JP2016049646A - Carbon fiber-reinforced composite material molding and method for producing the same, and method for repairing carbon fiber-reinforced composite material molding - Google Patents

Carbon fiber-reinforced composite material molding and method for producing the same, and method for repairing carbon fiber-reinforced composite material molding Download PDF

Info

Publication number
JP2016049646A
JP2016049646A JP2014174632A JP2014174632A JP2016049646A JP 2016049646 A JP2016049646 A JP 2016049646A JP 2014174632 A JP2014174632 A JP 2014174632A JP 2014174632 A JP2014174632 A JP 2014174632A JP 2016049646 A JP2016049646 A JP 2016049646A
Authority
JP
Japan
Prior art keywords
carbon fiber
resin
molded body
composite material
reinforced composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014174632A
Other languages
Japanese (ja)
Other versions
JP6508510B2 (en
Inventor
卓志 三宅
Takushi Miyake
卓志 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gifu University NUC
Original Assignee
Gifu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gifu University NUC filed Critical Gifu University NUC
Priority to JP2014174632A priority Critical patent/JP6508510B2/en
Publication of JP2016049646A publication Critical patent/JP2016049646A/en
Application granted granted Critical
Publication of JP6508510B2 publication Critical patent/JP6508510B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for improving an interface adhesive strength between a carbon fiber and a resin in a CFRP molding in which a resin is used as a matrix; and a method for repairing lowering of a mechanical strength caused by deterioration, damage and the like due to use of the CFRP molding.SOLUTION: There is provided a CFRP molding in which a resin is used as a matrix. An area ratio of a gap portion between a carbon fiber and the peripheral resin to a cross-sectional area of the carbon fiber in a cross section in a thickness direction of the molding is in a range of 100:10 to 100:0.SELECTED DRAWING: Figure 2

Description

本発明は、炭素繊維強化複合材料成形体およびその製造方法、並びに該成形体の使用に伴う劣化部分の簡易な修復方法に係わり、具体的には前記成形体中の炭素繊維を直接加熱し、その結果生じる炭素繊維の温度上昇を利用して炭素繊維近傍の樹脂を溶融あるいは軟化させて、成形時や繰り返し応力等により生じた炭素繊維と樹脂との隙間を埋設した成形体およびその製造方法、並びに修復方法に関するものである。   The present invention relates to a carbon fiber reinforced composite material molded body and a method for producing the same, and a simple method for repairing a deteriorated portion associated with the use of the molded body. Specifically, the carbon fiber in the molded body is directly heated. A molded body in which a gap between the carbon fiber and the resin generated by melting or softening the resin in the vicinity of the carbon fiber is melted or softened using the temperature increase of the resulting carbon fiber, and the resin is buried due to repeated stress, and the manufacturing method thereof, And a repair method.

炭素繊維を用いた複合材料は、軽量でありながら強度や耐衝撃性などの力学的特性に優れているため、航空機部材および自動車部材など多くの分野で利用されている。特に軽量で高い力学特性が求められる航空機部材用途としては好適に用いられる。この成形方法としては、主にプリプレグ法が採用されている。   A composite material using carbon fiber is lightweight and excellent in mechanical properties such as strength and impact resistance, and thus is used in many fields such as aircraft members and automobile members. In particular, it is suitably used as an aircraft member application requiring light weight and high mechanical properties. As this forming method, a prepreg method is mainly employed.

プリプレグ法とは、炭素繊維に、エポキシ樹脂などの熱硬化性樹脂を含浸させてシート状の中間基材(以下、プリプレグという)を作成し、このプリプレグを所望の形状に裁断、積層し、含浸樹脂を硬化させることにより炭素繊維強化複合材料(以下、CFRPという)を得る手法である。   In the prepreg method, carbon fiber is impregnated with a thermosetting resin such as epoxy resin to create a sheet-like intermediate base material (hereinafter referred to as prepreg), and this prepreg is cut into a desired shape, laminated, and impregnated. This is a technique for obtaining a carbon fiber reinforced composite material (hereinafter referred to as CFRP) by curing a resin.

プリプレグ法を使用する製法については、例えば、炭素繊維とガラス転移温度が硬化温度より10℃以上高い液状エポキシ樹脂を用いる製造方法(特許文献1)、炭素繊維が束状で実質的に2次元配向している炭素繊維シート等の成形材料において、特定のエポキシ化合物と特定の3級アミン化合物等を特定比率で含むサイジング剤を炭素繊維に塗布し、マトリックス樹脂と炭素繊維との接着性を高めた方法(特許文献2)の他、非常に多数の提案がある。   As for the production method using the prepreg method, for example, a production method (Patent Document 1) using carbon fiber and a liquid epoxy resin whose glass transition temperature is 10 ° C. or more higher than the curing temperature, carbon fiber is bundled and substantially two-dimensionally oriented. In a molding material such as a carbon fiber sheet, a sizing agent containing a specific epoxy compound and a specific tertiary amine compound in a specific ratio is applied to the carbon fiber to improve the adhesion between the matrix resin and the carbon fiber. In addition to the method (Patent Document 2), there are numerous proposals.

これらの方法によれば高性能のCFRPを確実に成形できる利点があるものの、一旦プリプレグを加熱硬化させるという工程が必要であり、生産性における改良の余地がある。   Although these methods have an advantage that high-performance CFRP can be reliably molded, a process of once heat-curing the prepreg is necessary, and there is room for improvement in productivity.

一方、製造工程簡素化を実現するために、炭素繊維及びマトリックス樹脂を含有する樹脂組成物を、射出成形法又は圧縮成形法により母材上に直接成形する製造方法(特許文献3)や、所定範囲の体積抵抗率を有する炭素繊維チョップドストランドと熱可塑性樹脂とからなる樹脂組成物(特許文献4)を製造する方法、特定の熱伝導率及び形状を有するピッチ係炭素繊維に合成樹脂からなるマトリックスを含浸せしめ、炭素繊維の充填率が増加し、厚さ方向の熱伝導率が改善されたCFRP(特許文献5)、などが提案されている。   On the other hand, in order to simplify the manufacturing process, a manufacturing method (Patent Document 3) in which a resin composition containing carbon fibers and a matrix resin is directly molded on a base material by an injection molding method or a compression molding method, or a predetermined method. Method for producing a resin composition (Patent Document 4) comprising a carbon fiber chopped strand having a volume resistivity in a range and a thermoplastic resin, a matrix comprising a pitch-resined carbon fiber having a specific thermal conductivity and shape and a synthetic resin CFRP (Patent Document 5), in which the carbon fiber filling rate is increased and the thermal conductivity in the thickness direction is improved, is proposed.

前記の提案による熱可塑性樹脂をマトリックスとする炭素繊維強化熱可塑性樹脂複合材(以下、CFRTPという。なお、本明細書において「CFRP」との表記は、特にことわりのない限り、「CFRTP」も含むものとする。)は、加熱により可塑化させて射出成形できることから高サイクル成形が可能で、生産性が高く、複雑形状を高精度に成形できる。この射出成形に利用される炭素繊維は、プリプレグ法に利用される炭素繊維よりも一般に短い不連続繊維であるために、成形体強度への影響は、炭素繊維同士の絡み合いによる機能付与だけでなく、繊維と樹脂との一体化に依るところが大きいと考えられる。   A carbon fiber reinforced thermoplastic resin composite material (hereinafter referred to as CFRTP) using the thermoplastic resin matrix proposed above as a matrix. In this specification, “CFRP” includes “CFRTP” unless otherwise specified. ) Can be plasticized by heating and can be injection-molded, so that high-cycle molding is possible, productivity is high, and complex shapes can be molded with high accuracy. The carbon fiber used for this injection molding is a discontinuous fiber that is generally shorter than the carbon fiber used for the prepreg method. Therefore, the influence on the strength of the molded product is not only the addition of functions due to the entanglement of the carbon fibers. It is thought that a large part depends on the integration of the fiber and the resin.

しかし、射出成形では樹脂の流動に伴い炭素繊維も移動することから、繊維の配向や分散の不均一が生じることがあり、実成形体では単純な引張試験片形状で得られる強度に比べ、低い強度しか達成できないことがある。   However, in the injection molding, the carbon fibers also move with the flow of the resin, so that the orientation and dispersion of the fibers may be uneven, and the actual molded body is lower than the strength obtained with a simple tensile test piece shape. Only strength can be achieved.

また、熱可塑性樹脂は溶融状態であっても水よりもかなり粘度の高い状態であり、樹脂が炭素繊維間へ浸透し難く、繊維との接着性も必ずしも良好でないものが多い。炭素繊維の周りに樹脂が十分に接触した状態で成形体が得られれば良いが、両者の熱膨張性や流動性の差異や樹脂の収縮によって、炭素繊維とその周囲の樹脂との間に隙間が発生することがあり、これが成形体の機械的な物性に影響を及ぼすことが考えられる。   Further, even when the thermoplastic resin is in a molten state, it is in a state of considerably higher viscosity than water, and the resin hardly penetrates between the carbon fibers, and the adhesiveness with the fibers is not always good. It is sufficient that the molded body is obtained in a state where the resin is sufficiently in contact with the periphery of the carbon fiber, but there is a gap between the carbon fiber and the surrounding resin due to the difference in thermal expansion and fluidity between them and the shrinkage of the resin. May occur, which may affect the mechanical properties of the molded body.

また、連続繊維で強化したCFRPであっても、プレスによる曲げ加工などにより成形体中で炭素繊維と樹脂が密着不十分になることも想定される。さらに、成形体の使用時における繰り返し負荷や衝撃等により、内部構造に劣化・損傷が発生することもあり、これを適当に修復することができれば、コスト低下や継続的・長期的な使用を可能にすることができる。   Further, even with CFRP reinforced with continuous fibers, it is assumed that the carbon fibers and the resin are insufficiently adhered in the molded body due to bending by a press or the like. In addition, the internal structure may be deteriorated or damaged due to repeated loads or impacts when the molded body is used. If this can be repaired appropriately, cost reduction and continuous and long-term use are possible. Can be.

特開2003−26820号公報JP 2003-26820 A 特開2013−117003号公報JP2013-117003A 特開平10−278070号公報JP-A-10-278070 特開2006−152023号公報JP 2006-152023 A 特開2008−208490号公報JP 2008-208490 A 特開2014−139300号公報JP, 2014-139300, A 特開2002−13069号公報JP 2002-13069 A

本発明は上記従来技術の課題に鑑みてなされたもので、樹脂をマトリックスとするCFRP成形体内の炭素繊維と樹脂との界面接着強度を改善する方法、並びにCFRP成形体の使用による劣化・損傷等に伴う機械的強度の低下を修復する方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art, a method for improving the interfacial adhesive strength between carbon fiber and resin in a CFRP molded body using a resin as a matrix, and deterioration / damage caused by the use of a CFRP molded body. It is an object of the present invention to provide a method for repairing a decrease in mechanical strength accompanying the above.

前記課題を解決するために、本発明のCFRP成形体は、樹脂をマトリックスとし、該成形体の厚さ方向における断面において、炭素繊維の断面積に対する、該炭素繊維と周囲の樹脂までとの間の空隙部分の面積比が、100:10〜100:0の範囲内であることを特徴とする。   In order to solve the above-mentioned problems, the CFRP molded body of the present invention uses a resin as a matrix, and in the cross section in the thickness direction of the molded body, between the carbon fiber and the surrounding resin relative to the cross-sectional area of the carbon fiber. The area ratio of the voids is in the range of 100: 10 to 100: 0.

CFRP成形体はいわば樹脂の海の中に炭素繊維の島が形成された状態であり、炭素繊維の周りに樹脂が密着していることが好ましい。特にCFRTP成形体において射出成形に利用される炭素繊維は、連続繊維ではなく不連続繊維(短鎖)を用いるために、繊維同士の絡み合いによる強度に期待するだけでなく、炭素繊維と樹脂との協働により機械的強度の向上を図ることが望まれる。しかし、射出成形過程で流動化した樹脂の海には炭素繊維が適当な密度で分散しており、炭素繊維の表面に対する樹脂の濡れ性が悪い場合や樹脂の収縮が大きい場合には、樹脂と繊維との間に密着していない空隙を生じるおそれがある。   In other words, the CFRP molded body is a state in which islands of carbon fibers are formed in the sea of the resin, and the resin is preferably in close contact with the carbon fibers. In particular, since carbon fibers used for injection molding in CFRTP molded products use discontinuous fibers (short chains) rather than continuous fibers, not only are they expected to have strength due to entanglement between fibers, but also carbon fibers and resins. It is desirable to improve the mechanical strength through cooperation. However, carbon fibers are dispersed at an appropriate density in the sea of resin fluidized in the injection molding process. If the resin wettability to the carbon fiber surface is poor or the resin shrinks significantly, the resin There is a possibility that voids that are not in close contact with the fibers are generated.

従来技術としては、繊維の表面に樹脂の濡れ性改善のために無水マレイン酸系化合物やウレタン系化合物などの集束剤を付着させたり(特許文献6)、炭素繊維の製造プロセス中に樹脂との相熔性に優れたエポキシ樹脂やウレタン樹脂などのサイズ剤を予め添加する方法(特許文献7)も採られているが、再利用の炭素繊維を使用する場合や樹脂収縮には必ずしも有効とは言い難い。   As a conventional technique, a sizing agent such as a maleic anhydride compound or a urethane compound is attached to the surface of the fiber in order to improve the wettability of the resin (Patent Document 6). A method of adding a sizing agent such as an epoxy resin or a urethane resin excellent in compatibility (Patent Document 7) has also been adopted, but it is not always effective when using recycled carbon fiber or resin shrinkage. It's hard to say.

そこで、本発明では、CFRPを所望の形状に成形した後に、0.6MHz〜2.2MHzの高周波を10分以内の時間照射し、電磁誘導加熱により、CFRP成形体内の炭素繊維を加熱して、該繊維の発熱により周囲の樹脂を選択的に再溶融あるいは軟化させ繊維と樹脂との界面での接着をより密にすることとした。この処理によって成形体の厚さ方向における断面において、炭素繊維の断面積に対する、該炭素繊維と周囲の樹脂までとの間の空隙部分の面積比が、100:10〜100:0、好ましくは空隙部分の面積を0とし、炭素繊維と樹脂とが協働して成形体の機械的強度を向上させることができる。   Therefore, in the present invention, after CFRP is molded into a desired shape, a high frequency of 0.6 MHz to 2.2 MHz is irradiated for 10 minutes or less, and the carbon fiber in the CFRP molded body is heated by electromagnetic induction heating, The surrounding resin was selectively remelted or softened by heat generation of the fiber, thereby making the adhesion at the interface between the fiber and the resin more dense. By this treatment, in the cross section in the thickness direction of the molded body, the area ratio of the void portion between the carbon fiber and the surrounding resin with respect to the cross-sectional area of the carbon fiber is 100: 10 to 100: 0, preferably void. The area of the part is set to 0, and the mechanical strength of the molded body can be improved by the cooperation of the carbon fiber and the resin.

また本発明の修復方法は、CFRP成形体に対して使用期間内の劣化や損傷部等の補修を要する箇所に0.6MHz〜2.2MHzの高周波を10分以内の時間照射し、電磁誘導加熱する工程を含むことにより成形体の補修をすることを特徴とする。   In addition, the repair method of the present invention irradiates a CFRP molded body with a high frequency of 0.6 MHz to 2.2 MHz for 10 minutes or less to a portion that needs to be repaired such as deterioration within a period of use or a damaged portion, and electromagnetic induction heating. It is characterized by repairing a molded object by including the process to do.

従来、成形体の機械的強度が低下したり、損傷等して使用に困難を来す場合には新しい成形体に交換する必要があった。本発明の修復方法によれば新たに成形体を交換する必要がなく、維持管理が容易かつ低コストで行うことができ、高周波装置を小型化すれば場合によっては使用現場でそのまま修理することもできる。   Conventionally, when the mechanical strength of a molded body is lowered or it becomes difficult to use due to damage or the like, it has been necessary to replace it with a new molded body. According to the repair method of the present invention, there is no need to newly replace the molded body, maintenance and management can be performed easily and at low cost, and if the high-frequency device is downsized, it may be repaired as it is at the site of use. it can.

本発明のCFRP成形体は、通常の成形工程だけで得られる成形体よりも成形体内の炭素繊維と樹脂との界面がより密着していることによって同じ外観・形状・寸法でありながら、機械的強度を向上させることができる。特にCFRTP成形体に関しては、炭素繊維の体積含有率も低くなるので、繊維と樹脂との協働による機能向上が認められ得る。   The CFRP molded body of the present invention has the same appearance, shape, and dimensions due to the close contact between the carbon fiber and the resin in the molded body, compared to the molded body obtained only by a normal molding process. Strength can be improved. In particular, regarding the CFRTP molded body, the volume content of the carbon fiber is also low, so that an improvement in function due to the cooperation between the fiber and the resin can be recognized.

また、本発明の製造方法では既存設備に対して電磁誘導加熱工程を追加するだけであるので、導入が容易である。さらに本発明の修復方法によれば、損傷を受けた必要な箇所だけを簡便に修理することができるので、成形体の一部分の不良を理由に全体を破棄する必要もないので経済的である。   Moreover, in the manufacturing method of this invention, since an electromagnetic induction heating process is only added with respect to the existing equipment, introduction | transduction is easy. Furthermore, according to the repairing method of the present invention, it is possible to easily repair only the necessary damaged part, and it is economical because it is not necessary to discard the whole because of a defect of a part of the molded body.

図1は、本発明の成形体断面の走査型電子顕微鏡(SEM)観察写真である。(a)は高周波による処理を行う前、(b)は高周波処理後を示す。FIG. 1 is a scanning electron microscope (SEM) observation photograph of a cross section of the molded article of the present invention. (A) shows before high-frequency processing, and (b) shows after high-frequency processing. 図2は、電磁誘導加熱装置の一例を示す概念図である。FIG. 2 is a conceptual diagram illustrating an example of an electromagnetic induction heating device. 図3は、本発明の成形体の3点曲げ試験の結果を示す図である。FIG. 3 is a diagram showing the results of a three-point bending test of the molded body of the present invention. 図4は、高周波処理を行う前の5つのサンプルに関する成形体断面のSEM観察写真である。FIG. 4 is an SEM observation photograph of a cross section of the molded body for five samples before performing high-frequency treatment. 図5は、高周波処理を行う前の成形体のX線観察(3D)画像である。FIG. 5 is an X-ray observation (3D) image of the molded body before performing high-frequency processing.

本発明の樹脂をマトリックスとするCFRP成形体は、該成形体の厚さ方向における断面において、炭素繊維の断面積に対する、該炭素繊維と周囲の樹脂までとの間の空隙部分の面積比が、100:10〜100:0の範囲内、より好ましくは空隙部分が確認できないことである。   In the CFRP molded body using the resin of the present invention as a matrix, the area ratio of the void portion between the carbon fiber and the surrounding resin with respect to the cross-sectional area of the carbon fiber in the cross section in the thickness direction of the molded body, In the range of 100: 10 to 100: 0, more preferably, the void portion cannot be confirmed.

本発明のCFRPのマトリックス樹脂は、特に限定されるものではないが、射出成形体に好適な熱可塑性樹脂を用いることが好ましい。従って、CFRTP成形体に対して好適であると言える。熱可塑性樹脂としては、例えば、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリイミド樹脂、ポリオレフィン樹脂、ポリスチレン樹脂等が挙げられる。これらはいずれか1種を単独で使用してもよく、2種類以上を併用してもよい。   The CFRP matrix resin of the present invention is not particularly limited, but it is preferable to use a thermoplastic resin suitable for an injection molded article. Therefore, it can be said that it is suitable for the CFRTP molded body. Examples of the thermoplastic resin include polycarbonate resin, polyester resin, polyamide resin, polyacetal resin, polyimide resin, polyolefin resin, and polystyrene resin. Any of these may be used alone or in combination of two or more.

前記「成形体の厚さ方向」とは、成形体の適当な箇所から成形体の厚さ方向に向かって垂直に切断して観察することを意味する。ただし、切断面に位置する炭素繊維の配置によっては、同じ形状の炭素繊維であっても断面積が異なってくる。例えば円柱形状の炭素繊維を考えてみる。円柱に対して、垂直な断面は真円であり何処で切断面をみても同じ断面積であるが、斜めに切断した場合には楕円になるので斜めの程度(角度)によって断面積が増減する。また、円柱の高さ方向からの垂直な断面は長方形であり、円の直径に沿って切断した場合の長方形が最も断面積が大きく、そこから離れるに従って長方形の面積が小さくなる。それだけでなく、円柱の高さ方向から斜めに断面を見ると、半円、半楕円などの形状を取り得る。   The “thickness direction of the molded body” means that observation is performed by cutting vertically from an appropriate portion of the molded body in the thickness direction of the molded body. However, depending on the arrangement of the carbon fibers located on the cut surface, the cross-sectional areas are different even if the carbon fibers have the same shape. For example, consider a cylindrical carbon fiber. The cross section perpendicular to the cylinder is a perfect circle, and the cross-sectional area is the same regardless of where the cut surface is viewed. However, when cut obliquely, it becomes an ellipse, so the cross-sectional area increases or decreases depending on the angle (angle). . Moreover, the vertical cross section from the height direction of a cylinder is a rectangle, the rectangle when cut | disconnected along the diameter of a circle has the largest cross-sectional area, and the area of a rectangle becomes small as it leaves | separates from there. In addition, when the cross section is viewed obliquely from the height direction of the cylinder, it can take a shape such as a semicircle or a semi-ellipse.

そこで、本発明の「炭素繊維の断面積」とは、柱状あるいは糸状の炭素繊維の太さ方向の垂直断面と定義する。すなわち前記の例で、円柱形状の炭素繊維であれば、円柱に対して垂直な断面(真円)を意味することとなる。これによって、成形体の切断面に現れる各炭素繊維の配置が異なっても、計測対比する「炭素繊維の断面積」は常に一定の値となる。   Therefore, the “cross-sectional area of carbon fiber” of the present invention is defined as a vertical cross section in the thickness direction of a columnar or thread-like carbon fiber. That is, in the above example, if the carbon fiber has a columnar shape, it means a cross section (perfect circle) perpendicular to the column. As a result, even if the arrangement of the carbon fibers appearing on the cut surface of the molded body is different, the “cross-sectional area of the carbon fibers” to be compared is always a constant value.

また、対比する「空隙部分の面積」とは、前記定義の炭素繊維の断面と同一平面上における、繊維の周縁から樹脂までの間の空隙部分の面積を意味する。三次元の空間である空隙部分は、炭素繊維の断面積(二次元)との関係において、同一平面上でなければ適切に対比することが困難であり、このように対比することによって、繊維と樹脂との界面接着の程度を把握し易いからである。   Further, the “area of the void portion” to be compared means the area of the void portion from the periphery of the fiber to the resin on the same plane as the cross section of the carbon fiber defined above. It is difficult to properly compare the void portion, which is a three-dimensional space, with respect to the cross-sectional area (two-dimensional) of the carbon fiber unless it is on the same plane. This is because it is easy to grasp the degree of interfacial adhesion with the resin.

より具体的には図1に示す。この図は、本発明のCFRTP成形体断面の走査型電子顕微鏡(SEM)観察写真である。(a)図において円柱形状の炭素繊維が、周囲の樹脂との間に空隙部分を有して存在していること、(b)図において前記の空隙部分が消失している(従って、炭素繊維の断面積:空隙部分の面積=100:0である)ことが分かる。   More specifically, it is shown in FIG. This figure is a scanning electron microscope (SEM) observation photograph of the cross section of the CFRTP molded product of the present invention. (A) The columnar carbon fiber in the figure is present with a gap between the resin and the surrounding resin, and (b) the gap has disappeared in the figure (thus, the carbon fiber It is understood that the cross-sectional area of the area: the area of the void portion = 100: 0).

本発明において好適なCFRTP成形体の製造方法としては、所定の形状に射出成形した後、成形体の任意の箇所に対して0.6MHz〜2.2MHzの高周波を10分以内の時間照射するという電磁誘導加熱工程を加えるだけで良い。従来の射出成形工程に、単に電磁誘導加熱工程を追加するだけであるため、これまでの製造工程に容易に導入可能である。前記工程では、CFRTP成形体内の炭素繊維が電磁誘導により渦電流を発生し、抵抗によって発熱する電磁誘導加熱を利用している。熱可塑性樹脂をマトリックスとして炭素繊維が分散されているので、電気を通しやすい炭素繊維のみが発熱する。従って、炭素繊維の量、長さ、分散状態などが発熱量に直接影響すると考えられる。   In the present invention, a suitable method for producing a CFRTP molded body is that after injection molding into a predetermined shape, a high frequency of 0.6 MHz to 2.2 MHz is irradiated to an arbitrary portion of the molded body for a time within 10 minutes. It is only necessary to add an electromagnetic induction heating process. Since an electromagnetic induction heating process is simply added to the conventional injection molding process, it can be easily introduced into the conventional manufacturing process. In the process, electromagnetic induction heating is used in which carbon fibers in the CFRTP molded body generate eddy currents by electromagnetic induction and heat is generated by resistance. Since the carbon fiber is dispersed using the thermoplastic resin as a matrix, only the carbon fiber that easily conducts electricity generates heat. Accordingly, it is considered that the amount, length, dispersion state, etc. of the carbon fiber directly influence the calorific value.

なお、電磁誘導加熱をCFRTPのプレス成形時に利用することが報告されている(「材料」(Journal of the Society of Materials, Japan),Vol.58,No.7,pp642-648,July 2009)。この文献のCFRPは、繊維の交差が多い連続繊維を用いており、〜500KHzの周波数であっても、時間をかければある程度の加熱はされる。しかし、本発明のように射出成形後の後処理に使用するものではなく、また、繊維長さが短く、交差も少ない不連続繊維が分布する射出成形品では、高周波誘導加熱の周波数範囲は、MHz帯でなければ、炭素繊維を効率的に発熱させることが困難である。本発明では、最も効率良く、炭素繊維を発熱させる0.6MHz〜2.2MHz、好ましくは1.6MHz〜2.2MHzを用いることが望ましい。   It has been reported that electromagnetic induction heating is used during CFRTP press molding ("Journal of the Society of Materials, Japan", Vol. 58, No. 7, pp 642-648, July 2009). The CFRP of this document uses continuous fibers with many fiber crossings, and even if it is a frequency of ˜500 KHz, it is heated to some extent if time is taken. However, it is not used for post-processing after injection molding as in the present invention, and in an injection molded product in which discontinuous fibers with a short fiber length and few crossings are distributed, the frequency range of high-frequency induction heating is If it is not in the MHz band, it is difficult to heat the carbon fiber efficiently. In the present invention, it is desirable to use 0.6 MHz to 2.2 MHz, preferably 1.6 MHz to 2.2 MHz, which heats the carbon fiber most efficiently.

本発明の電磁誘導加熱工程では、射出成形時の金型内における樹脂が溶融から冷却する過程で成形される場合とは異なり、炭素繊維の周囲の樹脂のみを選択的に加熱することとなる。すなわち、射出成形時には樹脂全体が流動可能であるのに対して、電磁誘導加熱時には炭素繊維からある程度離れた位置の樹脂は固体状態を維持し、繊維周囲の限定された樹脂だけが溶融する。また、溶融することにより樹脂の体積が大きくなるが、空隙部分を除いては増大した樹脂の行き場がない。そのため、溶融樹脂と繊維とは強制的に密着させられることとなる。しかも部分的な加熱であるために、溶融樹脂は周囲の非加熱樹脂によって射出成形時における冷却速度よりも早く冷却されるのである。   In the electromagnetic induction heating process of the present invention, unlike the case where the resin in the mold at the time of injection molding is molded in the process of cooling from melting, only the resin around the carbon fiber is selectively heated. That is, the entire resin can flow during injection molding, whereas the resin located at a certain distance from the carbon fiber maintains a solid state during electromagnetic induction heating, and only the limited resin around the fiber melts. In addition, although the volume of the resin is increased by melting, there is no increased place for the resin except for the void portion. Therefore, the molten resin and the fiber are forcibly brought into close contact with each other. Moreover, because of partial heating, the molten resin is cooled faster by the surrounding non-heated resin than the cooling rate at the time of injection molding.

このように、電磁誘導加熱による、部分的溶融樹脂、急加熱、急冷却、限定された空間などの要因によって、仮に炭素繊維と樹脂とが濡れ性の悪い関係であったとしても、両者の界面接着強度をより強固にすることができる。この効果によって、CFRP成形体の機械的強度を向上させることができるのである。   In this way, even if the relationship between the carbon fiber and the resin is poor due to factors such as partially molten resin, rapid heating, rapid cooling, and limited space due to electromagnetic induction heating, the interface between the two The adhesive strength can be further strengthened. This effect can improve the mechanical strength of the CFRP molded body.

しかも前記加熱処理は成形体全体に対して行っても、溶融する樹脂は炭素繊維の近傍に位置する樹脂だけに留めることができるので、成形体全体の寸法、形状に影響を及ぼすことがない。すなわち、射出成形型を新たに作り直す必要がないので、正味の追加投資は、電磁誘導装置に限定され、この製造工程を従来設備に導入し易いのである。   Moreover, even if the heat treatment is performed on the entire molded body, the resin to be melted can be limited only to the resin located in the vicinity of the carbon fiber, so that the size and shape of the entire molded body are not affected. That is, since it is not necessary to make a new injection mold, the net additional investment is limited to the electromagnetic induction device, and it is easy to introduce this manufacturing process into the conventional equipment.

前記電磁誘導加熱工程は、出荷前のCFRP成形体に対して行うだけでなく、使用中の成形体に対しても行うことができる。使用時に受けた負荷や衝撃によって成形体内の炭素繊維と樹脂との間に亀裂(空隙部分や、空隙がなくても接着していない状態も含む)が生じた場合などに、当該部分に前記電磁誘導加熱を行うのである。異種の組合せからなる複合材料では、劣化や損傷は炭素繊維と樹脂との界面に発生しやすく、これがCFRP成形体全体の破壊の起点となる。このような起点を適度に補修することができれば、成形体の長期に渡る使用が可能となる。そこで、本発明の補修方法は、CFRP成形体に対し、前記成形体の補修を要する箇所に0.6MHz〜2.2MHz、好ましくは1.6MHz〜2.2MHzの高周波を10分以内の時間照射し、電磁誘導加熱する工程を含むものである。   The electromagnetic induction heating step can be performed not only on a CFRP molded body before shipment but also on a molded body in use. When cracks (including voids and unbonded states even if there are no voids) occur between the carbon fiber and the resin in the molded body due to the load and impact received during use, the electromagnetic Induction heating is performed. In a composite material composed of different combinations, deterioration and damage are likely to occur at the interface between the carbon fiber and the resin, and this is a starting point for destruction of the entire CFRP molded body. If such a starting point can be appropriately repaired, the molded body can be used over a long period of time. Therefore, the repair method of the present invention irradiates a CFRP molded body with a high frequency of 0.6 MHz to 2.2 MHz, preferably 1.6 MHz to 2.2 MHz for a time within 10 minutes to a portion that requires repair of the molded body. And a step of electromagnetic induction heating.

補修を要する箇所は、外観上明確であるとは限らない。そのような場合には、過去にCFRP成形体を使用中に破損した箇所を目安としたり、使用中に衝撃を与えた箇所や繰り返し負荷のかかる箇所を対象として定期的に本発明の補修方法を行うことにより、成形体全体の破壊が起きる前に予防的措置を講ずることもできる。   The part requiring repair is not always clear in appearance. In such a case, use the repair method of the present invention as a guide for locations where the CFRP molded body has been damaged in the past as a guide, or for locations that have been impacted or repeatedly subjected to load during use. By doing so, it is possible to take preventive measures before destruction of the entire compact occurs.

