JP2016076299A - Anisotropic conductor - Google Patents

Anisotropic conductor Download PDF

Info

Publication number
JP2016076299A
JP2016076299A JP2014203994A JP2014203994A JP2016076299A JP 2016076299 A JP2016076299 A JP 2016076299A JP 2014203994 A JP2014203994 A JP 2014203994A JP 2014203994 A JP2014203994 A JP 2014203994A JP 2016076299 A JP2016076299 A JP 2016076299A
Authority
JP
Japan
Prior art keywords
anisotropic conductor
cylindrical
conductive
conducting
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014203994A
Other languages
Japanese (ja)
Inventor
彬人 竹内
Akihito Takeuchi
彬人 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Polymatech Co Ltd
Original Assignee
Polymatech Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polymatech Japan Co Ltd filed Critical Polymatech Japan Co Ltd
Priority to JP2014203994A priority Critical patent/JP2016076299A/en
Publication of JP2016076299A publication Critical patent/JP2016076299A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To reduce a load applied to a member to be connected when an anisotropic conductor is bought in pressure-contact with the member to be connected.SOLUTION: An anisotropic conductor 11 includes a cavity 14 inside a cylindrical conduction part 13a of a conduction part 13. With the cavity 14 being provided, the cylindrical conduction part 13a can be flexibly and elastically deformed compared to the conventional solid conduction part so that a load applied to a member to be connected can be reduced.SELECTED DRAWING: Figure 1

Description

本発明は、携帯情報端末機、ノートパソコンなどの情報機器、小型オーディオプレーヤ、小型ディスプレィなどのAV機器、その他の電子機器の内部に組み込まれ、回路基板と回路基板、回路基板と電子部品、機器の外装部品に設けられる導通部と回路基板などの接続対象部材どうしの電気的接続に用いる異方導電体に関する。   The present invention is incorporated in an information device such as a portable information terminal, a notebook personal computer, a small audio player, an AV device such as a small display, and other electronic devices, and includes a circuit board and a circuit board, a circuit board and an electronic component, and a device The present invention relates to an anisotropic conductor used for electrical connection between a conductive portion provided in an exterior part of the board and a connection target member such as a circuit board.

回路基板と電子部品等とを導通接続する異方導電体には、図13〜図15で示す異方導電体1がある。この異方導電体1は、絶縁性のゴム状弾性体でなる被覆部2と、その内側に設けられる導通部3とで円柱体に形成され、その両端面1aに導通部3が露出しており、その軸方向に導電性を有する。具体的には、各端面1aを対向する接続対象部材X1,X2に押圧接触することで接続対象部材X1,X2どうしを、異方導電体1を介して簡単に導通接続することができる。そして異方導電体1はゴム状弾性体でなる被覆部2により機器外部からの振動や衝撃を吸収することができる。このため、位置ずれによる接触不良を起こし難くすることができ、また導通部3の摩耗や放電が防止されて確実な電気的接続を実現することができる。   The anisotropic conductor 1 shown in FIGS. 13 to 15 is an anisotropic conductor that conductively connects a circuit board and an electronic component. This anisotropic conductor 1 is formed in a cylindrical body by a covering portion 2 made of an insulating rubber-like elastic body and a conducting portion 3 provided inside thereof, and the conducting portion 3 is exposed on both end faces 1a. And has conductivity in the axial direction. Specifically, the connection target members X1 and X2 can be easily connected to each other via the anisotropic conductor 1 by pressing and contacting the connection target members X1 and X2 facing each end face 1a. And the anisotropic conductor 1 can absorb the vibration and impact from the exterior of an apparatus with the coating | coated part 2 which consists of rubber-like elastic bodies. For this reason, it is possible to make it difficult to cause a contact failure due to displacement, and it is possible to prevent wear and discharge of the conductive portion 3 and realize a reliable electrical connection.

このような異方導電体1は例えばWO2014−065252号公報に開示されている。導通部3を有する異方導電体1は、効率的な生産、簡易な製造作業、高い歩留まりなどを実現できることから金型成形によって製造されている。   Such an anisotropic conductor 1 is disclosed in, for example, WO2014-065252. The anisotropic conductor 1 having the conductive portion 3 is manufactured by molding because it can realize efficient production, simple manufacturing work, high yield, and the like.

WO2014−065252号公報WO2014-065252

異方導電体1は、前述のように対向する接続対象部材X1,X2にそれぞれ端面1aを押圧接触することで導通接続するが、その際に圧縮率が10%〜20%程度になるように、対向する接続対象部材X1,X2の設置位置が設計される。そのとき異方導電体1が過剰に硬いと、接続対象部材X1,X2に大きな荷重がかかって変形したり最悪の場合には破損に至るような不具合が起こりうる。そのため、異方導電体1の被覆部2の材質には軟質のゴムが用いられており、比較的柔らかく変形できるようにしている。   The anisotropic conductor 1 is conductively connected by pressing and contacting the end surfaces 1a to the connection target members X1 and X2 facing each other as described above, and at that time, the compressibility is about 10% to 20%. The installation positions of the facing connection target members X1 and X2 are designed. At this time, if the anisotropic conductor 1 is excessively hard, a problem may occur in which the connection target members X1 and X2 are deformed by being subjected to a large load, or in the worst case, are damaged. Therefore, soft rubber is used as the material of the covering portion 2 of the anisotropic conductor 1 so that it can be deformed relatively softly.

しかしながら、導通部3は被覆部2よりも硬質であり弾性変形し難い。例えば導通部3が導電性充填材により形成されている場合には、導通性を向上するために充填量を多くする。そのため導通部3を被覆部2と同様に柔軟にするのが困難で接続対象部材X1,X2にかかる荷重を小さくするには限界があった。   However, the conducting portion 3 is harder than the covering portion 2 and is not easily elastically deformed. For example, when the conduction | electrical_connection part 3 is formed with the electroconductive filler, the filling amount is increased in order to improve electroconductivity. Therefore, it is difficult to make the conducting part 3 flexible like the covering part 2, and there is a limit to reducing the load applied to the connection target members X1 and X2.

以上のような従来技術を背景としてなされたのが本発明である。本発明の目的は、異方導電体について、接続対象部材と押圧接触させた際に接続対象部材にかかる荷重を小さくすることにある。   The present invention has been made against the background of the prior art as described above. An object of the present invention is to reduce a load applied to a connection target member when the anisotropic conductor is brought into press contact with the connection target member.

上記目的を達成すべく本発明は以下の異方導電体を提供する。   In order to achieve the above object, the present invention provides the following anisotropic conductors.

本発明の異方導電体は、絶縁性のゴム状弾性体でなるベース部と、前記ベース部を貫通する導電性の導通部とを備え、前記導通部は、その両端がそれぞれ接続対象部材と押圧接触した状態で当該接続対象部材どうしを導通接続する異方導電体について、前記導通部が、内部に空洞部を有する筒状導通部を有することを特徴とする。   The anisotropic conductor of the present invention includes a base portion made of an insulating rubber-like elastic body and a conductive conduction portion penetrating the base portion, and both ends of the conduction portion are connected to members to be connected, respectively. About the anisotropic conductor which carries out the conductive connection of the said connection object members in the state which press-contacted, the said conduction | electrical_connection part has a cylindrical conduction | electrical_connection part which has a cavity part inside, It is characterized by the above-mentioned.

従来技術で例示した異方導電体1は、接続対象部材と押圧接触させると外側に膨張するように弾性変形する。このとき、導通部3の外周の被覆部2は柔らかく弾性変形するが、導通部3は全体が中実であり、硬質な金属材等の導電性充填材が一体に密集する部分であって、材質の伸び難さに起因する拘束力が強いことから、むしろ設計上大きな変形を抑制するようにしている。   The anisotropic conductor 1 exemplified in the prior art is elastically deformed so as to expand outward when pressed against the connection target member. At this time, the covering portion 2 on the outer periphery of the conducting portion 3 is soft and elastically deformed, but the conducting portion 3 is solid as a whole, and is a portion where conductive fillers such as hard metal materials are densely integrated, Since the restraining force resulting from the difficulty of the material is strong, rather, a large deformation in design is suppressed.

これに対して本発明では、大きな変形を抑える既存の設計思想には依拠せず、発想を逆転させている。即ち、導通部が内部に空洞部を有する筒状導通部を有するため、異方導電体を接続対象部材に押圧接触させたときに、導通部が変形しやすくなる。筒状導通部の内側は空洞部であるため、従来の中実な導通部3と比べて導通部の中心部分が外側への変形を抑制する拘束力が小さいことから、弱い力で外側に広がるように変形させることができるようになる。また、押圧接触により圧縮変形する導通部は、筒状導通部が内側の空洞部に向けて膨出変形することも可能である。こうした導通部の中空構造によって、本発明の異方導電体は押圧接触した状態で接続対象部材にかかる荷重を大幅に低減することができる。   On the other hand, in the present invention, the idea is reversed without relying on the existing design philosophy to suppress large deformation. That is, since the conducting portion has a cylindrical conducting portion having a hollow portion therein, the conducting portion is easily deformed when the anisotropic conductor is pressed against the connection target member. Since the inside of the cylindrical conducting portion is a hollow portion, the central portion of the conducting portion has a small restraining force that suppresses outward deformation compared to the conventional solid conducting portion 3, so that it spreads outward with a weak force. So that it can be deformed. In addition, the conducting portion that is compressed and deformed by pressing contact can be deformed such that the tubular conducting portion bulges toward the inner cavity. With such a hollow structure of the conductive portion, the anisotropic conductor of the present invention can greatly reduce the load applied to the connection target member in a pressed contact state.

前記本発明の導通部は、前記筒状導通部の端部を閉塞する端壁部を有する。   The conducting portion of the present invention has an end wall portion that closes an end portion of the cylindrical conducting portion.

前記本発明の筒状導通部は筒軸方向の全長に亘って内部に空洞部を有する構成とすることができ、これによれば大幅に押圧接触時の荷重を低減できる。これに対して、端壁部を有する前記本発明では、筒状導通部の端部が端壁部よって閉塞されるため、筒状導通部の過剰な変形を阻止することができる。したがってこの異方導電体は導通部の位置決めに精密さが要求される用途に好適である。前記端壁部は、筒状導通部の一方側の端部又は他方側の端部の何れかに設けて、一方では空洞部により柔らかく弾性変形できるように、他方では端壁部により過剰な変形を抑制する。また、双方の端部に端壁部を設けると、筒状導通部の両端部では過剰な弾性変形が抑制され、それらの中間において柔らかく弾性変形することができる。   The cylindrical conducting portion of the present invention can be configured to have a hollow portion inside over the entire length in the cylinder axis direction, and according to this, the load during pressing contact can be greatly reduced. On the other hand, in the present invention having the end wall portion, the end portion of the cylindrical conducting portion is blocked by the end wall portion, so that excessive deformation of the cylindrical conducting portion can be prevented. Therefore, this anisotropic conductor is suitable for applications where precision is required for positioning of the conductive portion. The end wall portion is provided at either one end portion or the other end portion of the cylindrical conducting portion, and on the other hand, the end wall portion is excessively deformed so that it can be softly and elastically deformed by the hollow portion. Suppress. Further, when the end wall portions are provided at both end portions, excessive elastic deformation is suppressed at both ends of the cylindrical conducting portion, and soft elastic deformation can be performed between them.

前記本発明の導通部は、前記筒状導通部の前記空洞部を筒軸方向で分ける内壁部を有する。   The conducting portion of the present invention has an inner wall portion that divides the hollow portion of the cylindrical conducting portion in the cylinder axis direction.

筒状導通部の空洞部が内壁部によって筒軸方向で分かれる。つまり筒状導通部の両端部が開口形状であることから、両端部について押圧接触時の荷重を大幅に低減することができる。他方、筒状導通部の内部には内壁部があることから、筒状導通部が筒軸方向の中間位置では例えば筒状導通部が腰折れして座屈するような過剰な変形を抑制することができる。   The hollow part of the cylindrical conducting part is divided in the cylinder axis direction by the inner wall part. That is, since both ends of the cylindrical conductive portion are open, the load at the time of pressing contact can be greatly reduced at both ends. On the other hand, since there is an inner wall portion inside the cylindrical conductive portion, it is possible to suppress excessive deformation such that the cylindrical conductive portion is bent and buckled, for example, at an intermediate position in the cylindrical axis direction. it can.

前記本発明の筒状導通部は、その筒軸側に位置する内側導通部と、前記内側導通部よりも前記筒軸から離れて位置する外側導通部と、前記内側導通部と前記外側導通部とを繋ぎ、前記内側導通部の下端側の前記外側導通部の内側への変位を弾性支持する連結導通部とを有する。   The cylindrical conductive portion of the present invention includes an inner conductive portion located on the cylindrical shaft side, an outer conductive portion located farther from the cylindrical shaft than the inner conductive portion, the inner conductive portion, and the outer conductive portion. And a connecting conduction portion that elastically supports displacement of the lower end side of the inner conduction portion to the inside of the outer conduction portion.

この筒状導通部は、連結導通部によって内側導通部と外側導通部による筒軸方向での相対変位を弾性支持することで、筒軸方向で柔らかく変位することができる。即ち、筒状導通部をその筒軸方向で圧縮して膨張変形させるというよりも、連結導通部の厚み方向での弾性変形によって柔らかく変形させることができる。   The cylindrical conductive portion can be softly displaced in the cylindrical axis direction by elastically supporting the relative displacement in the cylindrical axis direction by the inner conductive portion and the outer conductive portion by the connecting conductive portion. That is, rather than compressing and expanding and deforming the cylindrical conductive portion in the cylinder axis direction, the cylindrical conductive portion can be softly deformed by elastic deformation in the thickness direction of the connecting conductive portion.

前記本発明のベース部は、前記筒状導通部の端部で外向きに広がる平坦部を有する。   The base part of the present invention has a flat part that spreads outward at the end of the cylindrical conducting part.

筒状導通部の端部では外向きに広がる平坦部によって導通部を安定した姿勢で接続対象部材に押圧接触させることができる。前記平坦部は具体的には筒状導通部の一方側の端部又は他方側の端部に設けることができる。また、そうした平坦部は自動実装のためにエアー吸着する際の吸着部として構成することができる。   At the end portion of the cylindrical conductive portion, the conductive portion can be pressed and contacted with the connection target member in a stable posture by the flat portion spreading outward. Specifically, the flat portion can be provided at one end or the other end of the cylindrical conducting portion. Moreover, such a flat part can be comprised as an adsorption | suction part at the time of air adsorption | suction for automatic mounting.

前記本発明のベース部は、前記筒状導通部の筒軸方向の中間で外向きに広がる平坦部を有する。   The base part of the present invention has a flat part that spreads outward in the middle of the cylindrical conducting part in the cylinder axis direction.

筒状導通部の一方側の端部と他方側の端部には平坦部が無いため、筒状導通部における柔らかい弾性変形が平坦部によって阻害されない。したがって接続対象部材と押圧接触させた際にそれに作用する荷重を更に小さくすることができる。   Since there is no flat portion at one end and the other end of the cylindrical conducting portion, soft elastic deformation in the cylindrical conducting portion is not hindered by the flat portion. Therefore, the load acting on the connection target member when pressed against the connection target member can be further reduced.

前記本発明は前記ベース部と前記導通部の下端に板状の導電性基材を有するように構成できる。こうした導電性基材を備えることで、異方導電体は例えば回路基板等に半田付けで固定することができるようになり、接続対象部材への固定方法や導電接続方法を多様化することができる。   The said invention can be comprised so that it may have a plate-shaped electroconductive base material in the lower end of the said base part and the said conduction | electrical_connection part. By providing such a conductive base material, the anisotropic conductor can be fixed to, for example, a circuit board by soldering, and the fixing method to the connection target member and the conductive connection method can be diversified. .

前記本発明は前記空洞部を筒状導通部の外部と連通する通気孔を有するように構成できる。筒状導通部の両端が接続対象部材と押圧接触する場合のように、筒状導通部の空洞部が密閉されることがあり、それにより筒状導通部の弾性変形が硬くなる可能性がある。そこで通気孔によって空洞部を大気に開放することで、筒状導通部の柔らかい弾性変形を維持することが可能となる。   The said invention can be comprised so that it may have a vent hole which connects the said cavity part with the exterior of a cylindrical conduction | electrical_connection part. As in the case where both ends of the cylindrical conductive portion are in press contact with the connection target member, the hollow portion of the cylindrical conductive portion may be sealed, which may harden the elastic deformation of the cylindrical conductive portion. . Therefore, by opening the hollow portion to the atmosphere by the vent hole, it becomes possible to maintain the soft elastic deformation of the cylindrical conductive portion.

本発明の異方導電体によれば、筒状導通部における柔らかい弾性変形によって、接続対象部材と押圧接触した際に接続対象部材に作用する荷重を低減することができる。したがって、過剰な荷重が接続対象部材に作用しない範囲での筒状導通部の弾性変形を大きく設定することができることから、設計に対する接続対象部材の配置のずれを筒状導通部の弾性変形によって吸収しながらも、接続対象部材どうしの信頼性の高い導通接続を実現することができる。   According to the anisotropic conductor of this invention, the load which acts on a connection object member when it press-contacts with a connection object member by the soft elastic deformation in a cylindrical conduction | electrical_connection part can be reduced. Therefore, since the elastic deformation of the cylindrical conductive portion in a range where an excessive load does not act on the connection target member can be set large, the displacement of the connection target member relative to the design is absorbed by the elastic deformation of the cylindrical conductive portion. However, highly reliable conductive connection between the connection target members can be realized.

第1実施形態の異方導電体の外観斜視図。The external appearance perspective view of the anisotropic conductor of 1st Embodiment. 図1の異方導電体の使用状態説明図。Explanatory drawing of the use state of the anisotropic conductor of FIG. 第2実施形態の異方導電体の図2相当の使用状態説明図。Explanatory drawing equivalent to FIG. 2 of the anisotropic conductor of 2nd Embodiment. 第3実施形態の異方導電体の断面図。Sectional drawing of the anisotropic conductor of 3rd Embodiment. 第4実施形態の異方導電体の断面図。Sectional drawing of the anisotropic conductor of 4th Embodiment. 第5実施形態の異方導電体の断面図。Sectional drawing of the anisotropic conductor of 5th Embodiment. 第6実施形態の異方導電体の断面図。Sectional drawing of the anisotropic conductor of 6th Embodiment. 第7実施形態の異方導電体の断面図。Sectional drawing of the anisotropic conductor of 7th Embodiment. 第8実施形態の異方導電体の説明図であり、分図(a)は断面図、分図(b)は矢示SC方向からの側面図。It is explanatory drawing of the anisotropic conductor of 8th Embodiment, a divided figure (a) is sectional drawing, and a divided figure (b) is a side view from arrow SC direction. 第9実施形態の異方導電体の説明図であり、分図(a)は断面図、分図(b)は異方導電体を押圧接触した状態を示す使用状態説明図。It is explanatory drawing of the anisotropic conductor of 9th Embodiment, a part drawing (a) is sectional drawing, and a part view (b) is a use condition explanatory drawing which shows the state which pressed and contacted the anisotropic conductor. 第2実施形態の異方導電体の変形例を示す説明図。Explanatory drawing which shows the modification of the anisotropic conductor of 2nd Embodiment. 実施例の異方導電体の寸法指示図。The dimension indication figure of the anisotropic conductor of an Example. 従来の異方導電体の外観斜視図。The external appearance perspective view of the conventional anisotropic conductor. 図13のSA−SA断面図。FIG. 14 is a cross-sectional view of SA-SA in FIG. 13. 図13のSB−SB線断面での異方導電体の使用状態説明図。Explanatory drawing of the anisotropic conductor in the SB-SB line cross section of FIG.

以下、本発明の実施形態について図面を参照しつつ説明する。なお、各実施形態で共通する材質、構成、機能、製造方法等については重複説明を省略する。   Embodiments of the present invention will be described below with reference to the drawings. In addition, duplication description is abbreviate | omitted about the material, a structure, a function, a manufacturing method, etc. which are common in each embodiment.

第1実施形態〔図1、図2〕First Embodiment [FIGS. 1 and 2]

図1は第1実施形態の異方導電体11の外観斜視図であり、図2で図1のSB−SB線断面図にて示すように、電気機器の回路基板X1を筐体等の接地接続部材X2と接続する。ここで回路基板X1と接地接続部材X2は異方導電体11にて導通接続する「接続対象部材」である。   FIG. 1 is an external perspective view of the anisotropic conductor 11 of the first embodiment. As shown in FIG. 2 as a cross-sectional view taken along line SB-SB of FIG. It connects with the connection member X2. Here, the circuit board X <b> 1 and the ground connection member X <b> 2 are “connection target members” that are conductively connected by the anisotropic conductor 11.

異方導電体11は、ベース部12により互いに電気的に絶縁されている複数の導通部13を有する。各導通部13は中空の空洞部14を有する。したがって導通経路の異なる複数の接続対象部材と導通接続することが可能である。また中空であることから軽量であり携帯性・軽量性が要求される電子部品として適している。本実施形態の異方導電体11は、6つの導通部13を一列に配置した直線形状のものを例示しているが、導通部13は1つでもよく、また2つ以上の複数であってもよい。複数の導通部13を有する場合、直線状に配置するのみならず、縦横に並ぶ行列状に配置してもよい。   The anisotropic conductor 11 has a plurality of conducting portions 13 that are electrically insulated from each other by the base portion 12. Each conducting portion 13 has a hollow cavity portion 14. Therefore, it is possible to conduct and connect with a plurality of connection target members having different conduction paths. Moreover, since it is hollow, it is lightweight and suitable as an electronic component requiring portability and lightness. Although the anisotropic conductor 11 of this embodiment has illustrated the linear thing which has arrange | positioned the six conduction | electrical_connection parts 13 in a row, the conduction | electrical_connection part 13 may be one and two or more are two or more, Also good. When the plurality of conductive portions 13 are provided, they may be arranged not only in a straight line but also in a matrix arranged vertically and horizontally.

なお、異方導電体11が導通接触する2つの「接続対象部材」は、回路基板の接点部と他の回路基板の接点部(基板間接続)、回路基板の接点部と電気素子の接点部(デバイス接続)、回路基板の接点部と接地接続用の導通部材(例えば電子機器の筐体や内部構造部材等に対する接地接続)など、いずれの用途にも使用することができる。   Note that the two “connection target members” with which the anisotropic conductor 11 is in conductive contact are the contact part of the circuit board and the contact part of the other circuit board (inter-board connection), the contact part of the circuit board and the contact part of the electric element. It can be used for any application such as (device connection), a contact portion of a circuit board and a conductive member for ground connection (for example, ground connection to a housing or an internal structure member of an electronic device).

ベース部12は、ゴム状弾性体でなり、その全体形状は平面視で略矩形状に薄く形成されている。より具体的には、ベース部12はフランジ状に広がる薄板状の平坦部12aを有しており、その平坦な裏面を回路基板X1に設置することで異方導電体11全体を安定した姿勢で置くことができる。ベース部12にはその平坦部12aの表面から突出して導通部13の外周を被覆する筒状部12bが形成されており、弾性変形する導通部13の形状を保持し、また外力から導通部13を保護している。   The base portion 12 is made of a rubber-like elastic body, and its entire shape is thinly formed in a substantially rectangular shape in plan view. More specifically, the base portion 12 has a thin plate-like flat portion 12a that spreads in a flange shape, and the entire anisotropic conductor 11 is maintained in a stable posture by installing the flat back surface on the circuit board X1. Can be put. The base portion 12 is formed with a cylindrical portion 12b that protrudes from the surface of the flat portion 12a and covers the outer periphery of the conducting portion 13, and maintains the shape of the conducting portion 13 that is elastically deformed. Is protecting.

導通部13は、内部に空洞部14を有する筒状導通部13aが形成されている。その上端と下端の接点部13bはそれぞれ回路基板X1、接地接続部材X2と押圧接触する。第1実施形態の接点部13bは円環形状である。導通部13の外周は、ベース部12の平坦部12aと筒状部12bにより被覆されており、平坦部12aの表面から突出する筒状部12bとその内側の筒状導通部13aの部分は、異方導電体11における接点突出部15を形成している。空洞部14の空間形状は円柱状である。これにより筒状導通部13aが筒軸方向及び筒軸交差方向で柔らかく弾性変形できるようにして、押圧接触した状態で接続対象部材X1,X2にかかる荷重を大きく低減できるようにしている。   The conducting portion 13 is formed with a cylindrical conducting portion 13a having a hollow portion 14 therein. The upper and lower contact portions 13b are in press contact with the circuit board X1 and the ground connection member X2, respectively. The contact portion 13b of the first embodiment has an annular shape. The outer periphery of the conductive portion 13 is covered with the flat portion 12a and the cylindrical portion 12b of the base portion 12, and the cylindrical portion 12b protruding from the surface of the flat portion 12a and the cylindrical conductive portion 13a inside thereof are A contact protrusion 15 in the anisotropic conductor 11 is formed. The space shape of the cavity 14 is a columnar shape. Thereby, the cylindrical conduction | electrical_connection part 13a can be elastically deformed softly in a cylinder-axis direction and a cylinder-axis crossing direction, and can greatly reduce the load concerning connection object member X1, X2 in the press-contacted state.

導通部13は、ここでは磁性導電体が導電方向である上下方向に数珠繋ぎに配向しており、導通部13の両端が接点部13bとして露出している。導通部13は、ゴム状基材に分散させた導電粒子(導電体)が導通方向に数珠繋ぎに配向して導電路となる部位である。導電体の材質には、金属、セラミックなどによる粒子状、繊維状、細線状のものが挙げられる。導電体に磁性導電体を用いる場合は、例えば、ニッケル、コバルト、鉄、フェライト、またはそれらを多く含む合金などが挙げられる。他にも良導電性の金、銀、白金、アルミニウム、ニッケル、銅、鉄、パラジウム、コバルト、クロムなどの金属類、ステンレス鋼、真鍮などの合金類、樹脂、絶縁性セラミックなどからなる粉末や細線を磁性導電体でめっきしたもの、あるいは磁性導電体に良導電性の金属をめっきしたものなどを用いることができる。また、導通部13の他の実施形態として、絶縁性のゴム状基材に導電体を均一分散させた導電ゴムとすることができる。この場合の導電体の材質としては、良電性の金属、樹脂、セラミック、カーボンブラックなどが挙げられる。また、前記ゴム状基材としては、ベース部12と同じ材質とすれば、成形時にベース部12と素材どうしが一体となり導通部13を形成する導電体の脱落等を効果的に防ぐことができる。   Here, the conductive portions 13 are oriented in a daisy chain in the vertical direction, which is the conductive direction, and both ends of the conductive portion 13 are exposed as contact portions 13b. The conducting part 13 is a part that becomes conductive paths by arranging conductive particles (conductors) dispersed in a rubber-like base material in a continuous manner in the conduction direction. Examples of the material of the conductor include particles, fibers, and fine wires made of metal, ceramic, and the like. In the case of using a magnetic conductor as the conductor, for example, nickel, cobalt, iron, ferrite, or an alloy containing a large amount thereof can be used. In addition, powders made of highly conductive gold, silver, platinum, aluminum, nickel, copper, iron, palladium, cobalt, chromium, etc., alloys such as stainless steel, brass, resin, insulating ceramics, etc. A thin wire plated with a magnetic conductor or a magnetic conductor plated with a highly conductive metal can be used. Further, as another embodiment of the conductive portion 13, a conductive rubber in which a conductive material is uniformly dispersed in an insulating rubber-like base material can be used. In this case, examples of the material of the conductor include good-electricity metals, resins, ceramics, and carbon black. Further, if the rubber-like base material is made of the same material as that of the base portion 12, it is possible to effectively prevent the conductors that the base portion 12 and the material are integrated with each other to form the conductive portion 13 during molding. .

導通部13の形状は本実施形態で示すもののほか、例えば平面視の接点部13bの形状として空洞部14を有する多角形状とすることもできる。また、導通部13の両端の接点部13bは同じ形状でも異なる形状でもよい。導通部13は接点突出部15の全体を筒状導通部13aとすることもできるが、筒状導通部13aの外周面を絶縁性の部材(筒状部12b)で覆うことで、磁性導電体の脱落を抑制することができるとともに、導通部13の占める割合が少なくなるので、荷重を低減することができる。   In addition to the shape of the conductive portion 13 shown in the present embodiment, for example, the shape of the contact portion 13b in plan view may be a polygonal shape having the hollow portion 14. Further, the contact portions 13b at both ends of the conducting portion 13 may have the same shape or different shapes. The conducting portion 13 can be configured such that the entire contact protruding portion 15 is a cylindrical conducting portion 13a. However, a magnetic conductor is formed by covering the outer peripheral surface of the cylindrical conducting portion 13a with an insulating member (cylindrical portion 12b). , And the proportion of the conductive portion 13 is reduced, so that the load can be reduced.

ベース部12は、絶縁性のゴム状弾性体でなり、導通部13を被覆して、導電接点となる導通部13の露出部分以外の部分を外部と絶縁している。また、複数の導通部13を有する異方導電体11ではベース部12が複数の導通部13を一体に連結する。   The base portion 12 is made of an insulating rubber-like elastic body, covers the conductive portion 13, and insulates the portion other than the exposed portion of the conductive portion 13 serving as a conductive contact from the outside. Further, in the anisotropic conductor 11 having the plurality of conductive portions 13, the base portion 12 connects the plurality of conductive portions 13 together.

ベース部12の材質には、絶縁性でゴム弾性を有する熱硬化性ゴム、熱可塑性エラストマーが使用できる。例えば、天然ゴム、シリコーンゴム、イソプレンゴム、ブタジエンゴム、アクリロニトリルブタジエンゴム、1,2−ポリブタジエン、スチレン−ブタジエンゴム、クロロプレンゴム、ニトリルゴム、ブチルゴム、エチレン−プロピレンゴム、クロロスリホンゴム、ポリエチレンゴム、アクリルゴム、エピクロルヒドリンゴム、フッ素ゴム、ウレタンゴム、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、エステル系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、アミド系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、フッ化系熱可塑性エラストマー、イオン架橋系熱可塑性エラストマーなどが挙げられる。後述するように金型中で加熱硬化する場合は熱硬化性ゴムが好ましく、なかでも耐熱性の高いシリコーンゴム、フッ素ゴムがより好ましい。   As the material of the base portion 12, an insulating thermoelastic rubber or thermoplastic elastomer having rubber elasticity can be used. For example, natural rubber, silicone rubber, isoprene rubber, butadiene rubber, acrylonitrile butadiene rubber, 1,2-polybutadiene, styrene-butadiene rubber, chloroprene rubber, nitrile rubber, butyl rubber, ethylene-propylene rubber, chlorosulfone rubber, polyethylene rubber, Acrylic rubber, epichlorohydrin rubber, fluoro rubber, urethane rubber, styrene thermoplastic elastomer, olefin thermoplastic elastomer, ester thermoplastic elastomer, urethane thermoplastic elastomer, amide thermoplastic elastomer, vinyl chloride thermoplastic elastomer, fluorine A thermoplastic thermoplastic elastomer, an ion-crosslinked thermoplastic elastomer, and the like. As will be described later, when heat-curing in a mold, thermosetting rubber is preferable, and silicone rubber and fluorine rubber having high heat resistance are more preferable.

空洞部14は、導通部13を円柱状に貫通する空間形状として設けられている。図2には、導通部13の中央を貫通する空洞部14を例示したが、空洞部14は接点突出部15に設ければ一定の効果を奏する。特に導通部13に隣接して設けることで、導通部13が変形しやすくなって荷重の低減効果が高まる。この効果は、特に空洞部14を導通部13の内側に設けることでさらに高めることができる。また、空洞部14は導通部13の中央に設けることが好ましい。こうすると、圧縮変形する際に荷重が均一にかかることで接点部13bが傾倒し難くなり安定した導通接触の姿勢を得ることができ、さらに全体が均一に撓むことで変形による抵抗値の上昇が少なくすることができる。空洞部14は、平面視で導通部13の10%〜50%の面積であることが好ましい。10%未満では荷重の低減効果が低く、50%を超える場合には相対的に導通部13の面積が小さくなりすぎて安定した導通接続ができなくなるおそれがある。   The cavity part 14 is provided as a space shape penetrating the conduction part 13 in a columnar shape. In FIG. 2, the cavity portion 14 penetrating through the center of the conduction portion 13 is illustrated. However, if the cavity portion 14 is provided in the contact protrusion 15, a certain effect can be obtained. In particular, by providing adjacent to the conducting portion 13, the conducting portion 13 is easily deformed, and the effect of reducing the load is enhanced. This effect can be further enhanced by providing the cavity portion 14 inside the conducting portion 13. The cavity 14 is preferably provided at the center of the conduction part 13. In this way, the contact portion 13b is not easily tilted by applying a uniform load when compressively deforming, and a stable conductive contact posture can be obtained. Further, the resistance value increases due to deformation by being uniformly bent as a whole. Can be reduced. The hollow portion 14 preferably has an area of 10% to 50% of the conducting portion 13 in plan view. If it is less than 10%, the effect of reducing the load is low, and if it exceeds 50%, the area of the conductive portion 13 becomes relatively small, and stable conductive connection may not be possible.

異方導電体11は例えば次のように製造できる。磁性導電体を分散した液状ゴムを金型のキャビティー内に注入し、このキャビティー内に磁力を印加して分散している磁性導電体をキャビティー内の一部に集めて配向させる。その後、液状ゴムを硬化して導通部13とベース部12とを形成して、異方導電体11を得る。   The anisotropic conductor 11 can be manufactured as follows, for example. Liquid rubber in which a magnetic conductor is dispersed is injected into a cavity of a mold, and a magnetic force is applied to the cavity to collect and align the dispersed magnetic conductor in a part of the cavity. Thereafter, the liquid rubber is cured to form the conductive portion 13 and the base portion 12 to obtain the anisotropic conductor 11.

以上のような本実施形態の異方導電体11は、筒状導通部13aの内側に空洞部14を有するため、接点部13bを接続対象部材に押圧接触させて圧縮したときに、筒状導通部13aとその周囲のベース部12が変形しやすく、弱い接触圧力で筒軸方向及び筒軸交差方向に弾性変形させることができる。そして本実施形態では筒状導通部13aの全長に亘って空洞部14を有することから、特に筒軸方向の各部において筒状導通部13aとその周囲のベース部12を柔らかく弾性変形することができ、電気機器の回路基板X1や筐体等の接地接続部材X2にかかる荷重を大幅に低減することができる。したがって、回路基板X1や筐体等の接地接続部材X2が異方導電体11から受ける接触圧力によって変形してしまうような不具合は生じない。   Since the anisotropic conductor 11 of the present embodiment as described above has the hollow portion 14 inside the cylindrical conducting portion 13a, the cylindrical conducting portion is compressed when the contact portion 13b is pressed against the connection target member and compressed. The portion 13a and the surrounding base portion 12 are easily deformed, and can be elastically deformed in the tube axis direction and the tube axis crossing direction with a weak contact pressure. And in this embodiment, since it has the cavity part 14 over the full length of the cylindrical conduction | electrical_connection part 13a, the cylindrical conduction | electrical_connection part 13a and the base part 12 of the circumference | surroundings can be softly elastically deformed especially in each part of a cylinder axial direction. The load applied to the ground connection member X2 such as the circuit board X1 or the housing of the electric device can be greatly reduced. Therefore, there is no problem that the ground connection member X2 such as the circuit board X1 or the housing is deformed by the contact pressure received from the anisotropic conductor 11.

第2実施形態〔図3〕Second Embodiment [FIG. 3]

図3に第2実施形態の異方導電体16の断面図を示す。第1実施形態の異方導電体11ではベース部12が導通部13の下端に有するものを例示したが、本実施形態の異方導電体16のベース部17は導通部13の中央に形成されている。これによりベース部17の両面からそれぞれ円筒状の接点突出部18が突出する構成となっている。他の構成については第1実施形態と同じである。   FIG. 3 shows a cross-sectional view of the anisotropic conductor 16 of the second embodiment. In the anisotropic conductor 11 of the first embodiment, the base portion 12 is illustrated at the lower end of the conducting portion 13, but the base portion 17 of the anisotropic conductor 16 of the present embodiment is formed at the center of the conducting portion 13. ing. Thereby, the cylindrical contact protrusion 18 protrudes from both surfaces of the base portion 17. Other configurations are the same as those in the first embodiment.

このような本実施形態の異方導電体16では、導通部13の筒状導通部13aの筒軸方向に沿う中央がベース部17と繋がっている。そのため筒状導通部13aは、その接続対象物X1,X2と押圧接触する接点部13bに近い両端部側、即ちベース部17の両面から突出する接点突出部18において柔らかく弾性変形することができ、接続対象部材X1,X2にかかる荷重を大幅に低減することができる。   In such an anisotropic conductor 16 of this embodiment, the center along the cylinder axis direction of the cylindrical conductive portion 13a of the conductive portion 13 is connected to the base portion 17. Therefore, the cylindrical conducting portion 13a can be softly and elastically deformed at the contact protrusions 18 protruding from both ends of the contact portions 13b that are in pressure contact with the connection objects X1 and X2, that is, from both surfaces of the base portion 17, The load applied to the connection target members X1 and X2 can be greatly reduced.

第3実施形態〔図4〕Third Embodiment [FIG. 4]

図4に第3実施形態の異方導電体19の断面図を示す。第1実施形態の異方導電体11では導通部13の筒状導通部13aの筒軸方向に亘って空洞部14を有するものを例示したが、本実施形態の異方導電体19は導通部13の上端開口を閉塞する円形の端壁部13cを有する。したがって上側の接点部13bの形状は円形状である。   FIG. 4 shows a cross-sectional view of the anisotropic conductor 19 of the third embodiment. In the anisotropic conductor 11 of the first embodiment, the anisotropic conductor 19 having the hollow portion 14 extending in the cylindrical axis direction of the cylindrical conductive portion 13a of the conductive portion 13 is exemplified, but the anisotropic conductor 19 of the present embodiment is a conductive portion. 13 has a circular end wall portion 13c which closes the upper end opening of 13. Accordingly, the upper contact portion 13b has a circular shape.

異方導電体19は、筒状導通部13aの上端開口が端壁部13cによって閉塞されて、上側の接点部13bの接触面積を広くすることができるとともに、筒状導通部13aの上端側を歪み難く過剰な変形を阻止することができる。したがってこの異方導電体19は、導通部13の上端側での接地接続部材X2に対する位置決めに精密さが要求される用途に好適であり、圧縮変形しても接地接続部材X2と確実に導通接触することができて導通接続の安定性と信頼性を高めることができる。これに対して筒状導通部13aの下端開口は閉塞されていないので、第1実施形態の異方導電体11と同様に空洞部14により柔らかく弾性変形することができ、回路基板X1にかかる荷重を大幅に低減することができる。   In the anisotropic conductor 19, the upper end opening of the cylindrical conductive portion 13a is closed by the end wall portion 13c, so that the contact area of the upper contact portion 13b can be increased, and the upper end side of the cylindrical conductive portion 13a is It is hard to distort and can prevent excessive deformation. Therefore, the anisotropic conductor 19 is suitable for an application where precision is required for positioning with respect to the ground connection member X2 on the upper end side of the conductive portion 13, and reliably contacts the ground connection member X2 even if it is compressed and deformed. This can improve the stability and reliability of the conductive connection. On the other hand, since the lower end opening of the cylindrical conducting portion 13a is not closed, it can be softly and elastically deformed by the cavity portion 14 similarly to the anisotropic conductor 11 of the first embodiment, and the load applied to the circuit board X1. Can be greatly reduced.

第4実施形態〔図5〕Fourth Embodiment [FIG. 5]

図5に第4実施形態の異方導電体20の断面図を示す。異方導電体20は第3実施形態の異方導電体19とは異なり、導通部13の下端開口を閉塞する円形の端壁部13dを有する。したがって下側の接点部13bの形状は円形状である。   FIG. 5 shows a cross-sectional view of the anisotropic conductor 20 of the fourth embodiment. Unlike the anisotropic conductor 19 of the third embodiment, the anisotropic conductor 20 has a circular end wall portion 13 d that closes the lower end opening of the conducting portion 13. Therefore, the shape of the lower contact portion 13b is circular.

前述の異方導電体19で説明した作用・効果は異方導電体20でも同じである。即ち、異方導電体20は、端壁部13dにより下側の接点部13bの接触面積を拡大できるとともに、筒状導通部13aの下端側を歪み難くして過剰な変形を抑制でき、回路基板X1に対する導通接続の安定性と信頼性を高めることができる。他方、筒状導通部13aの上端開口は閉塞されていないので、第3実施形態の異方導電体20よりも導通部13の上端側を空洞部14により柔らかく弾性変形することができ、接地接続部材X2にかかる荷重を大幅に低減することができる。   The operations and effects described for the anisotropic conductor 19 are the same for the anisotropic conductor 20. That is, the anisotropic conductor 20 can enlarge the contact area of the lower contact portion 13b by the end wall portion 13d, and can suppress excessive deformation by making it difficult to distort the lower end side of the cylindrical conductive portion 13a. The stability and reliability of the conductive connection with respect to X1 can be improved. On the other hand, since the upper end opening of the cylindrical conducting portion 13a is not closed, the upper end side of the conducting portion 13 can be softly and elastically deformed by the hollow portion 14 rather than the anisotropic conductor 20 of the third embodiment, and ground connection The load applied to the member X2 can be greatly reduced.

第5実施形態〔図6〕Fifth embodiment (FIG. 6)

図6で示す第5実施形態の異方導電体21は、第1実施形態の異方導電体11の下面に「導電性基材」としての金属板22を設けたものである。金属板22は、圧延形成された金属板、電解形成された金属板が用いられる。金属の材質は、例えば金、銀、銅、鉄、ニッケル、これらの合金などが挙げられる。はんだ付けの密着性、加工性から、金、銅などを用いた金属板、銅やニッケルに金や銀のめっき処理を施した金属板が好ましい。このような金属板22の厚みとしては5μm〜200μmが好ましい。   An anisotropic conductor 21 of the fifth embodiment shown in FIG. 6 is obtained by providing a metal plate 22 as a “conductive substrate” on the lower surface of the anisotropic conductor 11 of the first embodiment. As the metal plate 22, a rolled metal plate or an electrolytically formed metal plate is used. Examples of the metal material include gold, silver, copper, iron, nickel, and alloys thereof. From the standpoint of soldering adhesion and workability, a metal plate using gold, copper, or the like, or a metal plate obtained by performing gold or silver plating on copper or nickel is preferable. The thickness of the metal plate 22 is preferably 5 μm to 200 μm.

異方導電体21は、金属板22を備えることで、回路基板X1に対して半田で固定することができる。したがって、回路基板X1に対する導通接続の安定性と信頼性を高めることができる。また金属板22が柔らかい異方導電体21のベース部12の剛性を補強するため、異方導電体21の取扱性を向上させることができる。   Since the anisotropic conductor 21 includes the metal plate 22, it can be fixed to the circuit board X1 with solder. Therefore, the stability and reliability of the conductive connection to the circuit board X1 can be improved. Further, since the metal plate 22 reinforces the rigidity of the base portion 12 of the soft anisotropic conductor 21, the handleability of the anisotropic conductor 21 can be improved.

第6実施形態〔図7〕Sixth Embodiment [FIG. 7]

図7で示す第6実施形態の異方導電体23は、第3実施形態の異方導電体19の下面に第5実施形態と同様に金属板22を設けたものである。   The anisotropic conductor 23 of the sixth embodiment shown in FIG. 7 is obtained by providing a metal plate 22 on the lower surface of the anisotropic conductor 19 of the third embodiment as in the fifth embodiment.

異方導電体23は、導通部13の上端開口が端壁部13cにより閉塞しており、下端開口が金属板22により閉塞されることで、空洞部14には空気が密閉された状態となる。空洞部14が密閉された異方導電体23であっても、導通部3が中実の従来の異方導電体1と比べると押圧接触における荷重を低減することができる。また、空洞部14に空気が密閉されることで、第5実施形態のような上端開口が開放された異方導電体21と比べて反発弾性を高めることができ、一定の圧縮状態にある異方導電体23を開放したときに初期形状に戻りやすくできる。したがって、こうした異方導電体23は、繰り返し圧縮して使用する用途に好適である。   In the anisotropic conductor 23, the upper end opening of the conducting portion 13 is closed by the end wall portion 13 c and the lower end opening is closed by the metal plate 22, so that the air is sealed in the cavity portion 14. . Even in the anisotropic conductor 23 in which the cavity portion 14 is sealed, the load in the pressing contact can be reduced as compared with the conventional anisotropic conductor 1 in which the conduction portion 3 is solid. Further, the air is sealed in the cavity portion 14 so that the resilience can be increased compared to the anisotropic conductor 21 having the upper end opening opened as in the fifth embodiment, and a different compressed state is obtained. When the side conductor 23 is opened, the initial shape can be easily returned. Therefore, such an anisotropic conductor 23 is suitable for applications that are repeatedly compressed and used.

なお、第4実施形態の異方導電体20に金属板22を設ける構成としてもよい。   In addition, it is good also as a structure which provides the metal plate 22 in the anisotropic conductor 20 of 4th Embodiment.

第7実施形態〔図8〕Seventh Embodiment [FIG. 8]

図8に示す第7実施形態の異方導電体24は、第6実施形態の異方導電体23の金属板22に通気孔22aを設けたものである。通気孔22aは円形であり、そこを通じて空洞部14が外部と連通しており、空洞部14は密閉されていない。   An anisotropic conductor 24 of the seventh embodiment shown in FIG. 8 is obtained by providing a vent 22a in the metal plate 22 of the anisotropic conductor 23 of the sixth embodiment. The air hole 22a is circular, and the cavity portion 14 communicates with the outside through the air hole 22a, and the cavity portion 14 is not sealed.

異方導電体24は、第3実施形態の異方導電体19、第6実施形態の異方導電体23の金属板22による作用・効果を発揮することができる。また、第6実施形態の異方導電体23のように導通部13の両端を閉塞すると、導通部13が開放されているものと比べて押圧接触時の荷重が大きくなる。この点、異方導電体24では金属板22に通気孔22aを設けることで荷重を低減することができる。   The anisotropic conductor 24 can exhibit the actions and effects of the anisotropic conductor 19 of the third embodiment and the metal plate 22 of the anisotropic conductor 23 of the sixth embodiment. Moreover, when both ends of the conducting portion 13 are closed like the anisotropic conductor 23 of the sixth embodiment, the load at the time of pressing contact becomes larger than that in which the conducting portion 13 is opened. In this respect, the anisotropic conductor 24 can reduce the load by providing the metal plate 22 with the air holes 22a.

第8実施形態〔図9〕Eighth Embodiment [FIG. 9]

図9に示す第8実施形態の異方導電体25は、第7実施形態の異方導電体24と同様に荷重を低減するための構成として、ベース部12と筒状導通部13aとを貫通する通気孔26を設けたものである。   The anisotropic conductor 25 of the eighth embodiment shown in FIG. 9 penetrates the base portion 12 and the cylindrical conductive portion 13a as a configuration for reducing the load, similarly to the anisotropic conductor 24 of the seventh embodiment. A vent hole 26 is provided.

異方導電体25は、第3実施形態の異方導電体19、第6実施形態の異方導電体23の金属板22による作用・効果を発揮することができる。これらに加えて異方導電体25は、例えば加熱された空気の膨張による不具合に対応できるとともに、空洞部14が開放されている例えば第1実施形態の異方導電体1と同等の荷重低減効果を得ることができる。   The anisotropic conductor 25 can exhibit the actions and effects of the anisotropic conductor 19 of the third embodiment and the metal plate 22 of the anisotropic conductor 23 of the sixth embodiment. In addition to these, the anisotropic conductor 25 can cope with, for example, a problem due to expansion of heated air, and the load reducing effect equivalent to that of the anisotropic conductor 1 of the first embodiment in which the cavity portion 14 is opened, for example. Can be obtained.

第9実施形態〔図10〕Ninth Embodiment [FIG. 10]

第9実施形態の異方導電体27は、ベース部28と導通部29とを備えており、導通部29が第3実施形態の異方導電体19と異なる。ベース部28も導通部29の形状変更に合わせて異方導電体19のベース部12と形状が相違する。   The anisotropic conductor 27 of the ninth embodiment includes a base portion 28 and a conduction portion 29, and the conduction portion 29 is different from the anisotropic conductor 19 of the third embodiment. The shape of the base portion 28 is also different from that of the base portion 12 of the anisotropic conductor 19 in accordance with the shape change of the conductive portion 29.

導通部29は、筒状導通部30と筒状導通部30の上端を閉塞する端壁部31とを有する。筒状導通部30は、同軸上に配置されたいずれも円筒状の内側導通部30a及び外側導通部30bと、内側導通部30aの下端と外側導通部30bの上端とを繋ぐ円環状の連結導通部30cとを有している。導通部29には内側導通部30aの上端と端壁部31を含む上側接点部29aと、外側導通部30bの下端である外側接点部29bとを有する。連結導通部30cは、内側導通部30aの下端からフランジ状に外方へ伸びるように屈曲する。そのため内側導通部30aの下端はベース部28の底面28a、回路基板X1の表面から離間しており、その下端は第3の接点部である内側接点部29cとなる。   The conducting portion 29 includes a cylindrical conducting portion 30 and an end wall portion 31 that closes the upper end of the cylindrical conducting portion 30. The cylindrical conducting portion 30 is an annular connection conducting connecting the cylindrical inner conducting portion 30a and the outer conducting portion 30b, and the lower end of the inner conducting portion 30a and the upper end of the outer conducting portion 30b. Part 30c. The conducting portion 29 has an upper contact portion 29a including the upper end of the inner conducting portion 30a and the end wall portion 31, and an outer contact portion 29b which is the lower end of the outer conducting portion 30b. The connection conducting portion 30c is bent so as to extend outward in a flange shape from the lower end of the inner conducting portion 30a. For this reason, the lower end of the inner conductive portion 30a is separated from the bottom surface 28a of the base portion 28 and the surface of the circuit board X1, and the lower end is an inner contact portion 29c that is a third contact portion.

このような異方導電体27は、回路基板X1と接地接続部材X2との間に設置したとき、それらと押圧接触しない無圧縮の状態では、上側接点部29aが接地接続部材X2と接触し、外側接点部29bが回路基板X1と接触して導通する(状態1)。   When such an anisotropic conductor 27 is placed between the circuit board X1 and the ground connection member X2, the upper contact portion 29a is in contact with the ground connection member X2 in an uncompressed state where it does not press contact with them. The outer contact portion 29b comes into contact with the circuit board X1 and becomes conductive (state 1).

そして異方導電体27を圧縮していき一定の圧縮率となったときに、図10(b)で示すように内側接点部29cも回路基板X1と接触して導通する(状態2)。異方導電体27は、さらにこの状態から一定量圧縮した状態として使用されることになる(状態3)。   And when the anisotropic conductor 27 is compressed and it becomes a fixed compression rate, as shown in FIG.10 (b), the inner side contact part 29c will also contact with the circuit board X1, and will be conducted (state 2). The anisotropic conductor 27 is further used as a state compressed from this state by a certain amount (state 3).

異方導電体27は、一定量の圧縮までは、導通部29内での導電性フィラーどうしの接触が促進されて、導電性が高まる(抵抗値が低くなる)特性を有する。代表的な異方導電体では、圧縮量が0〜10%圧縮の範囲で特に抵抗値の低下が大きく、20%以上では抵抗値変化が少ない。   The anisotropic conductor 27 has a characteristic that, until a certain amount of compression, contact between the conductive fillers in the conductive portion 29 is promoted, and the conductivity increases (resistance value decreases). In a typical anisotropic conductor, the decrease in resistance value is particularly large when the compression amount is in the range of 0 to 10% compression, and the resistance value change is small at 20% or more.

ここで例えば、異方導電体27について「状態1」から「状態2」を20%の圧縮量に、「状態2」から「状態3」を20%の圧縮量にして、全体としては無圧縮の自由長に対して40%圧縮して使用する仕様として設定することとする。これと同様に第3実施形態の異方導電体19を40%圧縮して使用する際には、異方導電体19では単純に40%分の圧縮量に対する荷重がかかる。   Here, for example, with respect to the anisotropic conductor 27, “state 1” to “state 2” are compressed by 20%, and “state 2” to “state 3” are compressed by 20%, so that the whole is uncompressed. The free length is set as a specification to be used after being compressed by 40%. Similarly, when the anisotropic conductor 19 of the third embodiment is used after being compressed by 40%, the anisotropic conductor 19 is simply subjected to a load corresponding to a compression amount of 40%.

これに対して本実施形態の異方導電体27であれば、「状態1」から「状態2」では、筒状導通部30の筒軸方向で内側接点部29cが回路基板X1と接触しておらず回路基板X1に向けて変位する状態であることから、圧縮初期の荷重は極めて低い。その後の「状態2」から「状態3」のときになると、20%の圧縮量に対応する荷重がかかる。このとき「状態2」から「状態3」で抵抗値は充分低下するため、全体としては低荷重、低抵抗の特性が得られる。こうした構成は、例えば圧縮する箇所の交差が大きいなどの理由で、圧縮量を大きくしなければならない仕様のときに優位である。   On the other hand, in the case of the anisotropic conductor 27 of the present embodiment, in “state 1” to “state 2”, the inner contact portion 29c is in contact with the circuit board X1 in the cylindrical axis direction of the cylindrical conductive portion 30. Since it is in a state of being displaced toward the circuit board X1, the load in the initial stage of compression is extremely low. In the subsequent “state 2” to “state 3”, a load corresponding to a compression amount of 20% is applied. At this time, since the resistance value is sufficiently lowered from “State 2” to “State 3”, the characteristics of low load and low resistance can be obtained as a whole. Such a configuration is advantageous in the case of a specification in which the amount of compression needs to be increased due to, for example, a large intersection between points to be compressed.

実施形態の変形例〔図11〕Modification of Embodiment [FIG. 11]

第3実施形態の異方導電体19では、筒状導通部13aの上端に端壁部13cを設ける例を、第4実施形態の異方導電体20では、筒状導通部13aの下端に端壁部13dを設ける例を示した。これに対して例えば筒状導通部13aの内側の空洞部14を上側空洞部と下側空洞部に仕切るような内壁部を筒状導通部13aに設けるようにしてもよい。これによれば、筒状導通部13aの上端側及び下端側に空洞部があるため押圧接触により接続対象部材X1,X2に及ぼす荷重を低減できる。また、第2実施形態の異方導電体16の筒状導通部13aにも、前述の内壁部を設けるようにしてもよい。   In the anisotropic conductor 19 of the third embodiment, an example is provided in which the end wall portion 13c is provided at the upper end of the cylindrical conductive portion 13a. In the anisotropic conductor 20 of the fourth embodiment, the end is provided at the lower end of the cylindrical conductive portion 13a. The example which provides the wall part 13d was shown. On the other hand, for example, an inner wall portion that partitions the cavity portion 14 inside the cylindrical conduction portion 13a into an upper cavity portion and a lower cavity portion may be provided in the cylindrical conduction portion 13a. According to this, since the hollow part exists in the upper end side and lower end side of the cylindrical conduction | electrical_connection part 13a, the load which acts on connection object member X1, X2 by press contact can be reduced. Moreover, you may make it provide the above-mentioned inner wall part also in the cylindrical conduction | electrical_connection part 13a of the anisotropic conductor 16 of 2nd Embodiment.

第2実施形態の異方導電体16については、ベース部17が回路基板X1に直接接触しておらず取付姿勢が安定しないおそれがある。そこで図11(a)で示すようにベース部17の長手方向の端部にL字状の脚部17aを設け、それを回路基板X1に載置することで、安定した姿勢で回路基板X1に設置できるようになる。また、図11(b)で示すように隣接する接点突起部15どうしの間に回路基板X1に載置する凹状の脚部17bを設けるようにしてもよい。こうすることで、異方導電体16の長手方向における中間部分でも回路基板X1への設置姿勢が安定する。   Regarding the anisotropic conductor 16 of the second embodiment, the base portion 17 is not in direct contact with the circuit board X1, and the mounting posture may not be stable. Therefore, as shown in FIG. 11 (a), an L-shaped leg portion 17a is provided at the longitudinal end of the base portion 17, and the leg portion 17a is placed on the circuit board X1, so that the circuit board X1 has a stable posture. It can be installed. Further, as shown in FIG. 11B, a concave leg portion 17b placed on the circuit board X1 may be provided between the adjacent contact projections 15. By doing so, the installation posture on the circuit board X1 is stabilized even at the intermediate portion in the longitudinal direction of the anisotropic conductor 16.

第5実施形態〜第8実施形態の異方導電体21、23、24、25については金属板22を備えるものを例示したが、金属板22を粘着層に変更することもできる。この粘着層によっても、異方導電体21、23、24、25は回路基板X1に容易に固定することができるようになる。絶縁性の粘着層を設ける場合には、導通部13の下側の接点部13bを除くベース部12の底面に粘着層を設けるようにする。また、粘着材として導電性粘着材を用いる場合には当該接点部13bを覆うように設けることもできる。   Although the anisotropic conductors 21, 23, 24, and 25 of the fifth embodiment to the eighth embodiment have been illustrated as having the metal plate 22, the metal plate 22 can be changed to an adhesive layer. Also with this adhesive layer, the anisotropic conductors 21, 23, 24, 25 can be easily fixed to the circuit board X1. When an insulating adhesive layer is provided, the adhesive layer is provided on the bottom surface of the base portion 12 excluding the contact portion 13b on the lower side of the conductive portion 13. Moreover, when using an electroconductive adhesive material as an adhesive material, it can also provide so that the said contact part 13b may be covered.

実験例1:
表1に示す試料1から試料5の異方導電体を作製し、無圧縮時の高さHに対して、10%圧縮したときの荷重を測定した。そして、それらの試料の中で従来技術に対応する形状のものを基準に、導通部(13)の内側に空洞部(14)を設けた形状の試料の荷重を比較することで、荷重低減率を求めた。なお、各試料の外形は表1に示す通りであり、本発明の実施形態と従来技術に対応する。また、H、W1、W2、Tは図12に示す各部位の寸法である。

Figure 2016076299
Experimental example 1:
The anisotropic conductors of Sample 1 to Sample 5 shown in Table 1 were prepared, and the load when compressed by 10% with respect to the height H when not compressed was measured. The load reduction rate is compared by comparing the load of the sample with the cavity part (14) inside the conduction part (13) based on the shape corresponding to the prior art among those samples. Asked. The external shape of each sample is as shown in Table 1, and corresponds to the embodiment of the present invention and the prior art. Moreover, H, W1, W2, and T are the dimensions of each part shown in FIG.
Figure 2016076299

試料1:
図15の従来技術の異方導電体(1)に対応した外形で、高さHが1.0mm、導通部の直径W1が0.9mmの円柱形状の異方導電体を製造した。ベース部は硬さがJIS規定のA35°のシリコーンゴムからなる。また、導通部は前記シリコーンゴム100部に対して銀被覆ニッケル粒子が200部配合され、磁場により両端部間で数珠繋ぎになるように配向した。
Sample 1:
A cylindrical anisotropic conductor having an outer shape corresponding to the anisotropic conductor (1) of the prior art of FIG. 15 and having a height H of 1.0 mm and a diameter W1 of the conducting portion of 0.9 mm was manufactured. The base part is made of A35 ° silicone rubber with a JIS standard. In addition, the conductive part was blended with 200 parts of silver-coated nickel particles with respect to 100 parts of the silicone rubber, and was oriented such that the beads were connected between both ends by a magnetic field.

試料2:
図5の第4実施形態の異方導電体(20)に対応した外形で、高さHが1.0mm、導通部の直径W1が0.9mmの円柱形状で、導通部の中央に直径W2が0.3mmの空洞部を有している異方導電体を製造した。この空洞部はベース部の側で閉塞しており、閉塞部の導通部厚みTは0.2mmとした。その他の構成、材質は試料1と同じである。
Sample 2:
The outer shape corresponding to the anisotropic conductor (20) of the fourth embodiment of FIG. 5 is a cylindrical shape with a height H of 1.0 mm and a diameter W1 of the conducting portion of 0.9 mm, and a diameter W2 at the center of the conducting portion. Produced an anisotropic conductor having a cavity of 0.3 mm. This hollow portion was closed on the base portion side, and the conductive portion thickness T of the closed portion was 0.2 mm. Other configurations and materials are the same as those of the sample 1.

試料3:
導通部の中央に直径W2が0.4mmの空洞部を設けた以外は、試料2と同様にして試料3を作製した。
Sample 3:
Sample 3 was produced in the same manner as Sample 2, except that a hollow portion having a diameter W2 of 0.4 mm was provided at the center of the conducting portion.

試料4:
図1の第1実施形態の異方導電体(11)に対応した外形で、高さHが1.0mm、導通部の直径W1が0.9mmの円柱形状で、導通部の中央に直径W2が0.4mmの貫通孔となる空洞部(14)を有している異方導電体を製造した。その他の構成、材質は試料1と同じである。
Sample 4:
The outer shape corresponding to the anisotropic conductor (11) of the first embodiment of FIG. 1 is a cylindrical shape with a height H of 1.0 mm and a diameter W1 of the conducting portion of 0.9 mm, and a diameter W2 at the center of the conducting portion. Produced an anisotropic conductor having a cavity (14) having a through hole of 0.4 mm. Other configurations and materials are the same as those of the sample 1.

試料5:
図15の従来技術の異方導電体(1)に対応した外形で、高さHが1.2mm、直径W1が0.9mmの円柱形状の導通部を設けた異方導電体を製造した。導通部はベース部2から連続する絶縁性の部材で構成され、平面視で0.4mm×1.8mmの略矩形状とした。その他の構成、材質は試料1と同じである。
Sample 5:
An anisotropic conductor provided with a cylindrical conductive portion having an outer shape corresponding to the anisotropic conductor (1) of the prior art of FIG. 15 and having a height H of 1.2 mm and a diameter W1 of 0.9 mm was manufactured. The conducting part is composed of an insulating member continuous from the base part 2 and has a substantially rectangular shape of 0.4 mm × 1.8 mm in plan view. Other configurations and materials are the same as those of the sample 1.

各試料について、無圧縮時の高さHに対して、10%圧縮したときの荷重を測定した結果、表1に示す各値となった。これらの試料のうち、空洞部(14)を有していない試料1、試料5は従来技術に対応する。   As a result of measuring the load when the sample was compressed by 10% with respect to the height H at the time of no compression, the values shown in Table 1 were obtained. Of these samples, Sample 1 and Sample 5 that do not have the cavity (14) correspond to the prior art.

試料1に対して空洞部を設けた試料2および試料3は、それぞれ試料1の荷重に対して試料2で33%、試料3で47%荷重が低減した。この結果から、空洞部(14)を設けることで大きな荷重低減効果がみられることがわかり、さらに空洞部(14)の直径が大きい方が、荷重低減効果が大きいことがわかった。   Sample 2 and sample 3 provided with a cavity with respect to sample 1 were reduced by 33% in sample 2 and 47% in sample 3 with respect to the load of sample 1, respectively. From this result, it was found that a large load reducing effect was observed by providing the cavity (14), and that the larger the diameter of the cavity (14) was, the larger the load reducing effect was.

試料1に対して空洞部(14)を設けた試料4は、それぞれ試料1の荷重に対して57%荷重が低減した。また、試料4と同じ空洞部(14)の直径W2が0.4mmの空洞部(14)を有する試料3と比べても荷重が低減していることから、空洞部(14)が貫通孔である場合と非貫通孔である場合とでは、貫通孔である場合の方が荷重低減の効果が大きいことがわかった。   In the sample 4 in which the cavity portion (14) is provided with respect to the sample 1, the load is reduced by 57% with respect to the load of the sample 1, respectively. Further, since the load is reduced as compared with the sample 3 having the same cavity portion (14) as the sample 4 having a diameter W2 of 0.4 mm, the cavity portion (14) is a through hole. It was found that the effect of reducing the load was greater in the case of being a through-hole in some cases and in the case of being a non-through-hole.

なお、各試料の導通抵抗は0.05〜0.2Ωの所定の範囲内となり、不具合のあるものはなかった。   In addition, the conduction resistance of each sample was within a predetermined range of 0.05 to 0.2Ω, and there was no problem.

上記各実施形態、各変形例、実施例で示した構成は、本発明の趣旨を逸脱しない範囲で、組合せることができる。   The configurations described in the above embodiments, modifications, and examples can be combined without departing from the spirit of the present invention.

11 異方導電体(第1実施形態)
12 ベース部
12a 平坦部
12b 筒状部
13 導通部
13a 筒状導通部
13b 接点部
14 空洞部
15 接点突出部
16 異方導電体(第2実施形態)
17 ベース部
17a 脚部
17b 脚部
18 接点突出部
19 異方導電体(第3実施形態)
13c 端壁部
20 異方導電体(第4実施形態)
13d 端壁部
21 異方導電体(第5実施形態)
22 金属板
23 異方導電体(第6実施形態)
24 異方導電体(第7実施形態)
22a 通気孔
25 異方導電体(第8実施形態)
26 通気孔
27 異方導電体(第9実施形態)
28 ベース部
28a 底面
29 導通部
29a 上側接点部
29b 外側接点部
29c 内側接点部
30 筒状導通部
30a 内側導通部
30b 外側導通部
30c 連結導通部
31 端壁部
X1 回路基板(接続対象部材)
X2 接地接続部材(接続対象部材)
11 Anisotropic conductor (first embodiment)
12 base part 12a flat part 12b cylindrical part 13 conducting part 13a cylindrical conducting part 13b contact part 14 cavity part 15 contact protruding part 16 anisotropic conductor (second embodiment)
17 Base part 17a Leg part 17b Leg part 18 Contact protrusion part 19 Anisotropic conductor (3rd Embodiment)
13c End wall part 20 Anisotropic conductor (4th Embodiment)
13d End wall 21 Anisotropic conductor (fifth embodiment)
22 Metal plate 23 Anisotropic conductor (6th Embodiment)
24 Anisotropic Conductor (Seventh Embodiment)
22a Vent 25 Anisotropic conductor (Eighth embodiment)
26 Ventilation hole 27 Anisotropic conductor (9th embodiment)
28 base portion 28a bottom surface 29 conducting portion 29a upper contact portion 29b outer contact portion 29c inner contact portion 30 cylindrical conducting portion 30a inner conducting portion 30b outer conducting portion 30c connection conducting portion 31 end wall portion X1 circuit board (connection target member)
X2 Ground connection member (member to be connected)

Claims (6)

絶縁性のゴム状弾性体でなるベース部と、
前記ベース部を貫通する導電性の導通部とを備え、
前記導通部は、その両端がそれぞれ接続対象部材と押圧接触した状態で当該接続対象部材どうしを導通接続する異方導電体において、
前記導通部が、内部に空洞部を有する筒状導通部を有することを特徴とする異方導電体。
A base portion made of an insulating rubber-like elastic body;
A conductive conducting part penetrating the base part,
In the anisotropic conductor that conductively connects the connection target members in a state in which both ends thereof are in press contact with the connection target members, respectively,
The anisotropic conductor according to claim 1, wherein the conducting portion has a cylindrical conducting portion having a hollow portion therein.
前記導通部が、前記筒状導通部の端部を閉塞する端壁部を有する
請求項1記載の異方導電体。
The anisotropic conductor according to claim 1, wherein the conducting portion has an end wall portion that closes an end portion of the cylindrical conducting portion.
前記筒状導通部が、
その筒軸側に位置する内側導通部と、
前記内側導通部よりも前記筒軸から離れて位置する外側導通部と、
前記内側導通部と前記外側導通部とを繋ぎ、前記内側導通部の下端部の前記外側導通部の内側への変位を弾性支持する連結導通部とを有する
請求項1又は請求項2記載の異方導電体。
The cylindrical conductive portion is
An inner conducting portion located on the cylinder shaft side;
An outer conductive portion located farther from the cylindrical shaft than the inner conductive portion;
The difference of Claim 1 or Claim 2 which has the connection conduction | electrical_connection part which connects the said inner side conduction | electrical_connection part and the said outer side conduction | electrical_connection part, and elastically supports the displacement to the inner side of the said outer side conduction | electrical_connection part at the lower end part of the said inner side conduction | electrical_connection part. Direction conductor.
前記ベース部が、前記筒状導通部の端部で外向きに広がる平坦部を有する
請求項1〜請求項3何れか1項記載の異方導電体。
The anisotropic conductor in any one of Claims 1-3 in which the said base part has a flat part which spreads outward at the edge part of the said cylindrical conduction | electrical_connection part.
前記ベース部が、前記筒状導通部の筒軸方向の中間で外向きに広がる平坦部を有する
請求項1〜請求項3何れか1項記載の異方導電体。
The anisotropic conductor according to any one of claims 1 to 3, wherein the base portion has a flat portion that extends outward in the middle of the cylindrical conductive portion in the cylinder axis direction.
前記ベース部と前記導通部の下端に板状の導電性基材を有する
請求項1〜請求項5何れか1項記載の異方導電体。
The anisotropic conductor in any one of Claims 1-5 which has a plate-shaped electroconductive base material in the lower end of the said base part and the said conduction | electrical_connection part.
JP2014203994A 2014-10-02 2014-10-02 Anisotropic conductor Pending JP2016076299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014203994A JP2016076299A (en) 2014-10-02 2014-10-02 Anisotropic conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014203994A JP2016076299A (en) 2014-10-02 2014-10-02 Anisotropic conductor

Publications (1)

Publication Number Publication Date
JP2016076299A true JP2016076299A (en) 2016-05-12

Family

ID=55951605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014203994A Pending JP2016076299A (en) 2014-10-02 2014-10-02 Anisotropic conductor

Country Status (1)

Country Link
JP (1) JP2016076299A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018120766A (en) * 2017-01-25 2018-08-02 積水ポリマテック株式会社 Connecting end-equipped cable and cable connection structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57138283U (en) * 1981-02-24 1982-08-28
JPH04230984A (en) * 1990-04-27 1992-08-19 Rogers Corp Connector and manufacture thereof
JPH0778645A (en) * 1993-09-09 1995-03-20 Japan Aviation Electron Ind Ltd Connector
JP2007141731A (en) * 2005-11-21 2007-06-07 Sumitomo Electric Ind Ltd Anisotropic conductive sheet, its manufacturing method, connection method, and inspection method
JP2013026140A (en) * 2011-07-25 2013-02-04 Polymatech Co Ltd Elastic connector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57138283U (en) * 1981-02-24 1982-08-28
JPH04230984A (en) * 1990-04-27 1992-08-19 Rogers Corp Connector and manufacture thereof
JPH0778645A (en) * 1993-09-09 1995-03-20 Japan Aviation Electron Ind Ltd Connector
JP2007141731A (en) * 2005-11-21 2007-06-07 Sumitomo Electric Ind Ltd Anisotropic conductive sheet, its manufacturing method, connection method, and inspection method
JP2013026140A (en) * 2011-07-25 2013-02-04 Polymatech Co Ltd Elastic connector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018120766A (en) * 2017-01-25 2018-08-02 積水ポリマテック株式会社 Connecting end-equipped cable and cable connection structure

Similar Documents

Publication Publication Date Title
KR101346743B1 (en) Anisotropic conductive sheet
JP4690908B2 (en) Connector sheet and portable electronic device
US6549636B2 (en) Miniature microphone component with conductive rubber contacts
KR101593936B1 (en) Silicon rubber connector
JP4793203B2 (en) Anisotropic conductive connector and method for inspecting test object using this anisotropic conductive connector
JP2009087976A (en) Shock absorber
US6307946B1 (en) Miniature microphone component
WO2016136496A1 (en) Elastic connector
JP4761885B2 (en) Holder for small electronic components
JP2016076299A (en) Anisotropic conductor
JP2009054304A (en) Anisotropic conductive connector
JP2002042922A (en) Electric connector and its manufacturing method
JP2013026140A (en) Elastic connector
JP2004047268A (en) Insulation displacement connector
JP6464450B2 (en) Seal member and electronic device
JP3350479B2 (en) Intermediate electrical connector
JP6978034B2 (en) How to install the conductive rubber connector and the conductive rubber connector
JP6312335B2 (en) connector
JP6751867B2 (en) Conductive connection structure of elastic connector and elastic connector
JP5750101B2 (en) connector
JP2019012629A (en) Elastic connector and conductively connecting method
JP2011044329A (en) Elastic connector and method of manufacturing elastic connector
JP2018120766A (en) Connecting end-equipped cable and cable connection structure
KR20230137677A (en) Signal Loss Prevented Test Socket
JP2005251590A (en) Connector for electric device and its connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180525

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190201