JP2016060922A - Cu-BASED SINTERED ALLOY AND MANUFACTURING METHOD THEREFOR - Google Patents

Cu-BASED SINTERED ALLOY AND MANUFACTURING METHOD THEREFOR Download PDF

Info

Publication number
JP2016060922A
JP2016060922A JP2014187595A JP2014187595A JP2016060922A JP 2016060922 A JP2016060922 A JP 2016060922A JP 2014187595 A JP2014187595 A JP 2014187595A JP 2014187595 A JP2014187595 A JP 2014187595A JP 2016060922 A JP2016060922 A JP 2016060922A
Authority
JP
Japan
Prior art keywords
alloy
based sintered
sintered alloy
powder
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014187595A
Other languages
Japanese (ja)
Other versions
JP6577173B2 (en
Inventor
林太郎 高橋
Rintaro Takahashi
林太郎 高橋
公明 橋本
Kimiaki Hashimoto
公明 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP2014187595A priority Critical patent/JP6577173B2/en
Publication of JP2016060922A publication Critical patent/JP2016060922A/en
Application granted granted Critical
Publication of JP6577173B2 publication Critical patent/JP6577173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a Cu-based sintered alloy having high thermal conductivity and excellent abrasion resistance capable of being used for a valve guide or a valve seat of an engine having high thermal load by down sizing or direct injection high supercharging.SOLUTION: A Cu-based sintered alloy having high thermal conductivity and excellent abrasion resistance by dispersing 3 to 40 mass% of an Fe-based alloy having Vickers hardness of 300 HV0.1 or more in a Cu matrix or a Cu matrix consisting of a Cu-based alloy mainly containing Cu.SELECTED DRAWING: Figure 2

Description

本発明は、Cu基焼結合金及びその製造方法に関し、特に、バルブ温度の上昇を抑制できる高伝熱バルブガイドや高伝熱バルブシート等の摺動部材として有用なCu基焼結合金及びその製造方法に関する。   The present invention relates to a Cu-based sintered alloy and a method for producing the same, and in particular, a Cu-based sintered alloy useful as a sliding member such as a high heat transfer valve guide and a high heat transfer valve seat capable of suppressing an increase in valve temperature, and the method thereof. It relates to a manufacturing method.

自動車エンジン用のバルブガイドやバルブシートは、粉末冶金工法のニアネットシェイプ、加工レスの特徴を活かし、鉄基焼結合金部品として、その生産量は高い伸び率を示してきた。鉄基焼結合金製バルブガイドの一例として、特許文献1は、重量%で、C:1〜4%、Cu:1.5〜6%、P:0.1〜0.8%を含有し、残部がFe及び不可避的不純物からなる組成を有し、パーライトを主体とする素地に、Fe-C-P化合物と遊離黒鉛が分散したものを開示している。   Valve guides and valve seats for automobile engines have been producing high growth rates as iron-based sintered alloy parts, taking advantage of the powder metallurgy near-net shape and processing-less characteristics. As an example of a valve guide made of an iron-based sintered alloy, Patent Document 1 includes, by weight%, C: 1 to 4%, Cu: 1.5 to 6%, P: 0.1 to 0.8%, the balance being Fe and inevitable Discloses a composition in which an Fe-CP compound and free graphite are dispersed in a base material mainly composed of pearlite and having a composition composed of mechanical impurities.

一方、近年の自動車用ガソリンエンジンにおいては、低燃費、低エミッション、高出力を指向し、ダウンサイジング、直噴高過給などの様々な技術の組合せにより燃焼効率の改善が図られている。燃焼効率の改善は各種損失を低減することであり、特に損失割合の大きい排気損失が注目され、その低減技術として高圧縮化が試みられている。高圧縮化は必然的にエンジン温度の上昇をもたらしノッキング等の異常燃焼発生のリスクを伴うため、燃焼室内の冷却対策が必要となってくる。特に周辺温度が高温となる排気側バルブ周辺では、冷却改善が必須であり、バルブの冷却機能を担うバルブガイド、バルブシートにも高いバルブ冷却能が求められている。   On the other hand, recent gasoline engines for automobiles are aimed at low fuel consumption, low emission, and high output, and combustion efficiency is improved by combining various techniques such as downsizing and direct injection high supercharging. Improvement of combustion efficiency is to reduce various losses, and exhaust loss with a large loss ratio is particularly noticed, and high compression has been attempted as a reduction technique. Since high compression inevitably increases the engine temperature and involves the risk of abnormal combustion such as knocking, it is necessary to take measures to cool the combustion chamber. Especially in the vicinity of the exhaust side valve where the ambient temperature becomes high, it is essential to improve the cooling, and the valve guide and the valve seat that bear the cooling function of the valve are also required to have high valve cooling ability.

例えば、バルブ冷却能の高いバルブガイド材として、真鍮製のバルブガイドが挙げられるが、材料物性上、耐摩耗性が不足するという課題がある。   For example, a valve guide made of brass can be cited as a valve guide material having a high valve cooling ability, but there is a problem that wear resistance is insufficient due to material properties.

特許文献2は、高温・高負荷・低潤滑の環境下において、優れた耐摩耗性と耐焼付性を有するバルブガイド等の摺動部材として、重量比で、Ni:5〜30%、Sn:5〜12%を含有し、残部がCu及び不可避の不純物元素からなるスピノーダル硬化したマトリックス中に、MoS2粒子を2〜10%と、ビッカース硬さでHv 700以上のNi基硬質粒子を3〜10%とを均一に分散した組織を有するCu基焼結合金を開示している。 In Patent Document 2, Ni: 5 to 30%, Sn: as a sliding member such as a valve guide having excellent wear resistance and seizure resistance in an environment of high temperature, high load, and low lubrication. In a spinodal-hardened matrix containing 5 to 12%, the balance consisting of Cu and inevitable impurity elements, 2 to 10% of MoS 2 particles and 3 to 5 Ni-base hard particles with a Vickers hardness of Hv 700 or more A Cu-based sintered alloy having a structure in which 10% is uniformly dispersed is disclosed.

また、特許文献3は、近年の高性能化、高燃費化したエンジンで、従来よりも耐摩耗性に優れた鉄基焼結合金製バルブガイドとして、Fe粉末、C粉末及びCu-Ni合金粉末を混合し、成形し、焼結することにより得られ、重量%で、Cu:20〜40%、Ni:0.6〜14%、C:1.0〜3.0%を含有し、残りがFe及び不可避不純物からなる組成を有し、Feを主成分とするFe基合金相をCuを主成分とするCu基合金相で接合してなる素地中に平均粒径:30μm以下の微細な遊離黒鉛相が析出分散している組織を有する鉄基焼結合金製バルブガイドを開示している。   Patent document 3 is an engine with high performance and high fuel efficiency in recent years, and Fe powder, C powder and Cu-Ni alloy powder are used as a valve guide made of an iron-based sintered alloy which is superior in wear resistance than the conventional one. Obtained by mixing, forming and sintering, Cu: 20-40%, Ni: 0.6-14%, C: 1.0-3.0% by weight%, the remainder from Fe and inevitable impurities A fine free graphite phase with an average particle size of 30 μm or less is precipitated and dispersed in a substrate formed by joining a Fe-based alloy phase containing Fe as a main component with a Cu-based alloy phase containing Cu as a main component. A valve guide made of an iron-based sintered alloy having such a structure is disclosed.

バルブシート材としては、熱伝導を向上する手段として、特許文献4がCu粉末又はCu含有粉末を配合したバルブ当接層(Cu含有量を3〜20%)とバルブシート本体層(Cu含有量を5〜25%)に二層化することを開示している。   As a valve seat material, Patent Document 4 discloses a valve contact layer (Cu content is 3 to 20%) and a valve seat body layer (Cu content) as a means for improving heat conduction. To 5 to 25%).

さらに、特許文献5は、熱伝導に優れた分散硬化型Cu基合金にさらに硬質粒子を分散したCu基合金製焼結バルブシートを開示している。具体的には、出発粉末混合物が50〜90重量%のCu含有基礎粉末及び10〜50重量%のMo含有粉末状合金添加材からなり、前記Cu含有基礎粉末としてAl2O3分散硬化したCu粉末、Mo含有粉末状合金添加材として28〜32重量%Mo、9〜11重量%Cr、2.5〜3.5重量%Si、残部Coを有する合金粉末を教示している。 Further, Patent Document 5 discloses a sintered valve seat made of a Cu base alloy in which hard particles are further dispersed in a dispersion hardening type Cu base alloy excellent in heat conduction. Specifically, the starting powder mixture is composed of 50 to 90% by weight of Cu-containing base powder and 10 to 50% by weight of Mo-containing powdered alloy additive, and the Cu-containing base powder is Al 2 O 3 dispersion-hardened Cu. Teaches an alloy powder with 28-32 wt% Mo, 9-11 wt% Cr, 2.5-3.5 wt% Si, balance Co as powder, Mo-containing powdered alloy additive.

しかし、上記特許文献2〜5の焼結合金は、特定の用途に優れた特性を示したとしても、希少金属を多量に使用したり、特別な製法を要求したりするため、コストパーフォーマンスの観点では必ずしも十分なものではなかった。そのため、高いバルブ冷却能と耐摩耗性を有し、さらにはコストも満足できる焼結合金が依然として強く求められている。   However, even if the sintered alloys of Patent Documents 2 to 5 show excellent properties for specific applications, they use a large amount of rare metals or require a special manufacturing method. From a viewpoint, it was not always sufficient. Therefore, there is still a strong demand for sintered alloys that have high valve cooling ability and wear resistance, and that can also satisfy the cost.

特開平6−306554号公報JP-A-6-306554 特開平5−195117号公報JP-A-5-195117 特開平11−323512号公報JP-A-11-323512 特開平10−184324号公報Japanese Patent Laid-Open No. 10-184324 特表2001−500567号公報Japanese translation of PCT publication No. 2001-500247

上記問題に鑑み、本発明は、ダウンサイジングや直噴高過給化による熱負荷の大きいエンジンのバルブガイドやバルブシート等に使用することが可能な高伝熱性と優れた耐摩耗性を有するCu基焼結合金を提供することを課題とする。さらに、当該Cu基焼結合金の製造方法を提供することを課題とする。   In view of the above problems, the present invention has a high heat conductivity and excellent wear resistance that can be used for valve guides and valve seats of engines with large thermal loads due to downsizing and direct injection high supercharging. It is an object to provide a base sintered alloy. Furthermore, it is an object to provide a method for producing the Cu-based sintered alloy.

本発明者は、Cu基焼結合金の熱伝導性と耐摩耗性について鋭意研究の結果、所定の純度を有し成形性に優れた電解Cu粉末と、Fe基合金からなる硬質粒子を使用して、高熱伝導性と耐摩耗性の両方を兼ね備えたCu基焼結合金が得られることに想到した。   As a result of intensive studies on the thermal conductivity and wear resistance of Cu-based sintered alloys, the present inventor used electrolytic Cu powder having a predetermined purity and excellent formability, and hard particles made of Fe-based alloy. Thus, it was conceived that a Cu-based sintered alloy having both high thermal conductivity and wear resistance can be obtained.

すなわち、Cu基地中又はCuを主成分とするCu基合金からなるCu基地中に硬質粒子を分散したCu基焼結合金であって、前記硬質粒子がビッカース硬さ300 HV0.1以上のFe基合金であり、その分散量が3〜40質量%であることを特徴とする。   That is, a Cu-based sintered alloy in which hard particles are dispersed in a Cu matrix or a Cu matrix composed of a Cu-based alloy containing Cu as a main component, wherein the hard particles are Fe-based having a Vickers hardness of 300 HV0.1 or more. It is an alloy, and its dispersion amount is 3 to 40% by mass.

前記Fe基合金は、Fe-Cr-Mo-V-C合金、Fe-Cr-W-V-C合金、Fe-Cr-Mo-W-V-C合金、Fe-Cr-Mo合金、Fe-Cr-Ni-C合金、Fe-Cr-Ni-Mo-Si-C合金、Fe-Mo-C合金、及びFe-Mo-Si合金からなるグループから選択された合金であることが好ましく、質量%で、Cr:0〜25%、Ni:0〜15%、Mo:0〜48%、W:0〜8%、V:0〜8%、Si:0〜5%、C:2.5%以下、残部Fe及び不可避的不純物からなる組成を有し、前記Cr、Ni、Mo、W及びVの合計が2%以上であることが好ましい。   The Fe-based alloy is Fe-Cr-Mo-VC alloy, Fe-Cr-WVC alloy, Fe-Cr-Mo-WVC alloy, Fe-Cr-Mo alloy, Fe-Cr-Ni-C alloy, Fe-Cr It is preferably an alloy selected from the group consisting of Ni-Mo-Si-C alloy, Fe-Mo-C alloy, and Fe-Mo-Si alloy, and by mass, Cr: 0-25%, Ni : 0-15%, Mo: 0-48%, W: 0-8%, V: 0-8%, Si: 0-5%, C: 2.5% or less, balance Fe and inevitable impurities The total of Cr, Ni, Mo, W and V is preferably 2% or more.

本発明のCu基焼結合金は、Cu基地が連続した組織であることが好ましく、Cu基地中にAl、Ni、Sn、及びZnからなるグループから選択された少なくとも1種を含むことが好ましい。   The Cu-based sintered alloy of the present invention preferably has a structure in which a Cu matrix is continuous, and preferably contains at least one selected from the group consisting of Al, Ni, Sn, and Zn in the Cu matrix.

また、本発明のCu基焼結合金は、さらにP化合物相を含むことが好ましい。   Moreover, it is preferable that the Cu-based sintered alloy of the present invention further includes a P compound phase.

さらに、本発明のCu基焼結合金は、さらに固体潤滑材として、黒鉛、フッ化カルシウム、二硫化モリブデン、二硫化タングステン、及び窒化硼素からなるグループから選択された少なくとも1種を含むことが好ましい。   Further, the Cu-based sintered alloy of the present invention preferably further contains at least one selected from the group consisting of graphite, calcium fluoride, molybdenum disulfide, tungsten disulfide, and boron nitride as a solid lubricant. .

また、本発明のCu基焼結合金は、気孔率が10%未満であることが好ましく、熱伝導率が65 W/(m・K)以上であることが好ましい。   The Cu-based sintered alloy of the present invention preferably has a porosity of less than 10%, and preferably has a thermal conductivity of 65 W / (m · K) or more.

本発明のCu基焼結合金の製造方法は、Cu基地中又はCuを主成分とするCu基合金からなるCu基地中に硬質粒子を分散したCu基焼結合金を製造する方法であって、Cu基地を構成するCu粉末又はCu粉末及び合金粉末にFe基合金粉末を混合した混合粉末を圧縮、成形、焼結する工程を有し、前記Cu粉末に純度99.5%以上の電解Cu粉末を使用することを特徴とする。   The method for producing a Cu-based sintered alloy of the present invention is a method for producing a Cu-based sintered alloy in which hard particles are dispersed in a Cu matrix or a Cu matrix comprising a Cu-based alloy containing Cu as a main component, It has a process of compressing, forming and sintering Cu powder or Cu powder and alloy powder mixed with Fe-base alloy powder constituting Cu base, and using electrolytic Cu powder with purity of 99.5% or more for the Cu powder It is characterized by doing.

本発明のCu基焼結合金は、熱伝導に優れたCu相又はCu基合金相に耐摩耗性を有するFe基合金相を分散複合することによって、耐摩耗性に優れ、バルブ冷却能の高いCu基焼結合金とすることが可能となる。また、自己潤滑性に優れた固体潤滑相や、Cu基地を強化する固溶強化元素の添加や分散強化相の析出により、さらに耐摩耗性を向上することが可能となる。これらにより、高性能化及び高負荷化したエンジンにおいてもノッキング等の異常燃焼を回避し、高性能エンジンの性能向上に貢献するバルブガイドやバルブシートを提供することができる。   The Cu-based sintered alloy of the present invention has excellent wear resistance and high valve cooling capacity by dispersing and compounding a Cu phase having excellent heat conduction or a Fe-based alloy phase having wear resistance in a Cu-based alloy phase. A Cu-based sintered alloy can be obtained. In addition, it is possible to further improve the wear resistance by adding a solid lubricating phase excellent in self-lubricating property, adding a solid solution strengthening element that strengthens the Cu base, and depositing a dispersion strengthening phase. As a result, it is possible to provide a valve guide and a valve seat that can avoid abnormal combustion such as knocking even in a high-performance and high-load engine and contribute to an improvement in performance of the high-performance engine.

摩耗試験の概要を示した図である。It is the figure which showed the outline | summary of the abrasion test. 実施例6のCu基焼結合金の光学顕微鏡による組織写真である。6 is a structure photograph of the Cu-based sintered alloy of Example 6 by an optical microscope.

本発明のCu基焼結合金は、Cu基地中又はCuを主成分とするCu基合金からなるCu基地中にビッカース硬さ300 HV0.1以上のFe基合金からなる硬質粒子が3〜40質量%分散した複合焼結合金である。基本的に、Cu基地相が高熱伝導性機能を担い、Fe基合金からなるビッカース硬さ300 HV0.1以上の硬質粒子が耐摩耗性機能を担う。硬質粒子のビッカース硬さが300 HV0.1未満では、耐摩耗性が十分でないため300 HV0.1以上とするが、500 HV0.1以上であれば好ましく、600 HV0.1以上であればより好ましい。また、硬質粒子の量は、3質量%未満では耐摩耗性が十分でなく、逆に40質量%を超えるとCu基地相の連続性が部分的に途絶え熱伝導性が十分でなくなるので、3〜40質量%の範囲とする。   The Cu-based sintered alloy of the present invention has 3 to 40 masses of hard particles made of a Fe-based alloy having a Vickers hardness of 300 HV0.1 or more in a Cu base or a Cu base made of a Cu-based alloy containing Cu as a main component. % Is a composite sintered alloy dispersed in%. Basically, the Cu matrix phase has a high thermal conductivity function, and hard particles made of an Fe-based alloy with a Vickers hardness of 300 HV0.1 or more have a wear resistance function. If the Vickers hardness of the hard particles is less than 300 HV0.1, the wear resistance is not sufficient, so 300 HV0.1 or more is preferable, but 500 HV0.1 or more is preferable, and 600 HV0.1 or more is more preferable. . If the amount of hard particles is less than 3% by mass, the wear resistance is not sufficient. Conversely, if the amount exceeds 40% by mass, the continuity of the Cu matrix phase is partially interrupted and the thermal conductivity becomes insufficient. The range is ˜40% by mass.

上記硬質粒子を構成するFe基合金は、Fe基合金を構成する元素の中でFeが最大の含有量である合金とする。好ましくは、Feを主体とする合金、すなわち、50%を越えるFeを含む合金とする。Fe-Cr-Mo-V-C合金、Fe-Cr-W-V-C合金、Fe-Cr-Mo-W-V-C合金、Fe-Cr-Mo合金、Fe-Cr-Ni-C合金、Fe-Cr-Ni-Mo-Si-C合金、Fe-Mo-C合金、Fe-Mo-Si合金、等が挙げられ、合金元素としては、質量%で、Cr:0〜25%、Ni:0〜15%、Mo:0〜48%、W:0〜8%、V:0〜8%、Si:0〜5%、C:2.5%以下、残部Fe及び不可避的不純物からなる組成を有し、前記Cr、Ni、Mo、W及びVの合計が2%以上であることが好ましい。ここで、不可避的不純物は一般的にP及びSを含み、Cを構成元素に含まないFe基合金ではさらにCを含む。硬質粒子の平均粒径は5〜100μmが好ましい。平均粒径20〜80μmがより好ましく、平均粒径30〜70μmがさらに好ましい。   The Fe-based alloy constituting the hard particles is an alloy having the maximum content of Fe among the elements constituting the Fe-based alloy. Preferably, the alloy is mainly composed of Fe, that is, an alloy containing more than 50% Fe. Fe-Cr-Mo-VC alloy, Fe-Cr-WVC alloy, Fe-Cr-Mo-WVC alloy, Fe-Cr-Mo alloy, Fe-Cr-Ni-C alloy, Fe-Cr-Ni-Mo-Si -C alloy, Fe-Mo-C alloy, Fe-Mo-Si alloy, etc. are mentioned, and the alloy elements are in mass%, Cr: 0-25%, Ni: 0-15%, Mo: 0- 48%, W: 0 to 8%, V: 0 to 8%, Si: 0 to 5%, C: 2.5% or less, having a composition comprising the balance Fe and unavoidable impurities, Cr, Ni, Mo, The total of W and V is preferably 2% or more. Here, inevitable impurities generally include P and S, and Fe-based alloys that do not include C as a constituent element further include C. The average particle size of the hard particles is preferably 5 to 100 μm. An average particle size of 20 to 80 μm is more preferable, and an average particle size of 30 to 70 μm is more preferable.

本発明のCu基焼結合金を構成するCu基地相は、高熱伝導性を付与する上で重要な役割を担っている。連続した組織であることが好ましい。また、最大の体積率を有するため、耐摩耗性を損なわないように強化や潤滑を目的とした材料を添加することが好ましい。例えば、Cu基地相を強化するには、Cuに固溶するAl、Ni、Sn、Zn等の金属元素を添加して固溶強化することができる。但し、これらの元素がCuに固溶するとCuの熱伝導率を下げるので、Al、Ni及びSnの場合の上限は5質量%とし、Znの場合の上限は10質量%とする。Al、Ni及びSnは0.5〜4質量%が好ましく、1〜3質量%がさらに好ましい。またZnは0.5〜9質量%が好ましく1〜8質量%がさらに好ましい。   The Cu matrix phase constituting the Cu-based sintered alloy of the present invention plays an important role in imparting high thermal conductivity. A continuous structure is preferred. Moreover, since it has the maximum volume ratio, it is preferable to add the material for the purpose of reinforcement | strengthening or lubrication so that abrasion resistance may not be impaired. For example, in order to strengthen the Cu matrix phase, it is possible to strengthen the solid solution by adding a metal element such as Al, Ni, Sn, Zn or the like that dissolves in Cu. However, when these elements are dissolved in Cu, the thermal conductivity of Cu is lowered. Therefore, the upper limit in the case of Al, Ni and Sn is 5% by mass, and the upper limit in the case of Zn is 10% by mass. Al, Ni and Sn are preferably 0.5 to 4% by mass, and more preferably 1 to 3% by mass. Zn is preferably 0.5 to 9% by mass, more preferably 1 to 8% by mass.

また、Cu基地相は、基地中にP化合物相を微細に分散することによって分散強化することができる。具体的には、Fe-P合金粉末を添加する。Fe-P合金粉末は、低融点(Fe-P合金の共晶点は1048℃)であることを利用して液相焼結により焼結体を緻密化する目的で添加されるが、本発明では、PがCu基地相中に固溶し、冷却過程でP化合物相として析出する。P化合物相の分散は、Cu基地相の熱伝導率を低下させないので、Cu基焼結合金の高熱伝導性を損なうことなく、Cu基地相をさらに強化することができる。P化合物相の粒径は1μm以下が好ましく、0.05〜0.5μmであることがより好ましい。また、Fe-P合金相の添加量は5質量%以下が好ましく、0.5〜4質量%がより好ましい。Pの添加量としてみれば、1.5質量%以下が好ましく、0.15〜1.2質量%がより好ましい。   Further, the Cu matrix phase can be strengthened by dispersing the P compound phase in the matrix finely. Specifically, Fe—P alloy powder is added. Fe-P alloy powder is added for the purpose of densifying the sintered body by liquid phase sintering using the low melting point (the eutectic point of Fe-P alloy is 1048 ° C). Then, P dissolves in the Cu matrix phase and precipitates as a P compound phase in the cooling process. Since the dispersion of the P compound phase does not reduce the thermal conductivity of the Cu matrix phase, the Cu matrix phase can be further strengthened without impairing the high thermal conductivity of the Cu-based sintered alloy. The particle size of the P compound phase is preferably 1 μm or less, and more preferably 0.05 to 0.5 μm. Further, the addition amount of the Fe—P alloy phase is preferably 5% by mass or less, and more preferably 0.5 to 4% by mass. If it sees as addition amount of P, 1.5 mass% or less is preferable and 0.15-1.2 mass% is more preferable.

Cu基地相は、潤滑成分として、さらに、黒鉛(C)、フッ化カルシウム(CaF2)、二硫化モリブデン(MoS2)、二硫化タングステン(WS2)、窒化硼素(BN)等の固体潤滑材を添加することができる。熱伝導率の観点では、黒鉛が最も好ましい。固体潤滑材粉末の平均粒径は1〜100μmが好ましく、10〜70μmがより好ましい。添加量は5質量%以下が好ましく、0.3〜3.0質量%がより好ましい。 The Cu matrix phase is a lubricant component, and solid lubricants such as graphite (C), calcium fluoride (CaF 2 ), molybdenum disulfide (MoS 2 ), tungsten disulfide (WS 2 ), boron nitride (BN), etc. Can be added. From the viewpoint of thermal conductivity, graphite is most preferable. The average particle size of the solid lubricant powder is preferably 1 to 100 μm, more preferably 10 to 70 μm. The addition amount is preferably 5% by mass or less, and more preferably 0.3 to 3.0% by mass.

上記のような構成とすることにより、本発明のCu基焼結合金は、気孔率が10%未満に緻密化することができ、熱伝導率も65 W/(m・K)以上とすることが可能となる。本発明において、気孔率は顕微鏡組織を画像解析して求める。気孔率は7%未満が好ましく、5%未満がより好ましい。また、熱伝導率は75 W/(m・K)以上が好ましく、100 W/(m・K)以上がより好ましい。   By adopting the configuration as described above, the Cu-based sintered alloy of the present invention can be densified to a porosity of less than 10%, and the thermal conductivity should be 65 W / (m · K) or more. Is possible. In the present invention, the porosity is determined by image analysis of the microstructure. The porosity is preferably less than 7%, more preferably less than 5%. The thermal conductivity is preferably 75 W / (m · K) or more, more preferably 100 W / (m · K) or more.

本発明のCu基焼結合金の製造は、Cu粉末、Fe基合金粉末、等の原料粉末を配合し、混合した混合粉末を圧縮、成形、焼成する。成形性を高めるため、混合粉末に対し、離型剤としてステアリン酸塩を0.5〜2質量%配合してもよい。また、成形圧粉体の焼結は真空又は非酸化性又は還元性の雰囲気中、850〜1070℃の温度範囲で行う。   In the production of the Cu-based sintered alloy of the present invention, raw powders such as Cu powder and Fe-based alloy powder are blended, and the mixed powder is compressed, molded, and fired. In order to improve the moldability, 0.5 to 2% by mass of stearate may be blended as a release agent with respect to the mixed powder. The compacted green compact is sintered in a temperature range of 850 to 70 ° C. in a vacuum or a non-oxidizing or reducing atmosphere.

特に、Cu基地相を構成するCu粉末には純度99.5%以上の電解Cu粉末を使用する。電解Cu粉末は、細かな突起をもった樹枝状形態をしている。よって、Cu粉末同士が絡みやすく、連続した組織を形成する上で重要であり、焼結前の成形体の段階で高い密度が得られる。電解Cu粉末の平均粒径は10〜45μmが好ましく、15〜30μmがより好ましい。   In particular, electrolytic Cu powder having a purity of 99.5% or more is used for Cu powder constituting the Cu matrix phase. The electrolytic Cu powder has a dendritic form with fine protrusions. Therefore, Cu powders are easily entangled with each other, which is important for forming a continuous structure, and a high density can be obtained at the stage of the formed body before sintering. The average particle size of the electrolytic Cu powder is preferably 10 to 45 μm, more preferably 15 to 30 μm.

Cu基焼結合金の原料粉末として、平均粒径22μmの純度99.8%の電解Cu粉末、表1に示す硬質粒子(但し、硬質粒子E及びFは硬さが低いため、本発明に使用できない。)、P含有量が26.7質量%の平均粒径20μmのFe-P合金粉末、平均粒径5μmの黒鉛粉末、平均粒径50μmのCaF2粉末、平均粒径5μmのNi粉末、Sn含有量が10質量%の平均粒径45μmのCu-Sn合金(青銅)粉末を用意した。 As a raw material powder of a Cu-based sintered alloy, an electrolytic Cu powder having an average particle diameter of 22 μm and a purity of 99.8%, hard particles shown in Table 1 (however, the hard particles E and F cannot be used in the present invention because of their low hardness). ), Fe-P alloy powder having an average particle size of 20μm of P content 26.7 wt%, graphite powder having an average particle size of 5 [mu] m, CaF 2 powder having an average particle size of 50 [mu] m, Ni powder having an average particle size of 5 [mu] m, Sn content A Cu-Sn alloy (bronze) powder having an average particle size of 45 µm and a 10 mass% was prepared.

実施例1〜15、比較例1〜6
準備した電解Cu粉末に、硬質粒子粉末、Fe-P合金粉末、合金化粉末、固体潤滑材を、表2に示す種類と配合量で混練して混合粉末を作製した。混合粉末には成形工程の型抜き性を良くするためにステアリン酸亜鉛を、混合粉末の総量に対して0.5質量%加えている。これらの混合粉末を成形金型に充填し、成形プレスにより638 MPaの面圧で圧縮・成形した後、温度1000℃の真空雰囲気にて焼結し、15 mm×15 mm×50 mmの角状焼結体を作製した。但し、比較例4については、焼結温度は900℃とした。
Examples 1-15, Comparative Examples 1-6
Hard powder, Fe-P alloy powder, alloyed powder, and solid lubricant were kneaded with the prepared electrolytic Cu powder in the types and amounts shown in Table 2 to prepare a mixed powder. Zinc stearate is added to the mixed powder in an amount of 0.5% by mass with respect to the total amount of the mixed powder in order to improve the mold release property in the molding process. These mixed powders are filled in a molding die, compressed and molded with a molding press at a surface pressure of 638 MPa, and then sintered in a vacuum atmosphere at a temperature of 1000 ° C. to form a square shape of 15 mm × 15 mm × 50 mm A sintered body was produced. However, for Comparative Example 4, the sintering temperature was 900 ° C.

[1] 摩耗試験
実施例1〜15で得られた角状焼結体から10 mm×5 mm×50 mmの板状試験片1を作製した。また、摺動相手材として、SUH合金製のバルブ相当材から切り出した8 mm×8 mm×30 mm(一方の端部が8 mm Rの円柱側面状に加工する)の棒状試験片2を作製した。摩耗試験は、図1に示すように、往復動する板状試験片1に棒状試験片2を一定荷重で押し付けて行い、その摩耗量を測定して耐摩耗性を評価した。試験条件は以下の通りである。
押付荷重:50 N
試験温度:300℃
潤滑:無潤滑(ドライ)
ストローク:25 mm
摺動速度:166 mm/秒
試験時間:100 分
摩耗量は、試験前後の板状試験片と棒状試験片の当たり面の後退量として算出した。
[1] Abrasion test A 10 mm × 5 mm × 50 mm plate-like test piece 1 was produced from the rectangular sintered bodies obtained in Examples 1-15. In addition, 8 mm x 8 mm x 30 mm (one end is processed into a cylindrical side surface of 8 mm R) cut out from a valve equivalent material made of SUH alloy was produced as a sliding counterpart. did. As shown in FIG. 1, the abrasion test was performed by pressing the bar-shaped test piece 2 against the plate-shaped test piece 1 reciprocating with a constant load, and the wear amount was measured to evaluate the wear resistance. The test conditions are as follows.
Pressing load: 50 N
Test temperature: 300 ℃
Lubrication: No lubrication (dry)
Stroke: 25 mm
Sliding speed: 166 mm / sec Test time: 100 minutes The amount of wear was calculated as the amount of retraction of the contact surface between the plate-like specimen and the bar-like specimen before and after the test.

[2] 熱伝導率と気孔率の測定
前記角状焼結体から径5.0 mm×厚さ1.0 mmの円板状試験片を切り出し、両面を鏡面研磨して、レーザーフラッシュ法により熱伝導率を測定した。また、鏡面研磨した面を、光学顕微鏡を用い、150倍で観察、写真撮影し、得られた写真から合金部分と気孔部分を二値化処理し、画像解析により気孔部分の面積率(気孔率)を測定した。
[2] Measurement of thermal conductivity and porosity A disk-shaped test piece having a diameter of 5.0 mm and a thickness of 1.0 mm was cut out from the square sintered body, both surfaces were mirror-polished, and the thermal conductivity was measured by a laser flash method. It was measured. In addition, the mirror-polished surface was observed and photographed at 150 times using an optical microscope, and the alloy part and the pore part were binarized from the obtained photograph, and the area ratio (porosity) of the pore part was analyzed by image analysis. ) Was measured.

実施例1〜15及び比較例1〜6の摩耗試験の結果、熱伝導率、及び気孔率を表3に示す。   Table 3 shows the results of the wear tests of Examples 1 to 15 and Comparative Examples 1 to 6, the thermal conductivity, and the porosity.

図2は、実施例6のCu基焼結合金の光学顕微鏡による組織写真を示すが、連続したCu基地3中に、Fe基合金の硬質粒子4と、固体潤滑材の黒鉛粒子5が分散している様子が分かる。   FIG. 2 shows a micrograph of the Cu-based sintered alloy of Example 6 under an optical microscope. In a continuous Cu matrix 3, Fe-based alloy hard particles 4 and solid lubricant graphite particles 5 are dispersed. You can see how it is.

本発明の実施例1〜15のCu基焼結合金は、表3に示した結果から分かるように、比較的優れた熱伝導率(66〜128 W/(m・K))を示し、且つ、自己摩耗量を示す板状試験片の摩耗量(9.2〜57.3μm)と相手材である棒状試験片の摩耗量(6.0〜21.4μm)との間でバランスのとれた、比較的緻密なCu基焼結合金であることが確認された。   As can be seen from the results shown in Table 3, the Cu-based sintered alloys of Examples 1 to 15 of the present invention exhibited relatively excellent thermal conductivity (66 to 128 W / (m · K)), and , Relatively dense Cu that is balanced between the wear amount of the plate-shaped specimen (9.2-57.3μm) indicating the self-abrasion amount and the wear amount of the bar-shaped specimen (6.0-21.4μm) as the counterpart material It was confirmed to be a base sintered alloy.

1 板状試験片
2 棒状試験片
3 Cu基地
4 Fe基合金の硬質粒子
5 黒鉛粒子
6 気孔
1 Plate specimen
2 Bar specimen
3 Cu base
4 Hard particles of Fe-based alloy
5 Graphite particles
6 pores

Claims (10)

Cu基地中又はCuを主成分とするCu基合金からなるCu基地中に硬質粒子を分散したCu基焼結合金であって、前記硬質粒子がビッカース硬さ300 HV0.1以上のFe基合金であり、その分散量が3〜40質量%であることを特徴とするCu基焼結合金。   A Cu-based sintered alloy in which hard particles are dispersed in a Cu matrix or a Cu matrix composed of a Cu-based alloy containing Cu as a main component, wherein the hard particles are Fe-based alloys having a Vickers hardness of 300 HV0.1 or more. A Cu-based sintered alloy having a dispersion amount of 3 to 40% by mass. 請求項1に記載のCu基焼結合金において、前記Fe基合金が、Fe-Cr-Mo-V-C合金、Fe-Cr-W-V-C合金、Fe-Cr-Mo-W-V-C合金、Fe-Cr-Mo合金、Fe-Cr-Ni-C合金、Fe-Cr-Ni-Mo-Si-C合金、Fe-Mo-C合金、及びFe-Mo-Si合金からなるグループから選択された合金であることを特徴とするCu基焼結合金。   2. The Cu-based sintered alloy according to claim 1, wherein the Fe-based alloy is an Fe-Cr-Mo-VC alloy, an Fe-Cr-WVC alloy, an Fe-Cr-Mo-WVC alloy, or an Fe-Cr-Mo alloy. Fe-Cr-Ni-C alloy, Fe-Cr-Ni-Mo-Si-C alloy, Fe-Mo-C alloy, and an alloy selected from the group consisting of Fe-Mo-Si alloys Cu-based sintered alloy. 請求項1又は2に記載のCu基焼結合金において、前記Fe基合金が、質量%で、Cr:0〜25%、Ni:0〜15%、Mo:0〜48%、W:0〜8%、V:0〜8%、Si:0〜5%、C:2.5%以下、残部Fe及び不可避的不純物からなる組成を有し、前記Cr、Ni、Mo、W及びVの合計が2%以上であることを特徴とするCu基焼結合金。   3. The Cu-based sintered alloy according to claim 1, wherein the Fe-based alloy is in mass%, Cr: 0 to 25%, Ni: 0 to 15%, Mo: 0 to 48%, W: 0 to 8%, V: 0 to 8%, Si: 0 to 5%, C: 2.5% or less, balance Fe and inevitable impurities, the total of Cr, Ni, Mo, W and V is 2 % Cu-based sintered alloy characterized in that it is at least%. 請求項1〜3のいずれかに記載のCu基焼結合金において、前記Cu基地が連続した組織であることを特徴とするCu基焼結合金。   The Cu-based sintered alloy according to any one of claims 1 to 3, wherein the Cu matrix is a continuous structure. 請求項1〜4のいずれかに記載のCu基焼結合金において、前記Cu基地中に、Al、Ni、Sn、及びZnからなるグループから選択された少なくとも1種を含むことを特徴とするCu基焼結合金。   The Cu-based sintered alloy according to any one of claims 1 to 4, wherein the Cu matrix includes at least one selected from the group consisting of Al, Ni, Sn, and Zn. Base sintered alloy. 請求項1〜5のいずれかに記載のCu基焼結合金において、さらにP化合物相を含むことを特徴とするCu基焼結合金。   The Cu-based sintered alloy according to any one of claims 1 to 5, further comprising a P compound phase. 請求項1〜6のいずれかに記載のCu基焼結合金において、さらに固体潤滑材として、黒鉛、フッ化カルシウム、二硫化モリブデン、二硫化タングステン、及び窒化硼素からなるグループから選択された少なくとも1種を含むことを特徴とするCu基焼結合金。   The Cu-based sintered alloy according to any one of claims 1 to 6, further comprising at least one selected from the group consisting of graphite, calcium fluoride, molybdenum disulfide, tungsten disulfide, and boron nitride as a solid lubricant. Cu-based sintered alloy characterized by containing seeds. 請求項1〜7のいずれかに記載のCu基焼結合金において、前記Cu基焼結合金の気孔率が10%未満であることを特徴とするCu基焼結合金。   The Cu-based sintered alloy according to any one of claims 1 to 7, wherein the Cu-based sintered alloy has a porosity of less than 10%. 請求項1〜8のいずれかに記載のCu基焼結合金において、前記Cu基焼結合金の熱伝導率が65 W/(m・K)以上であることを特徴とするCu基焼結合金。   The Cu-based sintered alloy according to any one of claims 1 to 8, wherein the Cu-based sintered alloy has a thermal conductivity of 65 W / (m · K) or more. . Cu基地中又はCuを主成分とするCu基合金からなるCu基地中に硬質粒子を分散したCu基焼結合金を製造する方法であって、Cu基地を構成するCu粉末又はCu粉末及び合金粉末にFe基合金粉末を混合した混合粉末を圧縮、成形、焼結する工程を有し、前記Cu粉末に純度99.5%以上の電解Cu粉末を使用することを特徴とするCu基焼結合金の製造方法。   A method of manufacturing a Cu-based sintered alloy in which hard particles are dispersed in a Cu base or a Cu base composed of a Cu-based alloy containing Cu as a main component, and comprising Cu powder or Cu powder and alloy powder constituting the Cu base A Cu-based sintered alloy characterized by comprising a step of compressing, forming and sintering a mixed powder obtained by mixing Fe-based alloy powder with a Cu-powder and using an electrolytic Cu powder having a purity of 99.5% or more. Method.
JP2014187595A 2014-09-16 2014-09-16 Cu-based sintered alloy and manufacturing method thereof Active JP6577173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014187595A JP6577173B2 (en) 2014-09-16 2014-09-16 Cu-based sintered alloy and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014187595A JP6577173B2 (en) 2014-09-16 2014-09-16 Cu-based sintered alloy and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016060922A true JP2016060922A (en) 2016-04-25
JP6577173B2 JP6577173B2 (en) 2019-09-18

Family

ID=55797249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014187595A Active JP6577173B2 (en) 2014-09-16 2014-09-16 Cu-based sintered alloy and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6577173B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107214331A (en) * 2017-06-06 2017-09-29 苏州轩朗塑料制品有限公司 Add the preparation method of the composite material of self-lubricating solid agent
CN108580917A (en) * 2018-01-22 2018-09-28 北京科技大学 A kind of method that low-temperature combustion synthesis prepares tungsten dispersion-strengthened Cu superfines
DE102018125022A1 (en) 2017-10-11 2019-04-11 Magna Closures Inc. Variable lead screw for power door actuator
CN110184494A (en) * 2019-06-20 2019-08-30 合肥工业大学 A kind of preparation method of graphite flake used for electronic packaging/Cu based composites
CN110253016A (en) * 2019-07-10 2019-09-20 北京瑞斯福高新科技股份有限公司 A kind of passenger train powder metallurgy friction material and preparation method thereof
WO2020054671A1 (en) * 2018-09-10 2020-03-19 冨士ダイス株式会社 Copper-based sintered alloy and production method therefor
CN111575524A (en) * 2019-02-18 2020-08-25 红心科技有限公司 Copper-based powder metallurgy brake pad friction block and preparation method thereof
CN112638561A (en) * 2018-09-13 2021-04-09 日立金属株式会社 FeSiCrC alloy powder and magnetic core
CN113150476A (en) * 2021-05-06 2021-07-23 浙江亿隆新材料有限公司 Preparation method of heat conduction material for electronic equipment
CN115386763A (en) * 2022-08-19 2022-11-25 浙江省冶金研究院有限公司 TiC-Y 2 O 3 Composite reinforced graphene-coated copper-based contact material and preparation method thereof
WO2023002986A1 (en) * 2021-07-20 2023-01-26 日本ピストンリング株式会社 Iron-based sintered alloy valve seat for internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164838A (en) * 1984-09-06 1986-04-03 Toyota Motor Corp High density copper sintered alloy
JPH0499834A (en) * 1990-08-14 1992-03-31 Taiho Kogyo Co Ltd Sliding material
JPH11124646A (en) * 1997-10-17 1999-05-11 Taiho Kogyo Co Ltd Copper series sintered sliding material excellent in slidability and machinability
WO2008136355A1 (en) * 2007-04-26 2008-11-13 Komatsu Ltd. Copper alloy-based slide material, and copper alloy-based slide member
WO2008140100A1 (en) * 2007-05-15 2008-11-20 Taiho Kogyo Co., Ltd. Pb-FREE COPPER ALLOY SLIDING MATERIAL AND PLAIN BEARINGS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164838A (en) * 1984-09-06 1986-04-03 Toyota Motor Corp High density copper sintered alloy
JPH0499834A (en) * 1990-08-14 1992-03-31 Taiho Kogyo Co Ltd Sliding material
JPH11124646A (en) * 1997-10-17 1999-05-11 Taiho Kogyo Co Ltd Copper series sintered sliding material excellent in slidability and machinability
WO2008136355A1 (en) * 2007-04-26 2008-11-13 Komatsu Ltd. Copper alloy-based slide material, and copper alloy-based slide member
WO2008140100A1 (en) * 2007-05-15 2008-11-20 Taiho Kogyo Co., Ltd. Pb-FREE COPPER ALLOY SLIDING MATERIAL AND PLAIN BEARINGS

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107214331A (en) * 2017-06-06 2017-09-29 苏州轩朗塑料制品有限公司 Add the preparation method of the composite material of self-lubricating solid agent
DE102018125022A1 (en) 2017-10-11 2019-04-11 Magna Closures Inc. Variable lead screw for power door actuator
CN108580917A (en) * 2018-01-22 2018-09-28 北京科技大学 A kind of method that low-temperature combustion synthesis prepares tungsten dispersion-strengthened Cu superfines
JP6756995B1 (en) * 2018-09-10 2020-09-16 冨士ダイス株式会社 Copper-based sintered alloy and its manufacturing method
WO2020054671A1 (en) * 2018-09-10 2020-03-19 冨士ダイス株式会社 Copper-based sintered alloy and production method therefor
CN112638561A (en) * 2018-09-13 2021-04-09 日立金属株式会社 FeSiCrC alloy powder and magnetic core
CN111575524A (en) * 2019-02-18 2020-08-25 红心科技有限公司 Copper-based powder metallurgy brake pad friction block and preparation method thereof
CN110184494A (en) * 2019-06-20 2019-08-30 合肥工业大学 A kind of preparation method of graphite flake used for electronic packaging/Cu based composites
CN110253016A (en) * 2019-07-10 2019-09-20 北京瑞斯福高新科技股份有限公司 A kind of passenger train powder metallurgy friction material and preparation method thereof
CN110253016B (en) * 2019-07-10 2022-02-22 北京瑞斯福高新科技股份有限公司 Powder metallurgy friction material for railway carriage and preparation method thereof
CN113150476A (en) * 2021-05-06 2021-07-23 浙江亿隆新材料有限公司 Preparation method of heat conduction material for electronic equipment
WO2023002986A1 (en) * 2021-07-20 2023-01-26 日本ピストンリング株式会社 Iron-based sintered alloy valve seat for internal combustion engine
CN115386763A (en) * 2022-08-19 2022-11-25 浙江省冶金研究院有限公司 TiC-Y 2 O 3 Composite reinforced graphene-coated copper-based contact material and preparation method thereof

Also Published As

Publication number Publication date
JP6577173B2 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
JP6577173B2 (en) Cu-based sintered alloy and manufacturing method thereof
JP5371182B2 (en) Cu-Ni-Sn based copper-based sintered alloy having excellent friction and wear resistance and bearing material made of the alloy
JP4584158B2 (en) Valve seat material made of iron-based sintered alloy for internal combustion engines
JP5783303B2 (en) Copper-based sintered sliding member
JP6386676B2 (en) Sintered valve seat
WO2015198932A1 (en) Sintered valve seat and method for manufacturing same
JP5658804B1 (en) Sintered alloy valve guide and manufacturing method thereof
JP5496380B2 (en) Cu-Ni-Sn-based copper-based sintered alloy having excellent friction and wear resistance, method for producing the same, and bearing material comprising the alloy
WO2011071033A1 (en) Sintered sliding member
JP5386585B2 (en) Sintered sliding material and manufacturing method thereof
JP6315241B2 (en) Wear-resistant copper-based sintered alloy
JP6290107B2 (en) Valve seat for internal combustion engine having excellent wear resistance and method for producing the same
KR101717347B1 (en) Copper based sintered alloy with wear resistance
JP6514421B1 (en) Iron-based sintered alloy valve guide and method of manufacturing the same
JP3942136B2 (en) Iron-based sintered alloy
JP6309700B1 (en) Sintered valve seat
CN110621742A (en) Resin material for sliding member and sliding member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190822

R150 Certificate of patent or registration of utility model

Ref document number: 6577173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250