本発明の電磁誘導加熱工程に使用する装置について説明する。電磁誘導加熱装置は、CFRP成形体を回動可能に固定する保持手段と、CFRP成形体を高周波電磁誘導加熱する手段とを有している。図2にこの装置の概要を示す。CFRTP成形体1は装置の保持手段2によって磁界3に対する相対位置を保持され、所定の方向から磁界を作用させることができる。保持手段はCFRTP成形体を処理時に固定し或いは所定の向きに方向付けすることができれば良く、特別な構造を有している必要はない。磁界を作用させても発熱しない材質であれば、例えば成形体を載置することのできるガラス製の台のような物であっても良いのである。   The apparatus used for the electromagnetic induction heating process of this invention is demonstrated. The electromagnetic induction heating device has holding means for fixing the CFRP molded body so as to be rotatable, and means for heating the CFRP molded body at high frequency electromagnetic induction. FIG. 2 shows an outline of this apparatus. The CFRTP molded body 1 is held at a relative position with respect to the magnetic field 3 by the holding means 2 of the apparatus, and can apply a magnetic field from a predetermined direction. The holding means only needs to be able to fix the CFRTP molded body during processing or to orient it in a predetermined direction, and does not need to have a special structure. As long as the material does not generate heat even when a magnetic field is applied, a material such as a glass table on which a molded body can be placed may be used.

保持手段を回転あるいは前後左右に移動させることで、成形体の所定部位を選択的に加熱することができる。例えば、射出成形において溶融したCFRTPの合流部に接合痕が表れている(ウエルドといわれる)箇所を集中的に加熱したり、成形体の薄肉部と厚肉部、平坦面と段差を有する面などを処理することで強度的に弱いと推定される箇所を狙ってより短時間で電磁誘導加熱工程を完了させるのである。このように製品の機能向上と製造効率の両立を図ることで、低価格・高品質のCFRP成形体を供給することができる。   The predetermined part of the molded body can be selectively heated by rotating or moving the holding means back and forth and right and left. For example, a portion where joining marks appear (referred to as welds) in the joined portion of the melted CFRTP in injection molding is intensively heated, a thin-walled portion and a thick-walled portion, a surface having a flat surface and a step, etc. By processing this, the electromagnetic induction heating process is completed in a shorter time with the aim of a portion estimated to be weak in strength. Thus, a low-priced and high-quality CFRP molded product can be supplied by improving both the function of the product and manufacturing efficiency.

CFRTP成形体に磁界3を作用させる電磁誘導加熱手段は、高周波電流を供給する供給部(図示せず)と磁界を発生する誘導加熱コイル4とからなる。このような高周波電磁誘導加熱の具体例としては、ワイエス電子工業(株)の電磁誘導装置(電源部IH−052W、発信部IH−052M−FC)などが好適である。この装置では、電界効果トランジスタによる誘電加熱用の高周波インバータで、低ノイズ化を達成し、このインバータによって、2MHzという超高周波数帯域を利用することができる。これによって、従来は磁性金属の加熱が主であった電磁誘導加熱で、非磁性金属や炭素繊維などの急速短時間加熱が可能となったのである。なお、図2では磁界3を太い点線の下向きの矢印で、概念的に示しているが、これはあくまでイメージ図である。   The electromagnetic induction heating means for causing the magnetic field 3 to act on the CFRTP molded body includes a supply unit (not shown) that supplies a high-frequency current and an induction heating coil 4 that generates a magnetic field. As a specific example of such high-frequency electromagnetic induction heating, an electromagnetic induction device (power supply unit IH-052W, transmission unit IH-052M-FC) manufactured by Wyeth Electronics Industry Co., Ltd. is suitable. In this apparatus, low noise is achieved with a high-frequency inverter for dielectric heating using a field effect transistor, and an ultra-high frequency band of 2 MHz can be used with this inverter. This makes it possible to rapidly heat non-magnetic metals, carbon fibers, and the like by electromagnetic induction heating, which conventionally has been mainly heating magnetic metals. In FIG. 2, the magnetic field 3 is conceptually indicated by a thick dotted downward arrow, but this is merely an image diagram.

CFRTP成形体1の内部には、炭素繊維5が分散されているが、磁界3の作用している領域(図2では、点線の円6で示している)内の炭素繊維5’は、誘導加熱により温度が上昇していく。磁界により炭素繊維内を流れる渦電流と電気抵抗によりジュール熱が発生するためである。   The carbon fiber 5 is dispersed inside the CFRTP molded body 1, but the carbon fiber 5 ′ in the region where the magnetic field 3 acts (indicated by a dotted circle 6 in FIG. 2) is guided. The temperature rises due to heating. This is because Joule heat is generated by eddy current and electric resistance flowing in the carbon fiber by the magnetic field.

図2に示すような構成の装置を用いてCFRTP成形体を電磁誘導加熱処理した結果を以下に示す。   The result of the electromagnetic induction heat treatment of the CFRTP molded body using the apparatus configured as shown in FIG. 2 is shown below.

(実施例1)
ポリプロピレンをマトリクスとし、炭素繊維の長さが約3.5mmで炭素繊維含有率約30重量%のペレット(三菱レイヨン製 PYROFIL PP-C-30A)を用いて、射出成形機(日精樹脂工業(株)のNEX110−12E)を使用して、CFRTP成形体を成形した。
(Example 1)
Using a pellet made of polypropylene as a matrix, carbon fiber length of about 3.5 mm, and carbon fiber content of about 30% by weight (PYROFIL PP-C-30A manufactured by Mitsubishi Rayon), an injection molding machine (Nissei Plastic Industry Co., Ltd.) NEX110-12E) was used to form a CFRTP molded body.

前記成形体に対して、ワイエス電子工業(株)の電磁誘導装置(電源部IH−052W、発振部IH−052M−FC、コイルは内径φ30mmで巻き数は2である)を用いて、2.0MHzの周波数で5分間照射した。電磁誘導加熱処理を行ったもの(本発明)と、行わないもので3点曲げ試験(JISK7074)に準拠してスパン60mmで試験を行った結果を図3に示す。なお、図1に示すSEM観察写真の(a)が射出成形のみのもの、(b)が電磁誘導加熱処理を行ったものである。   1. Using the electromagnetic induction device (power supply unit IH-052W, oscillation unit IH-052M-FC, coil has an inner diameter of 30 mm and the number of windings is 2) of Wyeth Electronics Industry Co., Ltd. for the molded body. Irradiation was performed at a frequency of 0 MHz for 5 minutes. FIG. 3 shows the results of testing with a span of 60 mm in accordance with a three-point bending test (JISK7074) with and without electromagnetic induction heat treatment (invention). In addition, (a) of the SEM observation photograph shown in FIG. 1 is a thing only by injection molding, (b) is what performed the electromagnetic induction heating process.

図3より、射出成形だけのものに比べて本発明の処理工程を経た成形体は、約10%の曲げ弾性率の向上が認められた。従って、電磁誘導加熱によって炭素繊維の周囲に樹脂を密着させることで機械的強度の向上が図れることが判る。   From FIG. 3, it was confirmed that the molded body that had undergone the treatment process of the present invention had an improvement in bending elastic modulus of about 10% compared to that of injection molding alone. Therefore, it can be seen that the mechanical strength can be improved by bringing the resin into close contact with the periphery of the carbon fiber by electromagnetic induction heating.

(実験例1)
図4には、実施例1で使用したと同じCFRTP成形体について高周波による処理を行う前の5つのサンプル(I〜V)を、切断してそのSEM観察写真を示している。なお、各写真の点線で囲った四角部分は、炭素繊維とその周囲の樹脂との空隙部分の面積を計算に使用した箇所を示したものである。この炭素繊維の断面積との比率を下記の表1に示す。
(Experimental example 1)
FIG. 4 shows SEM observation photographs of five samples (I to V) that have been cut before the high-frequency treatment of the same CFRTP molded body used in Example 1. In addition, the square part enclosed with the dotted line of each photograph shows the location which used the area of the space | gap part of carbon fiber and the resin of the circumference | surroundings for calculation. The ratio with the cross-sectional area of this carbon fiber is shown in Table 1 below.

表に示すように、射出成形等の条件にもよるが、炭素繊維の断面積を100とすると、樹脂との空隙部分の面積は10よりも大きい部分がかなりの割合で存在し、以外にも炭素繊維と樹脂との密着性に問題があることが判る。   As shown in the table, depending on the conditions such as injection molding, if the cross-sectional area of the carbon fiber is 100, the area of the void portion with the resin is larger than 10 in a considerable proportion, It can be seen that there is a problem in the adhesion between the carbon fiber and the resin.

(実験例2)
図5には、実施例1で使用したと同じCFRTP成形体について高周波による処理を行う前のサンプルを、(株)島津製作所のマイクロフォーカスX線CT装置(inspeXio SMX-100CT)で測定(X線管電圧:80kV、ボクセル当量長:0.004mm/voxel)したときの3D画像を示している。図中立方体が成形体を、より白く見える箇所が空隙部分を示している。射出成形の条件にもよるが、このように成形体内部には、かなりの空隙部分が生じているもとの推定された。
(Experimental example 2)
FIG. 5 shows a sample (X-ray) of the same CFRTP molded body used in Example 1 before being processed by high frequency using a microfocus X-ray CT apparatus (inspeXio SMX-100CT) manufactured by Shimadzu Corporation. 3D image when the tube voltage is 80 kV and the voxel equivalent length is 0.004 mm / voxel). In the figure, the cube indicates the molded body, and the whiter portion indicates the void portion. Although depending on the conditions of injection molding, it was estimated that considerable voids were generated inside the molded body.

以上説明したように本発明のCFRP成形体は、通常の射出成形の製造工程に、電磁誘導加熱の処理工程を加えるだけで、簡単かつ短時間の処理によって成形体の機能向上に寄与することができる。   As described above, the CFRP molded body of the present invention can contribute to the improvement of the function of the molded body by simple and short-time processing just by adding the electromagnetic induction heating processing step to the normal injection molding manufacturing process. it can.

CFRPを使用した射出成形の製造プロセスに本発明の製造方法を利用することが可能で、簡易的に導入できるので、様々な用途に利用されるCFRP成形体に適用できる。   Since the manufacturing method of the present invention can be used in an injection molding manufacturing process using CFRP and can be easily introduced, it can be applied to CFRP molded bodies used for various purposes.

また、電磁誘導加熱装置全体として小型化が可能で、設置場所を問わず小規模の製造現場でも導入可能であり、実際にCFRP成形体を使用している現場に持って行って、成形体の強度回復や修繕に利用することもできる。   In addition, the electromagnetic induction heating device as a whole can be miniaturized and can be introduced at a small manufacturing site regardless of the installation location. Take it to the site where the CFRP molded product is actually used, It can also be used for strength recovery and repair.

1 CFRTPの成形品
2 保持手段
3 磁界
4 コイル
5、5’ 炭素繊維
6 磁界の作用している領域
DESCRIPTION OF SYMBOLS 1 CFRTP molded article 2 Holding means 3 Magnetic field 4 Coil 5, 5 'Carbon fiber 6 Field where magnetic field acts

Claims (3)

樹脂をマトリックスとする炭素繊維強化複合材料の成形体であって、
該成形体の厚さ方向における断面において、
炭素繊維の断面積に対する、該炭素繊維と周囲の樹脂までとの間の空隙部分の面積比が、100:10〜100:0の範囲内であることを特徴とする炭素繊維強化複合材料成形体。
A molded body of a carbon fiber reinforced composite material having a resin as a matrix,
In the cross section in the thickness direction of the molded body,
The carbon fiber-reinforced composite material molded article, wherein an area ratio of a void portion between the carbon fiber and the surrounding resin to a cross-sectional area of the carbon fiber is within a range of 100: 10 to 100: 0. .
前記炭素繊維強化複合材料を成形後、
成形体の任意の箇所に対して0.6MHz〜2.2MHzの高周波を10分以内の時間照射し、電磁誘導加熱する工程、
を含むことを特徴とする請求項1に記載の成形体の製造方法。
After molding the carbon fiber reinforced composite material,
A step of irradiating a high frequency of 0.6 MHz to 2.2 MHz with respect to an arbitrary portion of the molded body for a period of time within 10 minutes, and electromagnetic induction heating;
The manufacturing method of the molded object of Claim 1 characterized by the above-mentioned.
前記炭素繊維強化複合材料成形体に対し、
前記成形体の補修を要する箇所に0.6MHz〜2.2MHzの高周波を10分以内の時間照射し、電磁誘導加熱する工程、
を含むことを特徴とする炭素繊維強化複合材料成形体の補修方法。
For the carbon fiber reinforced composite material molded body,
A step of irradiating a portion requiring repair of the molded body with a high frequency of 0.6 MHz to 2.2 MHz for a period of 10 minutes or less and electromagnetic induction heating,
A method for repairing a molded article of carbon fiber reinforced composite material, comprising:
JP2014174632A 2014-08-28 2014-08-28 Carbon fiber reinforced composite material compact, method of manufacturing the same, and method of repairing carbon fiber reinforced composite material compact Expired - Fee Related JP6508510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014174632A JP6508510B2 (en) 2014-08-28 2014-08-28 Carbon fiber reinforced composite material compact, method of manufacturing the same, and method of repairing carbon fiber reinforced composite material compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014174632A JP6508510B2 (en) 2014-08-28 2014-08-28 Carbon fiber reinforced composite material compact, method of manufacturing the same, and method of repairing carbon fiber reinforced composite material compact

