JP6449593B2 - Low alkali nickel lithium metal composite oxide powder and method for producing the same - Google Patents

Low alkali nickel lithium metal composite oxide powder and method for producing the same Download PDF

Info

Publication number
JP6449593B2
JP6449593B2 JP2014174151A JP2014174151A JP6449593B2 JP 6449593 B2 JP6449593 B2 JP 6449593B2 JP 2014174151 A JP2014174151 A JP 2014174151A JP 2014174151 A JP2014174151 A JP 2014174151A JP 6449593 B2 JP6449593 B2 JP 6449593B2
Authority
JP
Japan
Prior art keywords
nickel
hydroxide
composite oxide
metal composite
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014174151A
Other languages
Japanese (ja)
Other versions
JP2016050121A (en
Inventor
三和子 西村
三和子 西村
隆志 新福
隆志 新福
洋之 谷
洋之 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Umicore NV SA
Original Assignee
Umicore NV SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umicore NV SA filed Critical Umicore NV SA
Priority to JP2014174151A priority Critical patent/JP6449593B2/en
Publication of JP2016050121A publication Critical patent/JP2016050121A/en
Application granted granted Critical
Publication of JP6449593B2 publication Critical patent/JP6449593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は低アルカリニッケルリチウム金属複合酸化物、これを含むリチウムイオン電池正極物質、該活物質を用いたリチウムイオン電池正極、この正極を有するリチウムイオン電池、及び上記低アルカリニッケルリチウム金属複合酸化物の製造方法に関する。   The present invention relates to a low alkali nickel lithium metal composite oxide, a lithium ion battery positive electrode material including the same, a lithium ion battery positive electrode using the active material, a lithium ion battery having the positive electrode, and the low alkali nickel lithium metal composite oxide It relates to the manufacturing method.

スマートフォン、タブレット型パソコン等の小型電子機器の普及により、ユーザーが屋外で長時間これら小型電子機器を携帯し利用することは、もはや一般的になっている。そのため、これら小型電子機器の電源である電池には長時間の使用に耐える高容量の電池であることが求められており、そのような要求を満たすリチウムイオン二次電池が盛んに研究開発されている。同時に、スマートフォン、タブレット型パソコン等の小型電子機器の更なる高機能化、高性能化が図られており、そのような高機能・高性能小型電子機器では消費電力の増大が避けられない。したがって、電池の高容量化への要求がますます高まっている。   With the spread of small electronic devices such as smartphones and tablet computers, it is no longer common for users to carry and use these small electronic devices outdoors for a long time. For this reason, batteries that are the power sources of these small electronic devices are required to have a high capacity that can withstand long-term use, and lithium-ion secondary batteries that satisfy such requirements have been actively researched and developed. Yes. At the same time, small electronic devices such as smartphones and tablet computers are being further enhanced in function and performance, and such high-performance and high-performance small electronic devices cannot avoid increasing power consumption. Therefore, there is an increasing demand for higher battery capacity.

また、近年は、エネルギー受給に対する危機意識や環境志向の高まりよって、風力発電、メガソーラー発電、家庭用太陽光発電と言った、従来型の集中型発電所とは異なる独立分散型発電設備の設置が増えている。しかしながら、風力発電、太陽光発電等の自然エネルギーを利用した発電設備が従来の発電施設に比べて電気供給の安定性に劣るという問題は、未だ解決されておいない。2011年3月11日に発生した東日本大震災、その後に引き起こされた原子力発電所停止にかかる給電状況の悪化以来、地震等の災害発生時に事業所や家庭単位の電力確保が重要であることが認識されに関する重要性が広く認識されるようになってきた。このため、消費地点単位で電源確保を確保する定置用蓄電池に注目が集まっている。しかしながら、現在の技術によれば、このような定置用蓄電池によって電気容量を確保するためには非常に大きな蓄電設備が必要とされる。このため、日本の住宅環境においてはそのような蓄電設備は、現時点では実用性を欠く。   Also, in recent years, due to the growing awareness of energy crisis and environmental awareness, the installation of independent and decentralized power generation facilities, such as wind power generation, mega solar power generation, and home solar power generation, which are different from conventional centralized power plants. Is increasing. However, the problem that power generation equipment using natural energy such as wind power generation and solar power generation is inferior to the stability of electricity supply as compared with conventional power generation facilities has not yet been solved. Since the Great East Japan Earthquake that occurred on March 11, 2011, and the worsening of the power supply situation caused by the subsequent stoppage of nuclear power plants, it has been recognized that it is important to secure electric power for business units and households when disasters such as earthquakes occur The importance of this has been widely recognized. For this reason, attention has been focused on stationary storage batteries that ensure the supply of power on a consumption point basis. However, according to the current technology, a very large power storage facility is required to secure electric capacity with such a stationary storage battery. For this reason, in the Japanese residential environment, such power storage equipment lacks utility at present.

更に自動車産業においては、エネルギー効率のよい電気自動車、ハイブリッド自動車に注目が集まり、これらの自動車の開発が盛んに行われている。しかしながら、電池容量の不足による航続距離の不十分さ、加えて市中における充電設備の絶対的不足という問題は解決されていない。そのため、現時点では、電気エネルギーだけで動く電気自動車は、ハイブリッド自動車ほどには普及していない。   Further, in the automobile industry, attention is focused on energy efficient electric vehicles and hybrid vehicles, and development of these vehicles is actively performed. However, the problem of insufficient cruising distance due to insufficient battery capacity and the absolute shortage of charging facilities in the city has not been solved. Therefore, at present, electric vehicles that run only on electric energy are not as popular as hybrid vehicles.

上述のような、電子機器、電力確保、自動車などの産業を支える共通の製品の一つがリチウムイオン電池である。上述のような問題点に共通する原因が、リチウムイオン電池の体積当たりの容量が足りないことにある。リチウムイオン電池の体積当たりの容量が足りないという問題を引き起こす大きな要因は、リチウムイオン二次電池に用いられる正極活物質の単位体積当たりの放電容量が小さいことである。   One of the common products that support industries such as electronic devices, power securing, and automobiles as described above is a lithium ion battery. A common cause of the above problems is that the capacity per volume of the lithium ion battery is insufficient. A major factor causing the problem that the capacity per volume of the lithium ion battery is insufficient is that the discharge capacity per unit volume of the positive electrode active material used in the lithium ion secondary battery is small.

リチウムイオン電池の正極活物質としては、コバルト酸リチウム(LCO)に代表されるコバルト系正極活物質が用いられてきた。コバルト酸リチウムを用いて電極を作成すると、電極密度は1立方センチメートル当たり3.9gを超える大密度を達成できる。しかしその一方、コバルト酸リチウム自身の放電容量は実質150mAh/g程度と低い。   As a positive electrode active material of a lithium ion battery, a cobalt-based positive electrode active material typified by lithium cobaltate (LCO) has been used. When an electrode is made using lithium cobaltate, an electrode density of greater than 3.9 g per cubic centimeter can be achieved. However, on the other hand, the discharge capacity of lithium cobalt oxide itself is as low as about 150 mAh / g.

リチウムイオン電池の正極活物質としては、LNCO(Li、Ni、Coの複合酸化物),特にLNCAO(Li、Ni、Co、Alの複合酸化物)に代表されるニッケル系正極活物質も検討されている。LNCAOの単位重量当たりの放電容量はコバルト系正極活物質よりも大きく、190mAhg−1を超える。しかしながら、これらの活物質自身の密度が低く電極密度を増大させることが困難であることから、単位体積当たりの放電容量を向上させることが出来なかった。しかもLNCAOには共アルカリ性のLi化合物が残留しているために、正極剤スラリーのゲル化を引き起こるという、電極製造上の問題点も指摘されてきた。   As a positive electrode active material of a lithium ion battery, a nickel-based positive electrode active material represented by LNCO (Li, Ni, Co composite oxide), particularly LNCAO (Li, Ni, Co, Al composite oxide) has been studied. ing. The discharge capacity per unit weight of LNCAO is larger than that of the cobalt-based positive electrode active material and exceeds 190 mAhg-1. However, since the density of these active materials themselves is low and it is difficult to increase the electrode density, the discharge capacity per unit volume cannot be improved. Moreover, since a co-alkaline Li compound remains in LNCAO, it has been pointed out that there is a problem in electrode production that causes gelation of the positive electrode slurry.

リチウムイオン電池の体積当たりの放電容量と、放電容量保持性を改善するための、リチウムイオン正極活物質の製造方法は、種々のものが提案されている。例えば、特許文献1,2には、炭酸ガスを用いた熱処理工程を含む方法が記載されている。しかしながら、これらの先行技術ではLNCAO系のニッケル系正極活物質について検討されていない。また、特許文献3に記載されているように、LNCAOを含む正極剤スラリーのゲル化を防止するために従来から水洗が提案されてきたが、水洗によって放電容量が低下するという問題があった。   Various methods for producing a lithium ion positive electrode active material for improving the discharge capacity per volume of a lithium ion battery and the discharge capacity retention have been proposed. For example, Patent Documents 1 and 2 describe a method including a heat treatment step using carbon dioxide gas. However, these prior arts have not studied LNCAO-based nickel-based positive electrode active materials. In addition, as described in Patent Document 3, water washing has been conventionally proposed in order to prevent gelation of the positive electrode agent slurry containing LNCAO, but there is a problem that the discharge capacity is reduced by water washing.

このように、高容量のリチウムイオンに適しており、しかも、正極剤製造時に問題のないLNCAO型正極活物質としては、未だ満足できるものが得られていない。   Thus, a satisfactory LNCAO-type positive electrode active material that is suitable for high-capacity lithium ions and that does not have a problem during the production of the positive electrode agent has not yet been obtained.

特開2009−4311号公報JP 2009-4311 A 特開2011−113792号公報JP 2011-113792 A 特開平7−335215公報JP 7-335215 A

本発明は、電極製造や電池性能に有利なLNCAO型正極活物質正極活物質を提供することを課題とする。   This invention makes it a subject to provide the LNCAO type positive electrode active material positive electrode active material advantageous to electrode manufacture and battery performance.

本発明の発明者は、LNCAOに代表される正極活物質の製造について鋭意検討した。その結果、原料混合物の焼成工程に引き続き、焼成物を高温で炭酸ガスで処理することにより所望の正極活物質用のニッケルリチウム金属複合酸化物粉体を得ることに成功した。   The inventor of the present invention diligently studied the production of a positive electrode active material represented by LNCAO. As a result, succeeding in obtaining the desired nickel-lithium metal composite oxide powder for the positive electrode active material by treating the fired product with carbon dioxide gas at a high temperature following the firing step of the raw material mixture.

すなわち本発明は以下のものである。
(発明1)以下の一般式(2)で表されるニッケルリチウム金属複合酸化物からなり、

Figure 0006449593
(ただし式(2)中、0.90<x<1.10、0.01<y<0.15、0.005 <z<0.10である。)
その2gを100gの水に分散させた際の上澄の水素イオン濃度がpHで11.4未満であり、余剰の水酸化リチウムの量が0.4重量%未満であり、
以下の工程をこの順で行うことを特徴とする、低アルカリ性ニッケルリチウム金属複合酸化物粉体。
工程1:原料である硫酸ニッケル、硫酸コバルトのそれぞれを水に溶解する。
工程2:水酸化ニッケルと水酸化コバルトの共沈殿物が生成する。
工程3:上記共沈殿物を濾過、洗浄して、水酸化ニッケルと水酸化コバルトからなる前駆 体ケーキが得られる。
工程4:上記前駆体ケーキを乾燥する。
工程5:乾燥後の前駆体粉末に、水酸化アルミニウムと水酸化リチウム粉末を加え、剪断 力をかけて混合する。
工程6:混合物を酸素存在下で焼成する。
工程7:焼成して得られたニッケルリチウム金属複合酸化物を、炭酸ガスを含む気体と接 触させる。この時の接触時間は200以上600℃以下、接触時間は10時間以上30時 間以下である。
That is, the present invention is as follows.
(Invention 1) A nickel-lithium metal composite oxide represented by the following general formula (2) :
Figure 0006449593
(In formula (2), 0.90 <x <1.10, 0.01 <y <0.15, 0.005 <z <0.10.)
Its 2g hydrogen ion concentration of supernatant when dispersed in 100g water is less than 11.4 in pH, the amount of excess lithium hydroxide Ri der less than 0.4 wt%,
A low alkaline nickel lithium metal composite oxide powder characterized by performing the following steps in this order .
Step 1: The raw materials nickel sulfate and cobalt sulfate are dissolved in water.
Step 2: A coprecipitate of nickel hydroxide and cobalt hydroxide is formed.
Process 3: The said coprecipitate is filtered and wash | cleaned, and the precursor cake which consists of nickel hydroxide and cobalt hydroxide is obtained.
Step 4: The precursor cake is dried.
Step 5: Add aluminum hydroxide and lithium hydroxide powder to the dried precursor powder, and mix by applying a shearing force.
Step 6: The mixture is fired in the presence of oxygen.
Step 7: The calcined nickel lithium-metal composite oxide obtained by, let come in contact with the gas containing carbon dioxide gas. The contact time when more than 200 600 ° C. or less, the contact time is less between at least 30 10 hours.

