JP2016072136A - Transparent conductive film and manufacturing method therefor - Google Patents

Transparent conductive film and manufacturing method therefor Download PDF

Info

Publication number
JP2016072136A
JP2016072136A JP2014201799A JP2014201799A JP2016072136A JP 2016072136 A JP2016072136 A JP 2016072136A JP 2014201799 A JP2014201799 A JP 2014201799A JP 2014201799 A JP2014201799 A JP 2014201799A JP 2016072136 A JP2016072136 A JP 2016072136A
Authority
JP
Japan
Prior art keywords
transparent
transparent electrode
film
crystallization
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014201799A
Other languages
Japanese (ja)
Other versions
JP6404064B2 (en
Inventor
貴吉 櫛崎
Takayoshi Kushizaki
貴吉 櫛崎
暢 入江
Noboru Irie
暢 入江
崇 口山
Takashi Kuchiyama
崇 口山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2014201799A priority Critical patent/JP6404064B2/en
Publication of JP2016072136A publication Critical patent/JP2016072136A/en
Application granted granted Critical
Publication of JP6404064B2 publication Critical patent/JP6404064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transparent conductive film having a ground layer and a transparent electrode layer formed on a transparent film substrate, where the transparent electrode layer achieves promotion of crystallization by a heat treatment and inhibition of normal temperature crystallization at same time by improving the ground layer.SOLUTION: The transparent conductive film has a ground layer 20 mainly consisting of zinc oxide and a transparent electrode layer 30 consisting of indium-tin composite oxide on a transparent film substrate 10 in this order and the ground layer 20 contains 1 to 20 mass% of silicon oxide and nitrogen.SELECTED DRAWING: Figure 1

Description

本発明は、透明フィルム基板上に透明電極層が形成された透明導電性フィルムに関する。   The present invention relates to a transparent conductive film having a transparent electrode layer formed on a transparent film substrate.

タッチパネルやディスプレイなどに用いられる透明導電膜は、ガラスや高分子フィルム上に形成されるが、近年は製品の軽量化、薄型化の要望から高分子フィルム上に透明導電膜が形成された透明導電膜性フィルム(透明電極付き基板)が注目されている。また、タッチパネルディスプレイは大型化する傾向にあるため、低抵抗な透明導電膜が求められている。これまで、透明導電膜を低抵抗にするため、非晶質の透明導電膜を熱処理することで結晶化を促進し、低抵抗化する技術が用いられてきた。しかしながら、ガラス基板と異なり、高分子フィルム上の透明導電膜は、そのフィルムの耐熱性の問題から200℃以下の熱処理に限られ、結晶化の促進が困難である。さらに、フィルムからの有機成分などのアウトガスにより結晶化が阻害される。そのため、これらの問題に対応しつつ、結晶化を促進するために、特許文献1に記載のように基板と透明導電膜の間に下地層を設ける手法が用いられる。   Transparent conductive films used for touch panels, displays, etc. are formed on glass or polymer films. Recently, transparent conductive films with transparent conductive films formed on polymer films are demanded for lighter and thinner products. Membrane films (substrates with transparent electrodes) are attracting attention. Moreover, since a touch panel display tends to be enlarged, a low-resistance transparent conductive film is required. Until now, in order to reduce the resistance of the transparent conductive film, a technique has been used in which the amorphous transparent conductive film is heat-treated to promote crystallization and reduce the resistance. However, unlike a glass substrate, the transparent conductive film on the polymer film is limited to heat treatment at 200 ° C. or less due to the heat resistance problem of the film, and it is difficult to promote crystallization. Furthermore, crystallization is inhibited by outgas such as organic components from the film. Therefore, in order to promote crystallization while addressing these problems, a method of providing a base layer between the substrate and the transparent conductive film as described in Patent Document 1 is used.

ところで、最近、透明電極付き基板を常温常圧環境下で長期間保管した場合に電気特性が低下してしまう現象が起き得ることが確認された。これは、非晶質の透明電極薄膜が常温常圧環境下において熱力学的に安定な結晶質に転移し、意図せずに電気特性が変化する現象であり、元々非晶質が結晶質に変化することは知られているが、このような常温常圧環境での結晶化は、その後のデバイス作製プロセスにおいて、透明電極薄膜の応力の問題から、基板からの剥離や変形を引き起こす可能性があり、特に、基板がフィルムやプラスチックなどの軟質の材料の場合には問題が生じ得る、これまで知られていなかった課題である。   By the way, recently, it has been confirmed that when the substrate with a transparent electrode is stored for a long period of time in a normal temperature and normal pressure environment, a phenomenon may occur in which the electrical characteristics deteriorate. This is a phenomenon in which an amorphous transparent electrode thin film is transformed into a thermodynamically stable crystalline material under a normal temperature and normal pressure environment, and the electrical characteristics change unintentionally. Although it is known to change, crystallization in such a room temperature and normal pressure environment may cause peeling or deformation from the substrate due to the stress problem of the transparent electrode thin film in the subsequent device fabrication process. There is a problem that has not been known so far, especially when the substrate is a soft material such as a film or plastic.

上記の「熱処理時の結晶化促進」と「常温常圧時の結晶化抑制」は、相反する特性と考えられるが、より高性能な製品では同時に要求される。このような課題に対して、例えば、特許文献2には、ZnO中にSiなどの元素を含有する下地層を設け、高光透過率で膜の表面に凹凸が少ない低比抵抗の酸化インジウム・スズ複合酸化物(ITO)からなる透明導電膜を作製する技術が記載され、特許文献3には、金属化合物からなる下地層を用いて、ITOからなる透明導電膜の耐屈曲性を向上させる技術が記載され、特許文献4には、ZnO製膜時に窒素を導入し、ZnONからなる下地層を作製することで直上のZnOからなる透明導電膜の結晶性を改善する技術が記載されている。しかし、いずれの文献も前述の「熱処理時の結晶化促進」と「常温常圧時の結晶化抑制」を同時に解決するものではない。   The above “acceleration of crystallization during heat treatment” and “inhibition of crystallization at normal temperature and pressure” are considered to be contradictory properties, but are simultaneously required for higher performance products. To deal with such problems, for example, Patent Document 2 provides a base layer containing an element such as Si in ZnO, and has a low specific resistance indium tin oxide with high light transmittance and less irregularities on the film surface. A technique for producing a transparent conductive film made of a composite oxide (ITO) is described. Patent Document 3 discloses a technique for improving the bending resistance of a transparent conductive film made of ITO using a base layer made of a metal compound. Patent Document 4 describes a technique for improving the crystallinity of a transparent conductive film made of ZnO immediately above by introducing nitrogen during ZnO film formation to produce a base layer made of ZnON. However, none of these documents solves the above-mentioned “acceleration of crystallization during heat treatment” and “suppression of crystallization at normal temperature and pressure” at the same time.

特開2012−114070号公報JP 2012-1114070 A 特開2000−108244号公報JP 2000-108244 A WO2006−019184号公報WO2006-018184 WO2012−026599号公報WO2012-026599

そこで、本発明は、ITOからなる透明導電膜の下層に形成する上記下地層を改良し、熱処理による結晶化促進能を維持しつつ、常温結晶化抑制機能を付与した透明導電膜を提供することを目的とする。   Accordingly, the present invention provides a transparent conductive film having a room temperature crystallization suppression function while improving the above-mentioned base layer formed in the lower layer of the transparent conductive film made of ITO and maintaining the crystallization promoting ability by heat treatment. With the goal.

本発明は、透明フィルム基板上に主成分が酸化亜鉛からなる下地層とインジウム・スズ複合酸化物からなる透明電極層とを順に有し、前記下地層は1〜20質量%の酸化珪素と窒素とを含有する透明導電性フィルムである。   The present invention has, on a transparent film substrate, a base layer composed mainly of zinc oxide and a transparent electrode layer composed of indium-tin composite oxide in order, the base layer comprising 1 to 20% by mass of silicon oxide and nitrogen It is a transparent conductive film containing these.

また、下地層の膜厚は0より大きく15nm以下が好ましく、下地層の550nmにおける屈折率は1.7〜1.9が好ましく、窒素量は0.1〜5質量%が好ましい。   Further, the film thickness of the underlayer is preferably greater than 0 and 15 nm or less, the refractive index at 550 nm of the underlayer is preferably 1.7 to 1.9, and the nitrogen content is preferably 0.1 to 5% by mass.

また、本発明の透明導電フィルムの製造方法は、透明フィルム基板に透明導電層を積層する前に、酸化亜鉛を主成分とし、酸化珪素を1〜20質量%含有する酸化物下地層をスパッタリング製膜する工程を有し、下地層を製膜する際の窒素ガス雰囲気は5.9×10−5Pa以上である。 Moreover, the manufacturing method of the transparent conductive film of this invention is a product made by sputtering the oxide base layer which has a zinc oxide as a main component and contains 1-20 mass% of silicon oxides before laminating | stacking a transparent conductive layer on a transparent film board | substrate. The step of forming a film and the nitrogen gas atmosphere when forming the base layer is 5.9 × 10 −5 Pa or more.

本発明によれば、熱処理後の結晶化促進および低抵抗化の実現のみならず、常温環境での意図せぬ結晶化を抑制することが可能となり、品質が安定した透明電極付基板を提供することができる。   According to the present invention, it is possible not only to realize crystallization promotion and low resistance after heat treatment, but also to suppress unintentional crystallization in a room temperature environment, and to provide a substrate with a transparent electrode with stable quality. be able to.

一実施形態における透明電極付き基板の模式断面図である。It is a schematic cross section of the board | substrate with a transparent electrode in one Embodiment. 一実施形態における構造であり、透明電極薄膜を複数回に分けて製膜した透明電極付き基板の模式断面図である。It is the structure in one Embodiment, and is a schematic cross section of the board | substrate with a transparent electrode which divided and formed the transparent electrode thin film into multiple times.

[透明電極付き基板の構成]
以下、本発明の好ましい実施の形態について図面を参照しつつ説明する。図1は、透明フィルム基板10上に下地層20、さらにその上に透明電極薄膜30を形成した透明電極付き基板を示している。透明電極薄膜30は図2に示すように31と32のような複数層の構成で形成されていても良い。透明フィルム基板10と下地層20との間にコーティング層が設けられてもよい。透明フィルム基板10を構成する透明フィルムは、少なくとも可視光領域において無色透明であるものが好ましい。
[Configuration of substrate with transparent electrode]
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a substrate with a transparent electrode in which a base layer 20 is formed on a transparent film substrate 10 and a transparent electrode thin film 30 is further formed thereon. The transparent electrode thin film 30 may be formed of a plurality of layers such as 31 and 32 as shown in FIG. A coating layer may be provided between the transparent film substrate 10 and the foundation layer 20. The transparent film constituting the transparent film substrate 10 is preferably colorless and transparent at least in the visible light region.

下地層20は、亜鉛を主成分とする酸化物からなる無機化合物であり、窒素の他、酸化珪素を1〜20質量%を含んでおり、酸化珪素は5〜20質量%含むことが好ましい。酸化亜鉛に対する酸化珪素の含有量を増加させると、下地層の屈折率は酸化珪素の1.5に近づくため下地層の屈折率は低下する。上記範囲で酸化珪素の含有量を変化させると、屈折率は1.7〜1.9の範囲で調整可能で、反射率の低減による非視認性が向上する。下地層20が窒素を含まない酸化珪素のみからなる場合は光学的な観点では良好になる傾向があるが、後述のように、透明導電膜30の常温結晶化の抑制が不十分になる場合がある。   The underlayer 20 is an inorganic compound made of an oxide containing zinc as a main component, contains 1 to 20% by mass of silicon oxide in addition to nitrogen, and preferably contains 5 to 20% by mass of silicon oxide. When the content of silicon oxide with respect to zinc oxide is increased, the refractive index of the base layer approaches 1.5 of silicon oxide, so that the refractive index of the base layer decreases. When the content of silicon oxide is changed in the above range, the refractive index can be adjusted in the range of 1.7 to 1.9, and the invisibility due to the reduction of the reflectance is improved. When the underlayer 20 is made only of silicon oxide containing no nitrogen, there is a tendency that it becomes good from an optical viewpoint, but as described later, the suppression of room temperature crystallization of the transparent conductive film 30 may be insufficient. is there.

下地層20の膜厚は0より大きく15nm以内であることが好ましく、さらには2〜10nmが好まく、特に好ましいのは2〜5nmである。膜厚を厚くすると透過率の悪化が懸念され、薄すぎると下地層としての結晶化促進能を十分に発揮できない。下地層20には透明フィルム基板10からの炭素原子、水分子などの透明電極薄膜30の結晶化阻害成分の拡散抑制の役割があり、この役割を満たすためには上記膜厚範囲が好ましい。   The thickness of the underlayer 20 is preferably larger than 0 and within 15 nm, more preferably 2 to 10 nm, and particularly preferably 2 to 5 nm. If the film thickness is increased, the transmittance may be deteriorated, and if it is too thin, the ability to promote crystallization as an underlayer cannot be exhibited sufficiently. The underlayer 20 has a role of suppressing diffusion of crystallization-inhibiting components of the transparent electrode thin film 30 such as carbon atoms and water molecules from the transparent film substrate 10. In order to satisfy this role, the film thickness range is preferable.

下地層20の形成にはスパッタリング法が好適に用いられる。スパッタリング法では、マグネトロンスパッタリング法が特に好ましい。マグネトロンスパッタリング時のマグネットの磁場強度は700〜1300ガウスが好ましく、これにより極端なエロージョンによるスパッタターゲットの利用効率低下を抑制し、かつ良質な下地層20の形成が可能となる。これは、磁場強度を大きくすることで、放電電圧を下げることが可能となるためであり、下地層20の形成を透明フィルム基板10に対して低ダメージで行うことができる。スパッタリングに用いる電源には制限が無く、直流電源や交流電源などをターゲット材料にあわせて選択できる。放電電圧は装置や電源の種類に依るが、良好な下地層20を形成するためには−100〜−350V程度が好ましく、さらには、−180〜−300V程度がより好ましい。   A sputtering method is suitably used for forming the underlayer 20. As the sputtering method, a magnetron sputtering method is particularly preferable. The magnetic field strength of the magnet at the time of magnetron sputtering is preferably 700 to 1300 gauss, thereby suppressing a reduction in the utilization efficiency of the sputtering target due to extreme erosion and forming a good underlayer 20. This is because the discharge voltage can be lowered by increasing the magnetic field strength, and the underlayer 20 can be formed with low damage to the transparent film substrate 10. The power source used for sputtering is not limited, and a DC power source or an AC power source can be selected according to the target material. Although the discharge voltage depends on the type of the device and the power supply, it is preferably about −100 to −350 V, more preferably about −180 to −300 V in order to form a good underlayer 20.

本発明では、下地層20を製膜する真空槽中の圧力を一旦1×10−3Pa以下とし、次いで不活性ガス及び酸素等の反応性ガスを0.1〜1Paとなるまで導入しておき、次いで、導入される不活性ガスとしてアルゴン(Ar)、反応性ガスとして酸素(O)、窒素(N)を用いることで、下地層を形成できる。 In the present invention, the pressure in the vacuum chamber for forming the underlayer 20 is temporarily set to 1 × 10 −3 Pa or less, and then an inert gas and a reactive gas such as oxygen are introduced until the pressure reaches 0.1 to 1 Pa. Then, argon (Ar) is used as the inert gas to be introduced, and oxygen (O 2 ) and nitrogen (N 2 ) are used as the reactive gas, whereby the base layer can be formed.

反応性ガスとして窒素を導入することで、下地層20中に窒素が取り込まれ、これにより、透明導電膜形成後に熱処理を行うことで、下地層とITO層界面付近の窒素原子がITO層に混入し、ITOの結晶化を阻害することで結晶化速度が遅くなると考えられる。すなわち常温結晶化抑制の効果が期待される。窒素を含有するITO膜のホール移動度が窒素を含有していないITO膜に比べ大きくなることは、例えば、特開2014−148734号公報などで知られているが、本願発明においても、下地層に窒素が含まれる場合と含まれない場合におけるそれぞれのホール移動度は31cm/Vsと27cm/Vsであり、特開2014−148734号公報と同様の傾向が見られ、ITO層への窒素の混入が推定される。 By introducing nitrogen as a reactive gas, nitrogen is taken into the underlayer 20, so that heat treatment is performed after forming the transparent conductive film, so that nitrogen atoms near the interface between the underlayer and the ITO layer are mixed into the ITO layer. Then, it is considered that the crystallization speed is slowed by inhibiting the crystallization of ITO. That is, the effect of suppressing normal temperature crystallization is expected. The fact that the hole mobility of an ITO film containing nitrogen is larger than that of an ITO film not containing nitrogen is known from, for example, Japanese Patent Application Laid-Open No. 2014-148734, but also in the present invention, The hole mobility in the case where nitrogen is contained and the case where nitrogen is not contained is 31 cm 2 / Vs and 27 cm 2 / Vs, and the same tendency as in Japanese Patent Application Laid-Open No. 2014-148734 is observed. Of contamination is estimated.

透明電極薄膜30は酸化インジウムを87.5重量%〜99.0重量%含有することが好ましい。酸化インジウムの含有量は90重量%〜95重量%であることがより好ましい。結晶質の透明電極薄膜は、膜中にキャリア密度を持たせて導電性を付与するためのドープ不純物を含有する。このようなドープ不純物としては、酸化スズ、酸化亜鉛、酸化チタン又は酸化タングステンが好ましい。透明電極薄膜30を低抵抗かつ高透過率とする観点から、透明電極薄膜30の膜厚は15nm〜30nmが好ましく、17nm〜27nmがより好ましく、20nm〜25nmがさらに好ましい。   The transparent electrode thin film 30 preferably contains 87.5 wt% to 99.0 wt% indium oxide. The indium oxide content is more preferably 90% by weight to 95% by weight. The crystalline transparent electrode thin film contains a doped impurity for imparting conductivity by giving a carrier density in the film. As such a doping impurity, tin oxide, zinc oxide, titanium oxide or tungsten oxide is preferable. From the viewpoint of making the transparent electrode thin film 30 have low resistance and high transmittance, the thickness of the transparent electrode thin film 30 is preferably 15 nm to 30 nm, more preferably 17 nm to 27 nm, and further preferably 20 nm to 25 nm.

なお、透明電極薄膜と下地層の膜厚の合計は、50nm未満が好ましく、1〜20nmがさらに好ましく、2〜16nmが最も好ましい。   The total thickness of the transparent electrode thin film and the underlayer is preferably less than 50 nm, more preferably 1 to 20 nm, and most preferably 2 to 16 nm.

透明電極薄膜30は、140℃30分後の熱処理後の抵抗率が3.5×10−4Ωcm以下であることが好ましい。また、結晶質透明電極薄膜30の表面抵抗は、170Ω/□以下であることが好ましく、150Ω/□以下であることがより好ましい。透明電極薄膜が低抵抗であれば、静電容量方式タッチパネルの応答速度向上や、有機EL照明の面内輝度の均一性向上、各種光学デバイスの省消費電力化等に寄与し得る。 The transparent electrode thin film 30 preferably has a resistivity of 3.5 × 10 −4 Ωcm or less after heat treatment at 140 ° C. for 30 minutes. The surface resistance of the crystalline transparent electrode thin film 30 is preferably 170Ω / □ or less, and more preferably 150Ω / □ or less. If the transparent electrode thin film has a low resistance, it can contribute to improving the response speed of the capacitive touch panel, improving the uniformity of in-plane luminance of organic EL lighting, and reducing the power consumption of various optical devices.

透明電極薄膜30の形成方法は、生産性の観点からスパッタリング法が好ましく、中でもマグネトロンスパッタリング法が好ましい。   The method for forming the transparent electrode thin film 30 is preferably a sputtering method from the viewpoint of productivity, and among these, a magnetron sputtering method is preferable.

[透明電極付き基板の製造方法]
以下、本発明の好ましい実施の形態について、透明電極付き基板の製造方法に沿って説明する。本発明の製造方法では、透明フィルム上にハードコートなど透明誘電体層を備える透明フィルム基板10が用いられる(基板準備工程)。透明電極薄膜はスパッタリング法により形成され(製膜工程)、その後、透明電極層が結晶化される(結晶化工程)。一般に、酸化インジウムを主成分とする非晶質の透明電極層を結晶化するためには、150℃60分程度の加熱処理を実施する。
[Method for producing substrate with transparent electrode]
Hereinafter, a preferred embodiment of the present invention will be described along a manufacturing method of a substrate with a transparent electrode. In the production method of the present invention, a transparent film substrate 10 having a transparent dielectric layer such as a hard coat on a transparent film is used (substrate preparation step). The transparent electrode thin film is formed by a sputtering method (film formation process), and then the transparent electrode layer is crystallized (crystallization process). In general, in order to crystallize an amorphous transparent electrode layer containing indium oxide as a main component, a heat treatment is performed at 150 ° C. for about 60 minutes.

(基板準備工程)
透明フィルム基板10を構成する透明フィルムは、少なくとも可視光領域で無色透明であり、透明電極層形成温度における耐熱性を有していれば、その材料は特に限定されない。透明フィルムの材料としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフテレート(PBT)、ポリエチレンナフタレート(PEN)等のポリエステル系樹脂、シクロオレフィン系樹脂、ポリカーボネート樹脂、ポリイミド樹脂、セルロース系樹脂等が挙げられる。中でも、ポリエステル系樹脂が好ましく、ポリエチレンテレフタレートが特に好ましく用いられる。
(Board preparation process)
The material of the transparent film constituting the transparent film substrate 10 is not particularly limited as long as it is colorless and transparent at least in the visible light region and has heat resistance at the transparent electrode layer forming temperature. Examples of the transparent film material include polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN), cycloolefin resins, polycarbonate resins, polyimide resins, and cellulose resins. Can be mentioned. Of these, polyester resins are preferable, and polyethylene terephthalate is particularly preferably used.

透明フィルム基板10の厚みは特に限定されないが、10μm〜400μmが好ましく、20μm〜200μmがより好ましい。透明フィルム基板10の片面または両面にハードコート層等の機能性層が形成されたものであってもよい。透明フィルム基板に適度な耐久性と柔軟性を持たせるためには、ハードコート層の厚みは1〜10μmが好ましく、3〜8μmがより好ましく、5〜8μmがさらに好ましい。ハードコート層の材料は特に制限されず、ウレタン系樹脂、アクリル系樹脂、シリコーン系樹脂等を、塗布・硬化させたもの等を適宜に用いることができる。   Although the thickness of the transparent film board | substrate 10 is not specifically limited, 10 micrometers-400 micrometers are preferable, and 20 micrometers-200 micrometers are more preferable. A functional layer such as a hard coat layer may be formed on one side or both sides of the transparent film substrate 10. In order to give the transparent film substrate appropriate durability and flexibility, the thickness of the hard coat layer is preferably 1 to 10 μm, more preferably 3 to 8 μm, and even more preferably 5 to 8 μm. The material of the hard coat layer is not particularly limited, and a material obtained by applying and curing a urethane resin, an acrylic resin, a silicone resin, or the like can be appropriately used.

(製膜工程)
透明フィルム基板10の透明下地層20上に、スパッタリング法により透明電極薄膜30が形成される。
(Film forming process)
A transparent electrode thin film 30 is formed on the transparent underlayer 20 of the transparent film substrate 10 by a sputtering method.

スパッタ製膜は、製膜室内に、アルゴン等の不活性ガスおよび酸素ガスを含むキャリアガスが導入されながら行われる。導入ガスは、アルゴンと酸素の混合ガスが好ましい。アルゴンと酸素は、所定の混合比のガスを予め用意しても良いし、それぞれのガスを流量制御装置(マスフローコントローラ)により流量を制御した後に混合しても良い。なお、混合ガスには、本発明の機能を損なわない限りにおいて、その他のガスが含まれていてもよい。製膜室内の圧力(全圧)は、0.1Pa〜1.0Paが好ましく、0.15Pa〜0.8Paがより好ましい。   Sputter deposition is performed while a carrier gas containing an inert gas such as argon and an oxygen gas is introduced into the deposition chamber. The introduced gas is preferably a mixed gas of argon and oxygen. Argon and oxygen may be prepared in advance with a gas having a predetermined mixing ratio, or each gas may be mixed after the flow rate is controlled by a flow rate control device (mass flow controller). The mixed gas may contain other gases as long as the function of the present invention is not impaired. The pressure (total pressure) in the film forming chamber is preferably 0.1 Pa to 1.0 Pa, and more preferably 0.15 Pa to 0.8 Pa.

本発明において、下地層20形成時のアルゴン分圧は1.0×10−3Pa、酸素分圧は4.0×10−1Pa以下であることが好ましい。また、所望の常温結晶化抑制効果を得るためには、N分圧は5.9×10−5Pa以上であることが好ましく、5.9×10−5Pa〜1.3×10−3Paであることがより好ましく、1.0×10−4Pa〜5.0×10−4Paが最も好ましい。1.3×10−3Pa以上になると、下地層中に過剰の窒素が取り込まれ、透明導電膜の透過率、抵抗率が低下する。また、5.9×10−5Pa以下であると常温結晶化抑制効果の影響がほとんど期待できない。 In the present invention, it is preferable that the argon partial pressure when forming the underlayer 20 is 1.0 × 10 −3 Pa and the oxygen partial pressure is 4.0 × 10 −1 Pa or less. Further, in order to obtain the desired room temperature crystallization inhibiting effect is preferably N 2 partial pressure is 5.9 × 10 -5 Pa or more, 5.9 × 10 -5 Pa~1.3 × 10 - more preferably 3 Pa, and most preferably 1.0 × 10 -4 Pa~5.0 × 10 -4 Pa. When it becomes 1.3 × 10 −3 Pa or more, excessive nitrogen is taken into the underlayer, and the transmittance and resistivity of the transparent conductive film are lowered. In addition, if it is 5.9 × 10 −5 Pa or less, the influence of the normal temperature crystallization suppressing effect can hardly be expected.

透明電極薄膜30形成時の製膜室内の酸素分圧は、1.0×10−3Pa〜5.0×10−2Paであることが好ましく、3.0×10−3Pa〜4.0×10−2Paであることがより好ましい。N分圧は5.9×10−5Pa〜1.3×10−3Paであれば、膜中に0.1質量%〜5質量%の窒素原子が含まれ好ましく、熱処理時の結晶化促進と常温常圧時の結晶化抑制を同時に解決することに資する。以下の表1にはスパッタリング製膜時の真空装置内の雰囲気として、四重極質量分析計で測定した値を示す。 The oxygen partial pressure in the film forming chamber when forming the transparent electrode thin film 30 is preferably 1.0 × 10 −3 Pa to 5.0 × 10 −2 Pa, and preferably 3.0 × 10 −3 Pa to 4.4. More preferably, it is 0 × 10 −2 Pa. If the N 2 partial pressure is 5.9 × 10 −5 Pa to 1.3 × 10 −3 Pa, the film preferably contains 0.1% by mass to 5% by mass of nitrogen atoms, and the crystal during heat treatment Contributes to simultaneously solving crystallization promotion and crystallization suppression at normal temperature and pressure. Table 1 below shows values measured by a quadrupole mass spectrometer as the atmosphere in the vacuum apparatus during sputtering film formation.

(結晶化工程)
非晶質の透明電極層が形成された基板は結晶化工程に供される。結晶化工程では、当該基板が120〜170℃に加熱される。
(Crystallization process)
The substrate on which the amorphous transparent electrode layer is formed is subjected to a crystallization process. In the crystallization step, the substrate is heated to 120 to 170 ° C.

膜中に酸素を十分に取り込み、結晶化時間を短縮するためには、結晶化は大気中等の酸素含有雰囲気下で行われることが好ましい。真空中や不活性ガス雰囲気下でも結晶化は進行するが、低酸素濃度雰囲気下では、酸素雰囲気下に比べて結晶化に長時間を要する傾向がある。   In order to sufficiently incorporate oxygen into the film and shorten the crystallization time, the crystallization is preferably performed in an oxygen-containing atmosphere such as the air. Crystallization proceeds even in a vacuum or in an inert gas atmosphere, but in a low oxygen concentration atmosphere, crystallization tends to take a longer time than in an oxygen atmosphere.

巻回体のまま結晶化が行われる場合、透明電極層形成後の基板をそのまま常温・常圧環境に置くか、加熱室等で養生(静置)すればよい。ロール・トゥ・ロールで結晶化を行わう場合、基板が搬送されながら加熱炉内に導入されて加熱が行われた後、再びロール状に巻回される。なお、室温で結晶化が行われる場合も、透明電極層を酸素と接触させて結晶化を促進させる等の目的で、ロール・トゥ・ロール法が採用されてもよい。   When crystallization is performed with the wound body, the substrate after forming the transparent electrode layer may be placed in a room temperature / normal pressure environment as it is, or may be cured (standing) in a heating chamber or the like. When crystallization is performed roll-to-roll, the substrate is introduced into a heating furnace while being transported and heated, and then wound again in a roll shape. Even when crystallization is performed at room temperature, a roll-to-roll method may be employed for the purpose of promoting crystallization by bringing the transparent electrode layer into contact with oxygen.

[透明電極付き基板の用途]
本発明の透明電極付き基板は、ディスプレイや発光素子、光電変換素子等の透明電極として用いることができ、タッチパネル用の透明電極として好適に用いられる。中でも、透明電極層が低抵抗であることから、静電容量方式タッチパネルに好ましく用いられる。
[Use of substrates with transparent electrodes]
The board | substrate with a transparent electrode of this invention can be used as transparent electrodes, such as a display, a light emitting element, a photoelectric conversion element, and is used suitably as a transparent electrode for touchscreens. Especially, since a transparent electrode layer is low resistance, it is preferably used for a capacitive touch panel.

タッチパネルの形成においては、透明電極付き基板上に、導電性インクやペーストが塗布されて、熱処理されることで、引き廻し回路用配線としての集電極が形成される。加熱処理の方法は特に限定されず、オーブンやIRヒータ等による加熱方法が挙げられる。加熱処理の温度・時間は、導電性ペーストが透明電極に付着する温度・時間を考慮して適宜に設定される。例えば、オーブンによる加熱であれば120〜150℃で30〜60分、IRヒータによる加熱であれば150℃で5分等の例が挙げられる。なお、引き廻し回路用配線の形成方法は、上記に限定されず、ドライコーティング法によって形成されてもよい。また、フォトリソグラフィによって引き廻し回路用配線が形成されることで、配線の細線化が可能である。   In the formation of the touch panel, a conductive ink or paste is applied on a substrate with a transparent electrode and is heat-treated to form a collector electrode as a wiring for a routing circuit. The method for the heat treatment is not particularly limited, and examples thereof include a heating method using an oven or an IR heater. The temperature and time of the heat treatment are appropriately set in consideration of the temperature and time at which the conductive paste adheres to the transparent electrode. For example, in the case of heating with an oven, examples include 30 to 60 minutes at 120 to 150 ° C., and in the case of heating by an IR heater, examples include 150 minutes at 150 ° C. In addition, the formation method of the circuit wiring is not limited to the above, and may be formed by a dry coating method. In addition, since the wiring for the routing circuit is formed by photolithography, the wiring can be thinned.

以下に、表1を参照しながら実施例を挙げて本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail by way of examples with reference to Table 1. However, the present invention is not limited to these examples.

透明電極層の表面抵抗は、三菱化学社製低抵抗率計ロレスタGPMCP‐T710を用いて四探針圧接測定により測定した。透明電極付き基板の全光線透過率は、日本電色工業社製ヘイズメーターNDH−5000を用いた。
[実施例1]
(下地層20の製膜)
酸化亜鉛(酸化珪素含量2重量%)をターゲットとして用い、アルゴンガス250sccmに対し窒素ガスを2sccm導入し、製膜室内圧力0.3Pa、基板温度30℃、パワー密度3.0W/cmの条件で行った。
The surface resistance of the transparent electrode layer was measured by four-probe pressure measurement using a low resistivity meter Loresta GPMCP-T710 manufactured by Mitsubishi Chemical Corporation. The total light transmittance of the substrate with a transparent electrode was a Nippon Denshoku Industries Co., Ltd. haze meter NDH-5000.
[Example 1]
(Film formation of underlayer 20)
Using zinc oxide (silicon oxide content 2% by weight) as a target, introducing 2 sccm of nitrogen gas to 250 sccm of argon gas, conditions of film forming chamber pressure 0.3 Pa, substrate temperature 30 ° C., power density 3.0 W / cm 2 I went there.

(透明電極薄膜層30の製膜)
インラインで酸化インジウム・スズ(酸化スズ含量10重量%)をターゲットとして用い、アルゴンガス250sccmに対し酸素ガス3sccm導入し、製膜室内圧力0.3Pa、基板温度30℃、パワー密度3.0W/cmの条件で行った。
(Film formation of transparent electrode thin film layer 30)
Using inline tin oxide (tin oxide content 10% by weight) as a target in-line, introducing oxygen gas 3 sccm into argon gas 250 sccm, film forming chamber pressure 0.3 Pa, substrate temperature 30 ° C., power density 3.0 W / cm It carried out on condition of 2 .

(熱処理による結晶化工程)
この透明電極付き基板を140℃で熱処理した。顕微鏡観察によってほぼ完全に結晶化していることが確認された。
(Crystallization process by heat treatment)
This substrate with a transparent electrode was heat-treated at 140 ° C. Microscopic observation confirmed almost complete crystallization.

(常温結晶化の評価)
製膜したフィルムを25℃・50%RHの環境に90日間静置し、その時のシート抵抗を測定することで評価した。シート抵抗が低下していることと結晶化が進んでいることを等価とした。
(Evaluation of room temperature crystallization)
The formed film was allowed to stand in an environment of 25 ° C. and 50% RH for 90 days, and evaluation was performed by measuring the sheet resistance at that time. It is assumed that the sheet resistance is lowered and the crystallization is progressing.

(結晶化時間の測定)
加熱前の透明電極付き基板の透明電極薄膜300側の面の向かい合う2辺に平行電極を取り付けた。この際、電極間距離と電極を取り付けた辺の長さとを等しくすることにより、抵抗値からシート抵抗を読み取れるようにした。平行電極を取り付けた状態で、透明導電フィルムを140℃のオーブンに投入し、シート抵抗の経時変化を測定した。抵抗の時間変化が無くなった時の抵抗値(完全結晶化時の抵抗値)とのシート抵抗の差が2Ω/□以内になった時間を、結晶化完了時間とした。
(Measurement of crystallization time)
Parallel electrodes were attached to two opposite sides of the transparent electrode thin film 300 side surface of the substrate with a transparent electrode before heating. At this time, the sheet resistance can be read from the resistance value by equalizing the distance between the electrodes and the length of the side to which the electrodes are attached. With the parallel electrodes attached, the transparent conductive film was put into an oven at 140 ° C., and the change in sheet resistance with time was measured. The time when the difference between the sheet resistance and the resistance value (resistance value at the time of complete crystallization) when resistance does not change with time was within 2Ω / □ was defined as the crystallization completion time.

[実施例2]
下地層20の製膜において、アルゴンガス250sccmに対し窒素ガスを10sccm導入し製膜を行った以外は、実施例1と同じ条件で実施例2を製作した。
[Example 2]
Example 2 was manufactured under the same conditions as in Example 1 except that in forming the underlayer 20, 10 sccm of nitrogen gas was introduced into 250 sccm of argon gas.

[実施例3]
下地層20の製膜において、アルゴンガス250sccmに対し窒素ガスを100sccm導入し製膜を行った以外は、実施例1と同じ条件で実施例3を製作した。
[Example 3]
Example 3 was manufactured under the same conditions as in Example 1 except that in forming the underlayer 20, 100 sccm of nitrogen gas was introduced into 250 sccm of argon gas.

[実施例4]
下地層20の製膜において、酸化亜鉛(酸化珪素含量5重量%)をターゲットとして用い、アルゴンガス500sccmに対し酸素ガスを3sccm、窒素ガスを10sccm導入し、透明電極薄膜層30製膜時に酸化スズ含量7重量%の酸化インジウム・スズ(ITO)をターゲットとして用い製膜を行った以外は、実施例1と同じ条件で実施例4を製作した。
[Example 4]
In forming the underlayer 20, zinc oxide (silicon oxide content: 5% by weight) was used as a target, oxygen gas was introduced at 3 sccm and nitrogen gas was introduced at 10 sccm with respect to 500 sccm of argon gas, and tin oxide was formed at the time of forming the transparent electrode thin film layer 30. Example 4 was produced under the same conditions as in Example 1 except that film formation was performed using indium tin oxide (ITO) having a content of 7% by weight as a target.

[実施例5]
下地層20の製膜において、アルゴンガス500sccmに対し酸素ガスを3sccm、窒素ガス100sccm導入し製膜を行った以外は、実施例4と同じ条件で実施例5を製作した。
[Example 5]
Example 5 was manufactured under the same conditions as in Example 4 except that in forming the underlayer 20, 3 sccm of oxygen gas and 100 sccm of nitrogen gas were introduced into 500 sccm of argon gas.

[比較例1]
下地層20の製膜において、窒素導入をせず製膜を行った以外は実施例1と同じ条件で比較例1を製作した。
[Comparative Example 1]
Comparative Example 1 was manufactured under the same conditions as in Example 1 except that the film formation of the underlayer 20 was performed without introducing nitrogen.

[比較例2]
下地層20を製膜せずに、透明フィルム基板10上に直接透明電極薄膜30を製膜した以外は実施例1と同じ条件で比較例2を製作した。
[Comparative Example 2]
Comparative Example 2 was produced under the same conditions as in Example 1 except that the transparent electrode thin film 30 was formed directly on the transparent film substrate 10 without forming the underlayer 20.

[比較例3]
透明フィルム基板10上に透明電極薄膜30を3nm製膜し、その上に透明電極薄膜30を製膜した以外は実施例1と同じ条件で比較例3を製作した。
[Comparative Example 3]
Comparative Example 3 was produced under the same conditions as in Example 1 except that the transparent electrode thin film 30 was formed to 3 nm on the transparent film substrate 10 and the transparent electrode thin film 30 was formed thereon.

[比較例4]
下地層20の代わりに、ターゲットとして珪素の単結晶を用い、アルゴンガス100sccmに対し酸素ガス20sccm導入し、膜厚3nmで製膜を行った以外は実施例1と同じ条件で比較例4を製作した。
[Comparative Example 4]
A comparative example 4 is manufactured under the same conditions as in Example 1 except that a silicon single crystal is used as a target instead of the base layer 20, oxygen gas 20sccm is introduced into argon gas 100sccm, and film formation is performed with a film thickness of 3nm. did.

[比較例5]
下地層20の製膜において、窒素導入をせず製膜を行った以外は実施例4と同じ条件で比較例5を製作した。
[Comparative Example 5]
Comparative Example 5 was manufactured under the same conditions as in Example 4 except that the film formation of the underlayer 20 was performed without introducing nitrogen.

各層の構成、結果、各水準の特性を表1に示す。90日経過後のシート抵抗が180Ω/□以上維持しているものを良好とした。また、140℃で30分加熱後のシート抵抗が130Ω/□以下のものを良好とした。   Table 1 shows the structure of each layer, results, and characteristics at each level. A sheet having a sheet resistance of 180 Ω / □ or more after 90 days was regarded as good. Moreover, the sheet resistance after heating at 140 ° C. for 30 minutes was 130Ω / □ or less.

表1の実施例1〜5の結果より、下地層に窒素を含有する膜とすることで、熱処理後の低抵抗化と常温結晶化の抑制の両方を同時に満たすことが可能となることを見出した。実施例では、90日静置後のシート抵抗の低下度合いが小さいことから、常温結晶化はほとんど抑制されていると考えられ、良好な透明電極付き基板を作製できた。   From the results of Examples 1 to 5 in Table 1, it has been found that by forming a film containing nitrogen in the underlayer, it is possible to satisfy both the low resistance after heat treatment and the suppression of crystallization at room temperature at the same time. It was. In Examples, since the degree of decrease in sheet resistance after standing for 90 days was small, it was considered that room temperature crystallization was hardly suppressed, and a good substrate with a transparent electrode could be produced.

一方、比較例5のように、酸化亜鉛に酸化珪素を5重量%添加したターゲットを下地層として用い、窒素環境化で製膜しなかった場合には、常温結晶化が抑制できなかった。この原因は定かではないが、酸化珪素の含有量が透明電極薄膜の結晶化に影響しており、珪素の含有量が多いことで結晶化が促進されたためであると推測される。そのため、酸化珪素を5重量%以上添加する膜では常温結晶化条件を満たすには、実施例4、5ように下地層に窒素を含有する膜とすることが好ましい。また、比較例3、4のように、下地層20をITOや酸化珪素とした場合にも常温結晶化が抑制できない。比較例2では、常温結晶化しないが熱処理によってもシート抵抗が低下しないという結果となった。   On the other hand, as in Comparative Example 5, when a target in which 5% by weight of silicon oxide was added to zinc oxide was used as the underlayer and the film was not formed in a nitrogen environment, room temperature crystallization could not be suppressed. The cause of this is not clear, but it is presumed that the content of silicon oxide has an effect on the crystallization of the transparent electrode thin film, and that the crystallization is promoted by the high silicon content. Therefore, a film containing 5% by weight or more of silicon oxide is preferably a film containing nitrogen in the underlayer as in Examples 4 and 5 in order to satisfy the normal temperature crystallization condition. Further, as in Comparative Examples 3 and 4, even when the underlayer 20 is made of ITO or silicon oxide, crystallization at room temperature cannot be suppressed. In Comparative Example 2, the sheet resistance was not crystallized at room temperature, but the sheet resistance was not lowered even by heat treatment.

10:透明フィルム基板
20:下地層
30:透明電極薄膜
31、32:透明電極薄膜を構成する層
10: Transparent film substrate 20: Underlayer 30: Transparent electrode thin film 31, 32: Layer constituting the transparent electrode thin film

Claims (6)

透明フィルム基板上に主成分が酸化亜鉛からなる下地層とインジウム−スズ複合酸化物からなる透明電極層とを順に有し、前記下地層は1〜20質量%の酸化珪素と窒素とを含有することを特徴とする透明導電性フィルム。   On the transparent film substrate, a base layer composed mainly of zinc oxide and a transparent electrode layer composed of indium-tin composite oxide are sequentially provided, and the base layer contains 1 to 20% by mass of silicon oxide and nitrogen. A transparent conductive film characterized by that. 前記下地層の膜厚は0より大きく15nm以下である請求項1に記載の透明導電性フィルム。   The transparent conductive film according to claim 1, wherein the film thickness of the base layer is greater than 0 and 15 nm or less. 前記窒素は0.1〜5質量%である請求項1又は2に記載の透明導電性フィルム。   The transparent conductive film according to claim 1 or 2, wherein the nitrogen is 0.1 to 5% by mass. 前記下地層の550nmにおける屈折率は1.7〜1.9である請求項1〜3のいずれかに記載の透明導電性フィルム。   The transparent conductive film according to any one of claims 1 to 3, wherein the refractive index of the underlayer at 550 nm is 1.7 to 1.9. 前記酸化珪素は5〜20質量%含有されている請求項1〜4のいずれかに記載の透明導電性フィルム。   The transparent conductive film according to claim 1, wherein the silicon oxide is contained in an amount of 5 to 20% by mass. 透明フィルム基板に透明電極層を製膜する透明導電フィルムの製造方法において、
前記透明フィルム基板に前記透明電極層を積層する前に、酸化亜鉛を主成分とし、酸化珪素を1〜20質量%含有する酸化物下地層を、反応性ガスとして窒素を用いてスパッタリング製膜する工程を有することを特徴とする透明導電フィルムの製造方法。
In the method for producing a transparent conductive film for forming a transparent electrode layer on a transparent film substrate,
Before laminating the transparent electrode layer on the transparent film substrate, an oxide underlayer containing zinc oxide as a main component and containing 1 to 20% by mass of silicon oxide is formed by sputtering using nitrogen as a reactive gas. The manufacturing method of the transparent conductive film characterized by having a process.
JP2014201799A 2014-09-30 2014-09-30 Transparent conductive film and method for producing the same Active JP6404064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014201799A JP6404064B2 (en) 2014-09-30 2014-09-30 Transparent conductive film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014201799A JP6404064B2 (en) 2014-09-30 2014-09-30 Transparent conductive film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016072136A true JP2016072136A (en) 2016-05-09
JP6404064B2 JP6404064B2 (en) 2018-10-10

Family

ID=55867165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014201799A Active JP6404064B2 (en) 2014-09-30 2014-09-30 Transparent conductive film and method for producing the same

Country Status (1)

Country Link
JP (1) JP6404064B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018012876A (en) * 2016-07-22 2018-01-25 株式会社アルバック Deposition method of zinc oxide compound film, and zinc oxide compound film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582815A (en) * 1991-09-24 1993-04-02 Canon Inc Solar cell
JP2000108244A (en) * 1998-10-05 2000-04-18 Asahi Glass Co Ltd Transparent conductive film, its manufacture, and base having transparent conductive film
WO2006019184A1 (en) * 2004-08-20 2006-02-23 Teijin Limited Transparent conductive multilayer body and transparent touch panel
WO2012026599A1 (en) * 2010-08-27 2012-03-01 国立大学法人九州大学 Method for producing zno film, method for producing transparent conductive film, zno film, and transparent conductive film
JP2012114070A (en) * 2010-11-05 2012-06-14 Nitto Denko Corp Transparent conductive film, method for producing the same and touch panel including the same
JP2013067531A (en) * 2011-09-22 2013-04-18 Sumitomo Metal Mining Co Ltd Zn-Si-O SYSTEM OXIDE SINTERED BODY, METHOD FOR PRODUCING THE SAME, AND TRANSPARENT CONDUCTIVE FILM

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582815A (en) * 1991-09-24 1993-04-02 Canon Inc Solar cell
JP2000108244A (en) * 1998-10-05 2000-04-18 Asahi Glass Co Ltd Transparent conductive film, its manufacture, and base having transparent conductive film
WO2006019184A1 (en) * 2004-08-20 2006-02-23 Teijin Limited Transparent conductive multilayer body and transparent touch panel
WO2012026599A1 (en) * 2010-08-27 2012-03-01 国立大学法人九州大学 Method for producing zno film, method for producing transparent conductive film, zno film, and transparent conductive film
JP2012114070A (en) * 2010-11-05 2012-06-14 Nitto Denko Corp Transparent conductive film, method for producing the same and touch panel including the same
JP2013067531A (en) * 2011-09-22 2013-04-18 Sumitomo Metal Mining Co Ltd Zn-Si-O SYSTEM OXIDE SINTERED BODY, METHOD FOR PRODUCING THE SAME, AND TRANSPARENT CONDUCTIVE FILM

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018012876A (en) * 2016-07-22 2018-01-25 株式会社アルバック Deposition method of zinc oxide compound film, and zinc oxide compound film

Also Published As

Publication number Publication date
JP6404064B2 (en) 2018-10-10

Similar Documents

Publication Publication Date Title
US10777709B2 (en) Substrate with transparent electrode and method for producing same
TWI381401B (en) Transparent conductive film and manufacturing method thereof
WO2013111681A1 (en) Substrate with transparent electrode and method for producing same
WO2012161095A1 (en) Material for conductive film, conductive film laminate, electronic apparatus, and method for producing material for conductive film, conductive film laminate and electronic apparatus
KR19980048999A (en) Transparent conductive laminate and EL light emitting device using same
JP4896854B2 (en) Method for producing transparent conductive film
WO2014115770A1 (en) Transparent electroconductive substrate and method for producing same
JP2013152827A (en) Substrate with transparent electrode and manufacturing method therefor
JP6464042B2 (en) Substrate with transparent electrode and manufacturing method thereof
JP6404064B2 (en) Transparent conductive film and method for producing the same
TWI617460B (en) Transparent conductive laminated film and manufacturing method thereof
JP5468801B2 (en) Substrate with transparent electrode and manufacturing method thereof
JP2010251307A (en) Method for manufacturing transparent electrode
JP6356520B2 (en) Substrate with transparent electrode and method for manufacturing the same
JP7478721B2 (en) Method for manufacturing a substrate with a transparent electrode
JP7320510B2 (en) SUBSTRATE WITH TRANSPARENT ELECTRODE AND PRODUCTION METHOD THEREOF
JP6563185B2 (en) Method for producing transparent conductive film
JP6484098B2 (en) Transparent conductive film, display device, transparent conductive film manufacturing method, and display device manufacturing method
JP6270442B2 (en) Production method of transparent laminate film and substrate with transparent electrode
KR101008237B1 (en) Method of forming transparent conducting film
JP5270976B2 (en) Method for producing transparent conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180816

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180912

R150 Certificate of patent or registration of utility model

Ref document number: 6404064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250