JP2016051503A - Positive electrode substance for lithium ion battery, and method for manufacturing the same - Google Patents

Positive electrode substance for lithium ion battery, and method for manufacturing the same Download PDF

Info

Publication number
JP2016051503A
JP2016051503A JP2014174152A JP2014174152A JP2016051503A JP 2016051503 A JP2016051503 A JP 2016051503A JP 2014174152 A JP2014174152 A JP 2014174152A JP 2014174152 A JP2014174152 A JP 2014174152A JP 2016051503 A JP2016051503 A JP 2016051503A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
active material
lithium ion
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014174152A
Other languages
Japanese (ja)
Other versions
JP6449594B2 (en
Inventor
昭宏 江副
Akihiro EZOE
昭宏 江副
オッターシュテト ラルフ
Ralph Otterstedt
オッターシュテト ラルフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cs Energy Mat Ltd
CS Energy Materials Ltd
Original Assignee
Cs Energy Mat Ltd
CS Energy Materials Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cs Energy Mat Ltd, CS Energy Materials Ltd filed Critical Cs Energy Mat Ltd
Priority to JP2014174152A priority Critical patent/JP6449594B2/en
Publication of JP2016051503A publication Critical patent/JP2016051503A/en
Application granted granted Critical
Publication of JP6449594B2 publication Critical patent/JP6449594B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide LNCO type positive electrode active material which can meet various needs from the viewpoints of not only electric properties, but also safety and endurance, achieving good balance thereamong.SOLUTION: A positive electrode active material for a lithium ion battery comprises a nickel lithium metal complex oxide expressed by the following general formula (1) with its surface coated with a cobalt compound: LixNi1-y-zMyNzO1.7-2.2 (1) (In the formula (1), M represents at least one metal element selected from Co, Mn, Fe and Cu; N represents at least one metal element selected from Al, W, Ta and B; 0.90<x<1.10; 0.01<y<0.15; and 0.005<z<0.10.)SELECTED DRAWING: None

Description

本発明はリチウムイオン電池用正極物質、該活物質を用いたリチウムイオン電池正極、この正極を有するリチウムイオン電池、及び上記リチウムイオン電池用正極物質の製造方法に関する。   The present invention relates to a positive electrode material for a lithium ion battery, a lithium ion battery positive electrode using the active material, a lithium ion battery having the positive electrode, and a method for producing the positive electrode material for the lithium ion battery.

スマートフォン、タブレット型パソコン等の小型電子機器の普及により、ユーザーが屋外で長時間これら小型電子機器を携帯し利用することは、もはや一般的になっている。そのため、これら小型電子機器の電源である電池には長時間の使用に耐える高容量の電池であることが求められており、そのような要求を満たすリチウムイオン二次電池が盛んに研究開発されている。同時に、スマートフォン、タブレット型パソコン等の小型電子機器の更なる高機能化、高性能化が図られており、そのような高機能・高性能小型電子機器では消費電力の増大が避けられない。したがって、電池の高容量化への要求がますます高まっている。   With the spread of small electronic devices such as smartphones and tablet computers, it is no longer common for users to carry and use these small electronic devices outdoors for a long time. For this reason, batteries that are the power sources of these small electronic devices are required to have a high capacity that can withstand long-term use, and lithium-ion secondary batteries that satisfy such requirements have been actively researched and developed. Yes. At the same time, small electronic devices such as smartphones and tablet computers are being further enhanced in function and performance, and such high-performance and high-performance small electronic devices cannot avoid increasing power consumption. Therefore, there is an increasing demand for higher battery capacity.

また、近年は、エネルギー受給に対する危機意識や環境志向の高まりよって、風力発電、メガソーラー発電、家庭用太陽光発電といった、従来型の集中型発電所とは異なる独立分散型発電設備の設置が増えている。しかしながら、風力発電、太陽光発電等の自然エネルギーを利用した発電設備が従来の発電施設に比べて電気供給の安定性に劣るという問題は、未だ解決されていない。2011年3月11日に発生した東日本大震災、その後に引き起こされた原子力発電所停止にかかる給電状況の悪化以来、地震等の災害発生時における事業所や家庭単位での電力確保の重要性が、広く認識されるようになってきた。このため、消費地点単位で電源確保を確保する定置用蓄電池に注目が集まっている。しかしながら、現在の技術によれば、このような定置用蓄電池によって電気容量を確保するためには非常に大きな蓄電設備が必要とされる。このため、日本の住宅環境においてはそのような蓄電設備は、現時点では実用性を欠く。   Also, in recent years, with the growing awareness of energy crisis and environmental awareness, there has been an increase in the installation of independent decentralized power generation facilities such as wind power generation, mega solar power generation, and home solar power generation, which are different from conventional centralized power plants. ing. However, the problem that power generation facilities using natural energy such as wind power generation and solar power generation are inferior to the stability of electricity supply as compared with conventional power generation facilities has not yet been solved. Since the Great East Japan Earthquake that occurred on March 11, 2011, and the worsening of the power supply situation related to the nuclear power plant shutdown that was caused after that, the importance of securing power at business sites and households at the time of disasters such as earthquakes, It has become widely recognized. For this reason, attention has been focused on stationary storage batteries that ensure the supply of power on a consumption point basis. However, according to the current technology, a very large power storage facility is required to secure electric capacity with such a stationary storage battery. For this reason, in the Japanese residential environment, such power storage equipment lacks utility at present.

更に自動車産業においては、エネルギー効率のよい電気自動車、ハイブリッド自動車に注目が集まり、これらの自動車の開発が盛んに行われている。しかしながら、電池容量の不足による航続距離の不十分さ、加えて市中における充電設備の絶対的不足という問題は解決されていない。そのため、現時点では、電気エネルギーだけで動く電気自動車は、ハイブリッド自動車ほどには普及していない。電池容量の向上は、これら新型自動車の実用性を左右する課題である。   Further, in the automobile industry, attention is focused on energy efficient electric vehicles and hybrid vehicles, and development of these vehicles is actively performed. However, the problem of insufficient cruising distance due to insufficient battery capacity and the absolute shortage of charging facilities in the city has not been solved. Therefore, at present, electric vehicles that run only on electric energy are not as popular as hybrid vehicles. Improvement of battery capacity is an issue that affects the practicality of these new models.

上述のような、電子機器、電力確保、自動車などの産業を支える共通の製品の一つがリチウムイオン電池である。上述のような問題点に共通する原因が、リチウムイオン電池の体積当たりの容量が足りないことにある。リチウムイオン電池の体積当たりの容量が足りないという問題を引き起こす大きな要因は、リチウムイオン二次電池に用いられる正極活物質の単位体積当たりの放電容量が小さいことである。   One of the common products that support industries such as electronic devices, power securing, and automobiles as described above is a lithium ion battery. A common cause of the above problems is that the capacity per volume of the lithium ion battery is insufficient. A major factor causing the problem that the capacity per volume of the lithium ion battery is insufficient is that the discharge capacity per unit volume of the positive electrode active material used in the lithium ion secondary battery is small.