(発明)充電・放電性能が、0.1C充電における容量が210−230mAh/gの範囲であり、0.1C放電における容量が175−190mAh/gの範囲である、発明の低アルカリ性ニッケルリチウム金属複合酸化物粉体。
(Invention 2 ) Low alkaline nickel according to Invention 1 , wherein the charge / discharge performance is in the range of 210-230 mAh / g at 0.1 C charge and the capacity in the range of 175-190 mAh / g at 0.1 C discharge. Lithium metal composite oxide powder.

(発明)発明1又は2の低アルカリ性ニッケルリチウム金属複合酸化物粉体を含むことを特徴とする、リチウムイオン電池用正極活物質。
(Invention 3 ) A positive electrode active material for a lithium ion battery, comprising the low alkaline nickel lithium metal composite oxide powder of Invention 1 or 2 .

(発明)発明のリチウムイオン電池用正極活物質を用いることを特徴とする、リチウムイオン電池用正極。
(Invention 4 ) A positive electrode for a lithium ion battery, characterized in that the positive electrode active material for a lithium ion battery of Invention 3 is used.

(発明)発明のリチウムイオン電池用正極を備えることを特徴とする、リチリウムイオン電池。
(Invention 5 ) A lithium ion battery comprising the positive electrode for a lithium ion battery according to Invention 4 .

(発明)以下の一般式(2)で表されるニッケルリチウム金属複合酸化物からなり、

Figure 0006449593
(ただし式(2)中、0.90<x<1.10、0.01<y<0.15、0.005 <z<0.10である。)
その2gを100gの水に分散させた際の上澄の水素イオン濃度がpHで11.4未満であり、余剰の水酸化リチウムの量が0.4重量%未満であり、
以下の工程をこの順で行うことを特徴とする、低アルカリ性ニッケルリチウム金属複合酸化物粉体の製造方法。
工程1:原料である硫酸ニッケル、硫酸コバルトのそれぞれを水に溶解する。
工程2:水酸化ニッケルと水酸化コバルトの共沈殿物が生成する。
工程3:上記共沈殿物を濾過、洗浄して、水酸化ニッケルと水酸化コバルトからなる前駆 体ケーキが得られる。
工程4:上記前駆体ケーキを乾燥する。
工程5:乾燥後の前駆体粉末に、水酸化アルミニウムと水酸化リチウム粉末を加え、剪断 力をかけて混合する。
工程6:混合物を酸素存在下で焼成する。
工程7:焼成して得られたニッケルリチウム金属複合酸化物を、炭酸ガスを含む気体と接 触させる。この時の接触時間は200以上600℃以下、接触時間は10時間以上30時 間以下である。
(Invention 6 ) A nickel-lithium metal composite oxide represented by the following general formula (2) :
Figure 0006449593
(In formula (2), 0.90 <x <1.10, 0.01 <y <0.15, 0.005 <z <0.10.)
Its 2g hydrogen ion concentration of supernatant when dispersed in 100g water is less than 11.4 in pH, the amount of excess lithium hydroxide Ri der less than 0.4 wt%,
The manufacturing method of the low alkaline nickel lithium metal complex oxide powder characterized by performing the following processes in this order .
Step 1: The raw materials nickel sulfate and cobalt sulfate are dissolved in water.
Step 2: A coprecipitate of nickel hydroxide and cobalt hydroxide is formed.
Process 3: The said coprecipitate is filtered and wash | cleaned, and the precursor cake which consists of nickel hydroxide and cobalt hydroxide is obtained.
Step 4: The precursor cake is dried.
Step 5: Add aluminum hydroxide and lithium hydroxide powder to the dried precursor powder, and mix by applying a shearing force.
Step 6: The mixture is fired in the presence of oxygen.
Step 7: The calcined nickel lithium-metal composite oxide obtained by, let come in contact with the gas containing carbon dioxide gas. The contact time when more than 200 600 ° C. or less, the contact time is less between at least 30 10 hours.

(発明)低アルカリ性ニッケルリチウム金属複合酸化物粉体の0.1C放電における初期放電容量が、190mAh/g以上である、発明のリチウムイオン電池用正極活物質の製造方法。
(Invention 7 ) The method for producing a positive electrode active material for a lithium ion battery according to Invention 6 , wherein the initial discharge capacity of the low alkaline nickel lithium metal composite oxide powder at 0.1 C discharge is 190 mAh / g or more.

本発明のニッケルリチウム金属複合酸化物粉体は、低アルカリ性であり、電池特性が優れている。   The nickel lithium metal composite oxide powder of the present invention is low alkaline and has excellent battery characteristics.

本発明の低アルカリ性ニッケルリチウム金属複合酸化物粉体を構成するニッケルリチウム金属複合酸化物は、以下の一般式(1)で表される。
The nickel lithium metal composite oxide constituting the low alkaline nickel lithium metal composite oxide powder of the present invention is represented by the following general formula (1).

Figure 0006449593
Figure 0006449593

(ただし式(1)中、Mは、Co,Mn,Fe、Cuから選ばれる1つ以上の金属元素であり、NはAl、W、Ta、Bから選ばれる1つ以上の金属元素であり、0.90<x<1.10、0.01<y<0.15、0.005<z<0.10である。)
本発明の低アルカリ性ニッケルリチウム金属複合酸化物粉体を構成するニッケルリチウム金属複合酸化物は、好ましくは、上記一般式(1)においてMがCo、NがAlである、以下の一般式(2)で表される。
(In the formula (1), M is one or more metal elements selected from Co, Mn, Fe, and Cu, and N is one or more metal elements selected from Al, W, Ta, and B) 0.90 <x <1.10, 0.01 <y <0.15, 0.005 <z <0.10.)
The nickel lithium metal composite oxide constituting the low alkaline nickel lithium metal composite oxide powder of the present invention preferably has the following general formula (2) wherein M is Co and N is Al in the general formula (1). ).