Publications (2)

Publication Number Publication Date
JP2016049646A true JP2016049646A (en) 2016-04-11
JP6508510B2 JP6508510B2 (en) 2019-05-08

Family

ID=55657551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014174632A Expired - Fee Related JP6508510B2 (en) 2014-08-28 2014-08-28 Carbon fiber reinforced composite material compact, method of manufacturing the same, and method of repairing carbon fiber reinforced composite material compact

Country Status (1)

Country Link
JP (1) JP6508510B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018037168A (en) * 2016-08-29 2018-03-08 富士電機株式会社 Induction heating device and induction heating method
CN114059790A (en) * 2021-09-27 2022-02-18 杨旭 Waterproof coating repairing method based on homologous coating

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342823A (en) * 1986-08-11 1988-02-24 Mikuni Seisakusho:Kk Preparation of interior automobile trim
JPH0531808A (en) * 1991-07-31 1993-02-09 Nissha Printing Co Ltd Manufacture of plastic joint product
JP2005238758A (en) * 2004-02-27 2005-09-08 Nitto Boseki Co Ltd Forming method of fiber reinforced resin and covering sheet formed by it
WO2008056755A1 (en) * 2006-11-09 2008-05-15 Teijin Chemicals Ltd. Composite material and process for producing the same
JP2009208351A (en) * 2008-03-04 2009-09-17 Toyota Motor Corp Repairing method of composite material, and manufacturing method of the composite material
JP2012526885A (en) * 2009-05-12 2012-11-01 アルケマ フランス Fiber substrate, method for producing the fiber substrate, and use thereof
JP2013194175A (en) * 2012-03-21 2013-09-30 Teijin Ltd Composite material and production method therefor
JP2013227509A (en) * 2012-03-30 2013-11-07 Mitsubishi Rayon Co Ltd Method for manufacturing fiber-reinforced thermoplastic resin sheet
JP2015075428A (en) * 2013-10-10 2015-04-20 国立大学法人岐阜大学 Method and device for inspecting carbon fiber-reinforced composite material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342823A (en) * 1986-08-11 1988-02-24 Mikuni Seisakusho:Kk Preparation of interior automobile trim
JPH0531808A (en) * 1991-07-31 1993-02-09 Nissha Printing Co Ltd Manufacture of plastic joint product
JP2005238758A (en) * 2004-02-27 2005-09-08 Nitto Boseki Co Ltd Forming method of fiber reinforced resin and covering sheet formed by it
WO2008056755A1 (en) * 2006-11-09 2008-05-15 Teijin Chemicals Ltd. Composite material and process for producing the same
JP2009208351A (en) * 2008-03-04 2009-09-17 Toyota Motor Corp Repairing method of composite material, and manufacturing method of the composite material
JP2012526885A (en) * 2009-05-12 2012-11-01 アルケマ フランス Fiber substrate, method for producing the fiber substrate, and use thereof
JP2013194175A (en) * 2012-03-21 2013-09-30 Teijin Ltd Composite material and production method therefor
JP2013227509A (en) * 2012-03-30 2013-11-07 Mitsubishi Rayon Co Ltd Method for manufacturing fiber-reinforced thermoplastic resin sheet
JP2015075428A (en) * 2013-10-10 2015-04-20 国立大学法人岐阜大学 Method and device for inspecting carbon fiber-reinforced composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018037168A (en) * 2016-08-29 2018-03-08 富士電機株式会社 Induction heating device and induction heating method
CN114059790A (en) * 2021-09-27 2022-02-18 杨旭 Waterproof coating repairing method based on homologous coating

Also Published As

Publication number Publication date
JP6508510B2 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
Akhoundi et al. An experimental study of nozzle temperature and heat treatment (annealing) effects on mechanical properties of high‐temperature polylactic acid in fused deposition modeling
US9688032B2 (en) Thermoplastic component repair
US9770892B2 (en) Induction welding process and device for parts made of composite materials
US9610713B2 (en) Grooved resin molded part
US10576696B2 (en) Composite component forming method
US20150328847A1 (en) Polymeric composite repair via radiofrequency heating of magnetic particles
TW201511934A (en) Composite moulded body
US9539770B2 (en) Flexible membrane for the production of parts made from composite materials
CN104228059B (en) Thermosetting polymer matrix composite resistance welding device and method
JP2016216654A (en) Tape-like prepreg and fiber-reinforced molded body
EP3263633B1 (en) Curing method of resin composite material
JP2016049646A (en) Carbon fiber-reinforced composite material molding and method for producing the same, and method for repairing carbon fiber-reinforced composite material molding
US20160318246A1 (en) Electromagnetic blunting of defects within fused deposition modeling (fdm)components
JP6269925B2 (en) Inspection method and inspection apparatus for carbon fiber reinforced composite material
Todoroki et al. Reinforcing in the lay-up direction with self-heating for carbon fiber composites fabricated using a fused filament fabrication 3D printer
US20190134920A1 (en) Fiber-reinforced thermoplastic resin member welding method and welding device
Worrall et al. Novel induction heating technique for joining of carbon fibre composites
Ali et al. Impact of fiber‐type and autoclave‐treatment at different temperatures on the mechanical properties and interface performance of various fiber‐reinforced 3D‐printed composites
KR102616752B1 (en) Mold for Polymer Composites by Using Inductive Heating of Dielectric Materials
JP2017164970A (en) Fiber-reinforced composite and method for producing the same
Ma et al. Effect of curing method on mechanical and morphological properties of carbon fiber epoxy composites for solid rocket motor
KR20170101143A (en) Menufacturing method for molded article using fiber reinforcerd plastic waste
US11279100B2 (en) Polymer matrix composite repair
KR102299731B1 (en) Welding method for steel sheet and carbon fiber reinforced plastics sheet
JP2014087963A (en) Method for producing molded part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190320

R150 Certificate of patent or registration of utility model

Ref document number: 6508510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees