was immersed in water at 80 ° C. for 3 days. In addition, adhesiveness is test NO. Which is a comparative example. The initial bond strength when vulcanizing and bonding 14 brass-plated steel wires to a rubber composition containing Co salt was set to 100, and the index was evaluated with respect to this. The initial adhesion index was determined to be good if the score was 75 or higher, and passed if the score was 70 or higher. If the adhesion index after deterioration was 70 or more, it was good, and if it was 60 or more, it was considered acceptable.

Figure 2016084512
Figure 2016084512

表2に、極細めっき鋼線のゴムとの接着性、伸線加工性の評価結果を示す。   Table 2 shows the evaluation results of the adhesion of the ultrafine plated steel wire with the rubber and the wire drawing workability.

表2の試験No.1〜15が本発明例である。試験No.1〜13は本発明の好適範囲を具備しており、本発明のめっき鋼線はノンスリップ式伸線、スリップ式伸線のいずれでも、またゴム中に有機酸コバルトを配合有無のいずれのゴム組成でも、評点75以上の良好な初期接着性が確保された。劣化処理後の接着性の低下については、従来のブラスめっき(比較例の試験No.16)が評点35であるのに対して、本発明例試験No.1〜13はいずれも65以上であって改善効果が明らかである。ノンスリップ式伸線で製造する場合はスリップ式伸線(試験No.3)より高い接着強度と高い伸線加工性が得られる。   Test No. in Table 2 1 to 15 are examples of the present invention. Test No. Nos. 1 to 13 have the preferred range of the present invention, and the plated steel wire of the present invention is either non-slip type or slip type, or any rubber composition with or without organic acid cobalt blended in the rubber. However, good initial adhesion with a rating of 75 or higher was ensured. Regarding the decrease in the adhesiveness after the deterioration treatment, the conventional brass plating (Test No. 16 of the comparative example) has a rating of 35, whereas the test of the present invention example No. 1 to 13 are all 65 or more, and the improvement effect is clear. When manufacturing by non-slip type wire drawing, higher adhesive strength and high wire drawing workability than slip type wire drawing (Test No. 3) are obtained.

本発明の試験No.14はめっき中のCB粒子径が好適範囲よりは小さく、Cuの拡散の制御性が低くなるため、初期接着、劣化後の接着性とも合格ではあるが良好には至らなかった例である。試験No.15はCuめっき中のCB粒子が好適範囲よりは大きく、部分的に接着反応層が生成し、接着特性が合格ではあるが良好には至らなかった例である。   Test no. No. 14 is an example in which the CB particle diameter during plating is smaller than the preferred range and the Cu diffusion controllability is low, so that both initial adhesion and adhesion after deterioration are acceptable but not satisfactory. Test No. No. 15 is an example in which the CB particles in the Cu plating were larger than the preferred range, an adhesion reaction layer was partially generated, and the adhesion characteristics were acceptable but not satisfactory.

一方、比較例の試験No.16は従来の拡散ブラスめっき線をスリップ式湿式伸線機で伸線したもので、ゴム中にナフテン酸コバルトを配合したゴムとの接着性を評価したもので、接着性の基準であるが、Cu、Znからなる拡散ブラスめっきのため劣化処理後の接着性が低下した例である。   On the other hand, test No. of the comparative example. 16 is a conventional diffusion brass-plated wire drawn by a slip-type wet wire drawing machine, which evaluates adhesiveness with rubber in which cobalt naphthenate is blended in rubber, and is a standard for adhesiveness. This is an example in which the adhesiveness after the deterioration treatment is lowered due to diffusion brass plating made of Cu and Zn.

めっき性状の影響として、試験No.17はCBを含まないCu単相めっき線で、初期接着、劣化後の接着性とも悪化した例である。試験No.18はCBの配合が少なく、Cu単相めっきと同様に初期接着、劣化後の接着性が悪化した例である。試験No.19はCBの分散量が多く、めっきとゴム中Sの反応が阻害され、十分な接着層が形成されず、初期接着性が低下した例である。   As an effect of plating properties, test No. 17 is a Cu single-phase plated wire that does not contain CB, and is an example in which both initial adhesion and adhesiveness after deterioration deteriorated. Test No. No. 18 is an example in which the amount of CB is small and the initial adhesion and the adhesiveness after deterioration are deteriorated similarly to the Cu single-phase plating. Test No. No. 19 is an example in which the amount of CB dispersed is large, the reaction between plating and S in the rubber is inhibited, a sufficient adhesive layer is not formed, and the initial adhesiveness is lowered.

試験No.20はめっき層厚が薄く、伸線加工で地鉄が露出し、伸線加工性が悪化するととともに、局部的にゴムとの接着性機能が失われ、接着性も低下した例である。試験No.21はめっき層が厚く、劣化処理による経時変化によるゴム中Sと過剰に反応し、接着反応層の密度が低下し、劣化後の接着性が低下した例である。   Test No. No. 20 is an example in which the thickness of the plating layer is thin, the base iron is exposed by wire drawing, the wire drawing workability is deteriorated, the adhesive function with rubber is locally lost, and the adhesiveness is also lowered. Test No. No. 21 is an example in which the plating layer is thick and reacts excessively with S in the rubber due to the change over time due to the deterioration treatment, the density of the adhesion reaction layer decreases, and the adhesiveness after deterioration decreases.

ゴム補強効果について、試験No.22は線径が太く、強度が3200MPa未満であってゴム複合体としての補強効果が小さくなった例である。試験No.23は線径が細く、伸線加工性が低下するとともに、比表面積が増加し、ゴム中Sとの反応性が高くなり、CBによる反応制御性が低下し、十分な接着強度が得られなかった例である。   Regarding the rubber reinforcing effect, the test No. 22 is an example in which the wire diameter is large, the strength is less than 3200 MPa, and the reinforcing effect as a rubber composite is reduced. Test No. No. 23 has a thin wire diameter, the wire drawing processability is lowered, the specific surface area is increased, the reactivity with S in the rubber is increased, the reaction controllability by CB is lowered, and sufficient adhesive strength cannot be obtained. This is an example.

試験No.24は拡散ブラスめっきであるがゴム中にナフテン酸コバルトを配合しないために初期接着が低下した。さらにノンスリップ式湿式伸線で高い逆張力比で伸線しており、めっき中にCBを含まないために潤滑性改善が見られなかったことと相まって、断線が多発し、伸線性が低下した例である。   Test No. Although 24 is diffusion brass plating, initial adhesion was lowered because cobalt naphthenate was not blended in the rubber. Furthermore, non-slip type wet wire drawing with a high reverse tension ratio, and because there was no improvement in lubricity due to the absence of CB in the plating, an example of frequent wire breakage and reduced wire drawability It is.

本発明のめっき鋼線は、製造コストも低く、ゴムと強固に接着され、時間が経過してもその接着強度の低下が小さいため、ゴム製品の補強材として好適に使用可能で、補強効果を高く維持可能である。また、ゴム中に接着性を改善するための有機酸コバルトを配合する必要がなく、原材料コストの削減も可能なため、タイヤコード及びビードワイヤだけでなく、ゴムホースやベルトの補強材として使用することが可能であり、産業上の利用可能性が極めて高い。   The plated steel wire of the present invention is low in manufacturing cost, is firmly bonded to rubber, and since the decrease in its adhesive strength is small over time, it can be suitably used as a reinforcing material for rubber products and has a reinforcing effect. Highly maintainable. In addition, there is no need to add organic acid cobalt to improve adhesion in rubber, and the raw material cost can be reduced, so it can be used as a reinforcing material for rubber hoses and belts as well as tire cords and bead wires. It is possible and the industrial applicability is extremely high.