その一方で、リチウムイオン電池の用途拡大に伴って、リチウムイオン電池には、過酷な環境下でも電池特性が維持されること、安全性が高く長期使用に耐えることが求められている。このため、リチウムイオン電池用正極活物質には、充放電を繰り返しても充放電特性が低下しないこと、例え酸素や水分に接したとしてもその表面が酸化されにくいこと、充放電に伴う発熱量が小さいことなどが求められている。   On the other hand, along with the expansion of the use of lithium ion batteries, lithium ion batteries are required to maintain battery characteristics even in harsh environments and to have high safety and endure long-term use. For this reason, the positive electrode active material for lithium ion batteries does not deteriorate the charge / discharge characteristics even after repeated charge / discharge, the surface is not easily oxidized even if it comes into contact with oxygen or moisture, and the calorific value associated with charge / discharge Is required to be small.

リチウムイオン電池用正極活物質としては、LCO型正極活物質(Li、Coの複合酸化物)が挙げられるが、放電容量が低く、改質が必要とされる。これに対して、LNCO型正極活物質(Li、Ni、Coの複合酸化物)、特にLNCAO正極活物質(Li、Ni、Co、Alの複合酸化物)は、LCO型正極活物質に比べて安価で放電容量が高いことが利点とされる。   Examples of the positive electrode active material for a lithium ion battery include an LCO positive electrode active material (a composite oxide of Li and Co). However, the discharge capacity is low and modification is required. On the other hand, the LNCO type positive electrode active material (Li, Ni, Co composite oxide), in particular, the LNCAO positive electrode active material (Li, Ni, Co, Al composite oxide) is compared with the LCO type positive electrode active material. The advantage is that it is inexpensive and has a high discharge capacity.

正極活物質の耐久性や安全性を高めるために、正極活物質粒子の表面改質が従来から行われてきた。例えば、特許文献1、2には、LNCO型正極活物質の表面を様々な金属酸化物で被覆することが記載されている。しかし、これらの表面改質された正極活物質が、良好な充放電特性と耐久性、安全性を兼ね備えるものであることは確認できていない。LNCO型、特にLNCAO型正極活物質を様々な特性で改質できる表面改質剤は、未だ見出されていない。   In order to improve the durability and safety of the positive electrode active material, surface modification of the positive electrode active material particles has been conventionally performed. For example, Patent Documents 1 and 2 describe that the surface of an LNCO-type positive electrode active material is coated with various metal oxides. However, it has not been confirmed that these surface-modified positive electrode active materials have good charge / discharge characteristics, durability, and safety. No surface modifier has yet been found that can modify LNCO type, particularly LNCAO type positive electrode active materials with various properties.

特開2009−38021号公報JP 2009-38021 A 特開平11−16566号公報Japanese Patent Laid-Open No. 11-16666

そこで本発明は、電気特性だけでなく、安全性、耐久性などの様々な要求をバランスよく達成できるLNCO型正極活物質の表面改質剤を探索した。   Therefore, the present invention searched for a surface modifier for an LNCO-type positive electrode active material that can achieve not only electrical characteristics but also various requirements such as safety and durability in a balanced manner.

その結果、そのような表面改質剤として硝酸コバルトを新たに見出した。   As a result, cobalt nitrate was newly found as such a surface modifier.

すなわち本発明は以下のものである。
(発明1)以下の一般式(1)で表されるニッケルリチウム金属複合酸化物の表面にコバルト化合物が被覆されたものである、リチウムイオン電池用正極活物質。
That is, the present invention is as follows.
(Invention 1) A positive electrode active material for a lithium ion battery, wherein the surface of a nickel lithium metal composite oxide represented by the following general formula (1) is coated with a cobalt compound.

Figure 2016051503
Figure 2016051503

(ただし式(1)中、Mは、Co,Mn,Fe、Cuから選ばれる1つ以上の金属元素であり、NはAl、W、Ta、Bから選ばれる1つ以上の金属元素であり、0.90<x<1.10、0.01<y<0.15、0.005<z<0.10である。)
(発明2)一般式(1)におけるMがCoである、発明1のリチウムイオン電池用正極活物質。
(In the formula (1), M is one or more metal elements selected from Co, Mn, Fe, and Cu, and N is one or more metal elements selected from Al, W, Ta, and B) 0.90 <x <1.10, 0.01 <y <0.15, 0.005 <z <0.10.)
(Invention 2) The positive electrode active material for a lithium ion battery according to Invention 1, wherein M in the general formula (1) is Co.

(発明3)一般式(1)におけるNがAlであることを特徴とする、発明1または2のいずれかに記載のリチウムイオン電池用正極活物質。   (Invention 3) The positive electrode active material for a lithium ion battery according to any one of Invention 1 or 2, characterized in that N in the general formula (1) is Al.

(発明4)一般式(1)におけるMがCoであり、かつ、NがAlであることを特徴とする、発明1〜3のいずれかに記載のリチウムイオン電池用正極活物質。   (Invention 4) The positive electrode active material for a lithium ion battery according to any one of Inventions 1 to 3, wherein M in the general formula (1) is Co and N is Al.

(発明5)ニッケルリチウム金属複合酸化物に対して0.1〜10.0モル%のコバルト化合物で表面が被覆されていることを特徴とする、発明1〜4のいずれかに記載のリチウムイオン電池用正極活物質。   (Invention 5) The lithium ion according to any one of Inventions 1 to 4, wherein the surface is coated with 0.1 to 10.0 mol% of a cobalt compound with respect to the nickel lithium metal composite oxide. Positive electrode active material for batteries.

(発明6)コバルト化合物が硝酸コバルト由来であることを特徴とする、発明1〜5のいずれかに記載のリチウムイオン電池用正極活物質。   (Invention 6) The positive electrode active material for a lithium ion battery according to any one of Inventions 1 to 5, wherein the cobalt compound is derived from cobalt nitrate.

(発明7)発明1〜6のいずれかに記載のリチウムイオン電池用正極活物質を用いることを特徴とする、リチウムイオン電池用正極。   (Invention 7) A positive electrode for a lithium ion battery, characterized by using the positive electrode active material for a lithium ion battery according to any one of Inventions 1 to 6.

(発明8)発明7に記載のリチウムイオン電池用正極を備えることを特徴とする、リチリウムイオン電池。   (Invention 8) A lithium ion battery comprising the positive electrode for a lithium ion battery according to Invention 7.

(発明9)以下の一般式(1)で表されるニッケルリチウム金属複合酸化物の表面にコバルト化合物を被覆する工程を含む、リチウムイオン電池用正極活物質の製造方法。   (Invention 9) A method for producing a positive electrode active material for a lithium ion battery, comprising a step of coating a cobalt compound on the surface of a nickel lithium metal composite oxide represented by the following general formula (1).