Figure 0006449593
Figure 0006449593

(ただし式(2)中、0.90<x<1.10、0.01<y<0.15、0.005<z<0.10である。)
本発明の低アルカリ性ニッケルリチウム金属複合酸化物粉体は、以下の方法により製造することができる。
(In the formula (2), 0.90 <x <1.10, 0.01 <y <0.15, 0.005 <z <0.10.)
The low alkaline nickel lithium metal composite oxide powder of the present invention can be produced by the following method.

(1.原料の溶解)原料としては、一般式(1)を構成する金属の、硫酸塩、硝酸塩などの可溶性金属塩を用いることができる。硝酸塩を用いた場合、硝酸性窒素を含む廃液処理にコストがかかるため、硝酸塩の使用は工業的には好ましくない。通常は一般式(1)を構成する金属の硫酸塩が用いられる。本発明の低アルカリ性ニッケルリチウム金属複合酸化物粉体の製造方法では、まず、原料である硫酸ニッケル、硫酸コバルトのそれぞれを水に溶解する。   (1. Dissolution of raw materials) As raw materials, soluble metal salts such as sulfates and nitrates of metals constituting the general formula (1) can be used. When nitrate is used, it is costly to treat waste liquid containing nitrate nitrogen, so use of nitrate is not industrially preferable. Usually, a metal sulfate constituting the general formula (1) is used. In the method for producing a low alkaline nickel lithium metal composite oxide powder of the present invention, first, each of nickel sulfate and cobalt sulfate as raw materials is dissolved in water.

(2.沈殿)硫酸ニッケル水溶液、硫酸コバルト水溶液、沈殿剤としての水酸化ナトリウムとアンモニア水を沈殿槽内で混合する。水酸化ニッケルと水酸化コバルトの共沈殿物が生成する。   (2. Precipitation) A nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, sodium hydroxide as a precipitating agent and aqueous ammonia are mixed in a precipitation tank. A coprecipitate of nickel hydroxide and cobalt hydroxide is formed.

(3.濾過・洗浄)沈殿物を濾過し、水分を除去して水酸化物ケーキを分離する。水酸化物ケーキを純粋で洗浄して水酸化ナトリウムを除去する。こうして水酸化ニッケルと水酸化コバルトからなる前駆体ケーキが得られる。
(3. Filtration / Washing) The precipitate is filtered to remove moisture and separate the hydroxide cake. The hydroxide cake is washed pure to remove sodium hydroxide. Thus, a precursor cake composed of nickel hydroxide and cobalt hydroxide is obtained.

(4.乾燥)前駆体ケーキを乾燥する。乾燥方法は、大気圧下での熱風乾燥、赤外線乾燥、真空乾燥などのいずれでもよい。真空乾燥を行うことにより短時間で乾燥することができる。前駆体中の水分が1重量%程度になるまで乾燥する。   (4. Drying) The precursor cake is dried. The drying method may be any of hot air drying under atmospheric pressure, infrared drying, vacuum drying, and the like. It can dry in a short time by performing vacuum drying. Dry until the water content in the precursor is about 1% by weight.

(5.粉体混合)乾燥後の前駆体粉末に、水酸化アルミニウムと水酸化リチウム粉末を加え、剪断力をかけて混合する。   (5. Powder mixing) Aluminum hydroxide and lithium hydroxide powder are added to the dried precursor powder and mixed by applying a shearing force.

(6.焼成)混合物を酸素存在下で焼成する。焼成により、以下の反応が起こる。   (6. Firing) The mixture is fired in the presence of oxygen. The following reaction occurs by firing.

Figure 0006449593
Figure 0006449593

Figure 0006449593
Figure 0006449593

Figure 0006449593
Figure 0006449593

焼成後に、微細粒状のニッケルリチウム金属複合酸化物が得られる。その粒子のメジアン径は概ね20μm以下、通常は5〜10μmの範囲にある。   After firing, a finely divided nickel-lithium metal composite oxide is obtained. The median diameter of the particles is approximately 20 μm or less, usually in the range of 5 to 10 μm.

(7.高温炭酸ガス処理)本発明の低アルカリ性ニッケルリチウム金属複合酸化物粉体の製造では、焼成工程に続き、高温下で、ニッケルリチウム金属複合酸化物を炭酸ガスを含む気体と接触させる。炭酸ガスを含む気体には制限がないが、通常は、空気、あるいは酸素ガスと炭酸ガスとの混合気体が用いられる。接触温度は 200〜600℃、好ましくは、300〜500℃である。接触時間は10〜30時間、好ましくは10〜20時間である。この処理は、焼成工程の直後に焼成設備内で行うことができる。処理に新たな設備は必要でない。焼成炉の温度を制御し、炭酸ガスを含む気体を一定時間焼成炉内に通すことで、焼成工程から高温炭酸ガス処理を連続して行うことが出来る。   (7. High-temperature carbon dioxide treatment) In the production of the low alkaline nickel lithium metal composite oxide powder of the present invention, the nickel lithium metal composite oxide is brought into contact with a gas containing carbon dioxide gas at a high temperature following the firing step. Although there is no restriction | limiting in the gas containing a carbon dioxide gas, Usually, the mixed gas of air or oxygen gas and a carbon dioxide gas is used. The contact temperature is 200 to 600 ° C, preferably 300 to 500 ° C. The contact time is 10 to 30 hours, preferably 10 to 20 hours. This treatment can be performed in the firing facility immediately after the firing step. No new equipment is required for processing. By controlling the temperature of the firing furnace and passing a gas containing carbon dioxide through the firing furnace for a certain period of time, high-temperature carbon dioxide treatment can be continuously performed from the firing step.

(8.解砕)本発明の低アルカリ性ニッケルリチウム金属複合酸化物粉体の製造方法では、高温炭酸ガス処理の後に、必要に応じて、さらに解砕工程を設けることができる。解砕工程では、ジェットミルなどの破砕機を用いて、焼成後の低アルカリ性ニッケルリチウム金属複合酸化物粉体の凝集した粒子を破壊する。適度に細粒化されたニッケルリチウム金属複合酸化物を用いると、均一で塗布性に優れる正極剤スラリーが得られる。このような正極剤スラリーにより、正極電極の生産効率を向上させることができる。しかも、正極活物質のイオン放出性も安定化され、電池性能も向上する。   (8. Crushing) In the method for producing the low alkaline nickel lithium metal composite oxide powder of the present invention, a crushing step can be further provided as needed after the high-temperature carbon dioxide treatment. In the crushing step, the agglomerated particles of the low alkaline nickel lithium metal composite oxide powder after firing are broken using a crusher such as a jet mill. When a nickel-lithium metal composite oxide finely grained is used, a uniform positive electrode slurry having excellent coating properties can be obtained. The positive electrode slurry can improve the production efficiency of the positive electrode. In addition, the ion release property of the positive electrode active material is stabilized, and the battery performance is improved.

こうして、本発明の低アルカリ性ニッケルリチウム金属複合酸化物粉体が得られる。本発明の低アルカリ性ニッケルリチウム金属複合酸化物粉体は、上記高温炭酸ガス処理によって、pHが11.4以下に低減されており、余剰の水酸化リチウムの含有量が0.4重量%以下に低減されている。低アルカリ性を示す本発明のニッケルリチウム金属複合酸化物は、リチウムイオン電池正極剤スラリーにバインダーとして含まれるPVDFとの反応性が低い。このため、本発明のニッケルリチウム金属複合酸化物を正極活物質として使用した場合、正極製造時の正極剤スラリーのゲル化が起こりにくく、正極剤スラリーと電極との密着性が損なわれない。   Thus, the low alkaline nickel lithium metal composite oxide powder of the present invention is obtained. In the low alkaline nickel lithium metal composite oxide powder of the present invention, the pH is reduced to 11.4 or less by the high temperature carbon dioxide treatment, and the excess lithium hydroxide content is 0.4 wt% or less. Has been reduced. The nickel lithium metal composite oxide of the present invention exhibiting low alkalinity has low reactivity with PVDF contained as a binder in the lithium ion battery positive electrode slurry. For this reason, when the nickel lithium metal composite oxide of the present invention is used as a positive electrode active material, gelation of the positive electrode agent slurry during the production of the positive electrode hardly occurs, and the adhesion between the positive electrode agent slurry and the electrode is not impaired.

しかも、本発明の低アルカリ性ニッケルリチウム金属複合酸化物粉体は、初期放電容量の劣化が小さい。   Moreover, the low alkaline nickel lithium metal composite oxide powder of the present invention has little deterioration in initial discharge capacity.

本発明の低アルカリ性ニッケルリチウム金属複合酸化物粉体は、リチウムイオン電池の正極活物質として利用できる。本発明の低アルカリ性ニッケルリチウム金属複合酸化物粉体のみでリチウムイオン電池の正極活物質を構成してもよいし、本発明の低アルカリ性ニッケルリチウム金属複合酸化物粉体に、その長所が発現する程度の量で他のニッケルリチウム金属複合酸化物を混合してもよい。例えば、本発明の低アルカリ性ニッケルリチウム金属複合酸化物粉体50重量部と、本発明以外のリチウムイオン電池二次電池用正極活物質を50重量部を混合したものを正極活物質として用いることができる。リチウムイオン電池の正極を製造する場合には、上述の本発明の低アルカリ性ニッケルリチウム金属複合酸化物粉体を含む正極活物質、導電助剤、バインダー、分散用有機溶媒を加えて正極用合剤スラリーを調製し、電極に塗布する。   The low alkaline nickel lithium metal composite oxide powder of the present invention can be used as a positive electrode active material of a lithium ion battery. The positive electrode active material of the lithium ion battery may be composed only of the low alkaline nickel lithium metal composite oxide powder of the present invention, and the advantages are manifested in the low alkaline nickel lithium metal composite oxide powder of the present invention. Other nickel lithium metal composite oxides may be mixed in a certain amount. For example, a mixture of 50 parts by weight of the low alkaline nickel lithium metal composite oxide powder of the present invention and 50 parts by weight of a positive electrode active material for a lithium ion battery secondary battery other than the present invention may be used as the positive electrode active material. it can. When producing a positive electrode of a lithium ion battery, a positive electrode active material containing the above-mentioned low alkaline nickel lithium metal composite oxide powder of the present invention, a conductive additive, a binder, and an organic solvent for dispersion are added to mix the positive electrode. A slurry is prepared and applied to the electrode.

本発明の低アルカリ性ニッケルリチウム金属複合酸化物粉体の製造に用いるニッケルリチウム金属複合酸化物を以下の2通りの手順(手順A,手順B)で製造した。   The nickel lithium metal composite oxide used for the production of the low alkaline nickel lithium metal composite oxide powder of the present invention was produced by the following two procedures (procedure A and procedure B).

(手順A)硫酸ニッケル及び硫酸コバルトを溶解させた水溶液に水酸化ナトリウム水溶液を加え、攪拌速度毎分600回転で攪拌し、生じた沈殿を濾過、洗浄、乾燥した。水酸化ニッケル−水酸化コバルト共沈物が得た。得られた水酸化ニッケル−水酸化コバルト共沈物に水酸化リチウムと水酸化アルミニウムを粉体で混合し焼成のための原料を得た。この原料を酸素気流中、780℃で焼成した。その結果、50%粒径(いわゆるメジアン径)が7.29μmのニッケルリチウム金属複合酸化物が得られた。これを、ニッケルリチウム金属複合酸化物(A)と呼ぶ。このニッケルリチウム金属複合酸化物(A)を後述の実施例1〜3、比較例1、3に用いた。   (Procedure A) A sodium hydroxide aqueous solution was added to an aqueous solution in which nickel sulfate and cobalt sulfate were dissolved, and the mixture was stirred at a stirring speed of 600 rpm, and the resulting precipitate was filtered, washed and dried. A nickel hydroxide-cobalt hydroxide coprecipitate was obtained. The obtained nickel hydroxide-cobalt hydroxide coprecipitate was mixed with lithium hydroxide and aluminum hydroxide in powder form to obtain a raw material for firing. This raw material was fired at 780 ° C. in an oxygen stream. As a result, a nickel lithium metal composite oxide having a 50% particle size (so-called median diameter) of 7.29 μm was obtained. This is called a nickel lithium metal composite oxide (A). This nickel lithium metal composite oxide (A) was used in Examples 1 to 3 and Comparative Examples 1 and 3 described later.