1:カーボンブラック(CB)
2:Cuめっき層
3:地鉄(被めっき線)
1: Carbon black (CB)
2: Cu plating layer 3: Ground iron (wire to be plated)

Claims (5)

線径が0.1〜0.4mmであり、表面に、平均厚さが50〜500nmであるめっき層を有し、該めっき層が、質量%で、
カーボンブラック(以下CBと記載):0.1〜5%、
を含有し、残部がCu及び不可避的不純物からなることを特徴とするゴムとの接着性に優れた極細めっき鋼線。
The wire diameter is 0.1 to 0.4 mm, and the surface has a plating layer having an average thickness of 50 to 500 nm.
Carbon black (hereinafter referred to as CB): 0.1 to 5%,
An ultrafine plated steel wire excellent in adhesiveness to rubber, characterized in that the balance is made of Cu and inevitable impurities.
Cuめっきに分散したCBの一次粒子の平均径が10nm〜100nmであることを特徴とする請求項1記載のゴムとの接着性に優れた極細めっき鋼線。   2. The ultrafine plated steel wire excellent in adhesion to rubber according to claim 1, wherein the average diameter of primary particles of CB dispersed in Cu plating is 10 nm to 100 nm. ゴム組成物に請求項1又は2記載のめっき鋼線が埋設されたゴム複合体。   A rubber composite in which the plated steel wire according to claim 1 or 2 is embedded in a rubber composition. ゴム組成物には有機酸コバルト塩を含まないことを特徴とした請求項3記載のゴム複合体。   4. The rubber composite according to claim 3, wherein the rubber composition does not contain an organic acid cobalt salt. カーボンブラック(以下CBと記載)粒子が分散したCuめっき鋼線を伸線加工するに際し、引抜プーリーと鋼線の間でスリップせず、鋼線に作用する逆張力を鋼線破断荷重の5〜30%付与しつつ湿式伸線を行うことを特徴とする、極細めっき鋼線の製造方法。   When drawing a Cu-plated steel wire in which carbon black (hereinafter referred to as CB) particles are dispersed, the reverse tension acting on the steel wire does not slip between the drawing pulley and the steel wire, and the steel wire breaking load is 5 to 5. A method for producing an ultra-fine plated steel wire, characterized by performing wet wire drawing while applying 30%.
JP2014218298A 2014-10-27 2014-10-27 Plating steel wire excellent in adhesion to rubber, rubber composite using the same, and method for producing the same Expired - Fee Related JP6379999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014218298A JP6379999B2 (en) 2014-10-27 2014-10-27 Plating steel wire excellent in adhesion to rubber, rubber composite using the same, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014218298A JP6379999B2 (en) 2014-10-27 2014-10-27 Plating steel wire excellent in adhesion to rubber, rubber composite using the same, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016084512A true JP2016084512A (en) 2016-05-19
JP6379999B2 JP6379999B2 (en) 2018-08-29

Family

ID=55971930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014218298A Expired - Fee Related JP6379999B2 (en) 2014-10-27 2014-10-27 Plating steel wire excellent in adhesion to rubber, rubber composite using the same, and method for producing the same

Country Status (1)

Country Link
JP (1) JP6379999B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111041542A (en) * 2019-11-22 2020-04-21 上海交通大学 Composite metal wire with composite electroplated nano carbon metal film and preparation method thereof
CN113383116A (en) * 2019-01-31 2021-09-10 贝卡尔特公司 Steel cord with brass coating rich in iron particles

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59197333A (en) * 1983-04-22 1984-11-08 Kanai Hiroyuki Method and device for producing steel cord
US5024261A (en) * 1986-11-25 1991-06-18 The Yokohama Rubber Co., Ltd. Heavy duty pneumatic radial tire with improved steel cord belt
JP2003239183A (en) * 2002-02-14 2003-08-27 Tokusen Kogyo Co Ltd Rubber reinforcing material, rubber composite body and method for producing rubber reinforcing material
JP2007179871A (en) * 2005-12-28 2007-07-12 Totoku Electric Co Ltd Fullerene composite plated wire, method of manufacturing same and fullerene composite-plated enameled wire
JP2011219836A (en) * 2010-04-13 2011-11-04 Nippon Steel Corp Extra fine plated steel wire having excellent adhesiveness to rubber
JP2012067421A (en) * 2010-09-24 2012-04-05 Bridgestone Corp Method for producing rubber-metal composite, rubber-metal composite, tire, rubber bearing body for base isolation, industrial belt and crawler
JP2016044370A (en) * 2014-08-22 2016-04-04 新日鐵住金株式会社 Ultrafine plated steel wire excellent in adhesiveness to rubber and rubber composite including the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59197333A (en) * 1983-04-22 1984-11-08 Kanai Hiroyuki Method and device for producing steel cord
US5024261A (en) * 1986-11-25 1991-06-18 The Yokohama Rubber Co., Ltd. Heavy duty pneumatic radial tire with improved steel cord belt
JP2003239183A (en) * 2002-02-14 2003-08-27 Tokusen Kogyo Co Ltd Rubber reinforcing material, rubber composite body and method for producing rubber reinforcing material
JP2007179871A (en) * 2005-12-28 2007-07-12 Totoku Electric Co Ltd Fullerene composite plated wire, method of manufacturing same and fullerene composite-plated enameled wire
JP2011219836A (en) * 2010-04-13 2011-11-04 Nippon Steel Corp Extra fine plated steel wire having excellent adhesiveness to rubber
JP2012067421A (en) * 2010-09-24 2012-04-05 Bridgestone Corp Method for producing rubber-metal composite, rubber-metal composite, tire, rubber bearing body for base isolation, industrial belt and crawler
JP2016044370A (en) * 2014-08-22 2016-04-04 新日鐵住金株式会社 Ultrafine plated steel wire excellent in adhesiveness to rubber and rubber composite including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113383116A (en) * 2019-01-31 2021-09-10 贝卡尔特公司 Steel cord with brass coating rich in iron particles
CN111041542A (en) * 2019-11-22 2020-04-21 上海交通大学 Composite metal wire with composite electroplated nano carbon metal film and preparation method thereof
CN111041542B (en) * 2019-11-22 2021-03-30 上海交通大学 Composite metal wire with composite electroplated nano carbon metal film and preparation method thereof

Also Published As

Publication number Publication date
JP6379999B2 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
JP5333332B2 (en) Ultra-fine plated steel wire with excellent adhesion to rubber
EP3006621B1 (en) Metal cord and rubber composite-body
WO2011030547A1 (en) Brass-plated steel cord and steel cord-rubber composite, and tire using the same
JP5094319B2 (en) Steel wire for reinforcing rubber articles and manufacturing method thereof, steel cord, rubber composite, and pneumatic tire
JP6729722B2 (en) Plated steel wire, method of manufacturing plated steel wire, steel cord, and rubber composite
JPS6014836B2 (en) Manufacturing method of steel wire for rubber reinforcement
JP5333331B2 (en) Ultra-fine plated steel wire with excellent adhesion to rubber
JP6379999B2 (en) Plating steel wire excellent in adhesion to rubber, rubber composite using the same, and method for producing the same
JP6572783B2 (en) Plating steel wire, rubber composite using the same, and method for producing plated steel wire
WO2015166632A1 (en) Brass-plated steel wire for reinforcement of rubber articles
JP5452875B2 (en) Steel cord-rubber composite
WO2012098880A1 (en) Steel cord-rubber composite
JP6248862B2 (en) Ultra fine plated steel wire with excellent adhesion to rubber and rubber composite using the same
JP2012012625A (en) Steel wire material
JP2005054260A (en) Method of producing extra fine steel wire for steel cord, and steel cord
JP2018119190A (en) Plated steel wire, steel cord and rubber-steel cord complex
JP2009138251A (en) Steel wire with excellent wire drawability
JP6492875B2 (en) Ultra fine plated steel wire with excellent adhesion to rubber, rubber composite using the same, and method for producing the same
WO2015166631A1 (en) Brass-plated steel wire for reinforcing rubber articles
JP5602403B2 (en) Rubber composition for coating steel cord
JP7060701B2 (en) Steel cord for rubber reinforcement and its manufacturing method
JP2015193896A (en) Method for manufacturing extra fine brass plating steel wire
JP2004066316A (en) Method for manufacturing steel wire for reinforcing rubber
JP2018119193A (en) Rubber product reinforcement steel wire, rubber product reinforcement steel cord, and method for manufacturing rubber product reinforcement steel wire
JP2018119191A (en) Plated steel wire, steel cord and rubber-steel cord complex

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180716

R151 Written notification of patent or utility model registration

Ref document number: 6379999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees