JP2016044370A - Ultrafine plated steel wire excellent in adhesiveness to rubber and rubber composite including the same - Google Patents

Ultrafine plated steel wire excellent in adhesiveness to rubber and rubber composite including the same Download PDF

Info

Publication number
JP2016044370A
JP2016044370A JP2014169273A JP2014169273A JP2016044370A JP 2016044370 A JP2016044370 A JP 2016044370A JP 2014169273 A JP2014169273 A JP 2014169273A JP 2014169273 A JP2014169273 A JP 2014169273A JP 2016044370 A JP2016044370 A JP 2016044370A
Authority
JP
Japan
Prior art keywords
plating
rubber
steel wire
plated steel
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014169273A
Other languages
Japanese (ja)
Other versions
JP6248862B2 (en
Inventor
児玉 順一
Junichi Kodama
順一 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014169273A priority Critical patent/JP6248862B2/en
Publication of JP2016044370A publication Critical patent/JP2016044370A/en
Application granted granted Critical
Publication of JP6248862B2 publication Critical patent/JP6248862B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/0666Reinforcing cords for rubber or plastic articles the wires being characterised by an anti-corrosive or adhesion promoting coating
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3085Alloys, i.e. non ferrous
    • D07B2205/3089Brass, i.e. copper (Cu) and zinc (Zn) alloys

Landscapes

  • Ropes Or Cables (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrafine plated steel wire with excellent adhesiveness to rubber, excellent in adhesiveness to rubber and less in deterioration of adhesive strength.SOLUTION: An ultrafine plated steel wire excellent in adhesiveness to rubber has a wire diameter of 0.1-0.4 mm and has a plated layer of an average thickness of 50-500nm on a surface. The plated layer contains, by mass %, Cu:60-75%, Mn:0.05-1%, and Co or Ni or total thereof:0.1-5, in which Mn/(Co+Ni):0.2-2 and the balance is composed of Zn and inevitable impurities. The rubber composite includes the same.SELECTED DRAWING: Figure 1

Description

本発明は、スチールコードなど、タイヤを始めとする各種ゴム製品の補強材に使用される、表面にめっき処理が施された極細鋼線であって、ゴムとの接着性に優れた極細めっき鋼線およびそれを用いたゴム複合体に関するものである。   The present invention is an ultrafine steel wire having a surface plated and used as a reinforcing material for various rubber products including tires such as steel cords, and has an excellent adhesion to rubber. The present invention relates to a wire and a rubber composite using the same.

ゴム補強材、例えば、タイヤの補強材として使用されているスチールコードの表面には、ブラスめっきが形成されている。このスチールコードを、未硫化ゴムに埋め込み、加硫することにより、スチールコードとゴムとを接着させる。なお、加硫は、ゴム製品を製造する際の最終工程であり、150〜200℃に20〜40分加圧、加熱する工程である。加硫によって、ゴムの架橋とともにスチールコードのブラスめっきとゴムとの界面に接着層が生成する。この接着層は、ブラスめっきのCu及びZnとゴムに含まれるS(硫黄)との反応によって形成された硫化物である。   Brass plating is formed on the surface of a rubber reinforcing material, for example, a steel cord used as a reinforcing material for a tire. The steel cord is embedded in unsulfurized rubber and vulcanized to bond the steel cord and rubber. Vulcanization is the final step when producing a rubber product, and is a step of pressing and heating at 150 to 200 ° C. for 20 to 40 minutes. By vulcanization, an adhesive layer is formed at the interface between the steel cord brass plating and the rubber together with the crosslinking of the rubber. This adhesive layer is a sulfide formed by a reaction between Cu and Zn of brass plating and S (sulfur) contained in the rubber.

このように、スチールコードとゴムとは、加硫時に生成する硫化物によって接着される。そのため、ゴム中には、硫化物の生成を促進する触媒としてCoを含む有機コバルト塩が配合されることがある。Coは、スチールコードとゴムとの初期の接着強度を確保するためには有用である。しかし、タイヤなどを高温、高湿環境で使用すると、ブラスめっきのCu及びZnとゴムに含まれるSとの反応が進行する。その結果、接着層が厚くなり、硫化物の組成が変化し、スチールコードとゴムとの接着強度が低下する。   As described above, the steel cord and the rubber are bonded together by the sulfide generated during vulcanization. Therefore, an organic cobalt salt containing Co may be blended in the rubber as a catalyst for promoting the formation of sulfides. Co is useful for ensuring the initial bond strength between the steel cord and rubber. However, when a tire or the like is used in a high-temperature and high-humidity environment, the reaction between brass and Cu and Zn and S contained in the rubber proceeds. As a result, the adhesive layer becomes thick, the sulfide composition changes, and the adhesive strength between the steel cord and rubber decreases.

さらに、有機コバルト塩は、ゴム分子の二重結合を切断し、ゴムを劣化させるという問題がある。また、CuとSとの加硫反応の触媒として作用するCoは希少金属であり、ゴムにCoを含有させると、コストが非常に高くなる。そのため、タイヤなどのゴムから有機コバルト塩を削減することが望まれている。   Furthermore, the organic cobalt salt has a problem of breaking rubber double bonds and deteriorating rubber. Further, Co acting as a catalyst for the vulcanization reaction between Cu and S is a rare metal, and if Co is contained in rubber, the cost becomes very high. Therefore, it is desired to reduce organic cobalt salts from rubber such as tires.

このような問題に対して、ブラスめっきの検討がなされ、Coを含むブラスめっきを設けたスチールコード(例えば、特許文献1、2参照)。また、Niを含むブラスめっきの提案(特許文献3)、Mnを含むブラスめっき(特許文献4)によりゴムとの接着性の改善について各種提案されている。しかし、CoやNi、Mnを含むブラスめっきはめっき層が硬くなるためにめっき後スチールコードを製造するための伸線性を低下させ、スチールコードの延性低下や断線確率が増加するため実際の適用は困難であった。   For such problems, steel plating has been studied, and a steel cord provided with brass plating containing Co (see, for example, Patent Documents 1 and 2). Various proposals have been made for improving adhesion to rubber by means of brass plating containing Ni (Patent Document 3) and brass plating containing Mn (Patent Document 4). However, brass plating containing Co, Ni, and Mn reduces the drawability for producing steel cord after plating because the plating layer is hard, and the actual application is reduced because the ductility decline and disconnection probability of steel cord increase. It was difficult.

さらに、ブラスめっきや亜鉛めっきに比べて、ゴムとの接着性や伸線加工性に優れためっき層として、Zn−Mo−Xめっき(Xは、Co、Fe又はNi)が提案されている(例えば、特許文献5参照)。しかし、亜鉛合金めっきを設けた鋼線を伸線加工すると、伸線加工性が低下し、断線が発生しやすくなるという問題がある。   Furthermore, Zn—Mo—X plating (X is Co, Fe, or Ni) has been proposed as a plating layer that is superior in adhesion to rubber and wire drawing workability compared to brass plating and zinc plating ( For example, see Patent Document 5). However, when a steel wire provided with a zinc alloy plating is drawn, there is a problem that the drawing workability is lowered and disconnection is likely to occur.

特開平1−98632号公報JP-A-1-98632 特開2002−13085号公報JP 2002-13085 A 特開平1−177390号公報JP-A-1-177390 特開昭61−243194号公報JP-A 61-243194 特開2000−54185号公報JP 2000-54185 A

本発明は、Cu−Znに第三成分を含むめっきを設けた極細めっき鋼線よりも生産性を損なわず、また、伸線加工性を劣化させることなく、さらに、Co塩を配合しないゴムとの接着性に優れ、かつ時間が経過しても接着強度の劣化が少ない、ゴムとの接着性に優れた極細めっき鋼線を提供するものである。   The present invention does not impair productivity than an ultrafine plated steel wire provided with plating containing a third component in Cu-Zn, does not deteriorate wire drawing workability, and further does not contain a Co salt. It is an object of the present invention to provide an ultra-fine plated steel wire that is excellent in adhesiveness, has little deterioration in adhesive strength over time, and has excellent adhesion to rubber.