Figure 2016051503
Figure 2016051503

(ただし式(1)中、Mは、Co,Mn,Fe、Cuから選ばれる1つ以上の金属元素であり、NはAl、W、Ta、Bから選ばれる1つ以上の金属元素であり、0.90<x<1.10、0.01<y<0.15、0.005<z<0.10である。)
(発明10)一般式(1)におけるMがCoであることを特徴とする、発明9に記載のリチウムイオン電池用正極活物質の製造方法。
(In the formula (1), M is one or more metal elements selected from Co, Mn, Fe, and Cu, and N is one or more metal elements selected from Al, W, Ta, and B) 0.90 <x <1.10, 0.01 <y <0.15, 0.005 <z <0.10.)
(Invention 10) The method for producing a positive electrode active material for a lithium ion battery according to Invention 9, wherein M in the general formula (1) is Co.

(発明11)一般式(1)におけるNがAlであることを特徴とする、発明9または10に記載のリチウムイオン電池用正極活物質の製造方法。   (Invention 11) The method for producing a positive electrode active material for a lithium ion battery according to Invention 9 or 10, wherein N in the general formula (1) is Al.

(発明12)一般式(1)における一般式(1)におけるMがCoであり、かつ、NがAlであることを特徴とする、発明9〜11のいずれかに記載のリチウムイオン電池用正極活物質の製造方法。   (Invention 12) The positive electrode for a lithium ion battery according to any one of Inventions 9 to 11, wherein M in the general formula (1) in the general formula (1) is Co and N is Al. A method for producing an active material.

(発明13)ニッケルリチウム金属複合酸化物に対して0.1〜10.0モル%のコバルト化合物で表面を被覆することを特徴とする、発明9〜12のいずれかに記載のリチウムイオン電池用正極活物質の製造方法。   (Invention 13) The lithium ion battery according to any one of Inventions 9 to 12, wherein the surface is coated with 0.1 to 10.0 mol% of a cobalt compound with respect to the nickel lithium metal composite oxide. A method for producing a positive electrode active material.

(発明14)ニッケルリチウム金属複合酸化物の表面にコバルト化合物を被覆する工程において、硝酸コバルトとニッケルリチウム金属複合酸化物とを接触させることを特徴とする、発明9〜13のいずれかに記載のリチウムイオン電池用正極活物質の製造方法。   (Invention 14) In the process of coating the surface of the nickel lithium metal composite oxide with a cobalt compound, cobalt nitrate and nickel lithium metal composite oxide are brought into contact with each other. A method for producing a positive electrode active material for a lithium ion battery.

(発明15)ニッケルリチウム金属複合酸化物の表面にコバルト化合物を被覆する工程において、硝酸コバルトのエタノール溶液にニッケルリチウム金属複合酸化物を混合し、得られた混合物を乾燥、次いで焼成することを特徴とする、発明9〜14のいずれかに記載のリチウムイオン電池用正極活物質の製造方法。   (Invention 15) In the step of coating the surface of the nickel lithium metal composite oxide with a cobalt compound, the nickel lithium metal composite oxide is mixed with an ethanol solution of cobalt nitrate, and the resulting mixture is dried and then fired. The manufacturing method of the positive electrode active material for lithium ion batteries in any one of invention 9-14.

本発明のリチウムイオン電池用正極活物質は、水分や炭酸ガスによる性能劣化が起こりにくく、高い充放電効率を示し、発熱量が低減できる。   The positive electrode active material for a lithium ion battery of the present invention is less susceptible to performance deterioration due to moisture and carbon dioxide gas, exhibits high charge / discharge efficiency, and can reduce the amount of heat generated.

本発明のリチウムイオン電池用正極活物質を構成するニッケルリチウム金属複合酸化物は、以下の一般式(1)で表される化合物である。   The nickel lithium metal composite oxide constituting the positive electrode active material for a lithium ion battery of the present invention is a compound represented by the following general formula (1).

Figure 2016051503
Figure 2016051503

(ただし式(1)中、Mは、Co,Mn,Fe、Cuから選ばれる1つ以上の金属元素であり、NはAl、W、Ta、Bから選ばれる1つ以上の金属元素であり、0.90<x<1.10、0.01<y<0.15、0.005<z<0.10である。)
本発明のリチウムイオン電池用正極活物質を構成するニッケルリチウム金属複合酸化物は、好ましくは、上記一般式(1)においてMがCo、NがAlである、以下の一般式(2)で表される化合物である。(ただし式(2)中、0.90<x<1.10、0.01<y<0.15、0.005<z<0.10である。)
(In the formula (1), M is one or more metal elements selected from Co, Mn, Fe, and Cu, and N is one or more metal elements selected from Al, W, Ta, and B) 0.90 <x <1.10, 0.01 <y <0.15, 0.005 <z <0.10.)
The nickel lithium metal composite oxide constituting the positive electrode active material for a lithium ion battery of the present invention is preferably represented by the following general formula (2), wherein M is Co and N is Al in the general formula (1). It is a compound. (In the formula (2), 0.90 <x <1.10, 0.01 <y <0.15, 0.005 <z <0.10.)

Figure 2016051503
Figure 2016051503

上記ニッケルリチウム金属複合酸化物は、以下の方法により製造することができる。   The nickel lithium metal composite oxide can be produced by the following method.

(1.原料の溶解)原料としては、一般式(1)を構成する金属の、硫酸塩、硝酸塩などの可溶性金属塩を用いることができる。硝酸塩を用いた場合、硝酸性窒素を含む廃液処理にコストがかかるため、硝酸塩の使用は工業的には好ましくない。通常は一般式(1)を構成する金属の硫酸塩が用いられる。本発明の低アルカリ性LNCAO系正極活物質の製造方法では、まず、原料である硫酸ニッケル、硫酸コバルトのそれぞれを水に溶解する。   (1. Dissolution of raw materials) As raw materials, soluble metal salts such as sulfates and nitrates of metals constituting the general formula (1) can be used. When nitrate is used, it is costly to treat waste liquid containing nitrate nitrogen, so use of nitrate is not industrially preferable. Usually, a metal sulfate constituting the general formula (1) is used. In the method for producing a low alkaline LNCAO positive electrode active material of the present invention, first, each of nickel sulfate and cobalt sulfate as raw materials is dissolved in water.

(2.沈殿)硫酸ニッケル水溶液、硫酸コバルト水溶液、沈殿剤としての水酸化ナトリウムとアンモニア水を沈殿槽内で混合する。水酸化ニッケルと水酸化コバルトの共沈殿物が生成する。   (2. Precipitation) A nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, sodium hydroxide as a precipitating agent and aqueous ammonia are mixed in a precipitation tank. A coprecipitate of nickel hydroxide and cobalt hydroxide is formed.

(3.濾過・洗浄)沈殿物を濾過し、水分を除去して水酸化物ケーキを分離する。水酸化物ケーキを水酸化ナトリウム水溶液で洗浄し、硫酸イオンを除去する。さらに水酸化物ケーキを純粋で洗浄して水酸化ナトリウムを除去する。こうして水酸化ニッケルと水酸化コバルトからなる前駆体ケーキが得られる。   (3. Filtration / Washing) The precipitate is filtered to remove moisture and separate the hydroxide cake. The hydroxide cake is washed with an aqueous sodium hydroxide solution to remove sulfate ions. Further, the hydroxide cake is washed with pure to remove sodium hydroxide. Thus, a precursor cake composed of nickel hydroxide and cobalt hydroxide is obtained.

