JP2016049508A - Holding structure of catalyst particle for producing carbon nanotube, and production method of the same - Google Patents

Holding structure of catalyst particle for producing carbon nanotube, and production method of the same Download PDF

Info

Publication number
JP2016049508A
JP2016049508A JP2014177265A JP2014177265A JP2016049508A JP 2016049508 A JP2016049508 A JP 2016049508A JP 2014177265 A JP2014177265 A JP 2014177265A JP 2014177265 A JP2014177265 A JP 2014177265A JP 2016049508 A JP2016049508 A JP 2016049508A
Authority
JP
Japan
Prior art keywords
layer
catalyst particle
catalyst
holding structure
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014177265A
Other languages
Japanese (ja)
Other versions
JP5808468B1 (en
Inventor
拓治 小向
Takuji Komukai
拓治 小向
温 下元
Atsushi Shimomoto
温 下元
広美 輝平
Hiromi Teruhira
広美 輝平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta Corp
Original Assignee
Nitta Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014177265A priority Critical patent/JP5808468B1/en
Application filed by Nitta Corp filed Critical Nitta Corp
Priority to US15/507,649 priority patent/US10207920B2/en
Priority to CN201580044983.1A priority patent/CN106660016B/en
Priority to EP15837398.5A priority patent/EP3199235A4/en
Priority to PCT/JP2015/071517 priority patent/WO2016035484A1/en
Priority to KR1020177007135A priority patent/KR101995143B1/en
Priority to TW104126803A priority patent/TWI666054B/en
Application granted granted Critical
Publication of JP5808468B1 publication Critical patent/JP5808468B1/en
Publication of JP2016049508A publication Critical patent/JP2016049508A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Abstract

PROBLEM TO BE SOLVED: To provide an easily producible holding structure of catalyst particles and a production method of the same.SOLUTION: A production method of a holding structure 11 of catalyst particles includes: a step to form a catalyst particle forming layer 3 including Si, Al, and Fe; and a step to form catalyst particles 2 which include Fe and which are held by the catalyst particle forming layer 3 while a part of which is buried therein by heat-treating the catalyst particle forming layer 3 in atmosphere including oxygen, and consequently the size and the number of the formed catalyst particles 2 including Fe are adjusted by adjusting the amount of oxygen in the atmosphere in heat-treatment, and the holding structure 11 of the catalyst particles is easily formed.SELECTED DRAWING: Figure 1

Description

本発明は、触媒粒子の保持構造及び触媒粒子の保持構造の製造方法に関する。   The present invention relates to a catalyst particle holding structure and a method for producing a catalyst particle holding structure.

カーボンナノチューブ(以下、CNTという。)は、熱伝導性、電気伝導性、耐食性などが高く、新しい材料として注目されている。   Carbon nanotubes (hereinafter referred to as CNT) are attracting attention as new materials because of their high thermal conductivity, electrical conductivity, and corrosion resistance.

このようなCNTは、例えば、CNT生成の触媒となる物質を含む層を基板上に形成し、当該層を熱処理して基板上に多数の触媒粒子を生成した後、触媒粒子にCNTの原料となるガスを供給して触媒粒子からCNTを成長させて製造される。この製造方法では、CNTを成長させるときに触媒粒子が動いてしまい、CNTを基板の表面に対して垂直に成長させにくい。そのため、基板上に触媒粒子を保持できる保持構造の開発がなされている。   For example, such a CNT is formed by forming a layer containing a substance serving as a catalyst for generating CNTs on a substrate, heat-treating the layer to generate a large number of catalyst particles on the substrate, Is produced by growing CNTs from the catalyst particles. In this manufacturing method, the catalyst particles move when growing the CNT, and it is difficult to grow the CNT perpendicular to the surface of the substrate. Therefore, a holding structure that can hold catalyst particles on a substrate has been developed.

特許文献1には、基板表面に形成されたバリア層上に、酸素を含むAl層、Siからなるバッファ層、Fe層をこの順番で積層し、当該多層構造を熱処理することで、触媒粒子であるFe微粒子がバッファ層に一部が埋没して保持された保持構造の製造方法が開示されている。   In Patent Document 1, an Al layer containing oxygen, a buffer layer made of Si, and an Fe layer are laminated in this order on a barrier layer formed on the substrate surface, and the multilayer structure is heat-treated, so that A method of manufacturing a holding structure in which certain Fe fine particles are held in a part of the buffer layer is disclosed.

特開2012−91082号公報JP 2012-91082 A

しかしながら、特許文献1に開示される製造方法では、Fe微粒子の形状などを制御しようとすると、Al層に含まれる酸素の量、Al層、バッファ層、及びFe層の厚さ、熱処理の条件等の多数の項目を制御する必要があり、歩留りをよく製造することが難しかった。   However, in the manufacturing method disclosed in Patent Document 1, when it is attempted to control the shape of the Fe fine particles, the amount of oxygen contained in the Al layer, the thickness of the Al layer, the buffer layer, and the Fe layer, the heat treatment conditions, and the like Therefore, it was difficult to produce a good yield.

そこで本発明は、容易に製造できる触媒粒子の保持構造及びその製造方法を提供することを目的とする。   Then, an object of this invention is to provide the retention structure of the catalyst particle which can be manufactured easily, and its manufacturing method.

本発明の触媒粒子の保持構造は、Feを含む触媒粒子と、Al及びSiを含む触媒粒子形成層とを備え、前記触媒粒子形成層は前記Alと前記Siとの合金によって形成され、前記触媒粒子が前記触媒粒子形成層に一部が埋没して保持されていることを特徴とする。   The catalyst particle holding structure of the present invention includes catalyst particles containing Fe and a catalyst particle forming layer containing Al and Si, and the catalyst particle forming layer is formed of an alloy of Al and Si, and the catalyst It is characterized in that the particles are partly embedded and held in the catalyst particle forming layer.

本発明の触媒粒子の保持構造は、Feを含む触媒粒子と、Al及びSiを含む触媒粒子形成層と、曲面を有するバリア層とを備え、前記触媒粒子形成層は前記バリア層の表面形状に沿って形成されており、前記触媒粒子が前記触媒粒子形成層に一部が埋没して保持されていることを特徴とする。   The catalyst particle holding structure of the present invention comprises catalyst particles containing Fe, a catalyst particle forming layer containing Al and Si, and a barrier layer having a curved surface, and the catalyst particle forming layer has a surface shape of the barrier layer. The catalyst particles are partly embedded and held in the catalyst particle formation layer.

本発明の触媒粒子の保持構造の製造方法は、Si、Al、及びFeを含む触媒粒子形成層を形成する工程と、酸素を含む雰囲気中で前記触媒粒子形成層を熱処理し、前記Feを含み、前記触媒粒子形成層に一部が埋没して保持された触媒粒子を形成する工程とを備えることを特徴とする。   The method for producing a catalyst particle holding structure of the present invention includes a step of forming a catalyst particle forming layer containing Si, Al, and Fe, and heat-treating the catalyst particle forming layer in an atmosphere containing oxygen, And a step of forming catalyst particles partially embedded and held in the catalyst particle forming layer.

本発明の触媒粒子の保持構造は、Feを含む触媒粒子と、Al及びSiを含む触媒粒子形成層とを備え、触媒粒子形成層がAlとSiとの合金によって形成され、触媒粒子が触媒粒子形成層に一部が埋没して保持されているので、触媒粒子形成層をAl層とSi層とを積層して形成する場合と比較してAlとSiの比率を調整し易く、本発明の製造方法によって容易に製造されることができる。   The catalyst particle holding structure of the present invention includes catalyst particles containing Fe and a catalyst particle forming layer containing Al and Si, the catalyst particle forming layer is formed of an alloy of Al and Si, and the catalyst particles are catalyst particles. Since the formation layer is partly buried and held, the ratio of Al and Si can be easily adjusted as compared with the case where the catalyst particle formation layer is formed by laminating the Al layer and the Si layer. It can be easily manufactured by a manufacturing method.