本発明者は、上記課題を解決するために鋭意研究し、その結果、Cu−Znめっきに少量のCo、Niに加え、極少量のMnを含有させることにより、極細めっき鋼線とゴム加硫処理時にそれぞれの成分元素の機能を分担させることにより、硫化物生成反応を促進させつつ、Cu硫化物の過剰反応を抑えることにより強固な接着層を形成し、接着強度を向上させ、かつ、接着強度の経年劣化を抑制することが可能な、極細めっき鋼線が得られることを見出して本発明を完成した。   The present inventor has eagerly studied to solve the above problems, and as a result, by adding a very small amount of Mn in addition to a small amount of Co and Ni in the Cu-Zn plating, an ultrafine plated steel wire and a rubber vulcanization are included. By sharing the function of each component element at the time of processing, the sulfide formation reaction is promoted, while the excessive reaction of Cu sulfide is suppressed, thereby forming a strong adhesive layer, improving the adhesive strength, and bonding. The present invention was completed by finding that an ultra-fine plated steel wire capable of suppressing the deterioration of strength over time was obtained.

本発明の要旨は以下のとおりである。
(1)線径が0.1〜0.4mmであり、表面に、平均厚さが50〜500nmであるめっき層を有し、該めっき層が、質量%で、
Cu:60〜75%、
Mn:0.05〜1%、
CoまたはNiのいずれかまたは合計:0.1〜5%
を含有し、
Mn/(Co+Ni):0.2〜2であり、
残部がZn及び不可避的不純物からなることを特徴とするゴムとの接着性に優れた極細めっき鋼線。
(2)(1)記載の極細鋼線を補強材としてゴム組成物に埋設したゴム複合体。
(3)前記ゴム組成物に有機酸Co塩が含まれていない(2)記載のゴム複合体。
である。
The gist of the present invention is as follows.
(1) The wire diameter is 0.1 to 0.4 mm, and the surface has a plating layer having an average thickness of 50 to 500 nm.
Cu: 60 to 75%,
Mn: 0.05 to 1%
Either Co or Ni or total: 0.1 to 5%
Containing
Mn / (Co + Ni): 0.2-2
An ultra-fine plated steel wire excellent in adhesiveness to rubber, characterized in that the balance is made of Zn and inevitable impurities.
(2) A rubber composite in which the ultrafine steel wire according to (1) is embedded in a rubber composition as a reinforcing material.
(3) The rubber composite according to (2), wherein the rubber composition does not contain an organic acid Co salt.
It is.

本発明の極細めっき鋼線によれば、スチールコードなどの極細めっき鋼線とゴムとの接着強度が、加硫直後から良好であり、かつ、タイヤの使用時などの高温及び多湿の環境で時間が経過しても接着強度の劣化が小さく、優れたゴムとの接着性を確保することができる。さらに、ゴムに有機Co塩を含有させる必要がなく、ゴムの寿命も長くなり、伸線加工性も悪化しないため製造コストの削減が可能となり、産業上の貢献が極めて顕著である。   According to the ultra-fine plated steel wire of the present invention, the adhesion strength between the ultra-fine plated steel wire such as a steel cord and rubber is good immediately after vulcanization, and the time is high and humid environment such as when using a tire. Even after elapse of time, the deterioration of the adhesive strength is small, and excellent adhesion to rubber can be secured. Furthermore, it is not necessary to contain an organic Co salt in the rubber, the life of the rubber is extended, and the wire drawing workability is not deteriorated, so that the manufacturing cost can be reduced, and the industrial contribution is extremely remarkable.

本発明のめっき組成の適正範囲を示す図である。It is a figure which shows the appropriate range of the plating composition of this invention. 本発明の製造工程を示す図である。It is a figure which shows the manufacturing process of this invention.

極細めっき鋼線とゴムとの接着は、極細鋼線表面のブラスめっきとゴムに含まれるSが加硫処理時に反応し、接着層を形成することで発現する。接着強度は接着層の架橋密度に依存し、高い架橋密度の場合はCu硫化物の組成はCu2Sに近く、接着強度が高い。一方、過剰に反応が進行した場合は架橋密度が低下し、CuSに近い組成となり、接着強度は低下すると考えられている。また、Zn硫化物も接着強度を発現するものの、その接着強度はCu硫化物の50〜70%程度であると考えられている。 The adhesion between the ultra-fine plated steel wire and the rubber is manifested by brass plating on the surface of the ultra-fine steel wire and S contained in the rubber reacting during vulcanization to form an adhesive layer. The adhesive strength depends on the crosslink density of the adhesive layer. In the case of a high crosslink density, the composition of Cu sulfide is close to Cu 2 S, and the adhesive strength is high. On the other hand, when the reaction proceeds excessively, the cross-linking density is lowered, the composition is close to CuS, and the adhesive strength is considered to be lowered. Further, although Zn sulfide also exhibits adhesive strength, it is considered that the adhesive strength is about 50 to 70% of Cu sulfide.

本発明者らは、接着性と伸線加工性を両立するためのブラスめっき組成について検討を行った。CuとZnからなるブラスめっき層の硬さは、他の第三元素が混在すると硬くなり、伸線加工時のダイスと鋼線の間の摩擦を高め、加工発熱による延性の低下、引き抜き力の増加による欠陥の導入により断線率が高まることが分かった。   The present inventors examined a brass plating composition for achieving both adhesiveness and wire drawing workability. The hardness of the brass plating layer made of Cu and Zn becomes harder when other third elements are mixed, increases the friction between the die and the steel wire during wire drawing, reduces ductility due to processing heat generation, It was found that the disconnection rate was increased by introducing defects due to the increase.

本発明者らは、さらに詳細に、ブラスめっきとゴム組成物の接着界面の観察を行った結果、ブラスめっき中の第三元素の作用は、めっきとゴム界面に濃化し、めっき中Cuとゴム中Sの反応を促進させる触媒的な作用があることがわかった。   As a result of observing the adhesion interface between the brass plating and the rubber composition in more detail, the inventors of the present invention concentrated the action of the third element in the brass plating on the plating and rubber interface. It was found that there is a catalytic action that promotes the reaction of medium S.

触媒的な作用はCuが硫化物を形成する前に、めっき中の第三元素がゴム中Sと優先的に反応することで達成されるため、第三成分の硫化物形成性能が接着性に大きく影響すると考えられる。   Since the catalytic action is achieved by the preferential reaction of the third element in the plating with S in the rubber before Cu forms sulfide, the sulfide formation performance of the third component is improved in adhesion. It is thought to have a big impact.

そこで、本発明者らは、めっき層を硬くする第三元素の添加量をより低減し、ゴム中Sとブラスめっき中Cuの反応を促進させる元素について検討し、Co、Ni、Mnに着目した。これらの元素はいずれも硫化物を形成するが、その中で、Mnが最も硫化物形成能が高く、極微量で効果が発現し、接着性が改善されることを見出した。   Therefore, the inventors have further reduced the amount of the third element added to harden the plating layer, studied elements that promote the reaction between S in rubber and Cu in brass plating, and focused on Co, Ni, and Mn. . All of these elements form sulfides, and among them, Mn has the highest sulfide-forming ability, and it has been found that the effect is exhibited in a very small amount and the adhesiveness is improved.

更に、本発明者らは、極細めっき鋼線とゴムとの接着強度の経年劣化についても検討を行った。タイヤを使用する際には、タイヤの発熱による温度の影響で、時間の経過とともに、スチールコードの表面に設けためっきに含まれるCuがゴム側へ拡散して接着層が厚くなる。また、接着層中のCuはゴム側に拡散し、Cu硫化物の厚い反応層を形成し、反応密度が低下するために接着強度が低下する。   Furthermore, the present inventors also examined the deterioration over time of the adhesive strength between the ultrafine plated steel wire and the rubber. When a tire is used, due to the temperature caused by the heat generated by the tire, Cu contained in the plating provided on the surface of the steel cord diffuses to the rubber side with time and the adhesive layer becomes thick. In addition, Cu in the adhesive layer diffuses to the rubber side to form a thick reaction layer of Cu sulfide, and the reaction density is lowered, so that the adhesive strength is lowered.

本発明者らは、ブラスめっき中のそれぞれの組成の機能を明確化し、Co、Niはブラスめっき中に存在させることでCuの拡散を抑制し、硫化物の過剰生成を抑制する機能が発現される、接着劣化が抑制されることを見いだし、Cu、(Co+Ni)、Mnそれぞれの元素を適正な含有量に制御することでゴム組成物との加硫接着後の初期接着性、時間経過後の接着劣化を抑制するとともにブラスめっき後の伸線加工性の悪化を抑制した成分を見出し、本発明を完成するに至った。   The present inventors have clarified the function of each composition in brass plating, and Co and Ni are present in brass plating, thereby suppressing the diffusion of Cu and the function of suppressing the excessive formation of sulfides. Found that adhesion deterioration is suppressed, and by controlling the respective elements of Cu, (Co + Ni) and Mn to appropriate contents, initial adhesiveness after vulcanization adhesion to the rubber composition, after a lapse of time. The present invention has been completed by finding a component that suppresses adhesion deterioration and suppresses deterioration of wire drawing workability after brass plating.

以下、本発明について、詳細に説明する。   Hereinafter, the present invention will be described in detail.

極細めっき鋼線線径:0.1〜0.4mm
極細めっき鋼線の線径は、しなやかさを得るために、0.4mm以下とする。これは、線径が0.4mmより太くなり、しなやかさが低下すると、タイヤのゴム補強材に使用した場合に、自動車の乗り心地が低下するためである。また、線径が太くなると、伸線加工による加工強化代が小さくなり、十分な補強効果が得られない。したがって、極細めっき鋼線の線径は0.4mmを上限とする。一方、線径を細くすると、製造工程が長くなり、最終製品の生産性も低下するために製造に時間とコストがかかる。このため、極細めっき鋼線の線径の下限を0.1mm以上とする。極細鋼線の線径は、より好ましくは0.17〜0.34mmである。
Extra fine plated steel wire diameter: 0.1-0.4mm
The wire diameter of the ultra fine plated steel wire is 0.4 mm or less in order to obtain flexibility. This is because when the wire diameter is thicker than 0.4 mm and the flexibility is lowered, the ride comfort of the automobile is lowered when used as a rubber reinforcing material for a tire. Moreover, when the wire diameter is increased, the machining strengthening allowance by wire drawing processing is reduced, and a sufficient reinforcing effect cannot be obtained. Therefore, the upper limit of the wire diameter of the ultrafine plated steel wire is 0.4 mm. On the other hand, if the wire diameter is reduced, the manufacturing process becomes longer, and the productivity of the final product also decreases, so that manufacturing takes time and cost. For this reason, the minimum of the wire diameter of an ultra-fine plated steel wire shall be 0.1 mm or more. The wire diameter of the ultra fine steel wire is more preferably 0.17 to 0.34 mm.

極細めっき鋼線の強度は、補強効果を得るため、3200MPa以上であること好ましい。鋼線の成分は必ずしも限定はされないが、強度を確保するため、C含有量を、0.6〜1.1質量%とすることが好ましい。また、鋼線の金属組織は、強度を確保するため、伸線加工されたパーライトであることが好ましい。   The strength of the ultra fine plated steel wire is preferably 3200 MPa or more in order to obtain a reinforcing effect. Although the component of a steel wire is not necessarily limited, in order to ensure intensity | strength, it is preferable that C content shall be 0.6-1.1 mass%. The metal structure of the steel wire is preferably drawn pearlite in order to ensure strength.

本発明の極細めっき鋼線は、図2に示すように、熱間圧延、伸線加工によって製造され、めっき後にはめっき層を合金化する熱処理を施し、更に伸線加工を行う。製造工程の途中では必要に応じて熱処理を施してもよい。まず、線径が3〜5.5mmの鋼線を熱間圧延によって製造し、これを線径1〜3mmまで伸線加工する。次に、線径1〜3mmの鋼線に、必要に応じてパテンティング熱処理を行い、湿式めっきを施して、めっき層を合金化する熱処理を施し、線径が0.1〜0.4mmになるように伸線加工を行う。鋼線の引張強さは、伸線加工の加工度によって調整する。   As shown in FIG. 2, the ultra-fine plated steel wire of the present invention is manufactured by hot rolling and wire drawing, and after plating, heat treatment is performed to alloy the plating layer, and wire drawing is further performed. You may heat-process in the middle of a manufacturing process as needed. First, a steel wire having a wire diameter of 3 to 5.5 mm is manufactured by hot rolling, and this is drawn to a wire diameter of 1 to 3 mm. Next, if necessary, a steel wire having a wire diameter of 1 to 3 mm is subjected to a patenting heat treatment, wet-plated, and subjected to a heat treatment for alloying the plating layer, so that the wire diameter becomes 0.1 to 0.4 mm. The wire drawing is performed so that The tensile strength of the steel wire is adjusted according to the degree of drawing.

本発明の極細めっき鋼線のめっき層は、Cu、Zn、Co、Ni、Mnからなる合金である。上述のとおり、本発明のめっき層は、適正な配合量に制御することでブラスめっきとゴムとの接着性を向上させる触媒作用とともに、かつ使用時のCuの拡散を抑制するために、接着劣化も少なく、湿式の伸線加工性の低下も抑制可能である。   The plating layer of the ultrafine plated steel wire of the present invention is an alloy composed of Cu, Zn, Co, Ni, and Mn. As described above, the plating layer of the present invention has a catalytic action that improves the adhesion between the brass plating and the rubber by controlling to an appropriate blending amount, and also suppresses the diffusion of Cu during use. Therefore, a decrease in wet wire drawing workability can be suppressed.

以下、好ましいめっき組成について説明する。なお、めっき組成の「%」は、「質量%」を意味する。   Hereinafter, a preferable plating composition will be described. Note that “%” in the plating composition means “mass%”.

Cu:65〜75%
Cuは、ゴムに含まれるSと硫化物を形成し、極細めっき鋼線とゴムとの接着強度に影響を及ぼす元素である。また、Cuは展伸性に富み、湿式伸線時の潤滑性を改善し、伸線加工性を向上させる元素である。Cuが少ない場合は、合金化熱処理を施した際に、非平衡層である硬質のβブラス相が増加し、伸線加工性が劣化する。極細めっき鋼線とゴムとの初期の接着強度及び伸線加工性を高めるためには、Cu量を65%以上にすることが好ましい。一方、Cu量が75%を超えると、時間経過とともにCuがゴム側に拡散し、接着層が成長して、Cu硫化物層の密度が低下し、接着強度の経年劣化を発生する。この劣化を顕著に抑制するには、Cu量の上限を75%以下にすることが好ましい。
Cu: 65 to 75%
Cu is an element that forms sulfides with S contained in the rubber and affects the adhesive strength between the ultrafine plated steel wire and the rubber. Cu is an element that is rich in malleability, improves lubricity during wet drawing, and improves wire drawing workability. When there is little Cu, when alloying heat processing is performed, the hard (beta) brass phase which is a non-equilibrium layer will increase, and wire drawing workability will deteriorate. In order to improve the initial bond strength and wire drawing workability between the ultrafine plated steel wire and rubber, the Cu content is preferably 65% or more. On the other hand, if the amount of Cu exceeds 75%, Cu diffuses to the rubber side over time, the adhesive layer grows, the density of the Cu sulfide layer decreases, and the aged deterioration of the adhesive strength occurs. In order to remarkably suppress this deterioration, it is preferable to set the upper limit of the Cu amount to 75% or less.

Mn:0.05〜1%
Mnは、本発明では最も重要な元素である。Mnは、CoやNiよりもSとの親和性が強く、硫化物を生成しやすい元素であり、加硫時に極細めっき鋼線とゴムとの界面にMn硫化物を形成する。その結果、加硫初期にはCoやNi硫化物の生成が抑制され、界面近傍のSとCu硫化物の反応が促進され、強固な接着層が生成する。一方、Mnもブラスめっきの硬さを増す元素であり、適正量に制御することが重要である。Mnは、少量で効果を発現し、Cu硫化物の生成を促進させるには0.05%以上を含有させることが好ましい。一方、1%超のMnを含有させると、Cuの加硫物の生成が抑制されて初期の接着強度が低下すること、めっき層が硬くなり伸線加工性が低下するために、Mn量の上限は1%以下が好ましい。
Mn: 0.05 to 1%
Mn is the most important element in the present invention. Mn has a stronger affinity with S than Co and Ni and is an element that easily generates sulfides. Mn sulfide is formed at the interface between the ultrafine plated steel wire and rubber during vulcanization. As a result, the generation of Co or Ni sulfide is suppressed at the initial stage of vulcanization, the reaction between S and Cu sulfide in the vicinity of the interface is promoted, and a strong adhesive layer is generated. On the other hand, Mn is an element that increases the hardness of brass plating, and it is important to control it to an appropriate amount. Mn produces an effect in a small amount, and it is preferable to contain 0.05% or more in order to promote the formation of Cu sulfide. On the other hand, if more than 1% of Mn is contained, the formation of Cu vulcanizate is suppressed and the initial adhesive strength is lowered, and the plating layer is hardened and the wire drawing workability is lowered. The upper limit is preferably 1% or less.

Co、Niの一方または合計:0.1〜5%/(Co+Ni:0.1〜5%)
Co、Niともは、ブラスめっき中のCuの拡散を抑制する元素であるが、加硫時のCuとSとの反応を促進する触媒としても作用し、極細めっき鋼線とゴムとのブラスめっき中のCuの反応を短時間で行わせる作用を有する。一方、CoあるいはNi硫化物の生成によってゴム/めっき界面に多くの硫化物が生成すると、めっき中のCo、Ni濃度が減少し、Cuの拡散抑制効果が小さくなり、接着劣化が発生し易くなる。従って、Cuの拡散抑制機能を十分に発揮させるためにはCo+Niを0.1%以上含有させることが好ましい。一方、5%を超えるCo+Niを含有させるとCuの拡散が阻害され、初期の接着強度が低下する。さらに、Coの含有量が増加するとめっき層が硬化するため、伸線加工性が悪化するため、Co+Ni量の上限を5%以下にすることが好ましい。好ましくは0.5%〜3%である。
One or total of Co and Ni: 0.1 to 5% / (Co + Ni: 0.1 to 5%)
Co and Ni are elements that suppress the diffusion of Cu during brass plating, but also act as a catalyst for promoting the reaction between Cu and S during vulcanization, and brass plating of ultra fine plated steel wire and rubber It has the effect of allowing the reaction of Cu inside to be performed in a short time. On the other hand, if a large amount of sulfide is generated at the rubber / plating interface due to the generation of Co or Ni sulfide, the Co and Ni concentration during plating decreases, the Cu diffusion suppressing effect is reduced, and adhesion deterioration is likely to occur. . Accordingly, it is preferable to contain 0.1% or more of Co + Ni in order to sufficiently exhibit the Cu diffusion suppressing function. On the other hand, when Co + Ni exceeding 5% is contained, diffusion of Cu is inhibited, and the initial adhesive strength is lowered. Furthermore, since the plating layer hardens when the Co content increases, the wire drawing workability deteriorates, so the upper limit of the Co + Ni amount is preferably 5% or less. Preferably, it is 0.5% to 3%.

Mn/(Co+Ni):0.2〜2
本発明の、最も重要な指標である、Mn/(Co+Ni)について説明する。Mn、Co、NiのいずれもCuの拡散抑制、硫化物形成能力が高く、ゴムとの接着制御に重要な役割を果たしているが、ゴムとの接着性を高め、かつ伸線加工性を確保するためにはそれぞれの元素の機能を最大限に発揮させ、その機能を分担させることが重要である。
Mn / (Co + Ni): 0.2-2
Mn / (Co + Ni), which is the most important index of the present invention, will be described. All of Mn, Co, and Ni have high Cu diffusion suppression and sulfide forming ability and play an important role in adhesion control with rubber, but improve adhesion with rubber and ensure wire drawing processability. In order to achieve this, it is important to maximize the function of each element and share that function.

このために、それぞれの反応性、作用を最大限にはっきさせるためにMnと(Co+Ni)の含有量質量比率を適正に制御する。Mn/(Co+Ni)が0.2未満ではCo、Niに対するMnの優先的な硫化物形成によるCu硫化物の生成促進作用が低下し、本発明の効果が得られないためMn/(Co+Ni)は0.2以上とすることが好ましい。Mn/(Co+Ni)が2を超えて配合されると、Mn硫化物が多く生成し、Co、Ni硫化物が減少するためにめっき層でのCu拡散抑制効果が大きくなり、Cuがゴム中Sと反応し、接着層を形成する接着作用を阻害し、十分な接着強度が得られないため、Mn/(Co+Ni)の上限を2とした。より好ましくは0.4〜1.5である。   For this reason, in order to maximize each reactivity and action, the content mass ratio of Mn and (Co + Ni) is appropriately controlled. If Mn / (Co + Ni) is less than 0.2, the action of promoting the formation of Cu sulfide due to the preferential sulfide formation of Mn with respect to Co and Ni is reduced, and the effect of the present invention cannot be obtained, so Mn / (Co + Ni) is It is preferable to be 0.2 or more. When Mn / (Co + Ni) is compounded exceeding 2, a large amount of Mn sulfide is generated, and Co and Ni sulfide are reduced. Therefore, the Cu diffusion suppressing effect in the plating layer is increased, and Cu is contained in rubber S. The upper limit of Mn / (Co + Ni) is set to 2 because the adhesive action of forming an adhesive layer is inhibited and sufficient adhesive strength cannot be obtained. More preferably, it is 0.4-1.5.

ブラスめっき中MnとCo+Niの本発明の範囲を図1に示す。   The scope of the present invention of Mn and Co + Ni during brass plating is shown in FIG.

Co、Ni、Mnは、湿式めっきによりZnとの合金めっき析出が可能な元素であり、鋼線表面にCuめっき後、Zn−Co、Zn−Ni、Zn−Mnの合金めっきあるいはZn、Co、Ni、Mnそれぞれを層状にめっきし、拡散熱処理して合金化する。なお、本発明のめっきは、ブラスめっきにCo、Ni、Mnを添加したものであるから、Cu、Co、Ni、Mnの残部は、Zn及び不可避的不純物である。   Co, Ni, and Mn are elements that can be alloy-plated with Zn by wet plating. After Cu plating on the steel wire surface, Zn-Co, Zn-Ni, Zn-Mn alloy plating or Zn, Co, Each of Ni and Mn is plated in layers and alloyed by diffusion heat treatment. In addition, since the plating of this invention adds Co, Ni, and Mn to brass plating, the remainder of Cu, Co, Ni, and Mn is Zn and an unavoidable impurity.

Cu−Zn−(Co+Ni)−Mnめっきが薄すぎると、めっきを施す前の鋼線の表面の凹凸に起因して、めっき鋼線の表面に、局所的に鉄が露出した部分(Fe露出部)が生じることがある。このFe露出部では、ゴムとの接着は期待できず、時間の経過により酸素と水分が浸透し、鉄錆が発生する。鉄錆が生じると体積膨張に起因して、接着強度が著しく低下する。したがって、Cu−Zn−(Co+Ni)−Mnめっきの平均厚さを50nm以上にすることが好ましい。一方、Cu−Zn−(Co+Ni)−Mnめっきが厚すぎると、使用時に接着層に供給されるCu量が増加し、時間の経過とともに、接着層が成長、Cu硫化物の組成がCuSに近くなり、接着強度が低下することがある。したがって、極細めっき鋼線とゴムとの接着強度の経年劣化を抑制するには、Cu−Zn−(Co+Ni)−Mnめっきの平均厚さを500nm以下にすることが好ましい。Cu−Zn−(Co+Ni)−Mnめっきの平均厚さは150〜350nmがさらに好ましい。   When the Cu—Zn— (Co + Ni) —Mn plating is too thin, a portion where the iron is locally exposed on the surface of the plated steel wire (Fe exposed portion) due to unevenness on the surface of the steel wire before plating. ) May occur. In this Fe exposed portion, adhesion with rubber cannot be expected, and oxygen and moisture permeate with time and iron rust is generated. When iron rust occurs, the adhesive strength is significantly reduced due to volume expansion. Therefore, the average thickness of the Cu—Zn— (Co + Ni) —Mn plating is preferably 50 nm or more. On the other hand, if the Cu—Zn— (Co + Ni) —Mn plating is too thick, the amount of Cu supplied to the adhesive layer during use increases, the adhesive layer grows with time, and the composition of Cu sulfide is close to CuS. Thus, the adhesive strength may be reduced. Therefore, in order to suppress the aging degradation of the adhesive strength between the ultrafine plated steel wire and the rubber, it is preferable that the average thickness of the Cu—Zn— (Co + Ni) —Mn plating is 500 nm or less. The average thickness of the Cu—Zn— (Co + Ni) —Mn plating is more preferably 150 to 350 nm.

極細めっき鋼線のめっき層の平均厚さは、70%アンモニア水溶液に25g/lのトリクロロ酢酸を混合したアルカリ溶液に浸漬して溶解した重量変化から単位長さ当たりの合計めっき質量(W)を求め、溶解液中のCu、Zn、Co、Ni、Mnの元素をICP(誘導結合プラズマ発光分光分析)あるいは原子吸光分析によりそれぞれの元素の濃度(Wx)を求め、各金属元素の濃度から、めっき層の平均比重ρを求め、以下の式でめっきの平均厚さを求める。
めっき厚t=W/(A×ρ)
ただし、t:平均めっき厚さ、W:単位長さのめっき質量、A:単位長さのめっき層の表面積、ρ:めっき層の平均比重である。めっき層の平均比重ρは、下記式によって算出することができる。
ρ=ρCu×WCu+ρZn×WZn+ρNi×WNi+ρCo×WCo+ρMn×WMn
ただし、ρCu:Cuの比重、ρZn:Znの比重、ρNi:Niの比重、ρCo:Coの比重、ρMn:Mnの比重である。また、WCu:めっき中Cuの質量比、WZn:めっき中Znの質量比、WNi:めっき中Niの質量比、WCo:めっき中Coの質量比、WMn:めっき中Mnの質量比である。
The average thickness of the plating layer of the ultra-fine plated steel wire is the total plating mass (W) per unit length from the weight change dissolved in an alkaline solution in which 25 g / l of trichloroacetic acid is mixed in a 70% aqueous ammonia solution. Obtain the elements of Cu, Zn, Co, Ni, and Mn in the solution by ICP (inductively coupled plasma emission spectroscopy) or atomic absorption analysis to determine the concentration of each element (Wx). From the concentration of each metal element, The average specific gravity ρ of the plating layer is obtained, and the average thickness of the plating is obtained by the following formula.
Plating thickness t = W / (A × ρ)
Here, t: average plating thickness, W: plating mass of unit length, A: surface area of plating layer of unit length, and ρ: average specific gravity of plating layer. The average specific gravity ρ of the plating layer can be calculated by the following formula.
ρ = ρ Cu × W Cu + ρ Zn × W Zn + ρ Ni × W Ni + ρ Co × W Co + ρ Mn × W Mn
However, ρ Cu : specific gravity of Cu, ρ Zn : specific gravity of Zn, ρ Ni : specific gravity of Ni, ρ Co : specific gravity of Co, and ρ Mn : specific gravity of Mn. W Cu : mass ratio of Cu in plating, W Zn : mass ratio of Zn in plating, W Ni : mass ratio of Ni in plating, W Co : mass ratio of Co in plating, W Mn : mass of Mn in plating Is the ratio.

他にXPS(X線光電子分光分析)、AES(オージェ電子分光法)等の表面分析が可能な機器分析により、表面から元素のデプスプロファイルを測定しても推定可能である。ただし、機器分析では、鋼線の円周方向、長手方向での測定部位によって、めっき厚が変動するため、測定箇所が少ないと正確なめっき厚さを評価できない可能性がある。めっき溶解法によって平均めっき厚さを求めることが好ましい。   In addition, it is possible to estimate by measuring the depth profile of an element from the surface by instrumental analysis capable of surface analysis such as XPS (X-ray photoelectron spectroscopy) and AES (Auger electron spectroscopy). However, in the instrumental analysis, the plating thickness varies depending on the measurement site in the circumferential direction and the longitudinal direction of the steel wire. Therefore, if there are few measurement sites, the accurate plating thickness may not be evaluated. It is preferable to obtain the average plating thickness by a plating dissolution method.

次に、本発明の極細めっき鋼線の製造工程の例について説明する。図2の製造工程のブロック図に示すように、まず、熱間圧延によって製造した線径が3〜5.5mmの圧延材を、デスケーリングして、これを線径1〜3mmまで伸線加工(乾式伸線)して、コイルに巻き取る。次に、コイルから繰り出した線径1〜3mmの鋼線に、パテンティング熱処理を施し、加工の影響を除去することが好ましい。さらに、必要に応じて、酸洗によるデスケーリング、脱脂のめっき前処理を施す。   Next, the example of the manufacturing process of the ultra fine plated steel wire of this invention is demonstrated. As shown in the block diagram of the manufacturing process of FIG. 2, first, a rolled material with a wire diameter of 3 to 5.5 mm manufactured by hot rolling is descaled and drawn to a wire diameter of 1 to 3 mm. (Dry wire drawing) and wind it on a coil. Next, it is preferable to perform a patenting heat treatment on a steel wire with a wire diameter of 1 to 3 mm fed from a coil to remove the influence of processing. Furthermore, if necessary, descaling by pickling and degreasing pretreatment for plating are performed.

めっき前処理に引き続き、湿式Cuめっきを行い、その後、Zn−CoあるいはZn−Niの合金めっきを行いさらにZn−Mn合金めっきを行う。ここで、Zn−Mn合金めっきに含まれるMn量は、電流密度を調整することで、変化し、定電流及び電流密度を周期的に変動(サイクル電流)させて制御することができる。また、場合によってはCuめっき、Znめっきを行った後、Co、Niめっきを単独で行ってもよい。ただし、比較的、めっき層に含まれる量が少ないMnの含有量を制御するためには、Zn−Mnが同時に析出する合金めっきが好ましいめっき処理形態である。   Subsequent to the plating pretreatment, wet Cu plating is performed, and then Zn—Co or Zn—Ni alloy plating is performed, and further Zn—Mn alloy plating is performed. Here, the amount of Mn contained in the Zn—Mn alloy plating changes by adjusting the current density, and can be controlled by periodically changing the constant current and the current density (cycle current). In some cases, after Cu plating and Zn plating, Co and Ni plating may be performed independently. However, in order to control the content of Mn, which is relatively small in the plating layer, alloy plating in which Zn—Mn is simultaneously deposited is a preferable plating treatment form.

めっき後、鋼線に拡散熱処理(合金化処理)を施し、Cu、Zn、Co、Ni、Mnを合金化する。拡散熱処理は、CuとZnの合金化反応によりブラスめっきとする条件でよく、温度は450〜600℃、保持時間は2〜15sが好ましい。めっき層を合金化した後、必要に応じてコイルに巻き取り、繰り出して更に湿式伸線により、極細めっき鋼線の線径が0.1〜0.4mmになるように伸線加工する。その後、撚り加工してスチールコードとし、コイルに巻き取る。   After plating, the steel wire is subjected to diffusion heat treatment (alloying treatment) to alloy Cu, Zn, Co, Ni, and Mn. The diffusion heat treatment may be performed under the condition of brass plating by an alloying reaction of Cu and Zn, and the temperature is preferably 450 to 600 ° C. and the holding time is preferably 2 to 15 s. After the plating layer is alloyed, it is wound around a coil as necessary, drawn out, and further drawn by wet drawing so that the wire diameter of the ultrafine plated steel wire becomes 0.1 to 0.4 mm. After that, it is twisted into a steel cord and wound around a coil.

Zn−Mn合金めっきは、硫酸亜鉛、硫酸亜鉛を主体としためっきに硫酸マンガンからなるめっき浴を用いて合金めっきが可能である。電流密度、処理時間でZn−Mn合金めっきの厚さ、Mn含有量を制御することができる。   Zn-Mn alloy plating can be performed by using a plating bath made of manganese sulfate for plating mainly composed of zinc sulfate and zinc sulfate. The thickness of Zn—Mn alloy plating and the Mn content can be controlled by the current density and the processing time.