(4.乾燥)前駆体ケーキを乾燥する。乾燥方法は、大気圧下での熱風乾燥、赤外線乾燥、真空乾燥などのいずれでもよい。真空乾燥を行うことにより短時間で乾燥することができる。前駆体中の水分が1重量%程度になるまで乾燥する。   (4. Drying) The precursor cake is dried. The drying method may be any of hot air drying under atmospheric pressure, infrared drying, vacuum drying, and the like. It can dry in a short time by performing vacuum drying. Dry until the water content in the precursor is about 1% by weight.

(5.粉体混合)乾燥後の前駆体粉末に、水酸化アルミニウムと水酸化リチウム粉末を加え、剪断力をかけて混合する。   (5. Powder mixing) Aluminum hydroxide and lithium hydroxide powder are added to the dried precursor powder and mixed by applying a shearing force.

(6.焼成)混合物を酸素存在下で焼成する。焼成により、以下の反応が起こる。   (6. Firing) The mixture is fired in the presence of oxygen. The following reaction occurs by firing.

Figure 2016051503
Figure 2016051503

Figure 2016051503
Figure 2016051503

Figure 2016051503
Figure 2016051503

本発明のリチウムイオン電池用正極活物質は、上述の工程を経て得られたニッケルリチウム金属複合酸化物の表面を以下の方法によりコバルト化合物で被覆することによって、得られる。   The positive electrode active material for a lithium ion battery of the present invention is obtained by coating the surface of the nickel lithium metal composite oxide obtained through the above-described steps with a cobalt compound by the following method.

(被覆用コバルト原料)本発明では、最終的にニッケルリチウム金属複合酸化物の表面を覆うコバルト化合物を供給するための原料として、硝酸コバルトを用いる。硝酸コバルトとして、硝酸コバルト六水和物:Co(NO・6HOを用いる。 (Cobalt raw material for coating) In the present invention, cobalt nitrate is used as a raw material for supplying a cobalt compound that finally covers the surface of the nickel lithium metal composite oxide. As the cobalt nitrate, cobalt nitrate hexahydrate: Co (NO 3 ) 2 .6H 2 O is used.

(被覆用コバルト化合物の混合)ニッケルリチウム金属複合酸化物と硝酸コバルト六水和物のエタノール溶液を混合し、60〜90℃で加熱する。その後、混合物を乾燥する。   (Mixing of Cobalt Compound for Coating) A nickel lithium metal composite oxide and an ethanol solution of cobalt nitrate hexahydrate are mixed and heated at 60 to 90 ° C. Thereafter, the mixture is dried.

(混合物の焼成)乾燥された上記混合物を酸素存在下で焼成する。焼成温度は500〜800℃の範囲である。焼成の過程で硝酸イオンが分解し、ニッケルリチウム金属複合酸化物の表面とコバルト成分が反応し、コバルト化合物からなる被覆層が形成される。こうして、コバルト化合物で表面が被覆されたニッケルリチウム金属複合酸化物からなる、本発明の正極活物質が得られる。   (Baking of mixture) The dried mixture is fired in the presence of oxygen. The firing temperature is in the range of 500 to 800 ° C. During the firing process, nitrate ions are decomposed, the surface of the nickel lithium metal composite oxide reacts with the cobalt component, and a coating layer made of a cobalt compound is formed. In this way, the positive electrode active material of this invention which consists of nickel lithium metal complex oxide by which the surface was coat | covered with the cobalt compound is obtained.

コバルト化合物で表面が被覆されたニッケルリチウム金属複合酸化物の充放電容量、充放電効率は、コバルト化合物で被覆していないニッケルリチウム金属複合酸化物の充放電容量、充放電効率と同等か、これより高い。したがって、本発明の正極活物質は初期電気特性が改善している。   The charge / discharge capacity and charge / discharge efficiency of the nickel lithium metal composite oxide whose surface is coated with a cobalt compound are the same as or equal to the charge / discharge capacity and charge / discharge efficiency of the nickel lithium metal composite oxide not coated with the cobalt compound. taller than. Therefore, the positive electrode active material of the present invention has improved initial electrical characteristics.

コバルト化合物で表面が被覆されたニッケルリチウム金属複合酸化物の水分吸収量、炭酸ガス吸収量は、コバルト化合物で被覆していないニッケルリチウム金属複合酸化物の水分吸収量、炭酸ガス吸収量よりも極めて低い。したがって、本発明の正極活物質は、水分や空気に対する暴露耐性が向上している。   The water absorption and carbon dioxide absorption of the nickel lithium metal composite oxide whose surface is coated with the cobalt compound is much higher than the water absorption and carbon dioxide absorption of the nickel lithium metal composite oxide not coated with the cobalt compound. Low. Therefore, the positive electrode active material of the present invention has improved exposure resistance to moisture and air.

水分や炭酸ガスを吸収した後は、コバルト化合物で被覆していないニッケルリチウム金属複合酸化物の放電容量、充放電効率は大きく低下する。これに対して、水分や炭酸ガスを吸収した後でも、コバルト化合物で表面が被覆されたニッケルリチウム金属複合酸化物の放電容量、充放電効率の低下はごくわずかである。したがって、本発明の正極活物質では、水分や空気への暴露による電池特性の低下が抑制されている。   After absorbing moisture and carbon dioxide, the discharge capacity and charge / discharge efficiency of the nickel-lithium metal composite oxide not coated with the cobalt compound are greatly reduced. On the other hand, even after absorbing moisture and carbon dioxide gas, the decrease in discharge capacity and charge / discharge efficiency of the nickel lithium metal composite oxide whose surface is coated with a cobalt compound is negligible. Therefore, in the positive electrode active material of the present invention, deterioration of battery characteristics due to exposure to moisture and air is suppressed.

コバルト化合物で表面が被覆されたニッケルリチウム金属複合酸化物の示差走査熱量計によって測定された発熱量は、コバルト化合物で被覆していないニッケルリチウム金属複合酸化物の発熱量に比べて格段に低い。したがって、本発明の正極活物質は安全性が改善している。   The calorific value measured by a differential scanning calorimeter of the nickel lithium metal composite oxide whose surface is coated with a cobalt compound is much lower than the calorific value of the nickel lithium metal composite oxide not coated with the cobalt compound. Therefore, the safety of the positive electrode active material of the present invention is improved.