(手順B)硫酸ニッケル及び硫酸コバルトを溶解させた水溶液に水酸化ナトリウム水溶液を加え、攪拌速度毎分500回転で攪拌し、生じた沈殿を濾過、洗浄、乾燥した。水酸化ニッケル−水酸化コバルト共沈物が得た。得られた水酸化ニッケル−水酸化コバルト共沈物に水酸化リチウムと水酸化アルミニウムを粉体で混合し焼成のための原料を得た。この原料を酸素気流中、780℃で焼成した。その結果、50%粒径(いわゆるメジアン径)が7.5μmのニッケルリチウム金属複合酸化物が得られた。これを、ニッケルリチウム金属複合酸化物(B)と呼ぶ。このニッケルリチウム金属複合酸化物(B)を後述の実施例4〜7、比較例2に用いた。   (Procedure B) An aqueous sodium hydroxide solution was added to an aqueous solution in which nickel sulfate and cobalt sulfate were dissolved, and the mixture was stirred at a stirring speed of 500 revolutions per minute, and the resulting precipitate was filtered, washed and dried. A nickel hydroxide-cobalt hydroxide coprecipitate was obtained. The obtained nickel hydroxide-cobalt hydroxide coprecipitate was mixed with lithium hydroxide and aluminum hydroxide in powder form to obtain a raw material for firing. This raw material was fired at 780 ° C. in an oxygen stream. As a result, a nickel lithium metal composite oxide having a 50% particle size (so-called median diameter) of 7.5 μm was obtained. This is referred to as nickel lithium metal composite oxide (B). This nickel lithium metal composite oxide (B) was used in Examples 4 to 7 and Comparative Example 2 described later.

後述の実施例、比較例の条件で、上記焼成されたニッケルリチウム金属複合酸化物を処理し、あるいは処理しなかったものについて、以下の分析を行った。   The following analysis was performed on the case where the calcined nickel lithium metal composite oxide was treated or not treated under the conditions of Examples and Comparative Examples described later.

(pH測定)処理後のニッケルリチウム金属複合酸化物2gを25℃の純水100mlに加え、マグネチックスターラーで3分間攪拌し、その後吸引濾過した。得られた濾液のpHを堀場製作所製pHメーターで測定した。   (Measurement of pH) 2 g of the nickel-lithium metal composite oxide after treatment was added to 100 ml of pure water at 25 ° C., stirred for 3 minutes with a magnetic stirrer, and then suction filtered. The pH of the obtained filtrate was measured with a pH meter manufactured by Horiba.

(水酸化リチウムの滴定)処理後のニッケルリチウム金属複合酸化物2gを25℃の純水100mlに加え、マグネチックスターラーで3分間攪拌し、その後吸引濾過した。得られた濾液の10mlをピペットで分取し、0.1N塩酸で滴定することによって水酸化リチウムの含有量を定量した。
[実施例1]
上述の焼成後のニッケルリチウム金属複合酸化物を、出入りの無い空気中、300℃で、20時間、処理した。空気中の炭酸ガス濃度は0.05体積%であった。
[実施例2]
処理温度を500℃に変えた点以外は実施例1と同じ条件で処理を行った。
[実施例3]
処理時間を10時間に変えた点以外は実施例1と同じ条件で処理を行った。
[実施例4]
焼成後のニッケルリチウム金属複合酸化物を、酸素と炭酸ガスとの混合気体中、300℃で、20時間、処理した。上記混合気体中は、流量4.975L/minの酸素と、流量0.025L/minの炭酸ガスからなる、総流量5L/minの混合気流であり、炭酸ガス濃度は 0.5体積%であった。
[実施例5]
混合気流として、流量4.75L/minの酸素と、流量0.25L/minの炭酸ガスからなる、総流量5L/minの混合気流を用い、混合気体中の炭酸ガス濃度が5体積%である点以外は実施例4と同じ条件で処理を行った。
[実施例6]
空気として、流量5L/min、炭酸ガス濃度が0.05体積%の空気を用いた点以外は実施例1と同じ条件で処理を行った。
[実施例7]
空気として、流量5L/min、炭酸ガス濃度が0.05体積%の空気を用い、処理温度を400℃とした点以外は実施例1と同じ条件で処理を行った。
[比較例1]
実施例1〜3で用いたニッケルリチウム金属複合酸化物について炭酸ガスによる処理をせず、そのまま、そのpH及び残存水酸化リチウムの定量を行った。結果を表1に示す。表1では、処理をしなかったことを「- - -」で表示する。
[比較例2]
実施例4〜7で用いたニッケルリチウム金属複合酸化物について炭酸ガスによる処理をせず、そのまま、pH及び残存水酸化リチウムの定量を行った。
[比較例3]
処理温度を750℃に変えた点以外は実施例1と同じ条件で処理を行った。
(Titration of lithium hydroxide) 2 g of the nickel-lithium metal composite oxide after treatment was added to 100 ml of pure water at 25 ° C., stirred for 3 minutes with a magnetic stirrer, and then suction filtered. 10 ml of the obtained filtrate was pipetted and titrated with 0.1N hydrochloric acid to quantify the lithium hydroxide content.
[Example 1]
The above-mentioned nickel-lithium metal composite oxide after firing was treated at 300 ° C. for 20 hours in air without entering and exiting. The carbon dioxide gas concentration in the air was 0.05% by volume.
[Example 2]
The treatment was performed under the same conditions as in Example 1 except that the treatment temperature was changed to 500 ° C.
[Example 3]
Processing was performed under the same conditions as in Example 1 except that the processing time was changed to 10 hours.
[Example 4]
The nickel lithium metal composite oxide after firing was treated in a mixed gas of oxygen and carbon dioxide at 300 ° C. for 20 hours. The above mixed gas is a mixed airflow of oxygen at a flow rate of 4.975 L / min and carbon dioxide gas at a flow rate of 0.025 L / min, with a total flow rate of 5 L / min, and the carbon dioxide concentration is 0.5% by volume. It was.
[Example 5]
As the mixed gas stream, a mixed gas stream consisting of oxygen at a flow rate of 4.75 L / min and carbon dioxide gas at a flow rate of 0.25 L / min is used, and the concentration of carbon dioxide in the mixed gas is 5% by volume. Processing was performed under the same conditions as in Example 4 except for the points.
[Example 6]
The treatment was performed under the same conditions as in Example 1 except that air having a flow rate of 5 L / min and carbon dioxide concentration of 0.05% by volume was used.
[Example 7]
The treatment was performed under the same conditions as in Example 1 except that air having a flow rate of 5 L / min and carbon dioxide concentration of 0.05% by volume was used and the treatment temperature was 400 ° C.
[Comparative Example 1]
The nickel lithium metal composite oxide used in Examples 1 to 3 was not treated with carbon dioxide gas, and the pH and residual lithium hydroxide were quantified as they were. The results are shown in Table 1. In Table 1, “---” indicates that no processing has been performed.
[Comparative Example 2]
The nickel lithium metal composite oxides used in Examples 4 to 7 were not treated with carbon dioxide gas, and the pH and residual lithium hydroxide were quantified as they were.
[Comparative Example 3]
The treatment was performed under the same conditions as in Example 1 except that the treatment temperature was changed to 750 ° C.

上記実施例、比較例で用いたニッケルリチウム金属複合酸化物、これらの炭酸ガスによる処理の条件を表1に示す。   Table 1 shows the nickel lithium metal composite oxides used in the above Examples and Comparative Examples, and the conditions for treatment with these carbon dioxide gases.

Figure 0006449593
Figure 0006449593

上記実施例で得られた本発明のニッケルリチウム金属複合酸化物粉体と、比較例で得られた対照品の評価結果を、表2に示す。   Table 2 shows the evaluation results of the nickel lithium metal composite oxide powder of the present invention obtained in the above Examples and the control product obtained in the Comparative Example.

Figure 0006449593
Figure 0006449593

表2に示されるように、所定の条件でニッケルリチウム金属複合酸化物を炭酸ガス含有気体で処理した実施例では、pHが低減され、電池特性にも優れる低アルカリ性ニッケルリチウム金属複合酸化物粉体が得られた。   As shown in Table 2, in an example in which nickel lithium metal composite oxide was treated with a carbon dioxide-containing gas under predetermined conditions, low alkaline nickel lithium metal composite oxide powder with reduced pH and excellent battery characteristics was gotten.

本発明では、焼成工程に引き続き、簡単な操作で高温炭酸ガス処理を行うことによって、電池性能や正極製造にとって望ましい低アルカリ性ニッケルリチウム金属複合酸化物粉体を製造することに成功した。本発明は、高容量のリチウムイオン電池の低コストでの製造に貢献すると期待される。   In the present invention, the low-alkaline nickel-lithium metal composite oxide powder, which is desirable for battery performance and positive electrode production, has been successfully produced by performing high-temperature carbon dioxide treatment with a simple operation following the firing step. The present invention is expected to contribute to low-cost production of high capacity lithium ion batteries.

Claims (7)

以下の一般式(2)で表されるニッケルリチウム金属複合酸化物からなり、
Figure 0006449593
(ただし式(2)中、0.90<x<1.10、0.01<y<0.15、0.005 <z<0.10である。)
その2gを100gの水に分散させた際の上澄の水素イオン濃度がpHで11.4未満であり、余剰の水酸化リチウムの量が0.4重量%未満であり、
以下の工程をこの順で行って製造されることを特徴とする、低アルカリ性ニッケルリチウム金属複合酸化物粉体。
工程1:原料である硫酸ニッケル、硫酸コバルトのそれぞれを水に溶解する。
工程2:水酸化ニッケルと水酸化コバルトの共沈殿物が生成する。
工程3:上記共沈殿物を濾過、洗浄して、水酸化ニッケルと水酸化コバルトからなる前駆 体ケーキが得られる。
工程4:上記前駆体ケーキを乾燥する。
工程5:乾燥後の前駆体粉末に、水酸化アルミニウムと水酸化リチウム粉末を加え、剪断 力をかけて混合する。
工程6:混合物を酸素存在下で焼成する。
工程7:焼成して得られたニッケルリチウム金属複合酸化物を、炭酸ガスを含む気体と接 触させる。この時の接触温度は200以上600℃以下、接触時間は10時間以上30時 間以下である。
It consists of nickel lithium metal composite oxide represented by the following general formula (2) ,
Figure 0006449593
(In formula (2), 0.90 <x <1.10, 0.01 <y <0.15, 0.005 <z <0.10.)
Its 2g hydrogen ion concentration of supernatant when dispersed in 100g water is less than 11.4 in pH, the amount of excess lithium hydroxide Ri der less than 0.4 wt%,
A low alkaline nickel-lithium metal composite oxide powder produced by performing the following steps in this order .
Step 1: The raw materials nickel sulfate and cobalt sulfate are dissolved in water.
Step 2: A coprecipitate of nickel hydroxide and cobalt hydroxide is formed.
Process 3: The said coprecipitate is filtered and wash | cleaned, and the precursor cake which consists of nickel hydroxide and cobalt hydroxide is obtained.
Step 4: The precursor cake is dried.
Step 5: Add aluminum hydroxide and lithium hydroxide powder to the dried precursor powder, and mix by applying a shearing force.
Step 6: The mixture is fired in the presence of oxygen.
Step 7: The calcined nickel lithium-metal composite oxide obtained by, let come in contact with the gas containing carbon dioxide gas. Contact temperature at this time is more than 200 600 ° C. or less, the contact time is less between at least 30 10 hours.
充電・放電性能が、0.1C充電における容量が210−230mAh/gの範囲であり、0.1C放電における容量が175−190mAh/gの範囲である、請求項に記載の低アルカリ性ニッケルリチウム金属複合酸化物粉体。2. The low alkaline nickel lithium according to claim 1 , wherein the charge / discharge performance has a capacity in the range of 210-230 mAh / g at 0.1 C charge and a capacity in the range of 175-190 mAh / g at 0.1 C discharge. Metal composite oxide powder. 請求項1又は2に記載の低アルカリ性ニッケルリチウム金属複合酸化物粉体を含むことを特徴とする、リチウムイオン電池用正極活物質。Characterized in that it comprises a low alkaline nickel lithium metal composite oxide powder of claim 1 or 2, the positive electrode active material for lithium ion batteries. 請求項に記載のリチウムイオン電池用正極活物質を用いることを特徴とする、リチウムイオン電池用正極。The positive electrode active material for lithium ion batteries of Claim 3 is used, The positive electrode for lithium ion batteries characterized by the above-mentioned. 請求項に記載のリチウムイオン電池用正極を備えることを特徴とする、リチリウムイオン電池。A lithium ion battery comprising the positive electrode for a lithium ion battery according to claim 4 . 以下の一般式(2)で表されるニッケルリチウム金属複合酸化物からなり、
Figure 0006449593
(ただし式(2)中、0.90<x<1.10、0.01<y<0.15、0.005 <z<0.10である。)
その2gを100gの水に分散させた際の上澄の水素イオン濃度がpHで11.4未満であり、余剰の水酸化リチウムの量が0.4重量%未満であり、
以下の工程をこの順で行うことを特徴とする、低アルカリ性ニッケルリチウム金属複合酸化物粉体の製造方法。
工程1:原料である硫酸ニッケル、硫酸コバルトのそれぞれを水に溶解する。
工程2:水酸化ニッケルと水酸化コバルトの共沈殿物が生成する。
工程3:上記共沈殿物を濾過、洗浄して、水酸化ニッケルと水酸化コバルトからなる前駆 体ケーキが得られる。
工程4:上記前駆体ケーキを乾燥する。
工程5:乾燥後の前駆体粉末に、水酸化アルミニウムと水酸化リチウム粉末を加え、剪断 力をかけて混合する。
工程6:混合物を酸素存在下で焼成する。
工程7:焼成して得られたニッケルリチウム金属複合酸化物を、炭酸ガスを含む気体と接 触させる。この時の接触温度は200以上600℃以下、接触時間は10時間以上30時 間以下である。
It consists of nickel lithium metal composite oxide represented by the following general formula (2) ,
Figure 0006449593
(In formula (2), 0.90 <x <1.10, 0.01 <y <0.15, 0.005 <z <0.10.)
Its 2g hydrogen ion concentration of supernatant when dispersed in 100g water is less than 11.4 in pH, the amount of excess lithium hydroxide Ri der less than 0.4 wt%,
The manufacturing method of the low alkaline nickel lithium metal complex oxide powder characterized by performing the following processes in this order .
Step 1: The raw materials nickel sulfate and cobalt sulfate are dissolved in water.
Step 2: A coprecipitate of nickel hydroxide and cobalt hydroxide is formed.
Process 3: The said coprecipitate is filtered and wash | cleaned, and the precursor cake which consists of nickel hydroxide and cobalt hydroxide is obtained.
Step 4: The precursor cake is dried.
Step 5: Add aluminum hydroxide and lithium hydroxide powder to the dried precursor powder, and mix by applying a shearing force.
Step 6: The mixture is fired in the presence of oxygen.
Step 7: The calcined nickel lithium-metal composite oxide obtained by, let come in contact with the gas containing carbon dioxide gas. Contact temperature at this time is more than 200 600 ° C. or less, the contact time is less between at least 30 10 hours.
低アルカリ性ニッケルリチウム金属複合酸化物粉体の0.1C放電における初期放電容量が、190mAh/g以上である、請求項に記載のリチウムイオン電池用正極活物質の製造方法。The manufacturing method of the positive electrode active material for lithium ion batteries of Claim 6 whose initial discharge capacity in 0.1 C discharge of low alkaline nickel lithium metal complex oxide powder is 190 mAh / g or more.
JP2014174151A 2014-08-28 2014-08-28 Low alkali nickel lithium metal composite oxide powder and method for producing the same Active JP6449593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014174151A JP6449593B2 (en) 2014-08-28 2014-08-28 Low alkali nickel lithium metal composite oxide powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014174151A JP6449593B2 (en) 2014-08-28 2014-08-28 Low alkali nickel lithium metal composite oxide powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016050121A JP2016050121A (en) 2016-04-11
JP6449593B2 true JP6449593B2 (en) 2019-01-09

Family

ID=55657900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014174151A Active JP6449593B2 (en) 2014-08-28 2014-08-28 Low alkali nickel lithium metal composite oxide powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP6449593B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6739981B2 (en) * 2016-04-22 2020-08-12 ユミコア Method for producing nickel-lithium metal composite oxide
CN117352706A (en) * 2023-12-04 2024-01-05 宁波容百新能源科技股份有限公司 Positive electrode material, preparation method thereof and lithium ion battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3811974B2 (en) * 1994-11-22 2006-08-23 住友化学株式会社 Positive electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP3769871B2 (en) * 1997-04-25 2006-04-26 ソニー株式会社 Method for producing positive electrode active material
JP4308571B2 (en) * 2003-05-09 2009-08-05 三菱化学株式会社 Positive electrode active material for lithium secondary battery, production method thereof, and positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2010155775A (en) * 2008-12-04 2010-07-15 Toda Kogyo Corp Powder of lithium complex compound particle, method for producing the same, and nonaqueous electrolyte secondary cell

Also Published As

Publication number Publication date
JP2016050121A (en) 2016-04-11

Similar Documents

Publication Publication Date Title
JP6422133B2 (en) Nickel lithium metal composite oxide powder and method for producing the same
US10916767B2 (en) Carbon-coated ternary positive electrode material, preparation method therefor, and lithium ion battery
JP6449594B2 (en) Positive electrode material for lithium ion battery and method for producing the same
CN111498908A (en) Preparation method of quasi-spherical manganese-rich ternary precursor
CN109119711B (en) Method for preparing high-voltage positive electrode material by adopting waste lithium cobalt oxide battery
CN102208607A (en) Synthesis and surface modification method of lithium excessive laminar oxide anode material
CN108134064B (en) Positive electrode material precursor, preparation method thereof and positive electrode material
CN111446437B (en) Surface self-reconstruction modified lithium-rich cathode material and preparation method thereof
CN108862406B (en) Carbonate precursor and preparation method and application thereof
CN106129360A (en) A kind of high-tap density lithium-rich manganese-based anode material and preparation method thereof
CN103022476A (en) Preparation method of high-nickel-content anode material for lithium ion battery
CN103700831A (en) Preparation method of spherical lithium manganate material
CN102881874A (en) Method for preparing lithium-rich solid solution cathode material through reduction
CN102328961A (en) Precursor of nickel cobalt lithium manganate positive material for lithium ion battery and production method thereof
JP6449592B2 (en) Low alkaline nickel lithium metal composite oxide powder and method for producing the same
CN113562780A (en) Gradient lithium-rich manganese-based positive electrode material and preparation method and application thereof
CN104078670A (en) Composite lithium battery positive electrode material and preparation method thereof
JP6449593B2 (en) Low alkali nickel lithium metal composite oxide powder and method for producing the same
CN112952056B (en) Lithium-rich manganese-based composite cathode material and preparation method and application thereof
CN113851641A (en) High-entropy solid solution cathode material and preparation method and application thereof
CN102881878A (en) Method for preparing lithium-rich solid solution cathode material by virtue of metal reduction process
CN107445210B (en) High-capacity iron-based lithium ion battery anode material α -LiFeO2Preparation method of (1)
CN107785570B (en) Preparation method for improving yield of olivine structure electrode material by hydrothermal method
CN110350162B (en) Multiplying power type nickel-cobalt-aluminum positive electrode material and preparation method and application thereof
CN112850801A (en) Preparation method of large-particle cobaltosic oxide

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170718

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181206

R150 Certificate of patent or registration of utility model

Ref document number: 6449593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250