低電流密度ではMn量が多くなるがめっきの効率が悪い。そのため、Mnを効率よく、安定的に析出させるためには、Mn析出が多くなる15A/dm2以下の低電流密度と、析出速度が速い20A/dm2以上の高電流密度を交互に付与することが好ましい。 At low current density, the amount of Mn increases, but the plating efficiency is poor. Therefore, in order to deposit Mn efficiently and stably, a low current density of 15 A / dm 2 or less at which Mn precipitation increases and a high current density of 20 A / dm 2 or more at a high deposition rate are alternately applied. It is preferable.

高電流密度と低電流密度を交互に付与し、付与した電流でZn−Mn合金めっきを安定的に析出させるためには、電流の印加時間の下限を50ms以上にすることが好ましい。一方、電硫の印加時間の上限は、より安定しためっきを析出させるために1000ms以下が好ましい。高電流密度と低電流密度の印加時間の組み合わせは特に限定されず、最適めっきが得られる条件を適宜選定すればよい。   In order to alternately apply a high current density and a low current density and to stably deposit Zn—Mn alloy plating with the applied current, it is preferable to set the lower limit of the current application time to 50 ms or more. On the other hand, the upper limit of the electrosulfurization application time is preferably 1000 ms or less in order to deposit more stable plating. The combination of the application time of the high current density and the low current density is not particularly limited, and conditions for obtaining optimum plating may be appropriately selected.

本発明の極細めっき鋼線をゴム複合体に埋設して補強したゴム複合体を得ることが可能であり、ゴムとの高い接着強度確保と接着劣化防止が可能となる。例えば、タイヤに適用する場合は、タイヤの走行性能にあわせて適宜複数本撚り合わせ、ゴムとカーボンブラック、硫黄、酸化亜鉛、その他各種添加剤を配合した原材料を練ったシート状ゴムに挟み込まれ、補強ベルト構造とする。その後、タイヤ構成部材を貼り合わせて加硫機にセットし、プレス、加熱し、ゴムの強度を発現するための架橋と同時にゴムと極細めっき鋼線との接着を行う。   It is possible to obtain a rubber composite reinforced by embedding the ultrafine plated steel wire of the present invention in a rubber composite, ensuring high adhesive strength with rubber and preventing adhesion deterioration. For example, when applied to a tire, a plurality of yarns are appropriately twisted according to the running performance of the tire, and sandwiched between rubber and carbon black, sulfur, zinc oxide, and other raw material blended with various additives, Reinforced belt structure. Thereafter, the tire constituent members are bonded together, set in a vulcanizer, pressed and heated, and the rubber and the ultra-fine plated steel wire are bonded simultaneously with crosslinking for expressing the strength of the rubber.

また、ゴム配合原料にはブラスめっきとの接着促進剤として配合される、有機酸Co塩(例えば、ナフテン酸コバルト、ステアリン酸コバルト、ネオデカン酸コバルト等)を含まなくてもMn、Co、Niの作用により十分な接着反応層を形成するために、高い接着強度のゴム複合体を得ることが可能である。   Further, the rubber compounding raw material is blended as an adhesion promoter for brass plating, and does not contain organic acid Co salt (for example, cobalt naphthenate, cobalt stearate, cobalt neodecanoate, etc.). In order to form a sufficient adhesion reaction layer by the action, it is possible to obtain a rubber composite having high adhesive strength.

本発明の鋼材成分は特に限定はされないが、C:0.72〜1.1mass%、Si:0.2〜0.5mass%、Mn:0.2〜0.6mass%、P:0.01mass%以下、S:0.01mass%以下、Cr:0.01〜0.35mass%の成分を有し、パーライト面積率が95%以上からなる材料が極細線の強度を確保し、ゴム複合体の補強効果を発揮させるのに好ましい。   Although the steel material component of the present invention is not particularly limited, C: 0.72 to 1.1 mass%, Si: 0.2 to 0.5 mass%, Mn: 0.2 to 0.6 mass%, P: 0.01 mass %, S: 0.01 mass% or less, Cr: 0.01 to 0.35 mass%, and a material having a pearlite area ratio of 95% or more ensures the strength of the ultrafine wire, It is preferable for exerting a reinforcing effect.

以下、本発明の実施例について説明する。なお、本実施例に記載の内容により本発明の内容は制限されない。   Examples of the present invention will be described below. In addition, the content of this invention is not restrict | limited by the content as described in a present Example.

本発明の製造工程は図2に示すように、表1に示す成分を有する鋼材を熱間圧延し、線径が5.5mmの熱間圧延線材を製造した。得られた熱間圧延線材を酸洗し、スケールを除去した後、石灰処理を行い、ステアリン酸Naを主体とした乾式潤滑剤を用いて1.5mmまで伸線加工した。この伸線材を950℃に加熱して75s保持し、金属組織をオーステナイトにした後、585℃の鉛浴に20s浸漬するパテンティング処理を行った。   In the production process of the present invention, as shown in FIG. 2, a steel material having the components shown in Table 1 was hot-rolled to produce a hot-rolled wire having a wire diameter of 5.5 mm. The obtained hot-rolled wire rod was pickled, scale was removed, lime treatment was performed, and the wire was drawn to 1.5 mm using a dry lubricant mainly composed of Na stearate. The wire drawing material was heated to 950 ° C. and held for 75 s to change the metal structure to austenite, and then a patenting treatment was performed in which the wire was immersed in a 585 ° C. lead bath for 20 s.

パテンティング処理を行った鋼線に、連続して、硫酸による電解酸洗とアルカリ溶液による電解脱脂を施し、ピロリン酸銅めっき、Zn−Co、あるいはZn−Niのいずれかまたは両方のめっきを行った後、更にZn−Mnの合金めっきを行い、480℃に加熱して8s保持する合金化処理を行い、Cu−Zn−Co(Ni)−Mnめっきとし、巻き取った。ここで、Zn−Co(Ni)−Mn合金めっきに含まれるMnは、電流密度を変えてMn共析量を変えて制御した。   The patented steel wire is continuously subjected to electrolytic pickling with sulfuric acid and electrolytic degreasing with an alkaline solution, followed by copper pyrophosphate plating, Zn-Co, Zn-Ni plating, or both. Thereafter, alloy plating of Zn—Mn was further performed, and alloying treatment was performed by heating to 480 ° C. and holding for 8 s to obtain Cu—Zn—Co (Ni) —Mn plating. Here, Mn contained in the Zn—Co (Ni) —Mn alloy plating was controlled by changing the current density and changing the Mn eutectoid amount.

さらに、湿式潤滑剤を用いた湿式伸線により、線径が0.1〜0.4mmになるように伸線加工を行い、極細めっき鋼線を製造した。比較のために、Cuめっき及びZnめっきと拡散熱処理によって、平均厚さが230nmであり、Cu濃度が63%であるブラスめっき設けた極細めっき鋼線を製造した。伸線加工性は、ダイス寿命と断線発生率によって評価し、ブラスめっき鋼線(下記表2の鋼線No.14)の伸線性を100とし、これに対する指数を極細めっき鋼線の伸線加工性として評価した。   Furthermore, wire drawing was performed by wet wire drawing using a wet lubricant so that the wire diameter was 0.1 to 0.4 mm to produce an ultrafine plated steel wire. For comparison, an ultra-fine plated steel wire provided with brass plating having an average thickness of 230 nm and a Cu concentration of 63% was manufactured by Cu plating and Zn plating and diffusion heat treatment. The wire drawing workability is evaluated by the die life and the wire breakage occurrence rate. The wire drawing property of the brass-plated steel wire (steel wire No. 14 in Table 2 below) is set to 100, and the index for this is drawn to the ultra-fine plated steel wire. Assessed as sex.

極細めっき鋼線から試料を採取し、レーザー式非接触線径測定装置によって極細めっき鋼線の線径を測定した。めっき厚さは、70%アンモニア水溶液に25g/lのトリクロロ酢酸を混合したアルカリ溶液に浸漬し、めっきを溶解し、重量変化からめっき付着量を求め、溶解液をICP分析でCu、Zn、Co、Ni、Mn濃度を分析し、計算して求めた。表2に極細めっき鋼線の線径、めっき組成(なお、残部はZn及び不可避不純物である)、めっき組成から求めたMn/(Co+Mn)および平均めっき厚さを示す。   A sample was taken from the ultrafine plated steel wire, and the wire diameter of the ultrafine plated steel wire was measured with a laser-type non-contact wire diameter measuring device. The plating thickness is immersed in an alkaline solution in which 25 g / l trichloroacetic acid is mixed in a 70% aqueous ammonia solution, the plating is dissolved, the amount of plating adhesion is obtained from the change in weight, and the solution is analyzed by Cu, Zn, Co by ICP analysis. , Ni and Mn concentrations were analyzed and calculated. Table 2 shows the wire diameter, plating composition (the balance is Zn and inevitable impurities), Mn / (Co + Mn) and average plating thickness obtained from the plating composition.

