JP2016058409A - Optical conversion member, manufacturing method thereof, and illumination light source with optical conversion member - Google Patents

Optical conversion member, manufacturing method thereof, and illumination light source with optical conversion member Download PDF

Info

Publication number
JP2016058409A
JP2016058409A JP2013018685A JP2013018685A JP2016058409A JP 2016058409 A JP2016058409 A JP 2016058409A JP 2013018685 A JP2013018685 A JP 2013018685A JP 2013018685 A JP2013018685 A JP 2013018685A JP 2016058409 A JP2016058409 A JP 2016058409A
Authority
JP
Japan
Prior art keywords
conversion member
light conversion
glass
light
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013018685A
Other languages
Japanese (ja)
Inventor
長嶋 達雄
Tatsuo Nagashima
達雄 長嶋
谷田 正道
Masamichi Tanida
正道 谷田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2013018685A priority Critical patent/JP2016058409A/en
Priority to PCT/JP2014/051914 priority patent/WO2014119603A1/en
Publication of JP2016058409A publication Critical patent/JP2016058409A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/20Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Led Device Packages (AREA)
  • Glass Compositions (AREA)
  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: an optical conversion member with a high quantum conversion yield; and a method for manufacturing an optical conversion member with a high quantum conversion yield.SOLUTION: An optical conversion member comprises: phosphor powder; and glass. In the optical conversion member, a carbon content is 0.5-10 ppm. A method for manufacturing an optical conversion member comprises: a step (kneading step) for kneading glass powder, phosphor powder, a resin and an organic solvent into a kneaded mixture; a step (molding step) for molding the kneaded mixture into a mold; and a step (baking step) for baking the mold. The baking step involves two or more stages different in condition; in the first stage, a baking atmosphere is over 10Pa, and the oxygen density is 16% or more, whereas in the second stage, the baking atmosphere is 10Pa or less, or the oxygen density is 1-15%. When the temperature in the first stage is denoted by Td, and the temperature in the second stage is denoted by Tb, the temperatures Td and Tb satisfy the following condition: Td is 450°C or lower and Tb-Td is 100-300°C.SELECTED DRAWING: None

Description

本発明は光源の色を変換するための光変換部材に関する。   The present invention relates to a light conversion member for converting the color of a light source.

白色LEDは、微小電力の白色照明光源として利用され、照明用途への応用が期待されている。白色LEDの白色光は、青色LED素子から発せられる青色光と、前記青色光の一部を蛍光体で黄色や緑色、または赤色に変換した光とを合成して得られる。   The white LED is used as a white illumination light source with a minute electric power, and is expected to be applied to illumination applications. The white light of the white LED is obtained by synthesizing blue light emitted from a blue LED element and light obtained by converting a part of the blue light into yellow, green, or red with a phosphor.

従来、光源の光の色(波長)を変換する部材(以下、光変換部材と略す)として、ガラス中に無機蛍光体を分散した構成が知られている(例えば、特許文献1)。このような構成は、ガラスの高い透過率を利用でき、さらに、素子から発せられる熱を部材の外部に効率よく放出できる。また、光や熱による部材および蛍光体の損傷も低く、長期の信頼性が得られる。   Conventionally, as a member for converting the color (wavelength) of light from a light source (hereinafter abbreviated as a light converting member), a configuration in which an inorganic phosphor is dispersed in glass is known (for example, Patent Document 1). Such a configuration can utilize the high transmittance of glass, and can efficiently release the heat generated from the element to the outside of the member. In addition, damage to the member and the phosphor due to light and heat is low, and long-term reliability is obtained.

特開2003−258308号JP 2003-258308 A 特開2007−311743号JP2007-311743A

しかしながら、従来の光変換部材の構成のみでは、量子変換収率を十分に高くできなかった。そのため、所望の量子変換収率を達成するためには、光変換部材を厚くする必要があった。光変換部材が厚くなると、光の透過率が低くなり、光源から発せられる光の取り出し効率が低下するおそれがあった。   However, the quantum conversion yield cannot be sufficiently increased only by the configuration of the conventional light conversion member. Therefore, in order to achieve a desired quantum conversion yield, it is necessary to increase the thickness of the light conversion member. When the light conversion member is thick, the light transmittance is lowered, and the extraction efficiency of light emitted from the light source may be reduced.

前記問題に鑑み、本発明は、量子変換収率の高い光変換部材の提供を目的とする。また、量子変換収率の高い光変換部材の製造方法の提供を目的とする。   In view of the above problems, an object of the present invention is to provide a light conversion member having a high quantum conversion yield. Moreover, it aims at provision of the manufacturing method of the light conversion member with a high quantum conversion yield.

本発明者らが鋭意検討した結果、光変換部材中の蛍光体の量子変換収率と、光変換部材中のカーボン含有量との間に相関があることを見出し、本発明に到った。また、光変換部材中のカーボン含有量を所望の範囲にする方法を見出し、本発明に到った。   As a result of intensive studies by the present inventors, the present inventors have found that there is a correlation between the quantum conversion yield of the phosphor in the light conversion member and the carbon content in the light conversion member. Further, the inventors have found a method for bringing the carbon content in the light conversion member into a desired range, and have reached the present invention.

すなわち、本発明の光変換部材は、蛍光体粉末とガラスを含有し、光変換部材中のカーボン含有量が0.5〜10ppmであることを特徴とする。   That is, the light conversion member of the present invention contains phosphor powder and glass, and the carbon content in the light conversion member is 0.5 to 10 ppm.

また、本発明の光変換部材の製造方法は、ガラス粉末、蛍光体粉末、樹脂および有機溶媒を混練する工程(混練工程)、混練された物を成形する工程(成形工程)、成形された物を焼成する工程(焼成工程)を含み、
焼成工程は、2以上の異なる条件を有し、1段階目の焼成雰囲気は10Pa超かつ酸素濃度が16%以上であり、2段階目の焼成雰囲気は10Pa以下もしくは酸素濃度が1〜15%であり、1段階目の温度をTd、2段階目の温度をTbとした時に、Tdが450℃以下かつTb−Tdが100〜300℃を満たすことを特徴とする。
The method for producing a light conversion member of the present invention includes a step of kneading glass powder, phosphor powder, resin and organic solvent (kneading step), a step of molding the kneaded product (molding step), and a molded product. Including a step of baking (baking step),
The firing step has two or more different conditions, the first stage firing atmosphere is over 10 3 Pa and the oxygen concentration is 16% or more, and the second stage firing atmosphere is 10 3 Pa or less or the oxygen concentration is 1 It is characterized by satisfying that Td is 450 ° C. or less and Tb−Td satisfies 100 to 300 ° C. when the temperature of the first step is Td and the temperature of the second step is Tb.

本発明の光変換部材は、カーボン含有量が制御されており、高い量子変換収率を維持できる。また、焼成工程を複数段階有し、その雰囲気と焼成温度を規定することで、カーボン含有量を制御した光変換部材を効率よく製造できる。   The light conversion member of the present invention has a controlled carbon content and can maintain a high quantum conversion yield. Moreover, the light conversion member which controlled carbon content can be efficiently manufactured by having a baking process in several steps and prescribing | regulating the atmosphere and baking temperature.

本発明の光変換部材(以下、本光変換部材)について説明する。本発明において、光変換部材は、光源から発せられた光の一部を透過し、残部の光の波長を変換し、透過する光と波長を変換した光を合成することにより、光源の光の色を所望の色に変換する部材をいう。本光変換部材は、青色光源を白色に変換するための光変換部材として特に有用である。また、光源としてはLED発光素子が好ましい。   The light conversion member of the present invention (hereinafter, this light conversion member) will be described. In the present invention, the light conversion member transmits a part of the light emitted from the light source, converts the wavelength of the remaining light, and synthesizes the transmitted light and the converted light, thereby combining the light of the light source. A member that converts a color into a desired color. This light conversion member is particularly useful as a light conversion member for converting a blue light source into white. Moreover, an LED light emitting element is preferable as the light source.

本光変換部材は、ガラスと蛍光体粉末を含有する。上記した光変換部材としての機能を発揮する限りにおいて、蛍光体粉末はガラス中に含有されていれば、その分布は特に限定されない。すなわち、蛍光体粉末がガラス中に均一に分散されていても、ガラス中の一部に偏在していてもよい。製造効率の観点から、蛍光体粉末はガラス中全体に分散されている構成が好ましい。   The light conversion member contains glass and phosphor powder. As long as the function as the light conversion member described above is exhibited, the distribution of the phosphor powder is not particularly limited as long as the phosphor powder is contained in the glass. That is, the phosphor powder may be uniformly dispersed in the glass or may be unevenly distributed in a part of the glass. From the viewpoint of production efficiency, the phosphor powder is preferably dispersed throughout the glass.

本光変換部材は、カーボン含有量が0.5〜10ppmである。カーボン含有量が0.5ppm未満では、蛍光体表面が酸化されて失活し、量子変換収率が低下するおそれがある。カーボン含有量は、好ましくは1ppm以上、より好ましくは1.5ppm以上である。カーボン含有量が、10ppm超では、蛍光体表面が還元されて失活、またはガラスが還元されて光変換部材の透過率が低下し、量子変換収率が低下するおそれがある。カーボン含有量は、好ましくは7ppm以下、より好ましくは5ppm以下である。   The light conversion member has a carbon content of 0.5 to 10 ppm. If the carbon content is less than 0.5 ppm, the phosphor surface is oxidized and deactivated, and the quantum conversion yield may be reduced. The carbon content is preferably 1 ppm or more, more preferably 1.5 ppm or more. If the carbon content exceeds 10 ppm, the phosphor surface is reduced and deactivated, or the glass is reduced, whereby the transmittance of the light conversion member is lowered and the quantum conversion yield may be lowered. The carbon content is preferably 7 ppm or less, more preferably 5 ppm or less.

本明細書において、カーボン含有量は、下記式(1)で算出される値である。
カーボン含有量=カーボンの質量/光変換部材の質量 ・・・(1)
カーボンの質量は例えば、次のようにして測定できる。標準試料を秤量して加熱し、予め標準試料中のカーボン量を測定する。次に、光変換部材を粉砕し、秤量する。先の標準試料と同じ質量の標準試料と秤量した光変換部材を足し合わせた試料を加熱し、カーボン量を測定する。標準試料と光変換部材中のカーボン量と先に測定した標準試料中のカーボン量との差を光変換部材中のカーボン量とする。
In the present specification, the carbon content is a value calculated by the following formula (1).
Carbon content = mass of carbon / mass of light conversion member (1)
The mass of carbon can be measured as follows, for example. A standard sample is weighed and heated, and the amount of carbon in the standard sample is measured in advance. Next, the light conversion member is pulverized and weighed. The sample obtained by adding the standard sample having the same mass as the previous standard sample and the weighed light conversion member is heated, and the amount of carbon is measured. The difference between the amount of carbon in the standard sample and the light conversion member and the amount of carbon in the standard sample measured previously is defined as the amount of carbon in the light conversion member.

本光変換部材の量子変換収率は80%以上が好ましい。量子変換収率が80%未満では、所望の色を得るために、光変換部材の厚みを大きくしなければならない。厚みが大きくなると、光変換部材の透過率が低下するおそれがある。光変換部材の量子変換収率は、より好ましくは85%以上、さらに好ましくは90%以上である。なお、前記量子変換収率は、励起光を照射した時の、発光としてサンプルから放出されたフォトン数と、サンプルにより吸収されたフォトン数との比率で表される。前記フォトン数は、積分球法で測定する。   The quantum conversion yield of the light conversion member is preferably 80% or more. If the quantum conversion yield is less than 80%, the thickness of the light conversion member must be increased in order to obtain a desired color. When the thickness is increased, the transmittance of the light conversion member may be reduced. The quantum conversion yield of the light conversion member is more preferably 85% or more, and still more preferably 90% or more. The quantum conversion yield is expressed as a ratio between the number of photons emitted from the sample as light emission and the number of photons absorbed by the sample when irradiated with excitation light. The number of photons is measured by the integrating sphere method.

本光変換部材は、量子変換収率が高いので、光変換部材を薄くしても、上記した光変換部材の機能を発揮できる。光変換部材の厚みは50〜500μmが好ましい。光変換部材の厚みが50μm以上では、光変換部材のハンドリングが容易になり、特に所望の大きさにカットする際に光変換部材の割れを抑制できる。光変換部材の厚みは、より好ましくは80μm以上、さらに好ましくは100μm以上、特に好ましくは120μm以上である。光変換部材の厚みが500μm以下では、光変換部材を透過する全光束量を高く維持できる。光変換部材の厚みは、好ましくは400μm以下、さらに好ましくは300μm以下、特に好ましくは250μm以下である。   Since the present light conversion member has a high quantum conversion yield, even if the light conversion member is thinned, the above-described function of the light conversion member can be exhibited. The thickness of the light conversion member is preferably 50 to 500 μm. When the thickness of the light conversion member is 50 μm or more, handling of the light conversion member becomes easy, and cracking of the light conversion member can be suppressed particularly when cutting to a desired size. The thickness of the light conversion member is more preferably 80 μm or more, further preferably 100 μm or more, and particularly preferably 120 μm or more. When the thickness of the light conversion member is 500 μm or less, the total light flux transmitted through the light conversion member can be maintained high. The thickness of the light conversion member is preferably 400 μm or less, more preferably 300 μm or less, and particularly preferably 250 μm or less.

なお、用いる蛍光体が著しく高価な場合、光変換部材に含有させる蛍光体量を極力抑えたいため、全光束量を犠牲にしても光変換部材厚みを大きくして光変換効率を担保させる可能性があり、その場合、全光束量と光変換効率のバランスをとって、250〜500μmの間で選択することがある。   If the phosphor to be used is extremely expensive, the amount of phosphor contained in the light conversion member is desired to be suppressed as much as possible. Therefore, there is a possibility that the light conversion member thickness can be increased to ensure light conversion efficiency even if the total amount of light flux is sacrificed. In such a case, a balance between the total luminous flux and the light conversion efficiency may be selected between 250 and 500 μm.

本光変換部材の平面形状は特に限定されない。例えば、光変換部材が光源と接して使用される場合、光源からの光の漏れを防ぐために、光変換部材の形状は光源の形状に合わせて製造される。光源は矩形状または円状が一般的であるため、光変換部材も矩形状または円状が好ましい。また、本光変換部材は板状、すなわち断面形状は矩形状が好ましい。光変換部材内で板厚にばらつきが小さいほど、面内の色のばらつきを小さくできるため好ましい。   The planar shape of the light conversion member is not particularly limited. For example, when the light conversion member is used in contact with the light source, the shape of the light conversion member is manufactured according to the shape of the light source in order to prevent light leakage from the light source. Since the light source is generally rectangular or circular, the light conversion member is also preferably rectangular or circular. The light converting member is preferably plate-shaped, that is, the cross-sectional shape is rectangular. The smaller the variation in the plate thickness within the light conversion member, the smaller the in-plane color variation, which is preferable.

本光変換部材は、ガラス粉末と蛍光体粉末の混合粉末の焼結体からなることが好ましい。また、本光変換部材は、前記混合粉末と樹脂および有機溶媒を混練して得られるスラリーを焼成して得られる焼結体からなることがより好ましい。前記スラリーを透明樹脂に塗工し、乾燥させて得られるグリーンシートを焼結して得られるガラスシートからなることがさらに好ましい。なお、本明細書において前記樹脂および有機溶媒の混合物をビヒクルということもある。   The light conversion member is preferably made of a sintered body of a mixed powder of glass powder and phosphor powder. The light conversion member is more preferably composed of a sintered body obtained by firing a slurry obtained by kneading the mixed powder, a resin and an organic solvent. More preferably, the slurry is made of a glass sheet obtained by coating a slurry on a transparent resin and drying the resulting green sheet. In the present specification, the mixture of the resin and the organic solvent may be referred to as a vehicle.

前記樹脂としては、エチルセルロース、ニトロセルロース、アクリル樹脂、酢酸ビニル、ブチラール樹脂、メラミン樹脂、アルキッド樹脂またはロジン樹脂などを使用できる。また、前記有機溶媒としては、芳香族炭化水素、脂肪族炭化水素、アルコール、エーテル、ケトンまたはエステル類などを使用できる。なお、グリーンシートの強度を向上のために、ビヒクルに、さらに、ブチラール樹脂、メラミン樹脂、アルキッド樹脂またはロジン樹脂などを含有する場合がある。   Examples of the resin include ethyl cellulose, nitrocellulose, acrylic resin, vinyl acetate, butyral resin, melamine resin, alkyd resin, and rosin resin. As the organic solvent, aromatic hydrocarbons, aliphatic hydrocarbons, alcohols, ethers, ketones or esters can be used. In order to improve the strength of the green sheet, the vehicle may further contain a butyral resin, a melamine resin, an alkyd resin, a rosin resin, or the like.

スラリーを塗工する透明樹脂としては、均一な膜厚のグリーンシートが得られれば、限定されない。例えば、PETフィルムなどが挙げられる。   The transparent resin for applying the slurry is not limited as long as a green sheet having a uniform film thickness is obtained. For example, a PET film etc. are mentioned.

前記混合粉末の蛍光体粉体とガラス粉末の含有量は、体積分率で、蛍光体粉体を1〜40%としガラス粉末を60〜99%がより好ましい。   The content of the phosphor powder and the glass powder in the mixed powder is a volume fraction, and the phosphor powder is preferably 1 to 40%, and the glass powder is more preferably 60 to 99%.

蛍光体粉末を1%以上かつガラス粉末を99%以下で含有すれば、量子変換収率を高くでき、入射光を変換でき、所望の色の光が得られる。蛍光体粉末の体積分率は、より好ましくは5%以上、さらに好ましくは7%以上、特に好ましくは10%以上である。ガラス粉末の体積分率は、より好ましくは95%以下、さらに好ましくは93%以下、特に好ましくは90%以下である。   If the phosphor powder is contained at 1% or more and the glass powder at 99% or less, the quantum conversion yield can be increased, incident light can be converted, and light of a desired color can be obtained. The volume fraction of the phosphor powder is more preferably 5% or more, further preferably 7% or more, and particularly preferably 10% or more. The volume fraction of the glass powder is more preferably 95% or less, still more preferably 93% or less, and particularly preferably 90% or less.

蛍光体粉末の体積分率が40%超で、ガラス粉末の体積分率が60%未満では、蛍光体粉末とガラス粉末の混合体の焼結性を損ね、さらに光変換部材の透過率が低くなるおそれがある。また、変換される蛍光色の光が多くなり、所望の色の光が得られないおそれがある。蛍光体粉末の体積分率は、より好ましくは35%以下、さらに好ましくは30%以下、特に好ましくは25%以下である。ガラス粉末の体積分率は、より好ましくは65%以上、さらに好ましくは70%以上、特に好ましくは75%以上である。   When the volume fraction of the phosphor powder is more than 40% and the volume fraction of the glass powder is less than 60%, the sinterability of the mixture of the phosphor powder and the glass powder is impaired, and the transmittance of the light conversion member is low. There is a risk. Moreover, there is a possibility that light of a desired color cannot be obtained due to an increase in converted fluorescent light. The volume fraction of the phosphor powder is more preferably 35% or less, still more preferably 30% or less, and particularly preferably 25% or less. The volume fraction of the glass powder is more preferably 65% or more, further preferably 70% or more, and particularly preferably 75% or more.

(蛍光体粉末)
本光変換部材に含有する蛍光体粉末は、光源の波長を変換できるものであれば、その種類は限定されない。前記蛍光体としては、例えば、酸化物、窒化物、酸窒化物、硫化物、酸硫化物、ハロゲン化物、アルミン酸塩化物またはハロリン酸塩化物挙げられる。前記した蛍光体の中でも、青色の光を赤、緑または黄色に変換するものが好ましく、波長400〜500nmに励起帯を有し、波長500〜700nmに発光ピーク(λ)を有するものがより好ましい。
(Phosphor powder)
If the fluorescent substance powder contained in this light conversion member can convert the wavelength of a light source, the kind will not be limited. Examples of the phosphor include oxides, nitrides, oxynitrides, sulfides, oxysulfides, halides, aluminate chlorides, and halophosphates. Among the phosphors described above, those that convert blue light into red, green, or yellow are preferable, and those that have an excitation band at a wavelength of 400 to 500 nm and have an emission peak (λ p ) at a wavelength of 500 to 700 nm are more preferable. preferable.

蛍光体は、光変換部材を通過する光が所望の色に変換されるのであれば、前記した化合物からなる群から選ばれる1以上を複数で含有してもよく、いずれか1つを単独で含有してもよい。色設計の容易さの観点から、いずれか1つを単独で含有することがより好ましい。量子変換収率を高くする観点から、蛍光体は酸化物またはアルミン酸塩化物が好ましい。酸化物またはアルミン酸塩化物の蛍光体としては、ガーネット系結晶がより好ましい。ガーネット系結晶は耐水性や耐熱性に優れ、本発明の製造工程を経る場合、スラリー中における失活や焼成中の失活がおきにくい。前記したガーネット系結晶としては、イットリウムとアルミニウムの複合酸化物(YAl12 以下、本明細書ではYAGと略す)や、ルテチウムとアルミニウムの複合酸化物(LuAl12 以下、本明細書ではLAGと略す)が挙げられる。 As long as the light passing through the light conversion member is converted into a desired color, the phosphor may contain a plurality of one or more selected from the group consisting of the aforementioned compounds, and any one of them may be used alone. You may contain. From the viewpoint of ease of color design, it is more preferable to contain any one of them alone. From the viewpoint of increasing the quantum conversion yield, the phosphor is preferably an oxide or an aluminate chloride. The phosphor of oxide or aluminate chloride is more preferably a garnet crystal. Garnet crystals are excellent in water resistance and heat resistance, and when going through the production process of the present invention, it is difficult for deactivation in a slurry and deactivation during firing. Examples of the garnet-based crystal include a composite oxide of yttrium and aluminum (Y 3 Al 5 O 12 or less, abbreviated as YAG in this specification), a composite oxide of lutetium and aluminum (Lu 3 Al 5 O 12 or less, (Abbreviated as LAG in this specification).

蛍光体粉末の平均粒子直径(以下、本明細書では平均粒径と略す)D50は、1〜30μmが好ましい。蛍光体粉末のD50が1μm未満であると、蛍光体の比表面積が大きくなり、失活しやすくなるおそれがある。好ましくは3μm以上、より好ましくは5μm以上、さらに好ましくは7μm以上である。30μm超では、焼成後の光変換部材中で分散が悪くなり、光の変換効率が悪くなる。より好ましくは20μm以下、さらに好ましくは15μm以下である。なお、本明細書において、D50はレーザ回折式粒度分布測定により算出した値である。 The average particle diameter (hereinafter abbreviated as “average particle diameter” in the present specification) D 50 of the phosphor powder is preferably 1 to 30 μm. If D 50 of the phosphor powder is smaller than 1 [mu] m, a specific surface area of the phosphor is increased, there is deactivated easily becomes a possibility. Preferably it is 3 micrometers or more, More preferably, it is 5 micrometers or more, More preferably, it is 7 micrometers or more. If it exceeds 30 μm, the dispersion in the light conversion member after firing becomes poor, and the light conversion efficiency deteriorates. More preferably, it is 20 micrometers or less, More preferably, it is 15 micrometers or less. In the present specification, D 50 is a value calculated by laser diffraction particle size distribution measurement.

(ガラス)
次に、本光変換部材に含有するガラスについて説明する。本光変換部材に含有するガラスは、ガラス転移点Tgが300〜550℃を有することが好ましい。ガラス転移点が550℃超では、本光変換部材を焼成する際の焼成温度が高くなり、光変換部材中のカーボン含有量が低下し、光変換部材の量子変換収率が低下するおそれがある。ガラス転移点Tgは、好ましくは520℃以下、より好ましくは500℃以下、さらに好ましくは480℃以下である。
(Glass)
Next, the glass contained in this light conversion member is demonstrated. The glass contained in the light conversion member preferably has a glass transition point Tg of 300 to 550 ° C. When the glass transition point exceeds 550 ° C., the firing temperature when firing the light conversion member is increased, the carbon content in the light conversion member is decreased, and the quantum conversion yield of the light conversion member may be decreased. . The glass transition point Tg is preferably 520 ° C. or lower, more preferably 500 ° C. or lower, and further preferably 480 ° C. or lower.

一方で、ガラス転移点Tgが300℃未満では焼成温度が低く、ガラスが流動する温度よりも脱灰温度の方が高くなるため、光変換部材中のカーボン含有量が多くなり、光変換部材の量子変換収率が低下するおそれがある。また、光変換部材の透過率が低下し、光源の発光効率が低くなるおそれがある。ガラス転移点Tgは、より好ましくは340℃以上、さらに好ましくは380℃以上である。   On the other hand, when the glass transition point Tg is less than 300 ° C., the firing temperature is low, and the decalcification temperature is higher than the temperature at which the glass flows. Therefore, the carbon content in the light conversion member increases, and the light conversion member The quantum conversion yield may be reduced. In addition, the transmittance of the light conversion member is lowered, and the light emission efficiency of the light source may be lowered. The glass transition point Tg is more preferably 340 ° C. or higher, and further preferably 380 ° C. or higher.

ガラスは、Bi−B−ZnO系を主成分とすることが好ましい。中でも、酸化物基準のモル%表示で、Bi 3〜30%、B 10〜50%、ZnO 0〜45%を含有するガラスがより好ましい。 The glass is preferably composed mainly of a Bi 2 O 3 —B 2 O 3 —ZnO system. Among them, as represented by mol% based on oxides, Bi 2 O 3 3~30%, B 2 O 3 10~50%, the glass containing 0 to 45% ZnO is more preferable.

Bi 3〜30%、B 10〜50%、ZnO 0〜45%、SiO 0〜35%、BaO 0〜20%、MnO 0〜1%、CeO 0〜1%、NaOを0〜15%、KOを0〜15%を含有するガラスがさらに好ましい。 Bi 2 O 3 3-30%, B 2 O 3 10-50%, ZnO 0-45%, SiO 2 0-35%, BaO 0-20%, MnO 2 0-1%, CeO 2 0-1% Further preferred is a glass containing 0 to 15% of Na 2 O and 0 to 15% of K 2 O.

上記成分からなるガラスが特に好ましい。本明細書において、実質的にからなるとは、記載されている成分以外に不可避的不純物の含有は許容するとの意味である。   Glass composed of the above components is particularly preferred. In the present specification, “consisting essentially of” means that inclusion of inevitable impurities other than the components described is allowed.

Biは、ガラスの化学的耐久性を下げることなく、Tgを低くする、かつ屈折率を高くする成分であり、この系では、必須の成分である。Biの含有量は、3〜30%が好ましい。Biが3%未満では、ガラス粉末のTgが高くなり好ましくない。より好ましくは5%以上である。一方、30%超では、ガラスが不安定になり、結晶化しやすく焼結性を損ねるおそれがある。さらに、ガラスの吸収端が長波長側にシフトし、LED素子の青色光を吸収してしまう、また、屈折率が高くなり過ぎて蛍光体との屈折率差が大きくなり、LEDの発光効率が低くなるおそれがある。Biの含有量は、3〜25%がより好ましく、5〜20%がさらに好ましい。 Bi 2 O 3 is a component that lowers the Tg and raises the refractive index without lowering the chemical durability of the glass, and is an essential component in this system. The content of Bi 2 O 3 is preferably 3 to 30%. If Bi 2 O 3 is less than 3%, the Tg of the glass powder increases, which is not preferable. More preferably, it is 5% or more. On the other hand, if it exceeds 30%, the glass becomes unstable and tends to be crystallized, which may impair the sinterability. In addition, the absorption edge of the glass shifts to the long wavelength side and absorbs the blue light of the LED element. Also, the refractive index becomes too high and the difference in refractive index from the phosphor increases, so that the luminous efficiency of the LED is increased. May be lowered. The content of Bi 2 O 3 is more preferably 3 to 25%, further preferably 5 to 20%.

は、ガラスのネットワークフォーマーであり、ガラスを安定化できる成分であり、この系では、必須の成分である。Bの含有量は、10〜50%が好ましい。Bの含有量が10%未満では、ガラスが不安定になり、結晶化しやすく、また、焼結性を損ねるおそれがある。一方で、Bの含有量が50%超では、ガラスの化学的耐久性が低下するおそれがある。Bの含有量は、15〜45%がより好ましく、20〜40%がさらに好ましい。 B 2 O 3 is a glass network former and is a component that can stabilize glass, and is an essential component in this system. The content of B 2 O 3 is preferably 10 to 50%. If the content of B 2 O 3 is less than 10%, the glass becomes unstable, tends to be crystallized, and the sinterability may be impaired. On the other hand, if the content of B 2 O 3 exceeds 50%, the chemical durability of the glass may be lowered. The content of B 2 O 3 is more preferably 15 to 45%, further preferably 20 to 40%.

ZnOは、Tgを下げる、かつ屈折率を高くする成分であり、この系では必須成分ではない。ZnOの含有量は、0〜45%が好ましい。ZnOの含有量が45%超では、ガラス化し難くなり、ガラスの製造が困難になる。ZnOの含有量は、5〜40%がより好ましく、5〜35%がさらに好ましい。   ZnO is a component that lowers Tg and raises the refractive index, and is not an essential component in this system. The content of ZnO is preferably 0 to 45%. If the ZnO content exceeds 45%, it will be difficult to vitrify, and it will be difficult to produce glass. The content of ZnO is more preferably 5 to 40%, further preferably 5 to 35%.

SiOは、ガラスの安定性を高くする成分であり、この系では必須成分ではない。SiOの含有量は、0〜35%が好ましい。SiOの含有量が、35%超では、Tgが高くなるおそれがある。SiOの含有量は、0〜30%がより好ましく、0〜20%がさらに好ましい。 SiO 2 is a component that increases the stability of the glass and is not an essential component in this system. The content of SiO 2 is preferably 0 to 35%. If the content of SiO 2 exceeds 35%, Tg may be high. The content of SiO 2 is more preferably 0 to 30%, further preferably 0 to 20%.

CaO、SrO、MgOおよびBaOのアルカリ土類金属酸化物は、ガラスの安定性を高めるとともに、Tgを下げる成分であり、この系では必須成分ではない。アルカリ土類金属酸化物の合計量は、0〜20%が好ましい。前記合計量が、20%超では、ガラスの安定性が低下する。より好ましくは、合計量は18%以下である。また、アルカリ土類金属酸化物としては、BaOが好ましい。   CaO, SrO, MgO and BaO alkaline earth metal oxides are components that increase the stability of the glass and lower the Tg, and are not essential components in this system. The total amount of alkaline earth metal oxide is preferably 0 to 20%. If the total amount exceeds 20%, the stability of the glass is lowered. More preferably, the total amount is 18% or less. Further, BaO is preferable as the alkaline earth metal oxide.

MnOおよびCeOは、いずれもこの系では必須成分ではないが、ガラス中で酸化剤として機能するため、含有することが好ましい。いずれもガラス中のBiの還元を防止できるため、この系のガラスを安定化できる。Biが還元されると、ガラスが着色するため、好ましくない。そのため、MnOおよびCeOの含有量はそれぞれ0〜1%が好ましい。含有量が、1%超では、着色が大きくなるおそれがある。好ましくは0〜0.5%である。 Neither MnO 2 nor CeO 2 is an essential component in this system, but it is preferably contained because it functions as an oxidizing agent in the glass. In any case, reduction of Bi 2 O 3 in the glass can be prevented, so that this type of glass can be stabilized. Reduction of Bi 2 O 3 is not preferable because the glass is colored. Therefore, the content of MnO 2 and CeO 2 is preferably 0 to 1%. If the content exceeds 1%, coloring may increase. Preferably it is 0 to 0.5%.

LiO、NaOおよびKOのアルカリ金属酸化物は、Tgを下げる成分であり、この系では必須成分ではない。アルカリ金属酸化物の合計量は0〜15%が好ましい。前記合計量が15%超では、屈折率が低下する、ガラスの化学的耐久性が低下するおそれがある。より好ましくは0〜10%、さらに好ましくは0〜5%である。 Alkali metal oxides of Li 2 O, Na 2 O and K 2 O are components that lower Tg and are not essential components in this system. The total amount of alkali metal oxides is preferably 0 to 15%. If the total amount exceeds 15%, the refractive index may decrease, and the chemical durability of the glass may decrease. More preferably, it is 0-10%, More preferably, it is 0-5%.

ガラスは、内包泡を脱泡できるものをさらに含んでもよい。このようなものとしては、塩化銅のような酸化触媒性を持つ金属化合物や酸化アンチモンのような、価数変化により複数の酸化数を持てるような元素が挙げられる。これらの成分の含有量は、0〜15%が好ましい。   The glass may further include a glass that can degas the encapsulated foam. Examples of such elements include elements that can have a plurality of oxidation numbers by changing the valence, such as metal compounds having oxidation catalytic properties such as copper chloride and antimony oxide. The content of these components is preferably 0 to 15%.

ガラスの密度は3.5〜7.0g/cmであることが好ましい。この範囲を外れると蛍光体との比重差が大きくなり、蛍光体粉末がガラス粉末中に均一に分散されなくなり、光変換部材にした場合に変換効率が低下するおそれがある。密度はより好ましくは3.7〜6.5g/cm、さらに好ましくは4.1〜6.0g/cmである。 The density of the glass is preferably 3.5 to 7.0 g / cm 3 . Outside this range, the difference in specific gravity with the phosphor increases, and the phosphor powder is not uniformly dispersed in the glass powder, and conversion efficiency may be reduced when the light conversion member is used. The density is more preferably 3.7 to 6.5 g / cm 3 , and still more preferably 4.1 to 6.0 g / cm 3 .

ガラスの屈折率は、波長633nmにおいて、1.65〜2.10であることが好ましい。この範囲を外れると蛍光体との屈折率差が大きくなり、光変換部材にした場合に変換効率が低下するおそれがある。屈折率はより好ましくは1.70〜2.05、さらに好ましくは1.75〜2.00である。   The refractive index of the glass is preferably 1.65 to 2.10 at a wavelength of 633 nm. Outside this range, the difference in refractive index from the phosphor increases, and conversion efficiency may be reduced when a light conversion member is used. The refractive index is more preferably 1.70 to 2.05, still more preferably 1.75 to 2.00.

