JP2016046850A - Power estimation device for power distribution system, and power estimation method - Google Patents

Power estimation device for power distribution system, and power estimation method Download PDF

Info

Publication number
JP2016046850A
JP2016046850A JP2014167412A JP2014167412A JP2016046850A JP 2016046850 A JP2016046850 A JP 2016046850A JP 2014167412 A JP2014167412 A JP 2014167412A JP 2014167412 A JP2014167412 A JP 2014167412A JP 2016046850 A JP2016046850 A JP 2016046850A
Authority
JP
Japan
Prior art keywords
power
active
reactive
load
active power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014167412A
Other languages
Japanese (ja)
Other versions
JP6327060B2 (en
Inventor
飯坂 達也
Tatsuya Iizaka
達也 飯坂
直人 石橋
Naoto Ishibashi
直人 石橋
浩一郎 吉見
Koichiro Yoshimi
浩一郎 吉見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2014167412A priority Critical patent/JP6327060B2/en
Publication of JP2016046850A publication Critical patent/JP2016046850A/en
Application granted granted Critical
Publication of JP6327060B2 publication Critical patent/JP6327060B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/16Electric power substations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To estimate active power that a photovoltaic power generation device outputs, and active power to be consumed by a load even in the case where a voltage regulation apparatus that regulates reactive power is present in a power distribution system.SOLUTION: A conversion formula is constructed by acquiring active power and reactive power at a low-voltage user from power meters P1 and P2. An active power estimate (conversion) to be consumed by the load is calculated by converting the reactive power measurement in the conversion formula into reactive power measurement of P1-reactive power measurement minus P2-reactive power measurement in a section 1, into reactive power measurement of P2-reactive power measurement minus P3-reactive power measurement minus a high-voltage user in a section 2, and into reactive power measurement of P3-reactive power measurement minus P4-reactive power measurement minus the high-voltage user≒0 in a section 3, respectively. An active power estimate to be consumed by the load is calculated by adding an active power measurement of the high-voltage user measured by a meter M to the active power estimate (conversion). Further, an active power estimate that the photovoltaic power generation device outputs is calculated by subtracting the active power measurement from the active power estimate.SELECTED DRAWING: Figure 1

Description

本発明は、配電系統に連系した太陽光発電装置が出力する有効電力と、負荷が消費する有効電力を推定することができる推定装置および推定方法に関する。   The present invention relates to an estimation device and an estimation method capable of estimating active power output by a photovoltaic power generation apparatus linked to a distribution system and effective power consumed by a load.

近年、配電系統に大量の太陽光発電装置が導入されている。配電系統の適切な運用のためには、太陽光発電装置が出力する有効電力と、負荷が消費する有効電力を正確に把握する必要がある。   In recent years, a large number of photovoltaic power generation devices have been introduced into the distribution system. In order to properly operate the distribution system, it is necessary to accurately grasp the active power output by the photovoltaic power generation apparatus and the active power consumed by the load.

下記特許文献1には、太陽光発電システムが導入される前など太陽光発電出力がないデータに基づいて推定式を構築する技術が開示されている。   The following Patent Document 1 discloses a technique for constructing an estimation formula based on data having no photovoltaic power generation output such as before a photovoltaic power generation system is introduced.

特開2012−191777号公報JP 2012-191777 A

上記した特許文献1に開示された技術においては、無効電力を調整する電圧調整機器、例えばSVC(Static Var Compensation:静止型無効電力補償装置)など、があると推定式が適用できないという課題がある。   In the technique disclosed in Patent Document 1 described above, there is a problem that the estimation equation cannot be applied if there is a voltage adjustment device that adjusts reactive power, for example, SVC (Static Var Compensation). .

ところで配電系統につながる負荷には、一般的な低圧需要家(例えば一般商用電源電圧100Vを使用する需要家)のみならず、高圧需要家(例えば配電系統から供給される6600Vを使用する需要家)なども接続される。その際、高圧需要家などにおいては無効電力を調整する電圧調整機器を備えることが多い。そのような場合に上記した特許文献1に開示の技術は構築した推定式を適用することができないという課題がある。   By the way, the load connected to the power distribution system includes not only general low voltage consumers (for example, consumers using a general commercial power supply voltage of 100V) but also high voltage consumers (for example, consumers using 6600V supplied from the power distribution system). Etc. are also connected. At that time, high voltage consumers and the like often include a voltage adjusting device for adjusting reactive power. In such a case, the technique disclosed in Patent Document 1 described above has a problem that the constructed estimation formula cannot be applied.

そこで本発明は、無効電力を調整する電圧調整機器が配電系統に存在する場合であっても、太陽光発電装置が出力する有効電力及び負荷が消費する有効電力を推定することができる推定装置および推定方法を提供することを目的とする。   Therefore, the present invention provides an estimation device capable of estimating the active power output by the photovoltaic power generation device and the active power consumed by the load even when a voltage adjustment device for adjusting reactive power is present in the distribution system. An object is to provide an estimation method.

上記課題を解決するために本発明は、電力系統に複数の太陽光発電装置及び複数の負荷が接続され、計測した電力の値から太陽光発電装置が出力する有効電力及び又は負荷が消費する有効電力を推定する電力推定装置において、
1もしくは複数の有効電力および無効電力を計測する計測手段と、
該計測手段で計測されるデータであって任意の条件のデータを抽出する手段と、
計測された低圧需要家の有効電力及び無効電力を用いて電力系統に接続される負荷が消費する有効電力値を推定するための換算式を構築する手段と、
前記電力系統に接続された負荷の有効電力計測値を上流側電力計の無効電力計測値から下流側電力計の無効電力計測値と高圧需要家の無効電力計測値との合計から減算して求めてそれを換算式における無効電力計測値に読み替えて個別に算出する手段と、
読み替えて個別に算出した前記換算式における無効電力計測値を基に負荷が消費する有効電力推定値(換算)を算出する手段と、
前記有効電力推定値(換算)に計測された前記高圧需要家の有効電力計測値を加算することで前記電力系統の負荷が消費する有効電力推定値を算出する手段と、
前記電力系統の負荷が消費する有効電力推定値から前記電力系統に配置された電力計が計測して得た有効電力計測値を減算して太陽光発電装置が出力する有効電力推定値を算出する手段と、
少なくとも前記負荷が消費する有効電力推定値(換算)を算出する手段が算出した負荷と、前記太陽光発電装置が出力する有効電力推定値を算出する手段が算出した太陽光発電量のいずれかを前記電力系統における推定対象区間毎に画面表示もしくは外部出力する手段と、を備えることを特徴とする。
In order to solve the above-described problem, the present invention provides a power system in which a plurality of photovoltaic power generation devices and a plurality of loads are connected, and the effective power output from the photovoltaic power generation device and / or the load consumed by the measured power value. In a power estimation device for estimating power,
Measuring means for measuring one or more active and reactive powers;
Means for extracting data of any condition, which is data measured by the measuring means;
Means for constructing a conversion formula for estimating the active power value consumed by the load connected to the power system using the measured active power and reactive power of the low-voltage consumer;
The active power measurement value of the load connected to the power system is obtained by subtracting the reactive power measurement value of the downstream power meter and the reactive power measurement value of the high voltage consumer from the reactive power measurement value of the upstream power meter. Means for recalculating it as the reactive power measurement value in the conversion formula,
Means for calculating an active power estimated value (converted) consumed by the load based on the reactive power measurement value in the conversion formula calculated separately and replaced;
Means for calculating an effective power estimated value consumed by a load of the power system by adding the measured effective power value of the high-voltage consumer to the effective power estimated value (converted);
The active power estimated value output by the photovoltaic power generation device is calculated by subtracting the active power measured value obtained by measuring the power meter arranged in the power system from the active power estimated value consumed by the load of the power system. Means,
At least one of the load calculated by the means for calculating the estimated effective power (converted) consumed by the load and the amount of photovoltaic power generation calculated by the means for calculating the estimated effective power output by the photovoltaic power generation apparatus. Means for displaying a screen or outputting an external output for each estimation target section in the power system.

上記において、構築する前記換算式を抽出するための計測データは、
前記推定対象区間に前記低圧需要家のみが存在する場合の前後2ヶ所に配置された電力計が計測した有効電力及び無効電力のデータと、推定対象日と気象条件、暦条件(季節,平日か休日若しくは曜日のいずれか又はこれらの条件の組合せ)の1つもしくは複数の条件が同じ日のデータであることを特徴とする電力推定装置。
In the above, the measurement data for extracting the conversion formula to be constructed is
Active power and reactive power data measured by two power meters placed before and after the low-voltage consumer in the estimation target section only, estimation target date, weather condition, calendar condition (season, weekday? One or a plurality of conditions (either a holiday or a day of the week or a combination of these conditions) is data on the same day.

また上記において、前記推定対象区間内に高圧需要家が存在する場合には、該高圧需要家に設置しているメータから計測される有効電力と無効電力のデータ、及び当該推定対象区間前後2ヶ所に配置された電力計が計測した有効電力と無効電力のデータから当該推定対象区間における有効電力と無効電力を推定することを特徴とする。   In addition, in the above, when there are high-voltage consumers in the estimation target section, active power and reactive power data measured from a meter installed in the high-voltage consumer, and two places before and after the estimation target section The active power and reactive power in the estimation target section are estimated from the active power and reactive power data measured by the wattmeter arranged at.

また上記において、前記画面表示する手段により表示される推定対象区間は、前記電力系統に接続された前後2ヶ所の開閉器により区分けされた領域であることを特徴とする。
また上記課題を解決するために本発明は、電力系統に複数の太陽光発電装置及び複数の負荷が接続され、計測した電力の値から太陽光発電が出力する有効電力及び又は負荷が消費する有効電力を推定する電力推定装置における電力推定方法であって、
1もしくは複数の有効電力および無効電力を計測するステップ、
該ステップで計測されるデータであって任意の条件のデータを抽出するステップ、
計測された低圧需要家の有効電力及び無効電力を用いて電力系統に接続される負荷が消費する有効電力値を推定するための換算式を構築するステップ、
前記電力系統に接続された負荷の有効電力計測値を上流側電力計の無効電力計測値から下流側電力計の無効電力計測値と高圧需要家の無効電力計測値との合計から減算して求めてそれを前記換算式における無効電力計測値に読み替えて個別に算出するステップ、
読み替えて個別に算出した前記無効電力計測値を基に負荷が消費する有効電力推定値(換算)を算出するステップ、
前記有効電力推定値(換算)に計測された前記高圧需要家の有効電力計測値を加算することで前記電力系統の負荷が消費する有効電力推定値を算出するステップ、
前記電力系統の負荷が消費する有効電力推定値から前記電力系統に配置された電力計が計測して得た有効電力計測値を減算して太陽光発電装置が出力する有効電力推定値を算出するステップ、および、
少なくとも前記負荷が消費する有効電力推定値(換算)を算出する手段が算出した負荷と、前記太陽光発電装置が出力する有効電力推定値を算出する手段が算出した太陽光発電量のいずれかを前記電力系統における推定対象区間毎に画面表示もしくは外部出力するステップ、を含むことを特徴とする。
Further, in the above, the estimation target section displayed by the means for displaying on the screen is an area divided by two front and rear switches connected to the power system.
In order to solve the above problems, the present invention is connected to a power system with a plurality of photovoltaic power generation devices and a plurality of loads, and the effective power output by the photovoltaic power generation from the measured power value and / or the effective consumption of the load. A power estimation method in a power estimation device for estimating power,
Measuring one or more active and reactive powers;
A step of extracting data measured in the step and having arbitrary conditions;
Building a conversion formula for estimating an active power value consumed by a load connected to the power system using the measured active power and reactive power of the low-voltage consumer;
The active power measurement value of the load connected to the power system is obtained by subtracting the reactive power measurement value of the downstream power meter and the reactive power measurement value of the high voltage consumer from the reactive power measurement value of the upstream power meter. Replacing it with the reactive power measurement value in the conversion formula and calculating it individually,
A step of calculating an active power estimated value (converted) consumed by a load based on the reactive power measurement value calculated by reading and individually;
Calculating an active power estimated value consumed by a load of the power grid by adding the measured active power value of the high-voltage consumer to the active power estimated value (converted);
The active power estimated value output by the photovoltaic power generation device is calculated by subtracting the active power measured value obtained by measuring the power meter arranged in the power system from the active power estimated value consumed by the load of the power system. Steps and
At least one of the load calculated by the means for calculating the estimated effective power (converted) consumed by the load and the amount of photovoltaic power generation calculated by the means for calculating the estimated effective power output by the photovoltaic power generation apparatus. Including a step of displaying a screen or outputting it for each estimation target section in the power system.

上記において、構築する前記換算式を抽出するための計測データは、
前記推定対象区間に前記低圧需要家のみが存在する場合の前後2ヶ所に配置された電力計が計測した有効電力及び無効電力のデータと、推定対象日と気象条件、暦条件(季節,平日か休日若しくは曜日のいずれか又はこれらの条件の組合せ)の1つもしくは複数の条件が同じ日のデータであることを特徴とする。
In the above, the measurement data for extracting the conversion formula to be constructed is
Active power and reactive power data measured by two power meters placed before and after the low-voltage consumer in the estimation target section only, estimation target date, weather condition, calendar condition (season, weekday? One or a plurality of conditions (either a holiday or a day of the week or a combination of these conditions) is data on the same day.

また上記において、前記推定対象区間内に高圧需要家が存在する場合には、該高圧需要家に設置しているメータから計測される有効電力と無効電力のデータ、及び当該推定対象区間前後2ヶ所に配置された電力計が計測した有効電力と無効電力のデータから当該推定対象区間における有効電力と無効電力を推定することを特徴とする。   In addition, in the above, when there are high-voltage consumers in the estimation target section, active power and reactive power data measured from a meter installed in the high-voltage consumer, and two places before and after the estimation target section The active power and reactive power in the estimation target section are estimated from the active power and reactive power data measured by the wattmeter arranged at.

本発明によれば、配電系統にSVCのように電圧制御のために無効電力を調整する装置が設けられている場合であっても、太陽光発電装置が出力する有効電力値及び負荷が消費する有効電力値を正確に推定することができるという利点がある。   According to the present invention, even if the distribution system is provided with a device for adjusting reactive power for voltage control, such as SVC, the active power value and load output by the photovoltaic power generator are consumed. There is an advantage that the active power value can be accurately estimated.

本発明の実施形態に係る配電系統の構成例を示す図である。It is a figure which shows the structural example of the power distribution system which concerns on embodiment of this invention. 本発明の実施形態に係る電力推定装置の構成を示す図である。It is a figure which shows the structure of the electric power estimation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る電力推定装置の動作を説明する処理フロー図である。It is a processing flowchart explaining operation | movement of the electric power estimation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る配電系統において計測される有効電力と無効電力の関係を示す図である。It is a figure which shows the relationship between the active power measured in the power distribution system which concerns on embodiment of this invention, and reactive power. 本発明の実施形態に係る配電系統における区間内の負荷が主として低圧需要家(力率改善コンデンサなし)の構成例(類型1)を示す図である。It is a figure which shows the structural example (type 1) where the load in the area in the power distribution system which concerns on embodiment of this invention is mainly a low voltage | pressure consumer (no power factor improvement capacitor | condenser). 本発明の実施形態に係る配電系統における区間内の負荷が低圧需要家と高圧需要家(力率改善コンデンサあり)の構成例(類型2)を示す図である。It is a figure which shows the structural example (type 2) of the load in the area in the power distribution system which concerns on embodiment of this invention of a low voltage | pressure consumer and a high voltage | pressure consumer (with a power factor improvement capacitor | condenser). 本発明の実施形態に係る配電系統における区間内の負荷が主として高圧需要家(力率改善コンデンサあり)の構成例(類型3)を示す図である。It is a figure which shows the structural example (type 3) where the load in the area in the distribution system which concerns on embodiment of this invention is mainly a high voltage | pressure consumer (with a power factor improvement capacitor | condenser). 本発明の実施形態に係る電力推定装置の出力部における画面表示例を示す図である。It is a figure which shows the example of a screen display in the output part of the electric power estimation apparatus which concerns on embodiment of this invention. 配電系統内に高圧需要家が含まれることで力率が変動し配電系統における負荷が消費する有効電力が変化する様子を示す図である。It is a figure which shows a mode that the effective power which the power factor fluctuates and the load in a distribution system changes by including a high voltage consumer in a distribution system.

以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。
図1は、本発明の実施形態に係る配電系統の構成例を示す図である。図1に示す本発明の実施形態に係る配電系統では、配電系統全般、およびまたは、開閉器により区切られた推定対象区間(以下、単に“区間”という)毎について、計測した電力の値(電力データ)から太陽光発電装置が出力する有効電力及び負荷が消費する有効電力を推定可能とするものである。ただし、本発明の実施形態では、高圧需要家(例.工場)には、有効電力および無効電力を計測できるメータ、たとえばスマートメータ、が備えつけられており、該メータの値が電力推定装置に定期的に通報される構成を有する。なお、低圧需要家(例.一般家庭)には有効電力を計測するメータのみが取り付けられているものとする。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram illustrating a configuration example of a power distribution system according to an embodiment of the present invention. In the distribution system according to the embodiment of the present invention shown in FIG. 1, the measured power value (power) for the entire distribution system and / or for each estimation target section (hereinafter simply referred to as “section”) partitioned by a switch. The effective power output by the photovoltaic power generation apparatus and the effective power consumed by the load can be estimated from the data. However, in the embodiment of the present invention, a high-voltage consumer (eg, factory) is equipped with a meter capable of measuring active power and reactive power, for example, a smart meter, and the value of the meter is periodically stored in the power estimation device. Has a configuration to be reported automatically. It is assumed that only a meter for measuring active power is attached to a low-voltage consumer (eg, a general household).

図1において、本発明の実施形態に係る配電系統の構成例では、変電所1に接続される配電線に、複数の低圧需要家(例.一般家庭)およびまたは高圧需要家(例.工場)が開閉器S1,S2、開閉器S2,S3、開閉器S3,S4、・・・に挟まれて接続されている。図示例における低圧需要家(例えば一般商用電源電圧100Vを使用する需要家)は、太陽光発電パネルを備えているものとし、太陽光発電パネルにより発電された電力はインバータを介して交流に変換されるとともに、低圧需要家内の負荷で電力消費し、太陽光による発電電力が余れば系統に電力を供給する構成になっている。   In FIG. 1, in the configuration example of the distribution system according to the embodiment of the present invention, a plurality of low-voltage customers (eg, general households) and / or high-voltage customers (eg, factories) are connected to the distribution lines connected to the substation 1. Are sandwiched and connected by switches S1, S2, switches S2, S3, switches S3, S4,. The low voltage consumer in the illustrated example (for example, a consumer using a general commercial power supply voltage of 100 V) is assumed to have a photovoltaic power generation panel, and the electric power generated by the photovoltaic power generation panel is converted into alternating current through an inverter. In addition, power is consumed by a load in a low-voltage consumer, and power is supplied to the system if the generated power from solar power is surplus.

一方、高圧需要家(例えば配電系統から供給される6600Vを使用する需要家)は、太陽光発電装置(発電パネル)を有さずに、高圧需要家内のモータ、力率改善コンデンサ、及び、負荷等から成る電力エネルギー消費負荷により配電線から供給される電力を消費するものとして記述されている。高圧需要家は、通常、力率を1にするための力率改善コンデンサを設備しており、該力率コンデンサにより、受電点の力率を1に近づけるようにしている。つまり力率が1に近い値であると電気料金の割引が受けられるので、多くの高圧需要家(例.工場)は力率改善コンデンサを設置するとともに有効電力および無効電力を計測できるメータ(例.スマートメータ)を備え、計測した有効電力および無効電力を定期的に電力推定装置10に通報する。   On the other hand, high-voltage consumers (for example, consumers using 6600V supplied from the power distribution system) do not have a solar power generation device (power generation panel), but the motor, power factor improving capacitor, and load in the high-voltage consumer It is described that the electric power supplied from the distribution line is consumed by the electric energy consuming load composed of, for example. High-voltage consumers are usually equipped with a power factor improving capacitor for setting the power factor to 1, and the power factor at the power receiving point is made close to 1 by the power factor capacitor. In other words, if the power factor is close to 1, a discount on electricity bills can be received, so many high voltage consumers (eg factories) install a power factor improving capacitor and can measure active power and reactive power (eg Smart meter), and periodically notifies the power estimating apparatus 10 of the measured active power and reactive power.

そして開閉器S1,S2、開閉器S2,S3、開閉器S3,S4、・・・を作動させることによって、負荷が消費する電力を切り分けることができることから、開閉器S1,S2、開閉器S2,S3、開閉器S3,S4、・・・によって区切られた領域を称して負荷が消費する電力を推定する対象区間と呼ぶことにしたものである。図示例では、開閉器S1,S2、によって区間1、開閉器S2,S3によって区間2、開閉器S3,S4によって区間3が構成されるケースについて例示している。なお図1に示した低圧需要家も有効電力を計測するメータ(不図示)を備えているが、当該メータにより計測した有効電力は電力推定装置10に通報されない。   And by operating the switches S1, S2, switches S2, S3, switches S3, S4, ..., the power consumed by the load can be separated, so the switches S1, S2, the switches S2, An area partitioned by S3, switches S3, S4,... Is referred to as a target section for estimating the power consumed by the load. In the illustrated example, the case where the section 1 is configured by the switches S1 and S2, the section 2 is configured by the switches S2 and S3, and the section 3 is configured by the switches S3 and S4 is illustrated. The low-voltage consumer shown in FIG. 1 also includes a meter (not shown) that measures active power, but the active power measured by the meter is not reported to the power estimation apparatus 10.

太陽光発電装置が出力する有効電力及び負荷が消費する有効電力を電力推定装置10により推定を実施する前に、開閉器およびメータ配置入力部15から電力推定装置10内のメモリ部(後述する)に配電系統における開閉器の位置情報、および、電力計P1〜P4並びにメータMの位置情報がオペレータにより登録される。変電所1には発電所(不図示)から送電線を介して電力送電が行われ、変電所1を介して変電所1から本実施形態に係る配電系統に電力が供給されるようになっている。   Before the power estimation device 10 estimates the effective power output from the photovoltaic power generation device and the power consumed by the load, the memory unit (described later) in the power estimation device 10 from the switch and meter arrangement input unit 15 is used. In addition, the position information of the switches in the power distribution system and the position information of the power meters P1 to P4 and the meter M are registered by the operator. Power is transmitted to the substation 1 from a power plant (not shown) via a transmission line, and power is supplied from the substation 1 to the distribution system according to the present embodiment via the substation 1. Yes.

なお図1に示す配電系統の構成例は、模式的に示したものであり、実際は、これより多くの低圧需要家および高圧需要家並びに電力計、開閉器、メータ等が配電線に接続されるものになる。   In addition, the structural example of the power distribution system shown in FIG. 1 is shown schematically, and actually, more low-voltage consumers and high-voltage consumers, and power meters, switches, meters, and the like are connected to the distribution lines. Become a thing.

また図示例の配電線には、開閉器S1の変電所1側に電力計P1が、開閉器S2の変電所1側に電力計P2が設けられ、さらに開閉器S3の変電所1側に電力計P3が、開閉器S4の変電所1側に電力計P4が設けられ、電力計P1は、電力計P1より下流の配電線に接続される負荷全てが消費する電力の値(電力データ)を、また電力計P2は、電力計P2より下流の配電線に接続される負荷全てが消費する電力の値(電力データ)を、さらに電力計P3は、電力計P3より下流の配電線に接続される負荷全てが消費する電力の値(電力データ)を、また電力計P4は、電力計P4より下流の配電線に接続される負荷全てが消費する電力の値(電力データ)を、それぞれ計測し、電力計P1ないし電力計P4で計測した有効電力と無効電力の値を定期的に電力推定装置10に通報するように構成している。なお区間内の電力の値は、例えば、区間1の電力データは、配電系統に配置された電力計P1で計測した有効電力と無効電力の値から電力計P2で計測した有効電力と無効電力の値のそれぞれの差分を算出することによって求めることができる。   In addition, the distribution line in the example has a power meter P1 on the substation 1 side of the switch S1, a power meter P2 on the substation 1 side of the switch S2, and a power supply on the substation 1 side of the switch S3. The power meter P4 is installed on the substation 1 side of the switch S4, and the power meter P1 calculates the power value (power data) consumed by all the loads connected to the distribution lines downstream from the power meter P1. In addition, the power meter P2 is connected to the distribution line downstream of the power meter P3, and the power meter P3 is connected to the distribution line downstream of the power meter P3. Measure power value (power data) consumed by all loads, and power meter P4 measures power values (power data) consumed by all loads connected to distribution lines downstream from power meter P4. The active power and reactive power values measured by the power meters P1 to P4 are periodically reported to the power estimation device 10. It is. The power value in the section is, for example, that the power data in section 1 is the active power and reactive power measured by the power meter P2 from the values of the active power and reactive power measured by the power meter P1 arranged in the distribution system. It can be obtained by calculating the difference of each value.

図2は、本発明の実施形態に係る電力推定装置の構成を示す図であり、図3は本発明の実施形態に係る電力推定装置の動作を説明する処理フロー図である。
図2において本発明の実施形態に係る電力推定装置10は、コンピュータ等の情報を処理する汎用の装置で構成されており、当該装置には、特に図示しないが、CPU(中央処理ユニット)、記憶装置(ハードディスク)、メモリ、通信機能部、入出力インタフェース、入出力装置など当業者によく知られたハードウェアを備えている。そして上記記憶装置には予め所定のアプリケーションプログラムが記憶されており、上記CPUがこのアプリケーションプログラムを読出して実行することにより下記に記述する各種処理部14〜16の機能を実現する。
FIG. 2 is a diagram showing a configuration of the power estimation apparatus according to the embodiment of the present invention, and FIG. 3 is a processing flow diagram for explaining the operation of the power estimation apparatus according to the embodiment of the present invention.
In FIG. 2, the power estimation apparatus 10 according to the embodiment of the present invention is configured by a general-purpose apparatus that processes information such as a computer. The apparatus includes a CPU (Central Processing Unit), a storage, which is not particularly illustrated. It includes hardware well known to those skilled in the art, such as a device (hard disk), memory, communication function unit, input / output interface, and input / output device. A predetermined application program is stored in advance in the storage device, and the functions of various processing units 14 to 16 described below are realized by the CPU reading and executing the application program.

上記電力推定装置10が備えるハードウェアの下に、
入力部11は、配電系統に備えられた電力計P1ないし電力計P4で計測された有効電力と無効電力の値を取り込む。図示していないが、外部(例えば、気象庁等)により提供される、気象情報・暦情報も取り込めるように構成しており、また、必要に応じて、オペレータ(図示せず)が入力部11から上記情報を直接入力することもできる。
Under the hardware provided in the power estimation apparatus 10,
The input unit 11 takes in the values of active power and reactive power measured by the wattmeters P1 to P4 provided in the distribution system. Although not shown, it is configured to be able to take in weather information / calendar information provided by the outside (for example, the Japan Meteorological Agency, etc.), and an operator (not shown) can input from the input unit 11 as necessary. The above information can also be entered directly.

メモリ部12は、入力部11で取り込んだ情報を蓄積するとともに、後述する電力推定装置10内の各機能部14〜16で処理した情報を蓄積する。また事前に開閉器及びメータ配置入力部15を介して入力された位置情報も蓄積する。   The memory unit 12 accumulates information captured by the input unit 11 and accumulates information processed by the functional units 14 to 16 in the power estimation apparatus 10 to be described later. In addition, position information input in advance via the switch and meter arrangement input unit 15 is also accumulated.

出力部13は、メモリ部12に蓄積された情報を必要に応じて画面表示するか、紙等に印刷して出力する。また出力部13は、電力推定装置10内の各機能部14〜16で処理し蓄積した情報を外部(図示せず)に出力することもできる。   The output unit 13 displays the information stored in the memory unit 12 on a screen as needed, or prints it on paper or the like and outputs it. The output unit 13 can also output the information processed and accumulated by the functional units 14 to 16 in the power estimation apparatus 10 to the outside (not shown).

上記した入力部11及び出力部13は、上述した情報処理装置の入出力装置、通信機能部、入出力インタフェース等、により実現される。またメモリ部12は上述した情報処理装置の記憶装置(ハードディスク)、メモリ等により実現される。   The input unit 11 and the output unit 13 described above are realized by the input / output device, the communication function unit, the input / output interface, and the like of the information processing apparatus described above. The memory unit 12 is realized by a storage device (hard disk), a memory, or the like of the information processing apparatus described above.

そして類似日抽出処理部14は、換算式構築用のデータを抽出するものであり、推定対象日と類似する過去日のデータを抽出する。過去日のデータを抽出する場合には、条件をあらかじめ設定して選択する。条件設定では、例えば、以下のような複数の条件を組み合わせて条件を設定しデータを抽出することができる。   Then, the similar day extraction processing unit 14 extracts data for constructing the conversion formula, and extracts data of past days similar to the estimation target date. When extracting data of the past day, conditions are set in advance and selected. In the condition setting, for example, data can be extracted by setting a condition by combining a plurality of conditions as follows.

抽出条件1:推定対象日と最高気温が±x℃以内の日(例えば、x=2〜3とする)
抽出条件2:推定対象日から過去y日以内の日(例えば、y=30とする)
抽出条件3:推定対象日と平日/休日の区分が同じ日
抽出条件4:t1時〜t2時(例えば、t1=10,t2=16とする)
なお上記の抽出条件に含めていないが、雨天時のデータ及び又は夜間(例えば、21時〜3時)のデータを抽出することは必須であるので、敢えて上記抽出条件に記載していない。また上記“休日”は“祝日”を含んでも構わないが、ここで示す“平日/休日”とは、例えば工場の稼働日/非稼動日を指す。一般の“祝日”であっても工場が稼動している場合は、“平日”とみなして良い。
Extraction condition 1: Estimated target day and day when maximum temperature is within ± x ° C (for example, x = 2 to 3)
Extraction condition 2: Day within the past y days from the estimation target date (for example, y = 30)
Extraction condition 3: Day in which estimation target day and weekday / holiday are the same Extraction condition 4: t1 to t2 (for example, t1 = 10, t2 = 16)
Although not included in the above extraction conditions, it is essential to extract data in rainy weather and / or data at night (for example, from 21:00 to 3 o'clock). The “holiday” may include a “holiday”, but the “weekday / holiday” shown here indicates, for example, an operating day / non-operating day of a factory. Even if it is a general “holiday”, if the factory is operating, it can be regarded as a “weekday”.

換算式構築処理部15は、上述した類似日抽出処理部14で抽出したデータを用いて、負荷が消費する有効電力を求める換算式を求める。
その場合、類似日抽出処理部14では、日射量が期待できない雨天時等のデータを必ず抽出するので、雨天時のデータであれば、計測データは負荷が消費する有効電力と無効電力を表しているとして良い。一般に低圧需要家(例.一般家庭)の場合には、図4に示されるグラフのように負荷が消費する電力はほぼ直線状の分布となる。図4に示されるグラフから、負荷が消費する電力における有効電力と無効電力は、ほぼ直線的な関係があることが分かるので、次の式1に示す換算式を構築することができる。すなわち、

負荷が消費する有効電力推定値(換算)=a0 + a1 × 無効電力計測値 ・・・式1
上記式1において、a0は定数、a1は係数である。
The conversion formula construction processing unit 15 uses the data extracted by the above-described similar day extraction processing unit 14 to obtain a conversion formula for calculating active power consumed by the load.
In this case, the similar day extraction processing unit 14 always extracts data such as rainy weather when the amount of solar radiation cannot be expected. Therefore, if the data is rainy, the measurement data represents active power and reactive power consumed by the load. Good as it is. In general, in the case of a low-voltage consumer (eg, a general household), the power consumed by the load has a substantially linear distribution as shown in the graph shown in FIG. Since it can be seen from the graph shown in FIG. 4 that the active power and the reactive power in the power consumed by the load have a substantially linear relationship, the conversion formula shown in the following formula 1 can be constructed. That is,

Estimated active power consumed by load (converted) = a0 + a1 × reactive power measurement value ・ ・ ・ Equation 1
In Equation 1, a0 is a constant and a1 is a coefficient.

しかしながら、高圧需要家(例.工場)が含まれて力率コンデンサが動作すると、力率が変動し配電系統における負荷が消費する有効電力は変化して図9のようなグラフになってしまう。したがって、高圧需要家(例.工場)が含まれている区間については有効電力および無効電力を計測できるメータM(例.スマートメータ等)を設置して有効電力と無効電力を計測し定期的に電力推定装置10に通報してもらうようにする。   However, when a high-voltage consumer (eg, factory) is included and the power factor capacitor operates, the power factor fluctuates, and the active power consumed by the load in the distribution system changes, resulting in a graph as shown in FIG. Therefore, for sections where high-voltage customers (eg factories) are included, meters M (eg smart meters) that can measure active power and reactive power are installed to measure active power and reactive power periodically. The power estimation apparatus 10 is notified.

このように配電網の構成を概観するようにすれば、図1に示される本発明の実施形態に係る配電系統の構成における計測される有効電力と無効電力の関係は、次の式2、式3にように表現することが可能となる。すなわち、
有効電力計測値=上流側電力計の有効電力計測値−下流側電力計の有効電力計測値−高圧需要家の有効電力計測値・・・式2
無効電力計測値=上流側電力計の無効電力計測値−下流側電力計の無効電力計測値−高圧需要家の無効電力計測値・・・式3
Thus, if the configuration of the distribution network is overviewed, the relationship between the active power and the reactive power measured in the configuration of the distribution system according to the embodiment of the present invention shown in FIG. 3 can be expressed as follows. That is,
Effective power measurement value = Active power measurement value of upstream power meter−Active power measurement value of downstream power meter−Active power measurement value of high voltage consumer Equation 2
Reactive power measurement value = Reactive power measurement value of upstream power meter−Reactive power measurement value of downstream power meter−Reactive power measurement value of high-voltage consumer

しかしながら、上記式2及び式3の具体的な適用については図1に示した本発明の実施形態に係る配電系統の構成から直接的に把握し難いので、図1における配電系統の区間1ないし区間3に接続される負荷が、たまたま図5に示す類型1、図6に示す類型2、および、図7に示される類型3のような構成になっている場合には、上記式2及び式3におけるそれぞれの有効電力値および無効電力計側値を以下の式4ないし9のように求められるので、上記式1の無効電力値について求められた無効電力計測値の読み替えを行い、最終的には以下に示す式10に基づいて負荷が消費する有効電力を求める。すなわち、
図1の区間1は、図5に示される類型1のようになり、この場合には、上記式1における無効電力計測値を、次の式5に示されるものに読み替える。すなわち、
有効電力計測値=電力計1の有効電力計測値−電力計2の有効電力計測値−高圧需要家の有効電力計測値≒電力計1の有効電力計測値−電力計2の有効電力計測値・・・式4
無効電力計測値=電力計1の無効電力計測値−電力計2の無効電力計測値−高圧需要家の無効電力計測値≒電力計1の無効電力計測値−電力計2の無効電力計測値・・・式5
However, since it is difficult to directly grasp the specific application of the above formulas 2 and 3 from the configuration of the power distribution system according to the embodiment of the present invention shown in FIG. 1, the sections 1 to 5 of the power distribution system in FIG. When the load connected to 3 happens to have a configuration such as type 1 shown in FIG. 5, type 2 shown in FIG. 6, and type 3 shown in FIG. Since the respective active power values and reactive power meter side values in are obtained as in the following equations 4 to 9, the measured reactive power values obtained for the reactive power values in the above equation 1 are replaced, and finally The active power consumed by the load is obtained based on Equation 10 shown below. That is,
The section 1 in FIG. 1 becomes the type 1 shown in FIG. 5. In this case, the reactive power measurement value in the above formula 1 is replaced with the one shown in the following formula 5. That is,
Active power measurement value = Active power measurement value of Wattmeter 1-Active power measurement value of Wattmeter 2-Active power measurement value of high voltage consumer ≒ Active power measurement value of Wattmeter 1-Active power measurement value of Wattmeter 2 ..Formula 4
Reactive power measurement value = Reactive power measurement value of wattmeter 1−Reactive power measurement value of wattmeter 2−Reactive power measurement value of high voltage consumer≈Reactive power measurement value of wattmeter 1−Reactive power measurement value of wattmeter 2 ..Formula 5

また図1の区間2は、図6に示される類型2のようになり、この場合には、上記式1における無効電力計測値は、次の式7に示されるものに読み替える。すなわち、
有効電力計測値=電力計2の有効電力計測値−電力計3の有効電力計測値−高圧需要家の有効電力計測値・・・・・・・・・・・・・・・式6
無効電力計測値=電力計2の無効電力計測値−電力計3の無効電力計測値−高圧需要家の無効電力計測値・・・・・・・・・・・・・・・式7
Further, the section 2 in FIG. 1 becomes a type 2 shown in FIG. 6, and in this case, the reactive power measurement value in the above formula 1 is read as shown in the following formula 7. That is,
Active power measurement value = Active power measurement value of Wattmeter 2−Active power measurement value of Wattmeter 3−Active power measurement value of high-voltage consumer ………….
Reactive power measurement value = Reactive power measurement value of wattmeter 2−Reactive power measurement value of wattmeter 3−Reactive power measurement value of high-voltage consumer ・ ・ ・ ・ ・ Equation 7

また図1の区間3は、図7に示される類型3のようになり、この場合には、上記式1における無効電力計測値は、次の式9に示されるものに読み替える。すなわち、
有効電力計測値=電力計3の有効電力計測値−電力計4の有効電力計測値−高圧需要家の有効電力計測値 ≒ 0・・・・・・・・・・・・式8
無効電力計測値=電力計3の無効電力計測値−電力計4の無効電力計測値−高圧需要家の無効電力計測値 ≒ 0・・・・・・・・・・・・式9
Further, the section 3 in FIG. 1 becomes the type 3 shown in FIG. 7. In this case, the reactive power measurement value in the above equation 1 is read as shown in the following equation 9. That is,
Active power measurement value = Active power measurement value of wattmeter 3−Active power measurement value of wattmeter 4−Active power measurement value of high-voltage consumer ≒ 0
Reactive power measurement value = Reactive power measurement value of wattmeter 3−Reactive power measurement value of wattmeter 4−Reactive power measurement value of high voltage consumer ≒ 0

上記図5ないし図7における各区間における接続形態が、たまたま上記のような類型として纏めることができたが、上記のような類型でなくても上記式2及び式3により各区間の有効電力計測値及び無効電力計測値を基に式1への読み替えを行うことができる。   The connection form in each section in FIG. 5 to FIG. 7 happens to be summarized as the above type, but even if it is not the above type, the active power measurement in each section is performed by the above formulas 2 and 3. Based on the measured value and reactive power measurement value, the reading can be replaced with Equation 1.

ここで換算式は、上記式1のような1次式でなく、図4に示されるグラフの観察結果に応じて、2次式以上、折れ線、最小二乗法、又は、独立成分分析法を用いて換算式を構築してもよい。また、換算式にせず無効電力を任意の値(例えば10kVar単位)にした無効電力と有効電力のテーブルの形に保存して当該テーブルを利用するようにしてもよい。   Here, the conversion formula is not a linear formula such as the above formula 1, but a quadratic formula or more, a broken line, a least square method, or an independent component analysis method is used according to the observation result of the graph shown in FIG. A conversion formula may be constructed. Further, the reactive power may be stored in the form of a reactive power and active power table in which the reactive power is set to an arbitrary value (for example, 10 kVar unit) without using the conversion formula, and the table may be used.

そして推定処理部16では、上記したメモリ部12に新たに蓄積された現時点の無効電力の値と前記換算式に基づき、現時点の負荷が消費する有効電力の値を次の式10により推定する。そのあとで次の式11を用いるにあたっては、上記式2により求められる有効電力計測値を用いることで、太陽光発電装置が出力する現時点の有効電力の値を推定する。すなわち、

負荷が消費する有効電力推定値=
負荷が消費する有効電力推定値(換算)+高圧需要家の有効電力計測値 ・・式10

太陽光発電装置が出力する有効電力推定値=
負荷が消費する有効電力推定値−有効電力計測値 ・・式11

このようにして負荷が消費する有効電力と太陽光発電装置が出力する有効電力とを推定により求めることができるようになる。
Then, the estimation processing unit 16 estimates the value of the active power consumed by the current load by the following equation 10 based on the current reactive power value newly accumulated in the memory unit 12 and the conversion formula. After that, when using the following formula 11, the value of the current active power output by the photovoltaic power generation apparatus is estimated by using the active power measurement value obtained by the above formula 2. That is,

Estimated active power consumed by load =
Estimated active power consumed by load (converted) + measured active power of high-voltage customers

Estimated active power output by photovoltaic power generator =
Estimated active power consumed by load-measured active power

In this way, the effective power consumed by the load and the effective power output by the solar power generation device can be obtained by estimation.

図8は、上記のようにして求められる配電系統における区間毎の現時点における電力需給の推移を表わす出力部の画面表示例を示す図である。図8から分かるように、現時点における区間別の発電量と負荷の消費電力の値が開閉器間の配置とリンクして表示されるので、現時点における区間毎の電力需給の推移を一目瞭然に理解することが可能となる。なお、図示例では、現時点における配電系統すべての負荷が消費する有効電力と太陽光発電装置が出力する有効電力の値を示していないが、当業者であれば上記した区間毎の電力需給の推移のデータを合算することで表示させることは容易に可能であることは云うまでもない。また画面表示している区間毎の発電量を合算すれば現時点における配電系統すべての発電量を表示させることができる。その際、数値データとして表示せずにグラフ表示するようにしても良い。   FIG. 8 is a diagram showing a screen display example of the output unit representing the transition of the current power supply and demand for each section in the distribution system obtained as described above. As can be seen from FIG. 8, since the power generation amount and load power consumption value for each section at the present time are displayed linked to the arrangement between the switches, the transition of power supply and demand for each section can be understood at a glance. It becomes possible. In addition, in the example of illustration, although the value of the active power consumed by the load of all the distribution systems at this time and the effective power which a solar power generation device outputs is not shown, if it is those skilled in the art, transition of the electric power supply-demand for every area mentioned above Needless to say, it is possible to easily display the data by adding them together. Moreover, if the power generation amount for each section displayed on the screen is added up, the power generation amount of all the distribution systems at the present time can be displayed. At this time, a graph may be displayed without displaying as numerical data.

なお上記式1は太陽光発電出力がない雨天時等のデータから構築したが、式10、式11は太陽光発電出力がない雨天時等のデータである必要はない。
図2に示されているように、以上に説明した、入力部11、メモリ部12、出力部13、類似日抽出処理部14、換算式構築処理部15、および、推定処理部16は、バス17によって相互に接続されている。また類似日抽出処理部14、換算式構築処理部15、および、推定処理部16は、上述した情報処理装置のCPUが記憶装置内に格納されている所定のアプリケーションプログラムを読出して実行することにより各処理部14〜16の機能が実現される。
In addition, although the said Formula 1 was constructed | assembled from the data at the time of rainy weather without a solar power generation output, Formula 10 and Formula 11 do not need to be the data at the time of rainy weather without a solar power generation output.
As shown in FIG. 2, the input unit 11, the memory unit 12, the output unit 13, the similar date extraction processing unit 14, the conversion formula construction processing unit 15, and the estimation processing unit 16 described above are connected to the bus. 17 are connected to each other. The similar date extraction processing unit 14, the conversion formula construction processing unit 15, and the estimation processing unit 16 read and execute a predetermined application program stored in the storage device by the CPU of the information processing device described above. The functions of the processing units 14 to 16 are realized.

図3は、本発明の実施形態に係る電力推定装置の動作を説明する図である。図3においてはステップを“S”と略記する。また上述した図1等を適宜参照するものとする。
図3において、まず、図2に示す入力部11に入力されたデータの入力処理を行う(ステップS1)。次いで、ステップS2では、図2に示す類似日抽出処理部14により類似日抽出処理を行う。類似日抽出処理の内容は上述したのでここでは再説しない。
FIG. 3 is a diagram for explaining the operation of the power estimation apparatus according to the embodiment of the present invention. In FIG. 3, the step is abbreviated as “S”. Reference is made to FIG.
In FIG. 3, first, input processing of data input to the input unit 11 shown in FIG. 2 is performed (step S1). Next, in step S2, a similar date extraction process is performed by the similar date extraction processing unit 14 shown in FIG. Since the contents of the similar day extraction processing have been described above, they will not be reexplained here.

そしてステップS3に進み、ステップS3では、図2に示す換算式構築処理部15により換算式の構築処理を行う。換算式構築処理の内容および構築された換算式については上述したのでここでは繰り返して説明するのを控える。   Then, the process proceeds to step S3. In step S3, the conversion formula construction processing unit 15 shown in FIG. Since the contents of the conversion formula construction process and the constructed conversion formula have been described above, they will not be repeated here.

次に、ステップS4に進み、ステップS4では、図2に示す推定処理部16が、同じく図2に示したメモリ部12に新たに蓄積された現時点の無効電力の値と上記ステップS3の換算式構築処理部で構築した上記式1に示す換算式に基づき、現時点の負荷が消費する有効電力の値を上記式10により推定する。そして、現時点の負荷が消費する有効電力値と上記計測した負荷が消費した有効電力値とに基づいて、上記式11を用いて太陽光発電装置が出力する現時点の有効電力の値を推定する。このようにして求められた、現時点の負荷が消費する有効電力の値および太陽光発電装置が出力する現時点の有効電力の値を、図2に示す出力部13が行う出力処理により出力する(ステップS5)。出力は、上述したように図8にように画面表示することができ、必要なら紙にプリントアウトすることもできる。   Next, the process proceeds to step S4. In step S4, the estimation processing unit 16 shown in FIG. 2 converts the current reactive power value newly accumulated in the memory unit 12 also shown in FIG. Based on the conversion formula shown in the formula 1 constructed by the construction processing unit, the value of the active power consumed by the current load is estimated by the formula 10. Then, based on the active power value consumed by the current load and the active power value consumed by the measured load, the current active power value output by the photovoltaic power generation apparatus is estimated using Equation 11 above. The value of the active power consumed by the current load and the value of the current active power output by the photovoltaic power generation apparatus thus obtained are output by the output process performed by the output unit 13 shown in FIG. S5). As described above, the output can be displayed on the screen as shown in FIG. 8, and can be printed out on paper if necessary.

1 変電所
10 電力推定装置
11 入力部
12 メモリ部
13 出力部
14 類似日抽出処理部
15 換算式構築処理部
16 推定処理部
17 バス
S1〜S4 開閉器
P1〜P4 電力計
M (有効電力と無効電力を計測する)メータ
DESCRIPTION OF SYMBOLS 1 Substation 10 Electric power estimation apparatus 11 Input part 12 Memory part 13 Output part 14 Similar day extraction process part 15 Conversion formula construction | assembly part 16 Estimation process part 17 Bus
S1-S4 switch
P1 to P4 Wattmeter M (Measure active and reactive power) meter

Claims (7)

電力系統に複数の太陽光発電装置及び複数の負荷が接続され、計測した電力の値から太陽光発電が出力する有効電力及び又は負荷が消費する有効電力を推定する電力推定装置において、
1もしくは複数の有効電力および無効電力を計測する計測手段と、
該計測手段で計測されるデータであって任意の条件のデータを抽出する手段と、
計測された低圧需要家の有効電力及び無効電力を用いて電力系統に接続される負荷が消費する有効電力値を推定するための換算式を構築する手段と、
前記電力系統に接続された負荷の有効電力計測値を上流側電力計の無効電力計測値から下流側電力計の無効電力計測値と高圧需要家の無効電力計測値との合計から減算して求めてそれを前記構築された換算式における無効電力計測値に読み替えて個別に算出する手段と、
読み替えて個別に算出した前記換算式における無効電力計測値を基に負荷が消費する有効電力推定値(換算)を算出する手段と、
前記有効電力推定値(換算)に計測された前記高圧需要家の有効電力計測値を加算することで前記電力系統の負荷が消費する有効電力推定値を算出する手段と、
前記電力系統の負荷が消費する有効電力推定値から前記電力系統に配置された電力計が計測して得た有効電力計測値を減算して太陽光発電装置が出力する有効電力推定値を算出する手段と、
少なくとも前記負荷が消費する有効電力推定値(換算)を算出する手段が算出した負荷と、前記太陽光発電装置が出力する有効電力推定値を算出する手段が算出した太陽光発電量のいずれかを前記電力系統における推定対象区間毎に画面表示もしくは外部出力する手段と、
を備えることを特徴とする電力推定装置。
In the power estimation device that estimates the active power consumed by the photovoltaic power generation and / or the load consumed by the photovoltaic power generation from the value of the measured power, and a plurality of photovoltaic power generation devices and a plurality of loads are connected to the power system.
Measuring means for measuring one or more active and reactive powers;
Means for extracting data of any condition, which is data measured by the measuring means;
Means for constructing a conversion formula for estimating the active power value consumed by the load connected to the power system using the measured active power and reactive power of the low-voltage consumer;
The active power measurement value of the load connected to the power system is obtained by subtracting the reactive power measurement value of the downstream power meter and the reactive power measurement value of the high voltage consumer from the reactive power measurement value of the upstream power meter. Means for separately calculating the reactive power measurement value in the converted conversion formula,
Means for calculating an active power estimated value (converted) consumed by the load based on the reactive power measurement value in the conversion formula calculated separately and replaced;
Means for calculating an effective power estimated value consumed by a load of the power system by adding the measured effective power value of the high-voltage consumer to the effective power estimated value (converted);
The active power estimated value output by the photovoltaic power generation device is calculated by subtracting the active power measured value obtained by measuring the power meter arranged in the power system from the active power estimated value consumed by the load of the power system. Means,
At least one of the load calculated by the means for calculating the estimated effective power (converted) consumed by the load and the amount of photovoltaic power generation calculated by the means for calculating the estimated effective power output by the photovoltaic power generation apparatus. Means for screen display or external output for each estimation target section in the power system;
A power estimation apparatus comprising:
請求項1記載の電力推定装置において、
構築する前記換算式を抽出するための計測データは、
前記推定対象区間に前記低圧需要家のみが存在する場合の前後2ヶ所に配置された電力計が計測した有効電力及び無効電力のデータと、推定対象日と気象条件、暦条件(季節,平日か休日若しくは曜日のいずれか又はこれらの条件の組合せ)の1つもしくは複数の条件が同じ日のデータであることを特徴とする電力推定装置。
The power estimation apparatus according to claim 1,
The measurement data for extracting the conversion formula to be constructed is
Active power and reactive power data measured by two power meters placed before and after the low-voltage consumer in the estimation target section only, estimation target date, weather condition, calendar condition (season, weekday? One or a plurality of conditions (either a holiday or a day of the week or a combination of these conditions) is data on the same day.
請求項1記載の電力推定装置において、
前記推定対象区間内に高圧需要家が存在する場合には、該高圧需要家に設置しているメータから計測される有効電力と無効電力のデータ、及び当該推定対象区間前後2ヶ所に配置された電力計が計測した有効電力と無効電力のデータから当該推定対象区間における有効電力と無効電力を推定することを特徴とする電力推定装置。
The power estimation apparatus according to claim 1,
When there are high-voltage consumers in the estimation target section, active power and reactive power data measured from a meter installed in the high-voltage consumer, and two places before and after the estimation target section A power estimation apparatus that estimates active power and reactive power in the estimation target section from active power and reactive power data measured by a power meter.
請求項1記載の電力推定装置において、
前記画面表示する手段により表示される推定対象区間は、前記電力系統に接続された前後2ヶ所の開閉器により区分けされた領域であることを特徴とする電力推定装置。
The power estimation apparatus according to claim 1,
The estimation target section displayed by the means for displaying on the screen is an area that is divided by two front and rear switches connected to the power system.
電力系統に複数の太陽光発電装置及び複数の負荷が接続され、計測した電力の値から太陽光発電が出力する有効電力及び又は負荷が消費する有効電力を推定する電力推定装置における電力推定方法であって、
1もしくは複数の有効電力および無効電力を計測するステップ、
該ステップで計測されるデータであって任意の条件のデータを抽出するステップ、
計測された低圧需要家の有効電力及び無効電力を用いて電力系統に接続される負荷が消費する有効電力値を推定するための換算式を構築するステップ、
前記電力系統に接続された負荷の有効電力計測値を上流側電力計の無効電力計測値から下流側電力計の無効電力計測値と高圧需要家の無効電力計測値との合計から減算して求めてそれを前記換算式における無効電力計測値に読み替えて個別に算出するステップ、
読み替えて個別に算出した前記無効電力計測値を基に負荷が消費する有効電力推定値(換算)を算出する手段ステップ、
前記有効電力推定値(換算)に計測された前記高圧需要家の有効電力計測値を加算することで前記電力系統の負荷が消費する有効電力推定値を算出するステップ、
前記電力系統の負荷が消費する有効電力推定値から前記電力系統に配置された電力計が計測して得た有効電力計測値を減算して太陽光発電装置が出力する有効電力推定値を算出するステップ、および、
少なくとも前記負荷が消費する有効電力推定値(換算)を算出する手段が算出した負荷と、前記太陽光発電装置が出力する有効電力推定値を算出する手段が算出した太陽光発電量のいずれかを前記電力系統における推定対象区間毎に画面表示もしくは外部出力するステップ、
を含むことを特徴とする電力推定方法。
A power estimation method in a power estimation device that estimates the effective power output by the photovoltaic power generation and / or the active power consumed by the load from the measured power value when a plurality of photovoltaic power generation devices and a plurality of loads are connected to the power system. There,
Measuring one or more active and reactive powers;
A step of extracting data measured in the step and having arbitrary conditions;
Building a conversion formula for estimating an active power value consumed by a load connected to the power system using the measured active power and reactive power of the low-voltage consumer;
The active power measurement value of the load connected to the power system is obtained by subtracting the reactive power measurement value of the downstream power meter and the reactive power measurement value of the high voltage consumer from the reactive power measurement value of the upstream power meter. Replacing it with the reactive power measurement value in the conversion formula and calculating it individually,
Means step for calculating an active power estimated value (converted) consumed by a load based on the reactive power measurement value calculated by reading separately.
Calculating an active power estimated value consumed by a load of the power grid by adding the measured active power value of the high-voltage consumer to the active power estimated value (converted);
The active power estimated value output by the photovoltaic power generation device is calculated by subtracting the active power measured value obtained by measuring the power meter arranged in the power system from the active power estimated value consumed by the load of the power system. Steps and
At least one of the load calculated by the means for calculating the estimated effective power (converted) consumed by the load and the amount of photovoltaic power generation calculated by the means for calculating the estimated effective power output by the photovoltaic power generation apparatus. Screen display or external output for each estimation target section in the power system,
A power estimation method comprising:
請求項5記載の電力推定方法において、
構築する前記換算式を抽出するための計測データは、
前記推定対象区間に前記低圧需要家のみが存在する場合の前後2ヶ所に配置された電力計が計測した有効電力及び無効電力のデータと、推定対象日と気象条件、暦条件(季節,平日か休日若しくは曜日のいずれか又はこれらの条件の組合せ)の1つもしくは複数の条件が同じ日のデータであることを特徴とする電力推定方法。
The power estimation method according to claim 5, wherein
The measurement data for extracting the conversion formula to be constructed is
Active power and reactive power data measured by two power meters placed before and after the low-voltage consumer in the estimation target section only, estimation target date, weather condition, calendar condition (season, weekday? One or a plurality of conditions (either a holiday or a day of the week or a combination of these conditions) is data on the same day.
請求項5記載の電力推定方法において、
前記推定対象区間内に高圧需要家が存在する場合には、該高圧需要家に設置しているメータから計測される有効電力と無効電力のデータ、及び当該推定対象区間前後2ヶ所に配置された電力計が計測した有効電力と無効電力のデータから当該推定対象区間における有効電力と無効電力を推定することを特徴とする電力推定方法。
The power estimation method according to claim 5, wherein
When there are high-voltage consumers in the estimation target section, active power and reactive power data measured from a meter installed in the high-voltage consumer, and two places before and after the estimation target section A power estimation method characterized by estimating active power and reactive power in the estimation target section from active power and reactive power data measured by a power meter.
JP2014167412A 2014-08-20 2014-08-20 Power estimation apparatus and power estimation method for distribution system Active JP6327060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014167412A JP6327060B2 (en) 2014-08-20 2014-08-20 Power estimation apparatus and power estimation method for distribution system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014167412A JP6327060B2 (en) 2014-08-20 2014-08-20 Power estimation apparatus and power estimation method for distribution system

Publications (2)

Publication Number Publication Date
JP2016046850A true JP2016046850A (en) 2016-04-04
JP6327060B2 JP6327060B2 (en) 2018-05-23

Family

ID=55636955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014167412A Active JP6327060B2 (en) 2014-08-20 2014-08-20 Power estimation apparatus and power estimation method for distribution system

Country Status (1)

Country Link
JP (1) JP6327060B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112970165A (en) * 2018-10-04 2021-06-15 沃尔塔利斯公司 Estimation of physical quantities by means of a distributed measuring system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271683A (en) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp Device for monitoring operation of distribution system
JP2010279115A (en) * 2009-05-27 2010-12-09 Mitsubishi Electric Corp Power system impedance estimating device and power system impedance estimation method
JP2012095478A (en) * 2010-10-28 2012-05-17 Kansai Electric Power Co Inc:The Output estimation method and output estimation device for photovoltaic power generation
JP2012191777A (en) * 2011-03-11 2012-10-04 Nissin Electric Co Ltd Method for estimating generated amount of power in photovoltaic power generation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271683A (en) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp Device for monitoring operation of distribution system
JP2010279115A (en) * 2009-05-27 2010-12-09 Mitsubishi Electric Corp Power system impedance estimating device and power system impedance estimation method
JP2012095478A (en) * 2010-10-28 2012-05-17 Kansai Electric Power Co Inc:The Output estimation method and output estimation device for photovoltaic power generation
JP2012191777A (en) * 2011-03-11 2012-10-04 Nissin Electric Co Ltd Method for estimating generated amount of power in photovoltaic power generation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112970165A (en) * 2018-10-04 2021-06-15 沃尔塔利斯公司 Estimation of physical quantities by means of a distributed measuring system

Also Published As

Publication number Publication date
JP6327060B2 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
JP5638546B2 (en) Load estimation device
JP6287306B2 (en) Power estimation apparatus, power estimation method, and program
JP6387617B2 (en) Distribution system accident recovery method, and distribution system's actual load and its width estimating device, method and program
Agüero et al. Integration challenges of photovoltaic distributed generation on power distribution systems
JP6045769B1 (en) Power generation amount estimation device, distribution system, and power generation amount estimation method
JP5505191B2 (en) Photovoltaic power generation amount prediction method and distribution system control system
Ruf Limitations for the feed-in power of residential photovoltaic systems in Germany–An overview of the regulatory framework
JP6543145B2 (en) Peak power prediction device, power management system and peak power prediction method
JP2010193594A (en) Maximum power generation amount estimating method for photovoltaic power generation system, method for controlling power distribution system, and distribution system control apparatus
KR101299444B1 (en) Remote power administration system using power totalizer of ac/dc
US11101653B2 (en) Solar generation estimation
JP2010193605A (en) Load estimating method of power distribution section and power distribution system control method
Bridier et al. Optimal design of a storage system coupled with intermittent renewables
Weniger et al. Dynamic mismatch losses of grid-connected PV-battery systems in residential buildings
JP2018160990A (en) Load management apparatus and method
JP6132994B1 (en) Distribution system state estimation device and distribution system state estimation method
Addy et al. How baseline model implementation choices affect demand response assessments
JP2016039652A (en) Power distribution grid management apparatus, power distribution grid system, and power distribution grid management method
JP6327060B2 (en) Power estimation apparatus and power estimation method for distribution system
JP6833303B1 (en) Power generation forecaster
JP5944225B2 (en) Alarm presenting device and alarm presenting method
JP6530698B2 (en) Apparatus and method for estimating power generation of distributed power source
JP6547374B2 (en) Power estimation apparatus and power estimation method
JP5560828B2 (en) Transformer load estimation method
Walker et al. Life-Cycle Cost and Optimization of PV Systems Based on Power Duration Curve with Variable Performance Ratio and Availability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180402

R150 Certificate of patent or registration of utility model

Ref document number: 6327060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250