本発明のリチウムイオン電池の正極活物質のみでリチウムイオン電池の正極活物質を構成してもよいし、本発明の正極活物質に、その長所が発現する程度の量で他の正極活物質を混合してもよい。例えば、本発明の正極活物質50重量部と、本発明以外のリチウムイオン電池二次電池用正極活物質50重量部とを混合したものを、正極活物質として用いることができる。リチウムイオン電池の正極を製造する場合には、上述の本発明の正極活物質、導電助剤、バインダー、分散用有機溶媒を加えて正極用合剤スラリーを調製し、電極に塗布する。   The positive electrode active material of the lithium ion battery may be composed of only the positive electrode active material of the lithium ion battery of the present invention, or other positive electrode active materials may be added to the positive electrode active material of the present invention in such an amount that the advantages are expressed. You may mix. For example, a mixture of 50 parts by weight of the positive electrode active material of the present invention and 50 parts by weight of a positive electrode active material for a lithium ion battery secondary battery other than the present invention can be used as the positive electrode active material. When manufacturing the positive electrode of a lithium ion battery, the positive electrode active material of the above-mentioned this invention, a conductive support agent, a binder, and the organic solvent for dispersion are added, the positive mix slurry is prepared, and it applies to an electrode.

以下の方法で、本発明のリチウムイオン電池用正極活物質を構成するニッケルリチウム金属複合酸化物を製造した。   The nickel lithium metal composite oxide which comprises the positive electrode active material for lithium ion batteries of this invention was manufactured with the following method.

(ニッケルリチウム金属複合酸化物の調製)硫酸ニッケル及び硫酸コバルトを溶解させた水溶液に水酸化ナトリウム水溶液を加え、生じた沈殿を濾過、洗浄、乾燥した。水酸化ニッケル−水酸化コバルト共沈物が得た。得られた水酸化ニッケル−水酸化コバルト共沈物に水酸化リチウムと水酸化アルミニウムを粉体で混合し焼成原料を得た。この焼成原料を酸素気流中、780℃で焼成した。LiNi0.825、Co0.155、Al0.02で表されるニッケルリチウム金属複合酸化物が得られた。
[実施例1]
焼成後のニッケルリチウム金属複合酸化物150gを秤量した。これに対して0.25モル%に相当する硝酸コバルトを含む硝酸コバルト六水和物を、50mlエタノール溶液に溶解し、硝酸コバルトのエタノール溶液を調整した。ニッケルリチウム金属複合酸化物と上記硝酸コバルトのエタノール溶液を混合し、80℃で1時間加熱した。液状成分が揮発して混合物が粉状になってから、温度80℃において混合物を2時間乾燥した。乾燥された混合物を酸素ガス中、750℃で4時間焼成した。本発明の正極活物質を得た。
[実施例2]
焼成後のニッケルリチウム金属複合酸化物に対して1モル%に相当する硝酸コバルトを含む硝酸コバルト六水和物を用いた点以外は実施例と同じ条件で、本発明の正極活物質を得た。
[実施例3]
焼成後のニッケルリチウム金属複合酸化物に対して4モル%に相当する硝酸コバルトを含む硝酸コバルト六水和物を用いた点以外は実施例と同じ条件で、本発明の正極活物質を得た。
[比較例1]
被覆前のニッケルリチウム金属複合酸化物を比較用の正極活物質とした。
[比較例2]
(酸化ジルコニウム被覆正極活物質の製造)焼成後のニッケルリチウム金属複合酸化物150gと、これに対して4モル%に相当する酸化ジルコニウムを含む酸化ジルコニウム水ゾル150gを混合した。混合物をろ過し、得られた固形物を90℃に保ち、8時間乾燥した。乾燥された混合物を酸素ガス中、750℃で4時間焼成した。酸化ジルコニウムで表面が被覆されたニッケルリチウム金属複合酸化物が得られた。
[比較例3]
(アルミナ被覆正極活物質の製造)焼成後のニッケルリチウム金属複合酸化物150gと、これに対して5モル%に相当するアルミナを混合した。混合物を酸素ガス中、700℃で4時間焼成した。アルミナで表面が被覆されたニッケルリチウム金属複合酸化物が得られた。
実施例、比較例で得られた正極活物質の環境暴露に対する耐性を以下の方法で評価した。
(Preparation of nickel lithium metal composite oxide) A sodium hydroxide aqueous solution was added to an aqueous solution in which nickel sulfate and cobalt sulfate were dissolved, and the resulting precipitate was filtered, washed and dried. A nickel hydroxide-cobalt hydroxide coprecipitate was obtained. The obtained nickel hydroxide-cobalt hydroxide coprecipitate was mixed with lithium hydroxide and aluminum hydroxide in powder form to obtain a calcined raw material. The fired raw material was fired at 780 ° C. in an oxygen stream. A nickel lithium metal composite oxide represented by LiNi 0.825, Co 0.155, and Al 0.02 O 2 was obtained.
[Example 1]
150 g of the nickel-lithium metal composite oxide after firing was weighed. On the other hand, cobalt nitrate hexahydrate containing cobalt nitrate corresponding to 0.25 mol% was dissolved in 50 ml ethanol solution to prepare an ethanol solution of cobalt nitrate. The nickel lithium metal composite oxide and the ethanol solution of cobalt nitrate were mixed and heated at 80 ° C. for 1 hour. After the liquid component volatilized and the mixture became powdery, the mixture was dried at a temperature of 80 ° C. for 2 hours. The dried mixture was calcined at 750 ° C. for 4 hours in oxygen gas. A positive electrode active material of the present invention was obtained.
[Example 2]
A positive electrode active material of the present invention was obtained under the same conditions as in Examples, except that cobalt nitrate hexahydrate containing cobalt nitrate corresponding to 1 mol% with respect to the nickel-lithium metal composite oxide after firing was used. .
[Example 3]
A positive electrode active material of the present invention was obtained under the same conditions as in Examples, except that cobalt nitrate hexahydrate containing cobalt nitrate corresponding to 4 mol% with respect to the nickel-lithium metal composite oxide after firing was used. .
[Comparative Example 1]
The nickel lithium metal composite oxide before coating was used as a positive electrode active material for comparison.
[Comparative Example 2]
(Production of zirconium oxide-coated positive electrode active material) 150 g of the nickel-lithium metal composite oxide after firing and 150 g of a zirconium oxide water sol containing zirconium oxide corresponding to 4 mol% were mixed. The mixture was filtered and the resulting solid was kept at 90 ° C. and dried for 8 hours. The dried mixture was calcined at 750 ° C. for 4 hours in oxygen gas. A nickel lithium metal composite oxide whose surface was coated with zirconium oxide was obtained.
[Comparative Example 3]
(Production of Alumina-Coated Positive Electrode Active Material) After firing, 150 g of nickel-lithium metal composite oxide was mixed with alumina corresponding to 5 mol%. The mixture was calcined in oxygen gas at 700 ° C. for 4 hours. A nickel lithium metal composite oxide whose surface was coated with alumina was obtained.
The resistance to environmental exposure of the positive electrode active materials obtained in the examples and comparative examples was evaluated by the following methods.

(暴露試験)正極活物質を、相対湿度58%、30℃に保たれた空気恒温槽内に72時間暴露した。暴露前後の、正極活物質の総水分量と炭酸イオン含有量の変化を測定した。暴露前後の正極活物質の総水分量の変化を表1に示す。暴露前後の正極活物質の炭酸イオン含有量の変化を表2に示す。   (Exposure Test) The positive electrode active material was exposed for 72 hours in an air thermostat kept at 30 ° C. and a relative humidity of 58%. Changes in the total water content and carbonate ion content of the positive electrode active material before and after exposure were measured. Table 1 shows changes in the total water content of the positive electrode active material before and after exposure. Table 2 shows changes in the carbonate ion content of the positive electrode active material before and after the exposure.

Figure 2016051503
Figure 2016051503


表1に示すように、ニッケルリチウム金属複合酸化物の表面が硝酸コバルト由来のコバルト化合物で被覆されている実施例1,2,3は、比較例1,2,3に比べ総水分量の変化が少ない。すなわち、ニッケルリチウム金属複合酸化物の表面が硝酸コバルト由来のコバルト化合物で被覆されることにより、外気中の水分によるニッケルリチウム金属複合酸化物を含む正極活物質の性能劣化が起こりにくい。

As shown in Table 1, in Examples 1, 2, and 3 in which the surface of the nickel-lithium metal composite oxide was coated with a cobalt compound derived from cobalt nitrate, the change in the total water content was compared with Comparative Examples 1, 2, and 3. Less is. That is, when the surface of the nickel lithium metal composite oxide is coated with a cobalt compound derived from cobalt nitrate, performance deterioration of the positive electrode active material containing the nickel lithium metal composite oxide due to moisture in the outside air hardly occurs.

Figure 2016051503
Figure 2016051503


表2に示すように、ニッケルリチウム金属複合酸化物の表面が硝酸コバルト由来のコバルト化合物で被覆されている実施例1,2,3は、比較例1,2,3に比べ炭酸イオン量の変化が少ない。すなわち、ニッケルリチウム金属複合酸化物の表面が硝酸コバルト由来のコバルト化合物で被覆されることにより、外気中の炭酸ガスによるニッケルリチウム金属複合酸化物を含む正極活物の性能劣化が起こりにくい。

As shown in Table 2, in Examples 1, 2, and 3 in which the surface of the nickel lithium metal composite oxide was coated with a cobalt compound derived from cobalt nitrate, the amount of carbonate ions was changed as compared with Comparative Examples 1, 2, and 3. Less is. That is, when the surface of the nickel lithium metal composite oxide is coated with a cobalt compound derived from cobalt nitrate, performance deterioration of the positive electrode active material containing the nickel lithium metal composite oxide due to carbon dioxide gas in the outside air hardly occurs.

実施例、比較例で得られた正極活物質の初期電気特性を以下の方法で評価した。   The initial electrical characteristics of the positive electrode active materials obtained in Examples and Comparative Examples were evaluated by the following methods.

(初期電気特性)実施例、比較例の正極活物質を、上記暴露条件に置かず、ただちにそれらの充電容量、放電容量、充放電効率を測定した。結果を表3に示す。   (Initial electrical characteristics) The positive electrode active materials of Examples and Comparative Examples were not subjected to the above exposure conditions, and their charge capacity, discharge capacity, and charge / discharge efficiency were immediately measured. The results are shown in Table 3.

Figure 2016051503
Figure 2016051503


表3に示すように、ニッケルリチウム金属複合酸化物の表面が硝酸コバルト由来のコバルト化合物で被覆されている実施例1,2,3は、比較例1,2と同等かあるいはそれを上回る充放電効率を示す。すなわち、ニッケルリチウム金属複合酸化物の表面が硝酸コバルト由来のコバルト化合物で被覆されても、ニッケルリチウム金属複合酸化物を含む正極活物質の初期電気特性は損なわれないか、あるいは向上する。

As shown in Table 3, Examples 1, 2, and 3 in which the surface of nickel-lithium metal composite oxide is coated with a cobalt compound derived from cobalt nitrate are equivalent to or higher than those of Comparative Examples 1 and 2. Shows efficiency. That is, even if the surface of the nickel lithium metal composite oxide is coated with a cobalt compound derived from cobalt nitrate, the initial electrical characteristics of the positive electrode active material containing the nickel lithium metal composite oxide are not impaired or improved.

実施例、比較例で得られた正極活物質の環境暴露による電気特性の変化を以下の方法で評価した。   Changes in electrical characteristics due to environmental exposure of the positive electrode active materials obtained in Examples and Comparative Examples were evaluated by the following methods.

(環境暴露を経た電気特性)正極活物質を相対湿度50%、25℃に保たれた空気恒温槽内に7日間暴露した。暴露前後の充電容量、放電容量、充放電効率を測定し、比較した。評価結果を表4に示す。   (Electrical characteristics after environmental exposure) The positive electrode active material was exposed for 7 days in an air thermostat kept at 25% relative humidity and 50%. The charge capacity, discharge capacity, and charge / discharge efficiency before and after exposure were measured and compared. The evaluation results are shown in Table 4.

Figure 2016051503
Figure 2016051503

表4に示すように、ニッケルリチウム金属複合酸化物の表面が硝酸コバルト由来のコバルト化合物で被覆されている実施例1では、環境暴露後にも関わらず充放電効率が向上している。これに対して被覆していない比較例1では、環境暴露後の充放電効率は低下している。すなわち、ニッケルリチウム金属複合酸化物の表面が硝酸コバルト由来のコバルト化合物で被覆すると、ニッケルリチウム金属複合酸化物を含む電気特性は環境暴露により損なわれることはない。   As shown in Table 4, in Example 1 in which the surface of the nickel lithium metal composite oxide was coated with a cobalt compound derived from cobalt nitrate, the charge / discharge efficiency was improved despite exposure to the environment. On the other hand, in the comparative example 1 which is not coat | covered, the charge / discharge efficiency after environmental exposure is falling. That is, when the surface of the nickel lithium metal composite oxide is coated with a cobalt compound derived from cobalt nitrate, the electrical characteristics including the nickel lithium metal composite oxide are not impaired by environmental exposure.

さらに、実施例、比較例について、以下の方法で熱安定性を評価した。評価結果を表5に示す。   Furthermore, thermal stability was evaluated by the following methods for the examples and comparative examples. The evaluation results are shown in Table 5.

(熱安定性)前述の初期電気特性の評価で用いた方法に準じた方法で正極活物質を充電し、その示差走査熱量分析を行った。示差走査熱量の測定には日立ハイテクサイエンス社製 DSC−7020 示差走査熱量計を用いた。   (Thermal stability) The positive electrode active material was charged by the method according to the method used in the evaluation of the initial electrical characteristics described above, and the differential scanning calorimetry was performed. A differential scanning calorimeter manufactured by Hitachi High-Tech Science Co., Ltd. was used for measurement of the differential scanning calorific value.

Figure 2016051503
Figure 2016051503

表5に示すように、ニッケルリチウム金属複合酸化物の表面が硝酸コバルト由来のコバルト化合物で被覆されている実施例1,2,3では、被覆していない比較例1に比べて発熱量は小さい。すなわち、ニッケルリチウム金属複合酸化物の表面が硝酸コバルト由来のコバルト化合物で被覆すると、ニッケルリチウム金属複合酸化物を含む正極活物質の発熱量が低減される。 As shown in Table 5, in Examples 1, 2, and 3 in which the surface of the nickel lithium metal composite oxide is coated with a cobalt compound derived from cobalt nitrate, the calorific value is smaller than that in Comparative Example 1 that is not coated. . That is, when the surface of the nickel lithium metal composite oxide is coated with a cobalt compound derived from cobalt nitrate, the calorific value of the positive electrode active material containing the nickel lithium metal composite oxide is reduced.

本発明は、初期電気特性、安全性、耐久性に優れるリチウムイオン電池の製造に貢献する。本発明の正極活物質を用いて、より小型の電子機器や、蓄電設備や車両などのより高い安全性と耐久性が求められる工業製品に用いられるリチウムイオン電池が提供されることが、期待される。   The present invention contributes to the manufacture of a lithium ion battery excellent in initial electrical characteristics, safety, and durability. The positive electrode active material of the present invention is expected to provide a lithium ion battery for use in industrial products that require higher safety and durability, such as smaller electronic devices, power storage facilities, and vehicles. The

Claims (15)

以下の一般式 (1)で表されるニッケルリチウム金属複合酸化物の表面にコバルト化合物が被覆されたものである、リチウムイオン電池用正極活物質。
Figure 2016051503

(ただし式(1)中、Mは、Co,Mn,Fe、Cuから選ばれる1つ以上の金属元素であり、
NはAl、W、Ta、Bから選ばれる1つ以上の金属元素であり、
0.90<x<1.10、0.01<y<0.15、0.005<z<0.10である。)
The positive electrode active material for lithium ion batteries by which the cobalt compound is coat | covered on the surface of the nickel lithium metal complex oxide represented by the following general formula (1).
Figure 2016051503

(In the formula (1), M is one or more metal elements selected from Co, Mn, Fe, and Cu;
N is one or more metal elements selected from Al, W, Ta, and B,
0.90 <x <1.10, 0.01 <y <0.15, 0.005 <z <0.10. )
一般式(1)におけるMがCoである、請求項1に記載のリチウムイオン電池用正極活物質。 The positive electrode active material for a lithium ion battery according to claim 1, wherein M in the general formula (1) is Co. 一般式(1)におけるNがAlであることを特徴とする、請求項1または2のいずれか1項に記載のリチウムイオン電池用正極活物質。 The positive electrode active material for a lithium ion battery according to claim 1, wherein N in the general formula (1) is Al. 一般式(1)におけるMがCoであり、かつ、NがAlであることを特徴とする、請求項1〜3のいずれか1項に記載のリチウムイオン電池用正極活物質。 The positive electrode active material for a lithium ion battery according to any one of claims 1 to 3, wherein M in the general formula (1) is Co and N is Al. ニッケルリチウム金属複合酸化物に対して0.1〜10.0モル%のコバルト化合物で表面が被覆されていることを特徴とする、請求項1〜4のいずれか1項に記載のリチウムイオン電池用正極活物質。 The lithium ion battery according to any one of claims 1 to 4, wherein the surface is coated with 0.1 to 10.0 mol% of a cobalt compound with respect to the nickel lithium metal composite oxide. Positive electrode active material. コバルト化合物が硝酸コバルト由来であることを特徴とする、請求項1〜5のいずれか1項に記載のリチウムイオン電池用正極活物質。 The positive electrode active material for a lithium ion battery according to any one of claims 1 to 5, wherein the cobalt compound is derived from cobalt nitrate. 請求項1〜6のいずれか1項に記載のリチウムイオン電池用正極活物質を用いることを特徴とする、リチウムイオン電池用正極。 The positive electrode for lithium ion batteries using the positive electrode active material for lithium ion batteries of any one of Claims 1-6. 請求項7に記載のリチウムイオン電池用正極を備えることを特徴とする、リチリウムイオン電池。 A lithium ion battery comprising the positive electrode for a lithium ion battery according to claim 7. 以下の一般式(1)で表されるニッケルリチウム金属複合酸化物の表面にコバルト化合物を被覆する工程を含む、リチウムイオン電池用正極活物質の製造方法。
Figure 2016051503

(ただし式(1)中、Mは、Co,Mn,Fe、Cuから選ばれる1つ以上の金属元素であり、
NはAl、W、Ta、Bから選ばれる1つ以上の金属元素であり、
0.90<x<1.10、0.01<y<0.15、0.01<z<0.10である。)
The manufacturing method of the positive electrode active material for lithium ion batteries including the process of coat | covering the cobalt compound on the surface of the nickel lithium metal complex oxide represented by the following General formula (1).
Figure 2016051503

(In the formula (1), M is one or more metal elements selected from Co, Mn, Fe, and Cu;
N is one or more metal elements selected from Al, W, Ta, and B,
0.90 <x <1.10, 0.01 <y <0.15, 0.01 <z <0.10. )
一般式(1)におけるMがCoであることを特徴とする、請求項9に記載のリチウムイオン電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a lithium ion battery according to claim 9, wherein M in the general formula (1) is Co. 一般式(1)におけるNがAlであることを特徴とする、請求項9または10に記載のリチウムイオン電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a lithium ion battery according to claim 9 or 10, wherein N in the general formula (1) is Al. 一般式(1)における一般式(1)におけるMがCoであり、かつ、NがAlであることを特徴とする、請求項9〜11のいずれか1項に記載のリチウムイオン電池用正極活物質の製造方法。 The positive electrode active for lithium ion battery according to any one of claims 9 to 11, wherein M in the general formula (1) in the general formula (1) is Co and N is Al. A method for producing a substance. ニッケルリチウム金属複合酸化物に対して0.1〜10.0モル%のコバルト化合物で表面を被覆することを特徴とする、請求項9〜12のいずれか1項に記載のリチウムイオン電池用正極活物質の製造方法。 The positive electrode for a lithium ion battery according to any one of claims 9 to 12, wherein the surface is coated with 0.1 to 10.0 mol% of a cobalt compound with respect to the nickel lithium metal composite oxide. A method for producing an active material. ニッケルリチウム金属複合酸化物の表面にコバルト化合物を被覆する工程において、硝酸コバルトとニッケルリチウム金属複合酸化物とを接触させることを特徴とする、請求項9〜13のいずれか1項に記載のリチウムイオン電池用正極活物質の製造方法。 14. The lithium according to claim 9, wherein cobalt nitrate and nickel lithium metal composite oxide are contacted in the step of coating the surface of nickel lithium metal composite oxide with a cobalt compound. A method for producing a positive electrode active material for an ion battery. ニッケルリチウム金属複合酸化物の表面にコバルト化合物を被覆する工程において、硝酸コバルトのエタノール溶液にニッケルリチウム金属複合酸化物を混合し、得られた混合物を乾燥、次いで焼成することを特徴とする、請求項9〜14のいずれか1項に記載のリチウムイオン電池用正極活物質の製造方法。 In the step of coating the surface of the nickel lithium metal composite oxide with a cobalt compound, the nickel lithium metal composite oxide is mixed with an ethanol solution of cobalt nitrate, and the resulting mixture is dried and then fired. Item 15. The method for producing a positive electrode active material for a lithium ion battery according to any one of Items 9 to 14.
JP2014174152A 2014-08-28 2014-08-28 Positive electrode material for lithium ion battery and method for producing the same Active JP6449594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014174152A JP6449594B2 (en) 2014-08-28 2014-08-28 Positive electrode material for lithium ion battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014174152A JP6449594B2 (en) 2014-08-28 2014-08-28 Positive electrode material for lithium ion battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016051503A true JP2016051503A (en) 2016-04-11
JP6449594B2 JP6449594B2 (en) 2019-01-09

Family

ID=55658893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014174152A Active JP6449594B2 (en) 2014-08-28 2014-08-28 Positive electrode material for lithium ion battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP6449594B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017193471A (en) * 2016-04-22 2017-10-26 ユミコア Method for producing nickel lithium metal composite oxide
JP2020525993A (en) * 2017-10-12 2020-08-27 エルジー・ケム・リミテッド Positive electrode active material for lithium secondary battery, method for producing the same, positive electrode for lithium secondary battery including the same, and lithium secondary battery
JP2020181638A (en) * 2019-04-23 2020-11-05 トヨタ自動車株式会社 Coating positive electrode active material
JP2022514966A (en) * 2019-01-07 2022-02-16 エルジー エナジー ソリューション リミテッド Positive electrode active material, manufacturing method of positive electrode active material, positive electrode containing positive electrode active material and lithium secondary battery
EP4095949A1 (en) * 2021-05-28 2022-11-30 Samsung SDI Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery including the same
EP4135067A1 (en) * 2021-08-13 2023-02-15 Samsung SDI Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery including the same
US11682755B2 (en) 2017-12-04 2023-06-20 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US11728473B2 (en) 2020-09-24 2023-08-15 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
US11777075B2 (en) 2017-12-04 2023-10-03 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0950810A (en) * 1995-08-08 1997-02-18 Mitsui Toatsu Chem Inc Electrode active material for non-aqueous electrolytic battery and manufacture thereof
JP2000149950A (en) * 1998-11-17 2000-05-30 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2006019229A (en) * 2004-07-05 2006-01-19 Kureha Corp Positive electrode material for lithium secondary battery, and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0950810A (en) * 1995-08-08 1997-02-18 Mitsui Toatsu Chem Inc Electrode active material for non-aqueous electrolytic battery and manufacture thereof
JP2000149950A (en) * 1998-11-17 2000-05-30 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2006019229A (en) * 2004-07-05 2006-01-19 Kureha Corp Positive electrode material for lithium secondary battery, and its manufacturing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017193471A (en) * 2016-04-22 2017-10-26 ユミコア Method for producing nickel lithium metal composite oxide
JP2020525993A (en) * 2017-10-12 2020-08-27 エルジー・ケム・リミテッド Positive electrode active material for lithium secondary battery, method for producing the same, positive electrode for lithium secondary battery including the same, and lithium secondary battery
JP7051184B2 (en) 2017-10-12 2022-04-11 エルジー・ケム・リミテッド Positive electrode active material for lithium secondary battery, its manufacturing method, positive electrode for lithium secondary battery including it, and lithium secondary battery
US11362332B2 (en) 2017-10-12 2022-06-14 Lg Chem, Ltd. Positive electrode active material for lithium secondary battery, method of preparing the same, and positive electrode for lithium secondary battery and lithium secondary battery which include the positive electrode active material
US11682755B2 (en) 2017-12-04 2023-06-20 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US11777075B2 (en) 2017-12-04 2023-10-03 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
JP2022514966A (en) * 2019-01-07 2022-02-16 エルジー エナジー ソリューション リミテッド Positive electrode active material, manufacturing method of positive electrode active material, positive electrode containing positive electrode active material and lithium secondary battery
JP7233797B2 (en) 2019-01-07 2023-03-07 エルジー エナジー ソリューション リミテッド Positive electrode active material, manufacturing method of positive electrode active material, positive electrode containing positive electrode active material, and lithium secondary battery
JP2020181638A (en) * 2019-04-23 2020-11-05 トヨタ自動車株式会社 Coating positive electrode active material
US11728473B2 (en) 2020-09-24 2023-08-15 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
EP4095949A1 (en) * 2021-05-28 2022-11-30 Samsung SDI Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery including the same
EP4135067A1 (en) * 2021-08-13 2023-02-15 Samsung SDI Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery including the same

Also Published As

Publication number Publication date
JP6449594B2 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
JP6449594B2 (en) Positive electrode material for lithium ion battery and method for producing the same
Wu et al. Multishelled NixCo3–xO4 hollow microspheres derived from bimetal–organic frameworks as anode materials for high‐performance lithium‐ion batteries
CN108190963B (en) Multistage hollow CoFe2O4Material, CoFe2O4Preparation method and application of/C composite material
CN106450590B (en) A kind of copper/porous fibrous carbon material of nitrogen codope, preparation method and applications
CN109301185B (en) Ternary cathode material with high conductivity and preparation method thereof
CN103435104B (en) A kind of preparation method of lithium ion battery negative electrode material-nano zinc ferrite
CN103030171A (en) Method for preparing modified zinc oxide
CN110980673B (en) Metal phosphide, preparation method thereof and application thereof in super capacitor
CN116207250B (en) Layered oxide positive electrode material, preparation method thereof, positive electrode composition, sodium ion secondary battery and application
CN105006566A (en) Modified anode material and preparation method thereof as well as lithium ion battery
CN108470904B (en) Annular sheet-shaped hexagonal manganous-manganic oxide lithium battery negative electrode material and preparation method thereof
CN103887081B (en) Nanocomposite material of nitrogen doped with graphene/zinc ferrite and preparation method thereof
Usman et al. Facile synthesis of ironnickelcobalt ternary oxide (FNCO) mesoporous nanowires as electrode material for supercapacitor application
CN103531789A (en) Iron oxide-carbon nanotube ternary composite material and preparation method thereof
CN105070521A (en) Hierarchical nanostructured cobaltosic oxide/cobalt molybdate combined electrode material for super capacitor and preparation method thereof
CN107634192A (en) A kind of zinc-base negative electrode battery material and preparation method thereof
CN109167067B (en) Flower-shaped electro-catalytic material and preparation method and application thereof
CN103510041A (en) Preparation method for titanium-based grid
Li et al. A study on the properties of hexagonal Zn 3 (OH) 2 V 2 O 7· 2H 2 O as cathode material for zinc-ion battery
CN106783196B (en) Preparation method of polyhedral ferric oxide nano material
CN103151182B (en) A kind of nano nickel oxide electrode material and application thereof
CN109119251B (en) Porous MnCo2O4.5Preparation method of electrode material
CN112216528A (en) Method for preparing electrode plate of high-voltage water-system supercapacitor by hydrothermal method
Li et al. Improving the performance of recovered lead oxide powder from waste lead paste as active material for lead‐acid battery
JP6449593B2 (en) Low alkali nickel lithium metal composite oxide powder and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170718

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180921

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181206

R150 Certificate of patent or registration of utility model

Ref document number: 6449594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250