次に、極細めっき鋼線の引張試験を行い、引張強さを測定し、従来のブラスめっき鋼線(表2の鋼線No.14)の引張強さを100とした指数で評価した。極細めっき鋼線4本を、5mmのピッチで撚り合わせてコードとし、金型にセットして、表3に示すゴム組成物に埋め込み、160℃で、30分加熱するホットプレスにより加硫処理を行い、接着性評価用試料を製造した。   Next, the tensile test of the ultra-fine plated steel wire was performed, the tensile strength was measured, and it evaluated by the index | exponent which set the tensile strength of the conventional brass plating steel wire (steel wire No. 14 of Table 2) to 100. Four ultra-fine plated steel wires are twisted at a pitch of 5 mm to form a cord, set in a mold, embedded in the rubber composition shown in Table 3, and vulcanized by a hot press heated at 160 ° C. for 30 minutes. This was done to produce an adhesive evaluation sample.

この試料を用いて、初期の接着強度(初期接着強度)及び接着強度の経時による劣化(経年劣化)を評価した。初期接着強度は、引張試験装置でコードをゴムから引き抜いた時の引抜力を測定し、最大引抜力で評価した。また、接着強度の経年劣化は、試料を80℃の水に3日浸漬した後、初期接着強度と同様にして、コードをゴムから引き抜いた時の最大引抜力として評価した。なお、初期接着強度及び経年劣化は、比較のために製造した、ブラスめっき鋼線(表2の鋼線No.14を用い、ゴム組成物のCo塩を有りとしたとき(表4の試験No.24))の初期接着強を100とし、これに対する指数で評価した。   Using this sample, the initial adhesive strength (initial adhesive strength) and deterioration of the adhesive strength with time (aging deterioration) were evaluated. The initial adhesive strength was evaluated by measuring the pulling force when the cord was pulled out of the rubber with a tensile test device and measuring the maximum pulling force. Further, the aging deterioration of the adhesive strength was evaluated as the maximum pulling force when the cord was pulled out from the rubber in the same manner as the initial adhesive strength after the sample was immersed in water at 80 ° C. for 3 days. The initial adhesive strength and aging deterioration were measured by using a brass-plated steel wire manufactured for comparison (when steel wire No. 14 in Table 2 was used and Co salt of the rubber composition was present (Test No. in Table 4). .24)) was assumed to have an initial bond strength of 100, and the index was evaluated with respect to this.

表4に、ゴム組成物のCo塩の有無(ゴム種類)、極細めっき鋼線とゴムとの初期接着強度及び経年劣化の評価結果、伸線加工性の評価結果、極細めっき鋼線の引張強さ(極細鋼線の強度)を示す。本発明の極細めっき鋼線は、ナフテン酸コバルト塩を配合しない条件でも十分な初期接着強度が確保され、かつ経年劣化がブラスめっきに比べて小さいことがわかる。   Table 4 shows the presence / absence of Co salt in the rubber composition (type of rubber), evaluation results of initial adhesion strength and aging of ultrafine plated steel wire and rubber, evaluation results of wire drawing workability, tensile strength of ultrafine plated steel wire (Strength of extra fine steel wire). It can be seen that the ultra-fine plated steel wire of the present invention has a sufficient initial adhesive strength even under conditions where no naphthenic acid cobalt salt is blended, and is less deteriorated over time than brass plating.

一方、従来のCuとZnからなるブラスめっきである鋼線No.14は、ナフテン酸コバルトを配合したゴム組成(Co塩あり)の場合は試験NO.24に示すように加硫直後の初期接着性は高いものの、劣化処理後の接着性(経年劣化)は低下した。また、従来のブラスめっきは、試験No.14のナフテン酸コバルトの配合がないゴム組成(Co塩なし)では接着反応性が低下し、初期接着強度が低下している。なお、経年劣化も不十分である。   On the other hand, steel wire No. 1 which is a brass plating made of conventional Cu and Zn. No. 14 is a test No. in the case of a rubber composition (with Co salt) containing cobalt naphthenate. As shown in FIG. 24, although the initial adhesiveness immediately after vulcanization is high, the adhesiveness after deterioration (aging deterioration) was lowered. In addition, the conventional brass plating is a test No. In a rubber composition (no Co salt) containing no 14 cobalt naphthenate, the adhesion reactivity is lowered and the initial adhesive strength is lowered. In addition, aged deterioration is insufficient.

試験No.15は、めっきに含まれるCu量が少ないため、初期接着性が低下するとともに、めっき中のβブラスが増加し、伸線加工性が悪化した例である。試験No.16は、めっきに含まれるCu量が多いため、経年劣化が大きくなった例である。試験No.17はMnを含まず、Co+Ni量が本発明の範囲を超えて多く配合されたため、初期接着が著しく低下し、めっき層の加工性が低下し、伸線加工性が悪化した例である。試験No.18は、めっきに含まれるMn/(Co+Ni)が少なく、Mnの効果が得られないため、初期接着と共に劣化後の接着強度も低下した例である。No.19は、Mnが多いため、めっきが硬くなり伸線加工性が低下した例である。   Test No. No. 15 is an example in which since the amount of Cu contained in the plating is small, the initial adhesiveness is lowered, the β brass during plating is increased, and the wire drawing workability is deteriorated. Test No. No. 16 is an example in which the deterioration over time has increased due to the large amount of Cu contained in the plating. Test No. No. 17 is an example in which Mn is not contained and the amount of Co + Ni exceeds the range of the present invention, so that the initial adhesion is remarkably lowered, the workability of the plating layer is lowered, and the wire drawing workability is deteriorated. Test No. No. 18 is an example in which the amount of Mn / (Co + Ni) contained in the plating is small and the effect of Mn cannot be obtained, so that the adhesive strength after deterioration is lowered together with the initial adhesion. No. No. 19 is an example in which since there is much Mn, the plating becomes hard and the wire drawing workability is lowered.

試験No.20は極細鋼線の線径が太いため極細線の強度が低下し、ゴム複合体の補強効果が小さくなった例である。試験No.21は極細鋼線の線径が細いため、伸線時に断線が発生し、生産性が著しく低下した例である。   Test No. No. 20 is an example in which the strength of the ultrafine wire is reduced because the wire diameter of the ultrafine steel wire is large, and the reinforcing effect of the rubber composite is reduced. Test No. No. 21 is an example in which the wire diameter of the ultrafine steel wire is thin, so that the wire breakage occurs at the time of wire drawing and the productivity is significantly reduced.

試験No.22は、めっきが薄く、局部的に地鉄が露出した部分が大きくなり、初期接着強度が低下し、伸線加工性が悪化した例である。試験No.23は、めっきが厚すぎるため、経年劣化が発生した例である。試験No.24は、CuとZnのブラスめっき極細鋼線とCo塩を配合したゴムを用いた例で、初期接着性は十分であるが劣化後の反応が進行し、接着劣化が進行した例である。   Test No. No. 22 is an example in which the plating is thin and the portion where the ground iron is locally exposed becomes large, the initial adhesive strength is lowered, and the wire drawing workability is deteriorated. Test No. No. 23 is an example in which aged deterioration occurs because the plating is too thick. Test No. No. 24 is an example using a rubber containing Cu and Zn brass-plated extra fine steel wire and Co salt. Although the initial adhesiveness is sufficient, the reaction after deterioration progresses and the adhesive deterioration progresses.

本発明の極細めっき鋼線は、ゴムと補強材が強固に接着され、時間が経過してもその接着強度の低下が著しく小さいため、ゴム複合体の補強効果が高く維持可能である。したがって、タイヤコード及びビードワイヤだけでなく、ゴムホースやベルトの補強材として使用することが可能であり、産業上の利用可能性が極めて高い。   In the ultra fine plated steel wire of the present invention, the rubber and the reinforcing material are firmly bonded, and the decrease in the bonding strength is extremely small over time, so that the reinforcing effect of the rubber composite can be maintained high. Therefore, it can be used not only as a tire cord and a bead wire but also as a reinforcing material for a rubber hose or a belt, and the industrial applicability is extremely high.