本発明の触媒粒子の保持構造は、Feを含む触媒粒子と、Al及びSiを含む触媒粒子形成層と、曲面を有するバリア層とを備え、触媒粒子形成層はバリア層の表面形状に沿って形成されており、触媒粒子が触媒粒子形成層に一部が埋没して保持されており、塗布法によって形成されるので、曲面を有する基体上にも容易に製造できる。そして、保持構造は、円筒形状の基体上に、その表面形状に沿ってバリア層及び触媒粒子形成層を作製してCNTを形成することができ、より効率的にCNTを製造できる。   The catalyst particle holding structure of the present invention comprises catalyst particles containing Fe, a catalyst particle forming layer containing Al and Si, and a barrier layer having a curved surface, and the catalyst particle forming layer follows the surface shape of the barrier layer. The catalyst particles are partly embedded and held in the catalyst particle forming layer, and are formed by a coating method. Therefore, the catalyst particles can be easily manufactured even on a substrate having a curved surface. The holding structure can form a CNT by forming a barrier layer and a catalyst particle forming layer along a surface shape on a cylindrical substrate, and can produce the CNT more efficiently.

本発明の触媒粒子の保持構造の製造方法は、Si、Al、及びFeを含む触媒粒子形成層を形成する工程と、酸素を含む雰囲気中で触媒粒子形成層を熱処理し、Feを含み、触媒粒子形成層に一部が埋没して保持された触媒粒子を形成する工程とを備えるので、熱処理時の雰囲気の酸素量を調整することで、形成されるFeを含む触媒粒子の大きさや数を調整することができ、容易に触媒粒子の保持構造を形成することができる。   The method for producing a catalyst particle holding structure according to the present invention includes a step of forming a catalyst particle forming layer containing Si, Al, and Fe, a heat treatment of the catalyst particle forming layer in an atmosphere containing oxygen, and a catalyst containing Fe. A step of forming catalyst particles partially embedded and held in the particle forming layer, so that the size and number of catalyst particles containing Fe formed can be adjusted by adjusting the amount of oxygen in the atmosphere during the heat treatment. It is possible to adjust and a catalyst particle holding structure can be easily formed.

第1実施形態に係る触媒粒子保持体の断面を示す概略図である。It is the schematic which shows the cross section of the catalyst particle holding body which concerns on 1st Embodiment. 第1実施形態に係る触媒粒子保持体の製造工程を示す概略図である。It is the schematic which shows the manufacturing process of the catalyst particle holding body which concerns on 1st Embodiment. 第2実施形態に係る触媒粒子保持体の断面を示す概略図である。It is the schematic which shows the cross section of the catalyst particle holding body which concerns on 2nd Embodiment. 変形例に係る触媒粒子保持体の断面を示す概略図である。It is the schematic which shows the cross section of the catalyst particle holding body which concerns on a modification. 本発明の触媒粒子の保持構造の断面を示す透過型電子顕微鏡写真である。It is a transmission electron micrograph which shows the cross section of the holding structure of the catalyst particle | grains of this invention. 本発明の触媒粒子の保持構造の断面を示す透過型電子顕微鏡写真である。It is a transmission electron micrograph which shows the cross section of the holding structure of the catalyst particle | grains of this invention.

以下、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

1.第1実施形態
(1)構成
図1に示すように、触媒粒子保持体1は、基体5と触媒粒子の保持構造11とを備えている。基体5は、例えば、Si(シリコン)でなり、表面が平坦に形成された板状の部材である。基体5は、Al(アルミニウム)などの金属、Al(アルミナ)、SiO(シリカ)、MgO(マグネシア)、TiO(チタニア)、ZrO(ジルコニア)などの金属酸化物で形成されていてもよい。基体5がAlやAlなど以下で説明するバリア層として使用できる材質で形成されているときは基体5がバリア層となる。この場合はバリア層4を形成する必要がない。
1. First Embodiment (1) Configuration As shown in FIG. 1, a catalyst particle holding body 1 includes a base 5 and a catalyst particle holding structure 11. The base 5 is a plate-like member made of, for example, Si (silicon) and having a flat surface. The substrate 5 is made of a metal such as Al (aluminum), or a metal oxide such as Al 2 O 3 (alumina), SiO 2 (silica), MgO (magnesia), TiO 2 (titania), or ZrO 2 (zirconia). It may be. When the substrate 5 is formed of a material that can be used as a barrier layer described below, such as Al or Al 2 O 3, the substrate 5 becomes a barrier layer. In this case, it is not necessary to form the barrier layer 4.

保持構造11は基体5上に形成されており、バリア層4と触媒粒子形成層3と触媒粒子2とを備えている。バリア層4は、基体5上に形成されている。バリア層4は、例えば、Al、MgO、TiO、ZrOなどの金属酸化物又はAl等の金属で形成されている。このようなバリア層4は、触媒粒子形成層3と基体5とが相互作用することを防ぐために形成されており、基体5と触媒粒子形成層3とが相互作用しない程度の厚さであればよい。 The holding structure 11 is formed on the substrate 5 and includes a barrier layer 4, a catalyst particle forming layer 3, and catalyst particles 2. The barrier layer 4 is formed on the substrate 5. The barrier layer 4 is made of, for example, a metal oxide such as Al 2 O 3 , MgO, TiO 2 , or ZrO 2 or a metal such as Al. Such a barrier layer 4 is formed to prevent the catalyst particle forming layer 3 and the substrate 5 from interacting with each other, and if the thickness is such that the substrate 5 and the catalyst particle forming layer 3 do not interact with each other. Good.

触媒粒子形成層3は、SiとAlとの合金で形成されており、Al及びSiを1:1〜1:9の比率で含んでいる。触媒粒子形成層3の表面には後述するFe層の一部が残存している。なお触媒粒子形成層3の表面のFe層は、後述する触媒粒子2を形成する過程で消滅して表面に残存していなくてもよい。また触媒粒子形成層3は、触媒粒子2を形成する過程で生成したFeとのシリサイドや酸化鉄、SiやAlの酸化物を含んでいてもよい。   The catalyst particle forming layer 3 is formed of an alloy of Si and Al, and contains Al and Si in a ratio of 1: 1 to 1: 9. A part of the Fe layer described later remains on the surface of the catalyst particle forming layer 3. The Fe layer on the surface of the catalyst particle forming layer 3 does not have to disappear and remain on the surface in the process of forming the catalyst particles 2 described later. Further, the catalyst particle forming layer 3 may contain a silicide with Fe generated in the process of forming the catalyst particles 2, an iron oxide, and an oxide of Si or Al.

触媒粒子形成層3は1〜3nmの厚さに形成されている。触媒粒子形成層3は、表面付近に酸素を最も多く含んでおり、厚さ方向に深い位置ほど酸素濃度が低い。   The catalyst particle forming layer 3 is formed to a thickness of 1 to 3 nm. The catalyst particle formation layer 3 contains the most oxygen near the surface, and the oxygen concentration is lower at a deeper position in the thickness direction.

触媒粒子2は、最大径が5〜20nmの略球状をしており、所定の間隔を空けて触媒粒子形成層3の表面に配置されている。触媒粒子2の形状は球状に限らず、卵型や瓢箪型、多面体などであってもよい。また、触媒粒子2は、上記で示した形状の一部がかけた形状をしていてもよい。   The catalyst particles 2 have a substantially spherical shape with a maximum diameter of 5 to 20 nm, and are arranged on the surface of the catalyst particle forming layer 3 with a predetermined interval. The shape of the catalyst particles 2 is not limited to a spherical shape, and may be an egg shape, a saddle shape, a polyhedron, or the like. Further, the catalyst particles 2 may have a shape formed by part of the shape shown above.

触媒粒子2は、10〜1012個/cmの密度で配置されている。触媒粒子2の密度は触媒粒子形成層3の表面を観察した原子間力顕微鏡の形状像から触媒粒子2の数を計測して算出した。触媒粒子2は、触媒粒子形成層3に一部が埋没し、触媒粒子形成層3の表面から他の部分が露出している。すなわち、触媒粒子2は、触媒粒子形成層3に保持されて、その表面に固定されている。触媒粒子2は、触媒粒子形成層3の表面を移動しない程度にその表面に埋まっていればよい。また、触媒粒子2は、触媒粒子形成層の表面から一部が露出していればよい。 The catalyst particles 2 are arranged at a density of 10 9 to 10 12 particles / cm 2 . The density of the catalyst particles 2 was calculated by measuring the number of catalyst particles 2 from the shape image of an atomic force microscope in which the surface of the catalyst particle forming layer 3 was observed. A part of the catalyst particle 2 is buried in the catalyst particle forming layer 3, and the other part is exposed from the surface of the catalyst particle forming layer 3. That is, the catalyst particles 2 are held by the catalyst particle forming layer 3 and fixed to the surface thereof. The catalyst particles 2 need only be buried on the surface of the catalyst particle forming layer 3 so as not to move. Further, the catalyst particles 2 may be partially exposed from the surface of the catalyst particle forming layer.

触媒粒子2は、Fe(鉄)を含んでいる。触媒粒子2は、Feで形成されていてもよく、Feと他の金属の合金で形成されていてもよく、不純物として他の元素を含んでいてもよい。   The catalyst particles 2 contain Fe (iron). The catalyst particles 2 may be formed of Fe, may be formed of an alloy of Fe and another metal, and may contain other elements as impurities.

(2)製造方法
触媒粒子保持体1の製造方法を図2を参照して説明する。まず、スパッタや化学気相成長法(CVD:Chemical Vapor Deposition)、原子層堆積方法(ALD:Atomic Layer Deposition)によって、基体5上にバリア層4を形成する(図2A)。
(2) Manufacturing method The manufacturing method of the catalyst particle holding body 1 is demonstrated with reference to FIG. First, the barrier layer 4 is formed on the substrate 5 by sputtering, chemical vapor deposition (CVD), or atomic layer deposition (ALD) (FIG. 2A).

次に、スパッタや電子ビーム物理蒸着によって、バリア層4上にAl及びSiの比率が1:1〜1:9となるように、1〜3nmの厚さの合金層6を形成する(図2B)。合金層6は、スパッタのターゲットや蒸着材料として、SiとAlとの合金を用いてもよく、Si及びAlの2つの金属を用いてもよい。   Next, an alloy layer 6 having a thickness of 1 to 3 nm is formed on the barrier layer 4 by sputtering or electron beam physical vapor deposition so that the ratio of Al and Si is 1: 1 to 1: 9 (FIG. 2B). ). The alloy layer 6 may use an alloy of Si and Al as a sputtering target or a vapor deposition material, or may use two metals of Si and Al.

続いて、スパッタや電子ビーム蒸着によって、合金層6上に2nm程度の厚さのFe層7を形成して、触媒粒子形成層3を作製する(図2C)。   Subsequently, an Fe layer 7 having a thickness of about 2 nm is formed on the alloy layer 6 by sputtering or electron beam evaporation to produce the catalyst particle forming layer 3 (FIG. 2C).

最後に、酸素を含む雰囲気中に触媒粒子形成層3を作製した基体5を置いて、所定時間、所定温度で触媒粒子形成層3を熱処理する(図2D)。熱処理は、雰囲気を真空にした後、酸素を注入した雰囲気下で行ってもよく、酸素とArなどの不活性ガスとを注入した雰囲気下で行ってもよい。   Finally, the base 5 on which the catalyst particle forming layer 3 is produced is placed in an atmosphere containing oxygen, and the catalyst particle forming layer 3 is heat-treated at a predetermined temperature for a predetermined time (FIG. 2D). The heat treatment may be performed in an atmosphere in which oxygen is injected after the atmosphere is evacuated, or may be performed in an atmosphere in which oxygen and an inert gas such as Ar are injected.

熱処理中に、酸素10がFe層7を介して合金層6へと拡散すると共に、Fe層7に含まれるFeが合金層6に入り込む。合金層6では、SiとFeとが共存できないため、合金層6に入り込んだFeが凝集してFe粒子となり、Fe粒子が合金層6の表面に露出する。表面に露出したFe粒子のうち、小径のFe粒子はシリサイド化により失活するか、大径のFe粒子と合一化するか、合金層6に再び埋もれてしまうかする。そのため、触媒粒子形成層の表面には、最大径が5〜20nmのFe粒子のみが露出するようになり、触媒粒子形成層3に保持された触媒粒子2が形成される。   During the heat treatment, oxygen 10 diffuses into the alloy layer 6 through the Fe layer 7, and Fe contained in the Fe layer 7 enters the alloy layer 6. In the alloy layer 6, since Si and Fe cannot coexist, Fe that has entered the alloy layer 6 aggregates into Fe particles, and the Fe particles are exposed on the surface of the alloy layer 6. Of the Fe particles exposed on the surface, small-diameter Fe particles are deactivated by silicidation, coalesced with large-diameter Fe particles, or buried again in the alloy layer 6. Therefore, only Fe particles having a maximum diameter of 5 to 20 nm are exposed on the surface of the catalyst particle forming layer, and the catalyst particles 2 held in the catalyst particle forming layer 3 are formed.

以上の工程を経て、基体5上に図1に示す保持構造11が形成され、触媒粒子保持体1が得られる。   Through the above steps, the holding structure 11 shown in FIG. 1 is formed on the substrate 5, and the catalyst particle holding body 1 is obtained.

(3)作用及び効果
従来、触媒粒子形成層3をAl層とSi層とを積層して形成する場合はAl層とSi層の膜厚を調整することで触媒粒子形成層3のAlとSiの含有比率を調整していた。しかし、10nm以下のこれらの層の厚さを制御するのは困難であるため、AlとSiの含有比率を調整するのが難しく、歩留り良く保持構造を製造することが難しかった。
(3) Action and Effect Conventionally, when the catalyst particle forming layer 3 is formed by laminating an Al layer and an Si layer, the Al and Si of the catalyst particle forming layer 3 are adjusted by adjusting the film thickness of the Al layer and the Si layer. The content ratio of was adjusted. However, since it is difficult to control the thickness of these layers of 10 nm or less, it is difficult to adjust the content ratio of Al and Si, and it is difficult to manufacture a holding structure with a high yield.

これに対して、本実施形態の触媒粒子の保持構造11は、Feを含む触媒粒子2と、Al及びSiを含む触媒粒子形成層3とを備え、触媒粒子形成層3がAlとSiとの合金によって形成され、触媒粒子2が触媒粒子形成層3に一部が埋没して保持されているように構成した。   On the other hand, the catalyst particle holding structure 11 of the present embodiment includes the catalyst particles 2 containing Fe and the catalyst particle forming layer 3 containing Al and Si, and the catalyst particle forming layer 3 is made of Al and Si. The catalyst particles 2 are formed of an alloy and are configured to be partially embedded and held in the catalyst particle formation layer 3.

よって、保持構造11は、合金のAlとSiの含有比率を調整することで容易に触媒粒子形成層のAlとSiの比率を調整でき、歩留り良く製造できる。そのため保持構造11は、本発明の製造方法によって容易に製造できる。   Therefore, the holding structure 11 can easily adjust the ratio of Al and Si in the catalyst particle forming layer by adjusting the content ratio of Al and Si in the alloy, and can be manufactured with high yield. Therefore, the holding structure 11 can be easily manufactured by the manufacturing method of the present invention.

また、保持構造11は、触媒粒子形成層3が、Al及びSiを1:1〜1:9の比率で含んでいるように構成することで、より歩留り良く製造できる。   Further, the holding structure 11 can be manufactured with higher yield by configuring the catalyst particle forming layer 3 to contain Al and Si in a ratio of 1: 1 to 1: 9.

さらに、保持構造11は、触媒粒子2が10〜1012個/cmの密度で配置されているように構成することで、一度により多くのCNTを形成でき、効率的にCNTを製造できる。 Further, the holding structure 11 is configured such that the catalyst particles 2 are arranged at a density of 10 9 to 10 12 particles / cm 2 , so that more CNTs can be formed at a time and CNTs can be produced efficiently. .

また本実施形態の触媒粒子の保持構造11の製造方法は、バリア層4上にAlとSiとの合金層6を形成した後、合金層6上にFe層7を形成して触媒粒子形成層3を形成する工程と、酸素を含む雰囲気中で触媒粒子形成層3を熱処理し、Feを含み、触媒粒子形成層3に一部が埋没して保持された触媒粒子2を形成する工程とを備えるように構成した。   Further, in the method of manufacturing the catalyst particle holding structure 11 of the present embodiment, after forming the alloy layer 6 of Al and Si on the barrier layer 4, the Fe layer 7 is formed on the alloy layer 6 to form the catalyst particle forming layer. And a step of heat-treating the catalyst particle forming layer 3 in an oxygen-containing atmosphere to form catalyst particles 2 containing Fe and partially embedded and held in the catalyst particle forming layer 3. It was configured to provide.

よって保持構造11の製造方法は、熱処理時の雰囲気の酸素濃度を調整することで、形成されるFeを含む触媒粒子の大きさや数を調整することができ、容易に触媒粒子の保持構造11を形成することができる。また保持構造11の製造方法は、熱処理時の雰囲気の酸素濃度を調整することで、高密度に触媒粒子2を保持した保持構造11を容易に形成することができる。   Therefore, the manufacturing method of the holding structure 11 can adjust the size and number of catalyst particles containing Fe to be formed by adjusting the oxygen concentration of the atmosphere during the heat treatment. Can be formed. Moreover, the manufacturing method of the holding | maintenance structure 11 can form easily the holding | maintenance structure 11 which hold | maintained the catalyst particle 2 at high density by adjusting the oxygen concentration of the atmosphere at the time of heat processing.

2.第2実施形態
(1)構成
第2実施形態の触媒粒子保持体は、第1実施形態の基体5に相当する構成が円筒形状をしている点以外、第1実施形態と同様の構成であるので、同様の構成は説明を省略する。
2. Second Embodiment (1) Configuration The catalyst particle holding body of the second embodiment has the same configuration as that of the first embodiment except that the configuration corresponding to the base 5 of the first embodiment has a cylindrical shape. Therefore, the description of the same configuration is omitted.

図3に示すように、触媒粒子保持体1Aは、表面に曲面を有する基体5Aを備えている。図3では基体5Aの半分が省略して描かれているため、基体5Aは断面形状が半円の部材として描かれているが、実際には円筒形状をしている。基体5Aは、断面形状が三角形や四角形、さらには多角形であってもよく、湾曲した板状の部材であってもよい。また、基体5Aは円柱状の部材であってもよい。   As shown in FIG. 3, the catalyst particle holding body 1A includes a base 5A having a curved surface. In FIG. 3, since half of the base 5A is omitted, the base 5A is drawn as a member having a semicircular cross-sectional shape, but actually has a cylindrical shape. The base 5A may have a cross-sectional shape of a triangle, a quadrangle, a polygon, or a curved plate-like member. Further, the base 5A may be a columnar member.

保持構造11Aは基体5A上にその外表面を覆うように形成されている。すなわち、バリア層4Aが基体5Aの表面形状に沿って形成され、触媒粒子形成層3Aが当該バリア層4Aの表面形状に沿って形成されている。そのため、本実施形態ではバリア層4A及び触媒粒子形成層3Aも円筒形状をしている。触媒粒子2は、円筒形状をした触媒粒子形成層3Aに保持されている。   The holding structure 11A is formed on the base 5A so as to cover the outer surface thereof. That is, the barrier layer 4A is formed along the surface shape of the base 5A, and the catalyst particle forming layer 3A is formed along the surface shape of the barrier layer 4A. Therefore, in this embodiment, the barrier layer 4A and the catalyst particle forming layer 3A are also cylindrical. The catalyst particles 2 are held in a cylindrical catalyst particle forming layer 3A.

(2)製造方法
第2実施形態の製造方法は、バリア層4A、触媒粒子形成層3Aの形成方法が異なるが、他の手順は第1実施形態と同様なので同じ手順は説明を省略する。
(2) Manufacturing Method The manufacturing method of the second embodiment is different in the method of forming the barrier layer 4A and the catalyst particle forming layer 3A, but the other procedures are the same as those of the first embodiment, so the description of the same procedures is omitted.

まず、アルミニウム水酸化物のコロイド溶液又はアルミニウム塩化物溶液を基体5Aの外表面に塗布して乾燥させ、基体5Aの表面形状に沿ったバリア層4Aを形成する。   First, a colloidal solution of aluminum hydroxide or an aluminum chloride solution is applied to the outer surface of the substrate 5A and dried to form a barrier layer 4A along the surface shape of the substrate 5A.

続いて、触媒粒子形成層3Aを作製する。触媒粒子形成層3Aは、まず、アルミニウムケイ酸塩のコロイド溶液をバリア層4Aの表面上に塗布して乾燥させることで、SiとAlとの合金で形成され、バリア層4Aの表面形状に沿った合金層を形成する。その後、水酸化鉄コロイド溶液や塩化鉄溶液を合金層上に塗布して乾燥させ、合金層の表面形状に沿ったFe層を形成して触媒粒子形成層3Aを形成する。   Subsequently, a catalyst particle forming layer 3A is produced. First, the catalyst particle forming layer 3A is formed of an alloy of Si and Al by applying a colloidal solution of aluminum silicate onto the surface of the barrier layer 4A and drying, and follows the surface shape of the barrier layer 4A. An alloy layer is formed. Thereafter, an iron hydroxide colloid solution or an iron chloride solution is applied onto the alloy layer and dried to form an Fe layer along the surface shape of the alloy layer to form the catalyst particle forming layer 3A.

その後、所定時間、所定の温度の真空雰囲気中で熱処理して触媒粒子形成層3Aに含まれる酸素を除去する。   Thereafter, heat treatment is performed in a vacuum atmosphere at a predetermined temperature for a predetermined time to remove oxygen contained in the catalyst particle formation layer 3A.

この後の熱処理工程は、第1実施形態と同様なので説明を省略する。   The subsequent heat treatment process is the same as that in the first embodiment, and a description thereof will be omitted.

(3)作用及び効果
本実施形態の触媒粒子の保持構造11Aの製造方法は、第1実施形態と同様に、バリア層4A上にAlとSiとの合金層を形成した後、合金層上にFe層を形成して触媒粒子形成層3Aを形成する工程と、酸素を含む雰囲気中で触媒粒子形成層3Aを熱処理し、Feを含み、触媒粒子形成層3Aに一部が埋没して保持された触媒粒子2を形成する工程とを備えるので、第1実施形態と同様の効果を奏する。
(3) Action and Effect The manufacturing method of the catalyst particle holding structure 11A of the present embodiment is similar to the first embodiment, in which an alloy layer of Al and Si is formed on the barrier layer 4A, and then the alloy layer is formed on the alloy layer. The step of forming the Fe layer to form the catalyst particle forming layer 3A and the heat treatment of the catalyst particle forming layer 3A in an oxygen-containing atmosphere include Fe, and are partly embedded and held in the catalyst particle forming layer 3A. The step of forming the catalyst particles 2 is provided with the same effects as the first embodiment.

保持構造11Aは、Feを含む触媒粒子2と、Al及びSiを含む触媒粒子形成層3Aと、曲面を有するバリア層4Aを備え、触媒粒子形成層3Aはバリア層4Aの表面形状に沿って形成されており、触媒粒子2が触媒粒子形成層3Aに一部が埋没して保持されており、塗布法によって形成されるので、曲面を有する基体上にも容易に製造できる。そして、保持構造11Aは、円筒形状の基体5A上に、その表面形状に沿ってバリア層4A及び触媒粒子形成層3Aを作製してCNTを形成することができ、より効率的にCNTを製造できる。   The holding structure 11A includes a catalyst particle 2 containing Fe, a catalyst particle forming layer 3A containing Al and Si, and a barrier layer 4A having a curved surface. The catalyst particle forming layer 3A is formed along the surface shape of the barrier layer 4A. The catalyst particles 2 are partly buried and held in the catalyst particle forming layer 3A, and are formed by a coating method. Therefore, the catalyst particles 2 can be easily manufactured even on a substrate having a curved surface. The holding structure 11A can form the CNTs on the cylindrical base body 5A along the surface shape by forming the barrier layer 4A and the catalyst particle forming layer 3A, and can produce CNTs more efficiently. .

3.変形例
本発明は上記実施形態に限定されるものではなく、本発明の趣旨の範囲内で適宜変更することができる。
3. Modifications The present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope of the gist of the present invention.

上記第1実施形態では、バリア層4上にAlとSiとの合金層6を形成した後、合金層6上にFe層7を形成して触媒粒子形成層3を形成したが、本発明はこれに限られない。バリア層4上にスパッタや電子ビーム蒸着などにより、2〜3nmのAl層、5〜7nmのSi層、2nm程度のFe層をこの順番で形成して、触媒粒子形成層を作製してもよく、バリア層4上に上記Al層を形成した後、Al層上にSiとFeとの合金層を1〜3nmの厚さに形成して触媒粒子形成層を作製してもよい。触媒粒子形成層を作製後、酸素を含む雰囲気中で触媒粒子形成層を熱処理して触媒粒子を形成することができれば、触媒粒子形成層の作製方法は特に限定されない。   In the first embodiment, after the alloy layer 6 of Al and Si is formed on the barrier layer 4, the Fe layer 7 is formed on the alloy layer 6 to form the catalyst particle forming layer 3. It is not limited to this. A catalyst particle forming layer may be formed by forming a 2-3 nm Al layer, a 5-7 nm Si layer, and a 2 nm Fe layer in this order on the barrier layer 4 by sputtering or electron beam evaporation. Alternatively, after forming the Al layer on the barrier layer 4, an alloy layer of Si and Fe may be formed on the Al layer to a thickness of 1 to 3 nm to produce a catalyst particle forming layer. If the catalyst particle forming layer can be heat-treated in an atmosphere containing oxygen after forming the catalyst particle forming layer to form the catalyst particles, the method for preparing the catalyst particle forming layer is not particularly limited.

この場合、図4に示すように触媒粒子保持体1Bは、基体5と、バリア層4と、Al層8及びSi層9からなる2層構造の触媒粒子形成層3Bを備える。そして、触媒粒子2はSi層9によって保持される。Si層9のAl層8との界面近傍には、Alが含まれている。   In this case, as shown in FIG. 4, the catalyst particle holding body 1 </ b> B includes a base 5, a barrier layer 4, and a catalyst particle forming layer 3 </ b> B having a two-layer structure including an Al layer 8 and an Si layer 9. The catalyst particles 2 are held by the Si layer 9. Al is contained in the vicinity of the interface between the Si layer 9 and the Al layer 8.

また上記第2実施形態では、バリア層4A上にAlとSiとの合金層を形成した後、合金層上にFe層を形成して触媒粒子形成層3Aを形成したが、本発明はこれに限られない。Alの水酸化物又は塩化物のコロイド溶液をバリア層に塗布して乾燥させ、Al層を形成し、その後、Siの水酸化物又は塩化物のコロイド溶液をAl層上に塗布して乾燥させ、Si層を形成し、触媒粒子形成層を作製してもよい。触媒粒子形成層を作製後、酸素を含む雰囲気中で触媒粒子形成層を熱処理して触媒粒子を形成することができれば、触媒粒子形成層の作製方法は特に限定されない。   Further, in the second embodiment, an alloy layer of Al and Si is formed on the barrier layer 4A, and then an Fe layer is formed on the alloy layer to form the catalyst particle forming layer 3A. Not limited. Al hydroxide or chloride colloidal solution is applied to the barrier layer and dried to form an Al layer, then Si hydroxide or chloride colloidal solution is applied to the Al layer and dried. Alternatively, a Si layer may be formed to produce a catalyst particle forming layer. If the catalyst particle forming layer can be heat-treated in an atmosphere containing oxygen after forming the catalyst particle forming layer to form the catalyst particles, the method for preparing the catalyst particle forming layer is not particularly limited.

さらに上記実施形態では、表面が平坦な基体5に加えて、表面に曲面を有する基体5A上に触媒粒子の保持構造11、11Aを形成した場合について説明したが、本発明はこれに限られず、基体5が球状であったり、粒子状であったり、表面に凹凸を有する部材であってもよい。   Further, in the above embodiment, the case where the catalyst particle holding structures 11 and 11A are formed on the base 5A having a curved surface in addition to the base 5 having a flat surface has been described, but the present invention is not limited thereto. The substrate 5 may be a spherical member, a particulate member, or a member having irregularities on the surface.

また、Feを所定の割合で含む合金で触媒粒子2を形成する場合は、Fe層7のかわりに、当該割合でFeを含む合金層を形成すればよい。   Further, when the catalyst particles 2 are formed of an alloy containing Fe at a predetermined ratio, an alloy layer containing Fe at the ratio may be formed instead of the Fe layer 7.

本発明の触媒粒子の保持構造を作製し、保持構造の断面写真を透過型電子顕微鏡(TEM:Transmission Electron Microscope)を用いて撮影し、保持構造を評価した。   The holding structure of the catalyst particles of the present invention was prepared, and a cross-sectional photograph of the holding structure was taken using a transmission electron microscope (TEM) to evaluate the holding structure.

図5には酸素を含む雰囲気下で熱処理して作製した保持構造のTEM写真を示す。バリア層4上に触媒粒子形成層3が形成されている。触媒粒子2は触媒粒子形成層3に形成されており、一部がその表面から露出している。   FIG. 5 shows a TEM photograph of a holding structure manufactured by heat treatment in an atmosphere containing oxygen. A catalyst particle forming layer 3 is formed on the barrier layer 4. The catalyst particles 2 are formed in the catalyst particle forming layer 3 and a part thereof is exposed from the surface.

図6には酸素を含む雰囲気下で熱処理して作製した保持構造のTEM写真を示す。図5に示した保持構造と同様に、バリア層4上に触媒粒子形成層3が形成されている。そして、触媒粒子2は触媒粒子形成層3に形成されており、一部がその表面から露出している。   FIG. 6 shows a TEM photograph of a holding structure manufactured by heat treatment in an atmosphere containing oxygen. Similar to the holding structure shown in FIG. 5, the catalyst particle forming layer 3 is formed on the barrier layer 4. And the catalyst particle 2 is formed in the catalyst particle formation layer 3, and a part is exposed from the surface.

以上から、本発明の保持構造は、触媒粒子が触媒粒子形成層に一部が埋没して保持されていることが確認できた。また、酸素を含む雰囲気下で熱処理することで、本発明の保持構造を作製できることが確認できた。   From the above, it was confirmed that the holding structure of the present invention was such that the catalyst particles were partly buried and held in the catalyst particle forming layer. It was also confirmed that the holding structure of the present invention can be manufactured by heat treatment in an atmosphere containing oxygen.

1 触媒粒子保持体
2 触媒粒子
3 触媒粒子形成層
4、4A バリア層
5、5A 基体
6 合金層
7 Fe層
8 Al層
9 Si層
11、11A、11B 保持構造
DESCRIPTION OF SYMBOLS 1 Catalyst particle holding body 2 Catalyst particle 3 Catalyst particle formation layer 4, 4A Barrier layer 5, 5A Base body 6 Alloy layer 7 Fe layer 8 Al layer 9 Si layer 11, 11A, 11B Holding structure

本発明は、カーボンナノチューブ製造用触媒粒子の保持構造及びカーボンナノチューブ製造用触媒粒子の保持構造の製造方法に関する。 The present invention relates to a method of manufacturing a holding structure of the holding structure and the carbon nanotube production catalyst particles of carbon nanotube production catalyst particles.

そこで本発明は、容易に製造できるカーボンナノチューブ製造用触媒粒子の保持構造及びその製造方法を提供することを目的とする。 Then, an object of this invention is to provide the holding structure of the catalyst particle for carbon nanotube manufacture which can be manufactured easily, and its manufacturing method.

本発明のカーボンナノチューブ製造用触媒粒子の保持構造は、Feを含む触媒粒子と、Al及びSiを含む触媒粒子形成層とを備え、前記触媒粒子形成層は前記Alと前記Siとの合金によって形成され、前記触媒粒子が前記触媒粒子形成層に一部が埋没して保持されていることを特徴とする。 The structure for holding catalyst particles for producing carbon nanotubes of the present invention comprises catalyst particles containing Fe and a catalyst particle forming layer containing Al and Si, and the catalyst particle forming layer is formed by an alloy of Al and Si. The catalyst particles are partly embedded and held in the catalyst particle forming layer.

本発明のカーボンナノチューブ製造用触媒粒子の保持構造は、Feを含む触媒粒子と、Al及びSiを含む触媒粒子形成層と、曲面を有するバリア層とを備え、前記触媒粒子形成層は前記バリア層の表面形状に沿って形成されており、前記触媒粒子が前記触媒粒子形成層に一部が埋没して保持されていることを特徴とする。 The structure for holding catalyst particles for producing carbon nanotubes of the present invention comprises catalyst particles containing Fe, a catalyst particle forming layer containing Al and Si, and a barrier layer having a curved surface, and the catalyst particle forming layer is the barrier layer. The catalyst particles are partly buried and held in the catalyst particle formation layer.

本発明のカーボンナノチューブ製造用触媒粒子の保持構造の製造方法は、Si、Al、及びFeを含む触媒粒子形成層を形成する工程と、酸素を含む雰囲気中で前記触媒粒子形成層を熱処理し、前記Feを含み、前記触媒粒子形成層に一部が埋没して保持された触媒粒子を形成する工程とを備えることを特徴とする。 The method for producing a catalyst particle holding structure for producing carbon nanotubes according to the present invention includes a step of forming a catalyst particle forming layer containing Si, Al, and Fe, and heat-treating the catalyst particle forming layer in an atmosphere containing oxygen, And a step of forming catalyst particles containing Fe and partially embedded and held in the catalyst particle forming layer.

本発明のカーボンナノチューブ製造用触媒粒子の保持構造は、Feを含む触媒粒子と、Al及びSiを含む触媒粒子形成層とを備え、触媒粒子形成層がAlとSiとの合金によって形成され、触媒粒子が触媒粒子形成層に一部が埋没して保持されているので、触媒粒子形成層をAl層とSi層とを積層して形成する場合と比較してAlとSiの比率を調整し易く、本発明の製造方法によって容易に製造されることができる。 The carbon nanotube production catalyst particle holding structure of the present invention comprises catalyst particles containing Fe and a catalyst particle forming layer containing Al and Si, and the catalyst particle forming layer is formed of an alloy of Al and Si, Since the particles are partly embedded and held in the catalyst particle forming layer, the ratio of Al and Si can be adjusted more easily than when the catalyst particle forming layer is formed by laminating the Al layer and the Si layer. It can be easily manufactured by the manufacturing method of the present invention.

本発明のカーボンナノチューブ製造用触媒粒子の保持構造は、Feを含む触媒粒子と、Al及びSiを含む触媒粒子形成層と、曲面を有するバリア層とを備え、触媒粒子形成層はバリア層の表面形状に沿って形成されており、触媒粒子が触媒粒子形成層に一部が埋没して保持されており、塗布法によって形成されるので、曲面を有する基体上にも容易に製造できる。そして、保持構造は、円筒形状の基体上に、その表面形状に沿ってバリア層及び触媒粒子形成層を作製してCNTを形成することができ、より効率的にCNTを製造できる。 The structure for holding catalyst particles for producing carbon nanotubes of the present invention comprises catalyst particles containing Fe, a catalyst particle forming layer containing Al and Si, and a barrier layer having a curved surface, and the catalyst particle forming layer is a surface of the barrier layer. Since the catalyst particles are formed in accordance with the shape and are partly embedded and held in the catalyst particle forming layer and formed by a coating method, the catalyst particles can be easily manufactured on a curved substrate. The holding structure can form a CNT by forming a barrier layer and a catalyst particle forming layer along a surface shape on a cylindrical substrate, and can produce the CNT more efficiently.

本発明のカーボンナノチューブ製造用触媒粒子の保持構造の製造方法は、Si、Al、及びFeを含む触媒粒子形成層を形成する工程と、酸素を含む雰囲気中で触媒粒子形成層を熱処理し、Feを含み、触媒粒子形成層に一部が埋没して保持された触媒粒子を形成する工程とを備えるので、熱処理時の雰囲気の酸素量を調整することで、形成されるFeを含む触媒粒子の大きさや数を調整することができ、容易に触媒粒子の保持構造を形成することができる。 The method for producing a catalyst particle holding structure for producing carbon nanotubes of the present invention includes a step of forming a catalyst particle forming layer containing Si, Al, and Fe, and a heat treatment of the catalyst particle forming layer in an atmosphere containing oxygen, And a step of forming catalyst particles partially embedded and held in the catalyst particle forming layer, by adjusting the amount of oxygen in the atmosphere during the heat treatment, the catalyst particles containing Fe formed The size and number can be adjusted, and a catalyst particle holding structure can be easily formed.

本発明は、カーボンナノチューブ製造用触媒粒子の保持構造及びの製造方法に関する。 The present invention relates to a method for manufacturing a holding structure and its carbon nanotube production catalyst particles.

本発明のカーボンナノチューブ製造用触媒粒子の保持構造の製造方法は、AlとSiとの合金層を形成した後、前記合金層上にFeを含む層を形成して触媒粒子形成層を形成する工程と、酸素を含む雰囲気中で前記触媒粒子形成層を熱処理し、前記Feを含み、前記触媒粒子形成層に一部が埋没して保持された触媒粒子を形成する工程とを備えることを特徴とする。 The method for producing a catalyst particle holding structure for producing carbon nanotubes according to the present invention comprises the steps of forming an alloy layer of Al and Si, and then forming a layer containing Fe on the alloy layer to form a catalyst particle forming layer. And a step of heat-treating the catalyst particle forming layer in an atmosphere containing oxygen to form catalyst particles containing the Fe and partially embedded and held in the catalyst particle forming layer. To do.

本発明のカーボンナノチューブ製造用触媒粒子の保持構造の製造方法は、AlとSiとの合金層を形成した後、前記合金層上にFeを含む層を形成して触媒粒子形成層を形成する工程と、酸素を含む雰囲気中で触媒粒子形成層を熱処理し、Feを含み、触媒粒子形成層に一部が埋没して保持された触媒粒子を形成する工程とを備えるので、熱処理時の雰囲気の酸素量を調整することで、形成されるFeを含む触媒粒子の大きさや数を調整することができ、容易に触媒粒子の保持構造を形成することができる。 The method for producing a catalyst particle holding structure for producing carbon nanotubes according to the present invention comprises the steps of forming an alloy layer of Al and Si, and then forming a layer containing Fe on the alloy layer to form a catalyst particle forming layer. And a step of heat-treating the catalyst particle forming layer in an atmosphere containing oxygen and forming catalyst particles containing Fe and partially buried in the catalyst particle-forming layer. By adjusting the amount of oxygen, the size and number of catalyst particles containing Fe can be adjusted, and a catalyst particle holding structure can be easily formed.

Claims (10)

Feを含む触媒粒子と、Al及びSiを含む触媒粒子形成層とを備え、
前記触媒粒子形成層は前記Alと前記Siとの合金によって形成され、
前記触媒粒子が前記触媒粒子形成層に一部が埋没して保持されていることを特徴とする触媒粒子の保持構造。
Comprising catalyst particles containing Fe, and catalyst particle forming layers containing Al and Si,
The catalyst particle forming layer is formed of an alloy of the Al and the Si,
A catalyst particle holding structure, wherein the catalyst particles are partly embedded and held in the catalyst particle forming layer.
前記触媒粒子形成層は、バリア層上に形成されていることを特徴とする請求項1に記載の触媒粒子の保持構造。   2. The catalyst particle holding structure according to claim 1, wherein the catalyst particle forming layer is formed on a barrier layer. 前記触媒粒子形成層は、Al及びSiを1:1〜1:9の比率で含んでいることを特徴とする請求項1又は2に記載の触媒粒子の保持構造。   3. The catalyst particle holding structure according to claim 1, wherein the catalyst particle forming layer contains Al and Si in a ratio of 1: 1 to 1: 9. 前記触媒粒子は、10〜1012個/cmの密度で配置されていることを特徴とする請求項1〜3のいずれか1項に記載の触媒粒子の保持構造。 The catalyst particle holding structure according to any one of claims 1 to 3, wherein the catalyst particles are arranged at a density of 10 9 to 10 12 particles / cm 2 . 板状の基体上に形成されていることを特徴とする請求項1〜4のいずれか1項に記載の触媒粒子の保持構造。   The catalyst particle holding structure according to any one of claims 1 to 4, wherein the catalyst particle holding structure is formed on a plate-like substrate. Feを含む触媒粒子と、Al及びSiを含む触媒粒子形成層と、曲面を有するバリア層とを備え、
前記触媒粒子形成層は前記バリア層の表面形状に沿って形成されており、
前記触媒粒子が前記触媒粒子形成層に一部が埋没して保持されていることを特徴とする触媒粒子の保持構造。
A catalyst particle containing Fe, a catalyst particle forming layer containing Al and Si, and a barrier layer having a curved surface,
The catalyst particle forming layer is formed along the surface shape of the barrier layer,
A catalyst particle holding structure, wherein the catalyst particles are partly embedded and held in the catalyst particle forming layer.
Si、Al、及びFeを含む触媒粒子形成層を形成する工程と、
酸素を含む雰囲気中で前記触媒粒子形成層を熱処理し、前記Feを含み、前記触媒粒子形成層に一部が埋没して保持された触媒粒子を形成する工程と
を備える触媒粒子の保持構造の製造方法。
Forming a catalyst particle-forming layer containing Si, Al, and Fe;
Heat-treating the catalyst particle-forming layer in an atmosphere containing oxygen, and forming the catalyst particles containing the Fe and partly embedded and held in the catalyst particle-forming layer. Production method.
前記触媒粒子形成層を形成する工程は、バリア層上にAl層、Si層、Feを含む層の順に積層する工程であることを特徴とする請求項7に記載の触媒粒子の保持構造の製造方法。   8. The process for forming a catalyst particle holding layer according to claim 7, wherein the step of forming the catalyst particle forming layer is a step of laminating an Al layer, a Si layer, and a layer containing Fe in this order on the barrier layer. Method. 前記触媒粒子形成層を形成する工程は、バリア層上にAlとSiとの合金層を形成した後、前記合金層上にFeを含む層を形成する工程であることを特徴とする請求項7に記載の触媒粒子の保持構造の製造方法。   8. The step of forming the catalyst particle formation layer is a step of forming a layer containing Fe on the alloy layer after forming an alloy layer of Al and Si on the barrier layer. The manufacturing method of the holding structure of the catalyst particle as described in any one of. 前記触媒粒子形成層を形成する工程は、バリア層上にAl層を形成した後、前記Al層上にSi及びFeを含む合金層を形成する工程であることを特徴とする請求項7に記載の触媒粒子の保持構造の製造方法。   8. The step of forming the catalyst particle forming layer is a step of forming an alloy layer containing Si and Fe on the Al layer after forming an Al layer on the barrier layer. A method for producing a catalyst particle holding structure.
JP2014177265A 2014-09-01 2014-09-01 Catalyst particle holding structure for producing carbon nanotube and method for producing the same Active JP5808468B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2014177265A JP5808468B1 (en) 2014-09-01 2014-09-01 Catalyst particle holding structure for producing carbon nanotube and method for producing the same
CN201580044983.1A CN106660016B (en) 2014-09-01 2015-07-29 Catalyst particle holding structure for carbon nanotube production and method for producing same
EP15837398.5A EP3199235A4 (en) 2014-09-01 2015-07-29 Structure for holding catalyst particles for carbon nanotube production and method for producing same
PCT/JP2015/071517 WO2016035484A1 (en) 2014-09-01 2015-07-29 Structure for holding catalyst particles for carbon nanotube production and method for producing same
US15/507,649 US10207920B2 (en) 2014-09-01 2015-07-29 Structure for holding catalyst particles for carbon nanotube production and method for producing same
KR1020177007135A KR101995143B1 (en) 2014-09-01 2015-07-29 Structure for holding catalyst particles for carbon nanotube production and method for producing same
TW104126803A TWI666054B (en) 2014-09-01 2015-08-18 Support structure of catalyst particles for manufacturing carbon nano tube and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014177265A JP5808468B1 (en) 2014-09-01 2014-09-01 Catalyst particle holding structure for producing carbon nanotube and method for producing the same

Publications (2)

Publication Number Publication Date
JP5808468B1 JP5808468B1 (en) 2015-11-10
JP2016049508A true JP2016049508A (en) 2016-04-11

Family

ID=54545820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014177265A Active JP5808468B1 (en) 2014-09-01 2014-09-01 Catalyst particle holding structure for producing carbon nanotube and method for producing the same

Country Status (7)

Country Link
US (1) US10207920B2 (en)
EP (1) EP3199235A4 (en)
JP (1) JP5808468B1 (en)
KR (1) KR101995143B1 (en)
CN (1) CN106660016B (en)
TW (1) TWI666054B (en)
WO (1) WO2016035484A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113528896B (en) * 2021-06-10 2021-12-31 暨南大学 Nano carbon-aluminum composite heat conduction material and application thereof in preparation of high-power LED light source radiator

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1732915A (en) * 1928-02-02 1929-10-22 Vanadium Corp Of America Alloy of aluminum, silicon, and iron
EP1059266A3 (en) 1999-06-11 2000-12-20 Iljin Nanotech Co., Ltd. Mass synthesis method of high purity carbon nanotubes vertically aligned over large-size substrate using thermal chemical vapor deposition
US7566478B2 (en) 2001-07-25 2009-07-28 Nantero, Inc. Methods of making carbon nanotube films, layers, fabrics, ribbons, elements and articles
US7378075B2 (en) * 2002-03-25 2008-05-27 Mitsubishi Gas Chemical Company, Inc. Aligned carbon nanotube films and a process for producing them
WO2005025734A2 (en) * 2003-09-17 2005-03-24 Molecular Nanosystems, Inc. Methods for producing and using catalytic substrates for carbon nanotube growth
US20050214197A1 (en) 2003-09-17 2005-09-29 Molecular Nanosystems, Inc. Methods for producing and using catalytic substrates for carbon nanotube growth
JP2006223915A (en) * 2005-02-15 2006-08-31 Hitachi Ltd Catalytic structure and exhaust gas treatment system having the same
EP1874986B1 (en) * 2005-04-25 2013-01-23 Smoltek AB Controlled growth of a nanostructure on a substrate, and electron emission devices based on the same
JP5131616B2 (en) * 2005-10-27 2013-01-30 ニッタ株式会社 Catalyst supporting substrate for carbon fiber manufacturing and method for manufacturing catalyst supporting substrate for carbon fiber manufacturing
JP5029603B2 (en) * 2006-03-30 2012-09-19 富士通株式会社 Method for producing carbon nanotube
US8753602B2 (en) * 2006-10-19 2014-06-17 University Of Cincinnati Composite catalyst and method for manufacturing carbon nanostructured materials
US9315385B2 (en) * 2006-12-22 2016-04-19 Los Alamos National Security, Llc Increasing the specific strength of spun carbon nanotube fibers
TW200922871A (en) 2007-11-22 2009-06-01 Univ Nat Cheng Kung Preparing aligned carbon nanotube by adding a ferrosilicon catalyst containing aluminum
EP2269950A4 (en) * 2008-03-07 2015-04-22 Hitachi Chemical Co Ltd Carbon nano-tube manufacturing method and carbon nano-tube manufacturing apparatus
BRPI0802018B1 (en) 2008-04-30 2019-01-29 Univ Minas Gerais synthesis process of carbon nanotubes on cement clinker and nanostructured composite
JP5176925B2 (en) * 2008-12-11 2013-04-03 株式会社デンソー CNT synthesis substrate, method for producing the same, and method for producing CNT
TWI499553B (en) * 2009-09-14 2015-09-11 Univ Nat Cheng Kung Carbon nanotube and method for producing the same
JP5590858B2 (en) * 2009-10-28 2014-09-17 ニッタ株式会社 Method for producing magnetic metal catalyst fine particle-formed substrate
JP5858266B2 (en) 2010-03-26 2016-02-10 アイシン精機株式会社 Method for producing carbon nanotube composite
JP5751467B2 (en) * 2010-10-25 2015-07-22 ニッタ株式会社 Fe fine particle holding structure, catalyst for producing CNT, and method for producing CNT
JPWO2015025944A1 (en) * 2013-08-23 2017-03-02 ニッタ株式会社 Resin composite
JP5978345B2 (en) * 2015-05-07 2016-08-24 ニッタ株式会社 Fe fine particle holding structure, catalyst for generating CNT, CNT manufacturing method, and manufacturing method of Fe fine particle holding structure

Also Published As

Publication number Publication date
KR20170047280A (en) 2017-05-04
KR101995143B1 (en) 2019-09-30
EP3199235A4 (en) 2018-02-14
CN106660016B (en) 2020-05-05
WO2016035484A1 (en) 2016-03-10
CN106660016A (en) 2017-05-10
EP3199235A1 (en) 2017-08-02
JP5808468B1 (en) 2015-11-10
US20170283264A1 (en) 2017-10-05
US10207920B2 (en) 2019-02-19
TWI666054B (en) 2019-07-21
TW201628714A (en) 2016-08-16

Similar Documents

Publication Publication Date Title
JP5737405B2 (en) Method for producing graphene nanomesh and method for producing semiconductor device
WO2010023934A1 (en) Method for producing graphene/sic composite material and graphene/sic composite material obtained by same
JP2009155111A (en) Controlled and selective formation of catalyst nanoparticles
JP5194514B2 (en) Substrate structure and manufacturing method thereof
Lee et al. Quality improvement of fast-synthesized graphene films by rapid thermal chemical vapor deposition for mass production
JP6041346B2 (en) Method for producing graphene / SiC composite material and graphene / SiC composite material obtained thereby
JP5808468B1 (en) Catalyst particle holding structure for producing carbon nanotube and method for producing the same
JP5751467B2 (en) Fe fine particle holding structure, catalyst for producing CNT, and method for producing CNT
JP4861448B2 (en) Method for producing nickel silicide nanowire
JP7274148B2 (en) Method for manufacturing three-dimensional structure, method for manufacturing vertical transistor, and substrate for vertical transistor
JP2013530833A (en) Nanoparticle forming method and nanoparticle forming apparatus
JP5978345B2 (en) Fe fine particle holding structure, catalyst for generating CNT, CNT manufacturing method, and manufacturing method of Fe fine particle holding structure
JP2018532039A (en) In-situ growth of metal oxide nanowires and catalyst nanoparticle decoration
JP5783669B2 (en) Method for forming catalytic metal fine particles
JP2016175814A (en) Graphene wiring structure and method for producing the same
JP2014152338A (en) Nano-wire-provided fine particle and production method thereof
JP6212598B2 (en) Method for forming Fe fine particles for carbon fiber growth
Roy et al. Growth of epitaxially oriented Ag nanoislands on air-oxidized Si (1 1 1)-(7× 7) surfaces: Influence of short-range order on the substrate
JP6709913B2 (en) Method for producing catalyst carrier for producing carbon nanotube, and method for producing carbon nanotube
TWI290592B (en) Single crystal metallic silicide-nanowire and method producing the same
Bamba et al. Development of a dry process for coating metal nanoparticles on carbon nanotubes
KR101503733B1 (en) Method of synthesis metal sulfide with 3d structure using atomic layer deposition metal oxide
TW201500178A (en) Metamaterial and method for forming a metamaterial using atomic layer deposition
JP2015155099A (en) Catalyst metal fine particle formation substrate
Tang et al. Characterization of nanostructured titania thin film and its application in gas sensor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150908

R150 Certificate of patent or registration of utility model

Ref document number: 5808468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150