(ガラス粉末の製造方法)
所定の熱特性を有するように成分を調合して混合し、電気炉などで溶融し、急冷してガラスを製造する。得られたガラスを粉砕し、分級してガラス粉末を製造する。ガラス粉末の平均粒径D50は2.0μm未満が好ましい。D50が2.0μm以上では、蛍光体粉末がガラス粉末中に均一に分散されなくなり、光変換部材にした場合に変換効率が低下するおそれがある。D50は、より好ましくは、1.5μm以下、さらに好ましくは、1.4μm以下である。
(Glass powder production method)
Components are prepared and mixed so as to have predetermined thermal characteristics, melted in an electric furnace or the like, and rapidly cooled to produce glass. The obtained glass is pulverized and classified to produce glass powder. The average particle diameter D 50 of the glass powder is preferably less than 2.0 .mu.m. D 50 in the 2.0μm or more, the phosphor powder is not uniformly dispersed in the glass powder, the conversion efficiency when the light converting member may be reduced. D 50 is more preferably 1.5 μm or less, and still more preferably 1.4 μm or less.

また、ガラス粉末の最大粒径Dmaxは、30μm以下が好ましい。Dmaxが、30μm超では、蛍光体粉末がガラス粉末中に均一に分散されなくなり、光変換部材を製造した場合に、蛍光体の変換効率が低下するおそれがある。Dmaxは、より好ましくは、20μm以下、さらに好ましくは、15μm以下である。なお、本明細書において、Dmaxはレーザ回折式粒度分布測定により算出した値である。 The maximum particle diameter Dmax of the glass powder is preferably 30 μm or less. When D max is more than 30 μm, the phosphor powder is not uniformly dispersed in the glass powder, and when the light conversion member is manufactured, the conversion efficiency of the phosphor may be lowered. D max is more preferably 20 μm or less, and still more preferably 15 μm or less. In this specification, D max is a value calculated by laser diffraction particle size distribution measurement.

(照明光源)
このようにして得られた光変換部材と光源とを組合せることで、所望の色を発する照明光源として利用できる。光変換部材は、光源と接して置かれると、光の漏れを防げるため好ましい。また、光源としては、LED発光素子が好ましく、青色LED発光素子がより好ましい。LED発光素子を光源として使用すれば、LED照明光源として利用できる。
(Lighting source)
By combining the light conversion member thus obtained and the light source, it can be used as an illumination light source that emits a desired color. The light conversion member is preferably placed in contact with the light source because it prevents light leakage. Moreover, as a light source, an LED light emitting element is preferable and a blue LED light emitting element is more preferable. If an LED light emitting element is used as a light source, it can be used as an LED illumination light source.

(光変換部材の製造方法)
次に本光変換部材の製造方法について説明する。本光変換部材は、ガラス粉末と蛍光体粉末を混合し、所望の形状に成形し、焼成して製造することが好ましい。成形法としては、所望の形状が付与できれば、特に制限されない。プレス成形法、ロール成形法またはドクターブレード成形法などの方法が挙げられる。ドクターブレード成形法で得られるグリーンシートは、均一な膜厚の光変換部材を大面積で効率よく製造できるため好ましい。
(Method for producing light conversion member)
Next, the manufacturing method of this light conversion member is demonstrated. The light conversion member is preferably manufactured by mixing glass powder and phosphor powder, forming the powder into a desired shape, and firing it. The molding method is not particularly limited as long as a desired shape can be imparted. Examples thereof include a press molding method, a roll molding method and a doctor blade molding method. A green sheet obtained by a doctor blade molding method is preferable because a light conversion member having a uniform film thickness can be efficiently produced in a large area.

グリーンシートは、例えば、以下の工程で製造できる。ガラス粉末と蛍光体粉末とをビヒクルに混練し、脱泡してスラリーを得る。前記スラリーをドクターブレード法により、透明樹脂上に途工し、乾燥する。乾燥後、所望の大きさに切り出し、透明樹脂を剥がして、グリーンシートを得る。さらに、これらをプレスし、積層体にすることで、所望の厚みを確保できる。   The green sheet can be manufactured, for example, by the following process. Glass powder and phosphor powder are kneaded in a vehicle and defoamed to obtain a slurry. The slurry is prepared on a transparent resin by a doctor blade method and dried. After drying, it is cut into a desired size and the transparent resin is peeled off to obtain a green sheet. Furthermore, a desired thickness can be ensured by pressing them into a laminate.

前記ビヒクルは、樹脂を有機溶媒に溶解したものである。樹脂および有機溶媒は、前述した物を使用できる。また、透明樹脂としては、剥離性を有するものであれば、特に限定されず、PETフィルムなどが挙げられる。   The vehicle is obtained by dissolving a resin in an organic solvent. As the resin and the organic solvent, those described above can be used. Moreover, as a transparent resin, if it has peelability, it will not specifically limit, PET film etc. are mentioned.

ガラス粉末と蛍光体粉末の混合割合は、特に限定されないが、体積分率で、蛍光体粉体を1〜40%、ガラス粉末を60〜99%が好ましい。   The mixing ratio of the glass powder and the phosphor powder is not particularly limited, but the volume fraction is preferably 1 to 40% for the phosphor powder and 60 to 99% for the glass powder.

蛍光体粉末を1%以上かつガラス粉末を99%以下で含有すれば、量子変換収率を高くでき、入射光を変換でき、所望の色の光が得られる。蛍光体粉末の体積分率は、より好ましくは5%以上、さらに好ましくは7%以上、特に好ましくは10%以上である。ガラス粉末の体積分率は、より好ましくは95%以下、さらに好ましくは93%以下、特に好ましくは90%以下である。   If the phosphor powder is contained at 1% or more and the glass powder at 99% or less, the quantum conversion yield can be increased, incident light can be converted, and light of a desired color can be obtained. The volume fraction of the phosphor powder is more preferably 5% or more, further preferably 7% or more, and particularly preferably 10% or more. The volume fraction of the glass powder is more preferably 95% or less, still more preferably 93% or less, and particularly preferably 90% or less.

蛍光体粉末の体積分率が40%超で、ガラス粉末の体積分率が60%未満では、蛍光体粉末とガラス粉末の混合体の焼結性を損ね、さらに光変換部材の透過率が低くなるおそれがある。また、変換される蛍光色の光が多くなり、所望の白色光が得られないおそれがある。蛍光体粉末の体積分率は、より好ましくは35%以下、さらに好ましくは30%以下、特に好ましくは25%以下である。ガラス粉末の体積分率は、より好ましくは65%以上、さらに好ましくは70%以上、特に好ましくは75%以上である。   When the volume fraction of the phosphor powder is more than 40% and the volume fraction of the glass powder is less than 60%, the sinterability of the mixture of the phosphor powder and the glass powder is impaired, and the transmittance of the light conversion member is low. There is a risk. In addition, the amount of fluorescent color light to be converted increases, and the desired white light may not be obtained. The volume fraction of the phosphor powder is more preferably 35% or less, still more preferably 30% or less, and particularly preferably 25% or less. The volume fraction of the glass powder is more preferably 65% or more, further preferably 70% or more, and particularly preferably 75% or more.

本光変換部材の製造において、焼成工程は、2以上の異なる条件を有する。少なくとも2つの異なる条件で焼成することにより、樹脂と有機溶媒の脱灰を促進でき、ガラス粉末の焼結中における気泡発生を抑制できるため好ましい。製造効率を高める観点からは、2の異なる条件を有することが好ましい。   In the production of the present light conversion member, the firing step has two or more different conditions. By baking under at least two different conditions, deashing of the resin and the organic solvent can be promoted, and generation of bubbles during sintering of the glass powder can be suppressed, which is preferable. From the viewpoint of increasing production efficiency, it is preferable to have two different conditions.

焼成雰囲気は、少なくとも1段階目は10Pa超かつ酸素濃度が16%以上であり、2段階目の焼成雰囲気は10Pa以下もしくは酸素濃度が1〜15%である。3以上の異なる焼成を有する場合には、3段階目以降の焼成雰囲気は、10Pa以下もしくは酸素濃度が1〜15%が好ましい。 The firing atmosphere is at least 10 3 Pa and the oxygen concentration is at least 16% in the first stage, and the firing atmosphere in the second stage is 10 3 Pa or less or the oxygen concentration is 1 to 15%. In the case of having three or more different firings, the firing atmosphere after the third stage is preferably 10 3 Pa or less or an oxygen concentration of 1 to 15%.

1段階目の焼成雰囲気が減圧下、もしくは不活性雰囲気下であると、グリーンシート中の脱灰が十分でなく、カーボン量を低減できない。そのため、蛍光体表面が還元されて失活、またはガラスが還元されて光変換部材の透過率が低下し、量子変換収率が低下するおそれがある。1段階目の圧力は、10Pa以上が好ましく、大気圧雰囲気以上がより好ましく、大気圧雰囲気がさらに好ましい。 If the firing atmosphere at the first stage is under reduced pressure or an inert atmosphere, deashing in the green sheet is not sufficient, and the amount of carbon cannot be reduced. For this reason, the phosphor surface is reduced and deactivated, or the glass is reduced, whereby the transmittance of the light conversion member is lowered, and the quantum conversion yield may be lowered. The pressure in the first stage is preferably 10 4 Pa or more, more preferably an atmospheric pressure atmosphere or more, and further preferably an atmospheric pressure atmosphere.

2段階目および3段階目以降を前記雰囲気下としないと、蛍光体表面が酸化されて失活し、量子変換収率が低下するおそれがある。減圧雰囲気下で焼成する場合、好ましくは500Pa以下、より好ましくは100Pa以下、さらに好ましくは60Pa以下である。不活性雰囲気下で焼成する場合、好ましくは酸素濃度が2〜12%、より好ましくは3〜10%である。不活性雰囲気におけるガスは特に限定されないが、窒素、アルゴンまたはヘリウムなどがあげられる。   If the second stage and the third and subsequent stages are not in the atmosphere, the phosphor surface is oxidized and deactivated, and the quantum conversion yield may be reduced. When firing in a reduced-pressure atmosphere, it is preferably 500 Pa or less, more preferably 100 Pa or less, and even more preferably 60 Pa or less. When firing in an inert atmosphere, the oxygen concentration is preferably 2 to 12%, more preferably 3 to 10%. The gas in the inert atmosphere is not particularly limited, and examples thereof include nitrogen, argon, and helium.

本光変換部材の製造において焼成温度は、1段階目の温度をTd、2段階目の温度をTbとした時に、Tdが450℃以下、かつTb−Tdが100〜300℃を満たす。Tdが450℃超では、蛍光体表面が酸化されて失活し、量子変換収率が低下するおそれがある。好ましくは420℃以下、より好ましくは400℃以下、さらに好ましくは380℃以下である。また、250℃未満ではグリーンシート中のカーボンが十分に脱灰されず、蛍光体表面が還元されて失活、またはガラスが還元されて光変換部材の透過率が低下し、量子変換収率が低下するおそれがある。好ましくは300℃以上、より好ましくは320℃以上である。   In the production of the present light conversion member, the firing temperature satisfies Td of 450 ° C. or less and Tb-Td of 100 to 300 ° C. when the first stage temperature is Td and the second stage temperature is Tb. When Td exceeds 450 ° C., the phosphor surface is oxidized and deactivated, and the quantum conversion yield may be reduced. Preferably it is 420 degrees C or less, More preferably, it is 400 degrees C or less, More preferably, it is 380 degrees C or less. Further, if the temperature is lower than 250 ° C., the carbon in the green sheet is not sufficiently decalcified, the phosphor surface is reduced and deactivated, or the glass is reduced and the transmittance of the light conversion member is lowered, and the quantum conversion yield is increased. May decrease. Preferably it is 300 degreeC or more, More preferably, it is 320 degreeC or more.

Tb−Tdが100℃未満では、ガラス粉末を十分に焼結できない、または光変換部材の内包泡を十分に低減できず、光変換部材の透過率が低下するおそれがある。好ましくは120℃以上、さらに好ましくは150℃以上である。また、300℃超ではガラスが流動してシートの形状を保てない、ガラスが蛍光体表面を侵食し、失活するおそれがある。好ましくは270℃未満、より好ましくは240℃未満である。さらに光変換部材の焼成時間を短くする、熱割れを防ぐ等の理由により、3段階以降の焼成を加えても良い。その場合の焼成温度をTb’とすると、Tb’はTb’−Tdが300℃未満である。   If Tb-Td is less than 100 ° C., the glass powder cannot be sufficiently sintered, or the encapsulated foam of the light conversion member cannot be sufficiently reduced, and the transmittance of the light conversion member may be reduced. Preferably it is 120 degreeC or more, More preferably, it is 150 degreeC or more. Further, if the temperature exceeds 300 ° C., the glass flows and the sheet shape cannot be maintained, and the glass may corrode the phosphor surface and deactivate. Preferably it is less than 270 degreeC, More preferably, it is less than 240 degreeC. Further, three or more stages of baking may be added for reasons such as shortening the baking time of the light conversion member and preventing thermal cracking. Assuming that the firing temperature in this case is Tb ', Tb' is Tb'-Td less than 300C.

2段階目の焼成温度Tbは、前記条件を満たした上で、ガラス転移温度Tg+30〜150℃が好ましい。TbがTg+30℃未満ではガラス粉末を十分に焼結できない、または光変換部材の内包泡を十分に低減できず、光変換部材の透過率が低下するおそれがある。好ましくはTg+50℃以上、さらに好ましくはTg+70℃以上である。TbがTg+150℃超だと、ガラスが流動してシートの形状を保てない、ガラスが蛍光体表面を侵食し、失活するおそれがある。好ましくはTg+130℃未満、より好ましくはTg+120℃未満である。   The second stage baking temperature Tb is preferably a glass transition temperature Tg + 30 to 150 ° C. after satisfying the above conditions. If Tb is less than Tg + 30 ° C., the glass powder cannot be sufficiently sintered, or the encapsulated foam of the light conversion member cannot be sufficiently reduced, and the transmittance of the light conversion member may be lowered. Preferably it is Tg + 50 degreeC or more, More preferably, it is Tg + 70 degreeC or more. If Tb exceeds Tg + 150 ° C., the glass flows and the sheet shape cannot be maintained, and the glass may erode the phosphor surface and deactivate. Preferably it is less than Tg + 130 degreeC, More preferably, it is less than Tg + 120 degreeC.

また、1段階目の焼成時間をtd、2段階目の焼成時間をtbとした時にtdは1〜10時間が好ましい。tbは0.5〜4時間がより好ましい。   Further, td is preferably 1 to 10 hours, where td is the first stage baking time and tb is the second stage baking time. tb is more preferably 0.5 to 4 hours.

以下、実施例に基づき本発明および製造例により本発明をさらに詳しく説明するが、本発明はこれら実施例および製造例に限定して解釈されるものではない。本発明の光変換部材の実施例(例1〜13)および比較例(例14〜19)を表1〜3に、光変換部材に使用するガラス組成物を表4に示す。なお、表中の「−」は未評価であることを示す。   EXAMPLES Hereinafter, although this invention and a manufacture example are demonstrated in more detail based on an Example, this invention is limited to these Examples and a manufacture example, and is not interpreted. Examples (Examples 1 to 13) and Comparative Examples (Examples 14 to 19) of the light conversion member of the present invention are shown in Tables 1 to 3, and Table 4 shows glass compositions used for the light conversion member. In addition, "-" in a table | surface shows that it is not evaluated.

蛍光体粉末として、下記の蛍光体1〜3を使用した。蛍光体1として、D50が10μm、460nm励起で蛍光体ピーク波長が約555nmであるYAG蛍光体粉末を使用した。蛍光体2として、D50が21μm、460nm励起で蛍光体ピーク波長が約541nmであるLAG蛍光体粉末を使用した。蛍光体3として、D50が25μm、460nm励起で蛍光体ピーク波長が約575nmであるYAG蛍光体粉末を使用した。 The following phosphors 1 to 3 were used as the phosphor powder. As the phosphor 1, YAG phosphor powder having D 50 of 10 μm and excitation of 460 nm and a phosphor peak wavelength of about 555 nm was used. As the phosphor 2, D 50 was used 21 [mu] m, the LAG phosphor powder phosphor having a peak wavelength of about 541nm at 460nm excitation. As the phosphor 3, D 50 was used 25 [mu] m, the YAG phosphor powder phosphor having a peak wavelength of about 575nm at 460nm excitation.

酸化物基準のモル%表記で、それぞれ表4で表示した組成になるように各成分の原料を調合し、ガラス原料を混合した。これを、白金ルツボ中で1200〜1400℃に電気炉で加熱し、溶融して、融液の一部を回転ロールで急冷して、ガラスリボンを形成した。また、融液の一部は成形後冷却し、ガラス板を得た。   The raw materials of the respective components were prepared so as to have the compositions indicated in Table 4 in terms of oxide-based mol%, and glass raw materials were mixed. This was heated in a platinum crucible to 1200 to 1400 ° C. with an electric furnace and melted, and a part of the melt was quenched with a rotating roll to form a glass ribbon. A part of the melt was cooled after molding to obtain a glass plate.

得られたガラスリボンを、ボールミルで粉砕し、目開き150μmの網目を有する篩にかけ、さらに気流分級し、ガラス1〜3の粉末(ガラス粉末)を得た。   The obtained glass ribbon was pulverized by a ball mill, passed through a sieve having a mesh having an opening of 150 μm, and further classified by airflow to obtain powders (glass powder) of glasses 1 to 3.

得られたガラス粉末のガラス転移点Tgを、示差熱分析計(リガク社製、商品名:TG8110)を使用して測定した。また、D50は、レーザ回折式粒度分布測定(島津製作所社製、装置名:SALD2100)により算出した。この結果を表4に示す。 The glass transition point Tg of the obtained glass powder was measured using a differential thermal analyzer (manufactured by Rigaku Corporation, trade name: TG8110). D 50 was calculated by laser diffraction particle size distribution measurement (manufactured by Shimadzu Corporation, apparatus name: SALD2100). The results are shown in Table 4.

得られたガラス板の密度dをアルキメデス法により測定した。また、ガラス板を厚み2mm、大きさ20mm×20mmの板状に加工後その両面を鏡面研磨してサンプル板とし、波長633nmの光に対する屈折率nを、メトリコン社製モデル2010プリズムカプラを用いて測定した。この結果を表4に示す。   The density d of the obtained glass plate was measured by Archimedes method. Further, after processing the glass plate into a plate shape having a thickness of 2 mm and a size of 20 mm × 20 mm, both surfaces thereof are mirror-polished to obtain a sample plate. It was measured. The results are shown in Table 4.

(例1)
ガラス1と蛍光体1を、ガラス粉末88体積%、蛍光体粉末12体積%となるように混合し、さらにビヒクルと混練し、脱泡してスラリーを得た。このスラリーをPETフィルム(帝人社製)にドクターブレード法で塗工した。これを、乾燥炉で約30分間乾燥し、約7cm四方の大きさに切り出し、PETフィルムを剥がして、厚み約0.5〜0.7mmのグリーンシートを得た。
(Example 1)
Glass 1 and phosphor 1 were mixed so as to be 88% by volume of glass powder and 12% by volume of phosphor powder, kneaded with a vehicle, and defoamed to obtain a slurry. This slurry was applied to a PET film (manufactured by Teijin Limited) by the doctor blade method. This was dried in a drying furnace for about 30 minutes, cut into a size of about 7 cm square, and the PET film was peeled off to obtain a green sheet having a thickness of about 0.5 to 0.7 mm.

これを、離型剤を塗布したムライト基板に載せて、それぞれ表1に示す条件で焼成した。なお、表中の「減圧(60Pa)」は、減圧下で到達真空度が60Paであることを示している。   This was placed on a mullite substrate coated with a release agent and fired under the conditions shown in Table 1. In the table, “reduced pressure (60 Pa)” indicates that the ultimate vacuum is 60 Pa under reduced pressure.

(例2〜19)
ガラス粉末と蛍光体粉末を種類と体積分率を表1〜3に記載のとおりとする以外は、例1と同様にして、例2〜19のグリーンシートを成形した。このようにして得られたグリーンシートを表1〜3に示す条件でそれぞれ焼成した。なお、表中の「O:5.2%」、「O:0.8%」および「O:0%」は、それぞれキャリアガスが窒素で、酸素濃度が5.2%、0.8%および0%の雰囲気を示している。
(Examples 2 to 19)
Green sheets of Examples 2 to 19 were molded in the same manner as Example 1 except that the types and volume fractions of glass powder and phosphor powder were as shown in Tables 1 to 3. The green sheets thus obtained were fired under the conditions shown in Tables 1 to 3, respectively. In the table, “O 2 : 5.2%”, “O 2 : 0.8%”, and “O 2 : 0%” indicate that the carrier gas is nitrogen and the oxygen concentration is 5.2% and 0%, respectively. .8% and 0% atmospheres are shown.

このようにして得られた例1〜19の光変換部材について、量子変換収率、蛍光ピーク波長λ、透過率およびカーボン含有量を測定した。これらの結果を表1〜3に示す。 Thus, about the obtained light conversion member of Examples 1-19, the quantum conversion yield, the fluorescence peak wavelength (lambda) p , the transmittance | permeability, and carbon content were measured. These results are shown in Tables 1-3.

光変換部材の量子変換収率は、絶対PL量子収率測定装置(浜松ホトニクス社製、商品名:Quantauru−QY)を使用して、励起光波長460nmにて測定した。また、この時同時に蛍光ピーク波長λも得られる。光変換部材の透過率は、ヘイズ測定装置(スガ試験機社製、商品名:ヘイズメーターHZ−2)を使用して、C光源にて測定した。光変換部材のカーボン含有量について、残カーボン分析装置(HORIBA社製、商品名:EMAIA−320V)を使用して測定し、上記式(1)により評価した。すなわち、標準試料であるW1.5g、Sn0.3gを秤量して加熱し、予めカーボン量を評価した後、W1.5g、Sn0.3gおよび光変換部材を約0.3g秤量して粉砕し加熱する。その時のカーボン量を標準試料のみのカーボン量で引いた値が光変換部材のカーボン含有量として評価される。 The quantum conversion yield of the light conversion member was measured at an excitation light wavelength of 460 nm using an absolute PL quantum yield measurement device (manufactured by Hamamatsu Photonics, trade name: Quantauru-QY). At the same time, the fluorescence peak wavelength λ p is also obtained. The transmittance | permeability of the light conversion member was measured with C light source using the haze measuring apparatus (The Suga Test Instruments company make, brand name: Haze meter HZ-2). The carbon content of the light conversion member was measured using a residual carbon analyzer (trade name: EMAIA-320V, manufactured by HORIBA) and evaluated by the above formula (1). That is, W1.5 g and Sn 0.3 g, which are standard samples, are weighed and heated, and after the carbon amount is evaluated in advance, about 1.5 g of W1.5 g, Sn 0.3 g and the light conversion member are weighed and pulverized and heated. To do. A value obtained by subtracting the carbon amount at that time from the carbon amount of only the standard sample is evaluated as the carbon content of the light conversion member.

表1〜3より明らかなように、実施例1〜13はカーボン含有量が0.5〜10ppmの範囲内であり、量子変換収率は80%以上と高い。また、例1〜13は、1段階目の焼成雰囲気が大気、2段階目の焼成雰囲気が10Pa以下の減圧もしくは酸素濃度が1〜15%である。さらに、Tdが450℃以下で、Tb−Tdが100〜300℃を満たす。そのため、カーボン含有量が本発明で規定する範囲に含まれる。 As is clear from Tables 1 to 3, Examples 1 to 13 have a carbon content in the range of 0.5 to 10 ppm, and the quantum conversion yield is as high as 80% or more. In Examples 1 to 13, the first stage firing atmosphere is air, and the second stage firing atmosphere is 10 3 Pa or less of reduced pressure or oxygen concentration of 1 to 15%. Furthermore, Td is 450 ° C. or less, and Tb−Td satisfies 100 to 300 ° C. Therefore, the carbon content is included in the range specified in the present invention.

一方で、比較例14、18は1段階目の焼成雰囲気が大気でなく、カーボン含有量が10ppm超であるため、蛍光体、もしくはガラスが還元されて量子変換収率は低い。   On the other hand, in Comparative Examples 14 and 18, since the first stage firing atmosphere is not air and the carbon content is more than 10 ppm, the phosphor or glass is reduced and the quantum conversion yield is low.

比較例15は、Tdが450℃超、比較例16および17は2段階目の焼成雰囲気が大気であるため、カーボン含有量が0.5ppm未満となり、蛍光体が酸化されて失活し、量子変換収率は低い。   In Comparative Example 15, Td is higher than 450 ° C., and in Comparative Examples 16 and 17, the second stage firing atmosphere is air, so that the carbon content is less than 0.5 ppm, and the phosphor is oxidized and deactivated. Conversion yield is low.

比較例19は、2段階目の焼成雰囲気において、酸素濃度が1%未満であるため、蛍光体、もしくはガラスが還元されて量子変換収率は低い。   In Comparative Example 19, since the oxygen concentration is less than 1% in the second stage firing atmosphere, the phosphor or glass is reduced and the quantum conversion yield is low.

Figure 2016058409
Figure 2016058409

Figure 2016058409
Figure 2016058409

Figure 2016058409
Figure 2016058409


Figure 2016058409

Figure 2016058409

本発明の光変換部材は、量子変換収率が高いので、光源の光を所望の色に変換して照明用途としての利用に好適である。   Since the light conversion member of the present invention has a high quantum conversion yield, it is suitable for use as a lighting application by converting light from a light source into a desired color.

Claims (14)

蛍光体粉末とガラスを含有する光変換部材であって、
光変換部材中のカーボン含有量が0.5〜10ppmであることを特徴とする光変換部材。
A light conversion member containing phosphor powder and glass,
A light conversion member having a carbon content in the light conversion member of 0.5 to 10 ppm.
前記光変換部材が50〜500μmの厚みを有する請求項1に記載の光変換部材。   The light conversion member according to claim 1, wherein the light conversion member has a thickness of 50 to 500 μm. 前記蛍光体粉末が、波長400〜500nmに励起帯を有し、波長500〜700nmに発光ピークを有し、酸化物、窒化物、酸窒化物、硫化物、酸硫化物、ハロゲン化物、アルミン酸塩化物およびハロリン酸塩化物からなる群から選ばれる1以上の化合物である請求項1または2のいずれか1項に記載の光変換部材。   The phosphor powder has an excitation band at a wavelength of 400 to 500 nm, an emission peak at a wavelength of 500 to 700 nm, and an oxide, nitride, oxynitride, sulfide, oxysulfide, halide, aluminate 3. The light conversion member according to claim 1, wherein the light conversion member is one or more compounds selected from the group consisting of chlorides and halophosphates. 4. 前記蛍光体粉末がガーネット系結晶である請求項3に記載の光変換部材。   The light conversion member according to claim 3, wherein the phosphor powder is a garnet crystal. 前記蛍光体粉末は、結晶粒径D50が1〜30μmである請求項1〜4のいずれか1項に記載の光変換部材。 The phosphor powder, light converting member according to any one of claims 1-4 grain size D 50 is 1 to 30 [mu] m. 前記ガラスは、DTA曲線から算出されるガラス転移点Tgが300〜550℃である請求項1〜5のいずれか1項に記載の光変換部材。   The light conversion member according to any one of claims 1 to 5, wherein the glass has a glass transition point Tg calculated from a DTA curve of 300 to 550 ° C. 前記ガラスが、Bi−B−ZnO系である請求項6に記載の光変換部材。 The light conversion member according to claim 6, wherein the glass is a Bi 2 O 3 —B 2 O 3 —ZnO system. 前記ガラスは、モル%表示で、Bi 3〜30%、B 10〜50%、ZnO 0〜45%を含有する請求項7に記載の光変換部材。 The glass is represented by mol%, Bi 2 O 3 3~30%, B 2 O 3 10~50%, the light conversion member according to claim 7 containing 0 to 45% ZnO. 前記光変換部材が、ガラス粉末と蛍光体粉末の混合粉末の焼結体である請求項1〜8のいずれか1項に記載の光変換部材。   The light conversion member according to any one of claims 1 to 8, wherein the light conversion member is a sintered body of a mixed powder of glass powder and phosphor powder. 請求項1〜9のいずれか1項に記載の光変換部材と光源を有する照明光源。   An illumination light source comprising the light conversion member according to any one of claims 1 to 9 and a light source. 前記光源が、LED発光素子である請求項10に記載の照明光源。   The illumination light source according to claim 10, wherein the light source is an LED light emitting element. ガラス粉末、蛍光体粉末、樹脂および有機溶媒を混練する工程(混練工程)、混練された物を成形する工程(成形工程)、成形された物を焼成する工程(焼成工程)を含み、
焼成工程は、2以上の異なる条件を有し、1段階目の焼成雰囲気は10Pa超かつ酸素濃度が16%以上であり、2段階目の焼成雰囲気は10Pa以下もしくは酸素濃度が1〜15%であり、1段階目の温度をTd、2段階目の温度をTbとした時に、Tdが450℃以下かつTb−Tdが100〜300℃を満たすことを特徴とする請求項1〜9のいずれか1項に記載の光変換部材の製造方法。
Including a step of kneading glass powder, phosphor powder, resin and organic solvent (kneading step), a step of molding the kneaded product (molding step), a step of firing the molded product (firing step),
The firing step has two or more different conditions, the first stage firing atmosphere is over 10 3 Pa and the oxygen concentration is 16% or more, and the second stage firing atmosphere is 10 3 Pa or less or the oxygen concentration is 1 The Td is 450 ° C. or lower and the Tb−Td satisfies 100 to 300 ° C. when the first stage temperature is Td and the second stage temperature is Tb. 10. The method for producing a light conversion member according to any one of 9 above.
混練工程における蛍光体粉末とガラス粉末の含有量が、体積分率で、蛍光体粉末が1〜40%、ガラス粉末が60〜99%である請求項12に記載の光変換部材の製造方法。   The method for producing a light conversion member according to claim 12, wherein the content of the phosphor powder and the glass powder in the kneading step is a volume fraction, the phosphor powder is 1 to 40%, and the glass powder is 60 to 99%. 前記焼成する工程が、2段階である請求項12または13に記載の光変換部材の製造方法。   The method for producing a light conversion member according to claim 12 or 13, wherein the firing step is performed in two stages.
JP2013018685A 2013-02-01 2013-02-01 Optical conversion member, manufacturing method thereof, and illumination light source with optical conversion member Pending JP2016058409A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013018685A JP2016058409A (en) 2013-02-01 2013-02-01 Optical conversion member, manufacturing method thereof, and illumination light source with optical conversion member
PCT/JP2014/051914 WO2014119603A1 (en) 2013-02-01 2014-01-29 Light conversion member, method for producing light conversion member, lighting light source and liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013018685A JP2016058409A (en) 2013-02-01 2013-02-01 Optical conversion member, manufacturing method thereof, and illumination light source with optical conversion member

Publications (1)

Publication Number Publication Date
JP2016058409A true JP2016058409A (en) 2016-04-21

Family

ID=51262316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013018685A Pending JP2016058409A (en) 2013-02-01 2013-02-01 Optical conversion member, manufacturing method thereof, and illumination light source with optical conversion member

Country Status (2)

Country Link
JP (1) JP2016058409A (en)
WO (1) WO2014119603A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016208671A1 (en) * 2015-06-23 2018-04-12 旭硝子株式会社 Fired molded body and method for producing the same, article provided with the fired molded body, material for fired molded body, and molded body before firing and method for producing the same
JP2022521153A (en) * 2019-02-06 2022-04-06 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング A method for reducing darkening in a fluorophore dispersed glass (PIG) manufactured by SPS.

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6830750B2 (en) * 2014-09-04 2021-02-17 日本電気硝子株式会社 Wavelength conversion member and light emitting device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150484A (en) * 2003-11-18 2005-06-09 Nichia Chem Ind Ltd Coating film for semiconductor light emitting element and manufacturing method thereof, and semiconductor light emitting device
DE102006027133A1 (en) * 2006-06-12 2007-12-13 Merck Patent Gmbh Process for the preparation of garnet phosphors in a pulsation reactor
JP5163073B2 (en) * 2007-11-22 2013-03-13 旭硝子株式会社 Manufacturing method of glass-coated light emitting device
CN102083941B (en) * 2008-07-02 2016-04-27 迪睿合电子材料有限公司 Red-emitting phosphors, the method manufacturing red-emitting phosphors, white light source, means of illumination and liquid crystal indicator
JP2012158494A (en) * 2011-01-31 2012-08-23 Ohara Inc Glass composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016208671A1 (en) * 2015-06-23 2018-04-12 旭硝子株式会社 Fired molded body and method for producing the same, article provided with the fired molded body, material for fired molded body, and molded body before firing and method for producing the same
JP2022521153A (en) * 2019-02-06 2022-04-06 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング A method for reducing darkening in a fluorophore dispersed glass (PIG) manufactured by SPS.
JP7250942B2 (en) 2019-02-06 2023-04-03 エイエムエス-オスラム インターナショナル ゲーエムベーハー Method for reducing darkening in phosphor-dispersed glass (PIG) manufactured by SPS

Also Published As

Publication number Publication date
WO2014119603A1 (en) 2014-08-07

Similar Documents

Publication Publication Date Title
JP4978886B2 (en) Phosphor composite material and phosphor composite member
JP5152687B2 (en) Luminescent color conversion material
JP5757238B2 (en) Phosphor-dispersed glass and method for producing the same
JP5633114B2 (en) SnO-P2O5 glass used for phosphor composite material
JP6508045B2 (en) Light conversion member, method of manufacturing light conversion member, illumination light source and liquid crystal display device
JP6273799B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
EP3476914A1 (en) Wavelength conversion member, and light emitting device using same
JP5939463B2 (en) Glass and wavelength conversion member using the glass
KR101785798B1 (en) Phosphor-dispersed glass
TW201815717A (en) Wavelength conversion member, and light emitting device using same
JP6222452B2 (en) Wavelength conversion member and light emitting device
JP2018043912A (en) Photoconversion member, illumination light source and method for producing photoconversion member
JP2012036367A (en) Phosphor composite member
JP2015071699A (en) Wavelength conversion material, wavelength conversion member and light-emitting device
JP2012052061A (en) Phosphor composite member
JPWO2014162893A1 (en) Light conversion member, method for manufacturing the same, illumination light source, and liquid crystal display device
JP6004250B2 (en) Wavelength conversion member and light emitting device
JP2016058409A (en) Optical conversion member, manufacturing method thereof, and illumination light source with optical conversion member
JP2015046579A (en) Method for manufacturing optical conversion member, optical conversion member, illumination light source, and liquid crystal display device
JP2016084269A (en) Phosphor-dispersed glass
WO2014050684A1 (en) Glass composition for phosphor-dispersed glass sheets, and phosphor-dispersed glass sheet using same
WO2019065011A1 (en) Glass for use in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device
JP2015053471A (en) Manufacturing method of optical conversion member, optical conversion member, illumination light source, and liquid crystal display device
KR102576253B1 (en) Wavelength conversion member and light emitting device comprising same
JP2008208380A (en) Luminescent color-converting member