Claims (3)

線径が0.1〜0.4mmであり、表面に、平均厚さが50〜500nmであるめっき層を有し、該めっき層が、質量%で、
Cu:60〜75%、
Mn:0.05〜1%、
CoまたはNiのいずれかまたは合計:0.1〜5%
を含有し、
Mn/(Co+Ni):0.2〜2であり、
残部がZn及び不可避的不純物からなることを特徴とするゴムとの接着性に優れた極細めっき鋼線。
The wire diameter is 0.1 to 0.4 mm, and the surface has a plating layer having an average thickness of 50 to 500 nm.
Cu: 60 to 75%,
Mn: 0.05 to 1%
Either Co or Ni or total: 0.1 to 5%
Containing
Mn / (Co + Ni): 0.2-2
An ultra-fine plated steel wire excellent in adhesiveness to rubber, characterized in that the balance is made of Zn and inevitable impurities.
請求項1記載のめっき鋼線とゴム組成物からなることを特徴とするゴム複合体。   A rubber composite comprising the plated steel wire according to claim 1 and a rubber composition. 前記ゴム組成物には有機酸Co塩を含まないことを特徴とする請求項2記載のゴム複合体。   The rubber composite according to claim 2, wherein the rubber composition does not contain an organic acid Co salt.
JP2014169273A 2014-08-22 2014-08-22 Ultra fine plated steel wire with excellent adhesion to rubber and rubber composite using the same Expired - Fee Related JP6248862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014169273A JP6248862B2 (en) 2014-08-22 2014-08-22 Ultra fine plated steel wire with excellent adhesion to rubber and rubber composite using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014169273A JP6248862B2 (en) 2014-08-22 2014-08-22 Ultra fine plated steel wire with excellent adhesion to rubber and rubber composite using the same

Publications (2)

Publication Number Publication Date
JP2016044370A true JP2016044370A (en) 2016-04-04
JP6248862B2 JP6248862B2 (en) 2017-12-20

Family

ID=55635207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014169273A Expired - Fee Related JP6248862B2 (en) 2014-08-22 2014-08-22 Ultra fine plated steel wire with excellent adhesion to rubber and rubber composite using the same

Country Status (1)

Country Link
JP (1) JP6248862B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016084512A (en) * 2014-10-27 2016-05-19 新日鐵住金株式会社 Plated steel wire excellent in adhesiveness to rubber and rubber composite using the same, and production method therefor
WO2019159531A1 (en) * 2018-02-14 2019-08-22 住友電気工業株式会社 Tire
JP2021515853A (en) * 2018-03-12 2021-06-24 ホンドク インダストリアル カンパニー リミテッド Electroplated bead wire with excellent oxidation resistance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4704337A (en) * 1985-01-07 1987-11-03 Wilfried Coppens Rubber adherable steel reinforcing elements with composite surface coating
JP2002013082A (en) * 2000-06-29 2002-01-18 Bridgestone Corp Rubber-steel cord composite
JP2011219837A (en) * 2010-04-13 2011-11-04 Nippon Steel Corp Extra fine plated steel wire having excellent adhesiveness to rubber
WO2013117249A1 (en) * 2012-02-06 2013-08-15 Nv Bekaert Sa Ternary or quaternary alloy coating for steam ageing and cured humidity adhesion elongated steel element comprising a ternary or quaternary brass alloy coating and corresponding method
WO2013117248A1 (en) * 2012-02-06 2013-08-15 Nv Bekaert Sa Elongated steel element comprising a ternary or quaternary brass alloy coating and corresponding method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4704337A (en) * 1985-01-07 1987-11-03 Wilfried Coppens Rubber adherable steel reinforcing elements with composite surface coating
JP2002013082A (en) * 2000-06-29 2002-01-18 Bridgestone Corp Rubber-steel cord composite
JP2011219837A (en) * 2010-04-13 2011-11-04 Nippon Steel Corp Extra fine plated steel wire having excellent adhesiveness to rubber
WO2013117249A1 (en) * 2012-02-06 2013-08-15 Nv Bekaert Sa Ternary or quaternary alloy coating for steam ageing and cured humidity adhesion elongated steel element comprising a ternary or quaternary brass alloy coating and corresponding method
WO2013117248A1 (en) * 2012-02-06 2013-08-15 Nv Bekaert Sa Elongated steel element comprising a ternary or quaternary brass alloy coating and corresponding method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016084512A (en) * 2014-10-27 2016-05-19 新日鐵住金株式会社 Plated steel wire excellent in adhesiveness to rubber and rubber composite using the same, and production method therefor
WO2019159531A1 (en) * 2018-02-14 2019-08-22 住友電気工業株式会社 Tire
CN111699095A (en) * 2018-02-14 2020-09-22 住友电气工业株式会社 Tyre for vehicle wheels
JPWO2019159531A1 (en) * 2018-02-14 2021-03-11 住友電気工業株式会社 tire
JP7112480B2 (en) 2018-02-14 2022-08-03 住友電気工業株式会社 tire
CN111699095B (en) * 2018-02-14 2022-08-19 住友电气工业株式会社 Tyre for vehicle wheels
JP2021515853A (en) * 2018-03-12 2021-06-24 ホンドク インダストリアル カンパニー リミテッド Electroplated bead wire with excellent oxidation resistance
US11447886B2 (en) 2018-03-12 2022-09-20 Hongduk Industrial Co., Ltd. Electroplated bead wire having excellent oxidation resistance
JP7162067B2 (en) 2018-03-12 2022-10-27 ホンドク インダストリアル カンパニー リミテッド Electroplated bead wire with excellent oxidation resistance

Also Published As

Publication number Publication date
JP6248862B2 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
JP5333332B2 (en) Ultra-fine plated steel wire with excellent adhesion to rubber
JP5630588B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5333331B2 (en) Ultra-fine plated steel wire with excellent adhesion to rubber
JP6729722B2 (en) Plated steel wire, method of manufacturing plated steel wire, steel cord, and rubber composite
JP6248862B2 (en) Ultra fine plated steel wire with excellent adhesion to rubber and rubber composite using the same
CN103814159A (en) Metal Wire for rubber reinforcement, manufacturing method for same, and tyre
JP2018119189A (en) Plated steel wire, steel cord and rubber-steel cord complex
JPWO2010101154A1 (en) Steel wire manufacturing method
JP6572783B2 (en) Plating steel wire, rubber composite using the same, and method for producing plated steel wire
JP2012012625A (en) Steel wire material
JP2014009399A (en) High strength galvanized steel sheet and method for manufacturing the same
JP2009138251A (en) Steel wire with excellent wire drawability
JP2018119190A (en) Plated steel wire, steel cord and rubber-steel cord complex
JP6379999B2 (en) Plating steel wire excellent in adhesion to rubber, rubber composite using the same, and method for producing the same
JP5062818B2 (en) Brass-plated steel wire manufacturing method, steel cord and tire
JP2005054260A (en) Method of producing extra fine steel wire for steel cord, and steel cord
KR101670266B1 (en) Bead wire having a superior adhesive strength and method for the same
JP4937846B2 (en) Steel wire for reinforcing rubber products excellent in corrosion fatigue resistance and manufacturing method thereof
JP6053031B2 (en) High carbon steel wire rod excellent in the machinability on the rolling scale and its manufacturing method
JP6237419B2 (en) Method for producing extra fine brass plated steel wire
JP6558255B2 (en) High-strength ultrafine steel wire and method for producing the same
CN115702271A (en) Brass coated steel cord with increased surface iron content
JP6492875B2 (en) Ultra fine plated steel wire with excellent adhesion to rubber, rubber composite using the same, and method for producing the same
JP5653679B2 (en) Manufacturing method of steel wire for rubber reinforcement and steel wire for rubber reinforcement
JP2007186736A (en) Method for manufacturing metallic wire, metallic cord for reinforcing rubber product, and vehicle tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171106

R151 Written notification of patent or utility model registration

Ref document number: 6248862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees