JP5505191B2 - Photovoltaic power generation amount prediction method and distribution system control system - Google Patents

Photovoltaic power generation amount prediction method and distribution system control system Download PDF

Info

Publication number
JP5505191B2
JP5505191B2 JP2010181650A JP2010181650A JP5505191B2 JP 5505191 B2 JP5505191 B2 JP 5505191B2 JP 2010181650 A JP2010181650 A JP 2010181650A JP 2010181650 A JP2010181650 A JP 2010181650A JP 5505191 B2 JP5505191 B2 JP 5505191B2
Authority
JP
Japan
Prior art keywords
power generation
power
amount
section
solar radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010181650A
Other languages
Japanese (ja)
Other versions
JP2012044740A (en
Inventor
真人 宮田
泰宏 片岡
富裕 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2010181650A priority Critical patent/JP5505191B2/en
Publication of JP2012044740A publication Critical patent/JP2012044740A/en
Application granted granted Critical
Publication of JP5505191B2 publication Critical patent/JP5505191B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources

Landscapes

  • Photovoltaic Devices (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、任意の配電区間に連系する複数の太陽光発電機の総発電量を予測する太陽光発電量予測方法、およびこれを利用した配電系統制御システムに関する。   The present invention relates to a solar power generation amount prediction method for predicting the total power generation amount of a plurality of solar power generators linked to an arbitrary power distribution section, and a power distribution system control system using the method.

無尽蔵な太陽光エネルギーを電気エネルギーに変換して発電を行う太陽光発電機の導入が促進されている。太陽光発電機の導入価格の低下、環境保全意識の高まり、および石油価格の変動による代替エネルギーへの転換需要により、昨今では一般家庭等にも太陽光発電機が普及しつつある。   Introduction of photovoltaic generators that generate power by converting inexhaustible solar energy into electrical energy is being promoted. Due to a decrease in the price of introducing solar power generators, an increase in environmental conservation awareness, and demand for conversion to alternative energy due to fluctuations in oil prices, solar power generators are now becoming popular in ordinary homes.

一般に、一般家庭等に取り付けられた太陽光発電機は、電気事業者の送電線(配電系統)に連系しており、太陽光発電機の発電量の余剰分は連系する配電系統に折り返されて(逆潮流して)所定の電気事業者に売却される。売却電気量は、各家庭に設置された売電メータに記録される。   In general, solar power generators installed in general households are connected to the transmission lines (distribution system) of electric power companies, and the surplus of the power generation amount of the solar power generator is folded back to the connected distribution system. (Reverse current) and sold to a predetermined electric utility. The amount of electricity sold is recorded in a power sale meter installed in each household.

太陽光発電機が連系した区間において、事故が発生して停電するとパワーコンディショナによって太陽光発電機の発電も停止させられる。これは、太陽光発電機が配電系統に折り返した電力により、停電の復旧作業を行っている作業員が感電することを防ぐためである。停止した太陽光発電機は、停電から復旧してもすぐに発電を再開することができず、数分程度遅れて再び配電系統に連系する。   In the section where the photovoltaic generators are connected, if a power failure occurs due to an accident, the power conditioner also stops the power generation by the photovoltaic generator. This is to prevent an electric shock from a worker who is recovering from a power outage due to the electric power returned from the solar power generator to the distribution system. The stopped solar generator cannot resume power generation immediately after recovering from a power failure, and is connected to the distribution system again after a delay of several minutes.

上記より、停電から復旧する当初は、通常時には太陽光発電機の発電によって賄われる電力分を併せた地域全体の負荷(実負荷)を、電気事業者(変電所)から配電系統に送り出される電力で賄わなければならない。しかし、電気事業者からは、配電系統に送り出す送出電力しか把握することができず、太陽光発電機の発電によって賄われていた電力分を把握することはできない。そのため、停電から復旧した瞬間に過負荷に陥り、二次的な停電事故に連鎖しないか懸念される。   From the above, when initially recovering from a power outage, the electric power (substation) sends the entire area load (actual load) that is usually covered by the power generated by the solar power generator to the distribution system. Must be covered by However, from the electric power company, only the transmitted power sent to the distribution system can be grasped, and the power provided by the power generation of the solar power generator cannot be grasped. For this reason, there is concern that it will be overloaded at the moment of recovery from a power outage and linked to a secondary power outage accident.

そこで、従来、電気事業者は、上記のような停電から復旧する際には、配電系統から送り出す送出電力に、配電系統に連系した複数の太陽光発電機の総定格発電容量(モジュール表面温度25度、分光分布AM(エアマス)1.5、放射照度1000W/mの状態の発電量の総和(JIS規格JIS C 8914))を加えて、配電系統の運用(配電線路の切替など)を行っていた。また、このときに配電系統に送り出す電力を想定して、その電力を流すのに充分な配電設備を構築していた。 Therefore, conventionally, when recovering from a power outage as described above, an electric power company uses the total rated power generation capacity (module surface temperature) of a plurality of solar power generators connected to the power distribution system as the output power sent from the power distribution system. Operation of distribution system (switching distribution lines, etc.) by adding the total amount of power generation (JIS standard JIS C 8914)) at 25 degrees, spectral distribution AM (air mass) 1.5, and irradiance 1000 W / m 2 I was going. In addition, assuming power to be sent to the power distribution system at this time, a power distribution facility sufficient to flow the power has been constructed.

一方、太陽光発電機が実際に発電し得るのは定格発電容量の7割〜8割程度とされている。また、太陽光発電機の発電量は日射量に依存するため、時間帯や天候等に応じて太陽光発電機が賄う電力分は増減する。したがって、上記のように単に総定格発電容量を加えることは、過負荷を防止したいあまり過剰な電力の確保となっていた。   On the other hand, the solar power generator can actually generate power at about 70% to 80% of the rated power generation capacity. Moreover, since the amount of power generated by the solar power generator depends on the amount of solar radiation, the amount of power provided by the solar power generator increases or decreases depending on the time of day, the weather, and the like. Therefore, simply adding the total rated power generation capacity as described above has secured excessive power to prevent overload.

今後、太陽光発電機のさらなる増加が予想されることから、配電系統では連系するこれらの総発電量延いては実負荷を正確に把握して、無駄のない配電系統の運用を行うことが求められる。太陽光発電機の発電量を予測する技術としては、例えば特許文献1に、これから設置する太陽光発電機の発電量を、その設計情報と、その近隣の太陽光発電機の設計情報および発電量から算出された日射量とを用いて予測する技術が開示されている。   In the future, it is expected that the number of photovoltaic generators will increase further. Therefore, the distribution system will be able to accurately grasp the total load and the actual load, and operate the distribution system without waste. Desired. As a technique for predicting the power generation amount of a solar power generator, for example, in Patent Document 1, the power generation amount of a solar power generator to be installed in the future, its design information, design information of the neighboring solar power generator, and the power generation amount The technique which estimates using the solar radiation amount computed from this is disclosed.

特開2004−47875号公報Japanese Patent Application Laid-Open No. 2004-47875

上記のように、無駄のない配電系統の運用を行うためには、任意の配電区間に連系する複数の太陽光発電機の総発電量延いては実負荷を正確に把握する必要がある。むろん、従来からも日射量を計算または測定して、太陽光発電機の発電効率等を考慮して発電量を予測するシステムは数多く提案されている。しかし、上記特許文献1のような個々の太陽光発電機の発電量を予測する技術を適用した場合、配電区間に連系する太陽光発電機の発電量を1つずつ予測して積算することとなるため、極めて手間がかかる。また、個々の太陽光発電機の予測値の誤差が重畳されるためか、充分な精度を確保し得ない問題もある。   As described above, in order to operate the power distribution system without waste, it is necessary to accurately grasp the actual load by extending the total power generation amount of a plurality of solar power generators connected to an arbitrary power distribution section. Of course, many systems have been proposed in the past that calculate or measure the amount of solar radiation and predict the amount of power generation in consideration of the power generation efficiency of the solar power generator. However, when the technology for predicting the power generation amount of each individual solar power generator as in Patent Document 1 is applied, the power generation amount of the solar power generator connected to the distribution section is predicted and integrated one by one. Therefore, it is extremely troublesome. In addition, there is a problem that sufficient accuracy cannot be ensured because errors of predicted values of individual solar power generators are superimposed.

本発明は、このような課題に鑑みてなされたものであり、高精度で手間をかけずに、任意の配電区間に連系した複数の太陽光発電機の総発電量を予測可能な太陽光発電量予測方法、およびこれを適用した配電系統制御システムを提供することを目的とする。   The present invention has been made in view of such a problem, and is capable of predicting the total power generation amount of a plurality of solar power generators connected to an arbitrary power distribution section without taking time and effort with high accuracy. An object is to provide a power generation amount prediction method and a distribution system control system to which the method is applied.

上記課題を解決するために本発明者らは鋭意検討し、太陽光発電機の発電量と比例関係がある日射量に着目し、さらに簡単かつ高精度に発電量を予測する方法について検討した。そして、研究を重ねることにより、実負荷(区間潮流と総発電量の和)が一定と見なせる時間帯については実負荷から区間潮流を引いた残りを総発電量と考えることができるから、区間潮流の変動と日射量の変動から日射量と総発電量の関係を発電係数として導くことができ、この発電係数は他の時間帯にも適用可能であることを見出し、本発明を完成するに到った。   In order to solve the above problems, the present inventors have intensively studied, focused on the amount of solar radiation proportional to the amount of power generated by the solar power generator, and further studied a method for predicting the amount of power generated more easily and with high accuracy. As a result of repeated research, for the time zone in which the actual load (sum of the tidal current and total power generation) is considered constant, the remainder of subtracting the tidal current from the actual load can be considered as the total power generation. The relationship between the amount of solar radiation and the total amount of power generation can be derived as the power generation coefficient from the fluctuation of the solar radiation and the amount of solar radiation, and it has been found that this power generation coefficient can be applied to other time zones, and the present invention has been completed. It was.

すなわち、本発明にかかる太陽光発電量予測方法の代表的な構成は、対象とする配電区間において、この配電区間に備えられるセンサ内蔵自動開閉器が計測した区間潮流と、この配電区間に備えられる日射計が計測した日射量とを所定時間ごとに取得してデータテーブルに記憶させる情報取得ステップと、配電区間の実負荷をほぼ一定と見なせる時間帯の区間潮流および日射量をデータテーブルから読み出し、次式「区間潮流=発電係数×日射量+補助係数」に基づき発電係数を回帰分析によって算出する発電係数算出ステップと、予測したい時点の日射量に発電係数を乗じることにより、その時間帯の配電区間に連系した複数の太陽光発電機の総発電量を予測する総発電量予測ステップと、を含むことを特徴とする。   That is, the typical configuration of the photovoltaic power generation amount prediction method according to the present invention is provided in the distribution section as a target, and the section power flow measured by the sensor built-in automatic switch provided in the distribution section and the distribution section. An information acquisition step of acquiring the amount of solar radiation measured by the pyrrometer every predetermined time and storing it in the data table, and reading out the section current and amount of solar radiation in the time zone in which the actual load of the distribution section can be regarded as almost constant, from the data table, A power generation coefficient calculation step that calculates the power generation coefficient by regression analysis based on the following formula: “section power flow = power generation coefficient x solar radiation amount + auxiliary coefficient”, and by multiplying the solar radiation amount at the time of prediction by the power generation coefficient, power distribution in that time zone A total power generation amount prediction step for predicting the total power generation amount of a plurality of solar power generators linked to the section.

実負荷が一定であるなら、区間潮流と配電系統に連系した複数の太陽光発電機の総発電量との間には、一方が増えれば他方が減る関係が生じる。上記構成によれば、区間潮流と複数の太陽光発電機の総発電量に比例する日射量とを用いて回帰分析を行い、複数の太陽光発電機の総発電量と日射量との関係を示す発電係数を求めることができる。この発電係数は他の時間帯にも適用することができ、天候にも依存しないため、予測したい時点の日射量から、その時間帯における太陽光発電機の総発電量の予測値を算出することができる。   If the actual load is constant, there is a relationship between the tidal current and the total power generation amount of a plurality of photovoltaic generators linked to the distribution system, where one increases and the other decreases. According to the above configuration, a regression analysis is performed using the section tidal current and the amount of solar radiation proportional to the total amount of power generated by a plurality of solar power generators, and the relationship between the total amount of power generated by the plurality of solar power generators and the amount of solar radiation is obtained. The power generation coefficient shown can be determined. Since this power generation coefficient can be applied to other time zones and does not depend on the weather, the predicted value of the total power generation amount of the solar power generator in that time zone should be calculated from the amount of solar radiation at the time of the forecast. Can do.

この方法では、配電区間に連系する太陽光発電機の発電量を個々として捉えず、複数の太陽光発電機の全体の総発電量として捉えている。そのため、個々の太陽光発電機の情報(定格発電容量、設置条件等)を必要とせず、複数の太陽光発電機の総発電量を高い精度で予測することができる。   In this method, the power generation amount of the solar power generator connected to the distribution section is not considered as individual, but as the total power generation amount of the plurality of solar power generators as a whole. Therefore, information (rated power generation capacity, installation conditions, etc.) of individual solar power generators is not required, and the total power generation amount of a plurality of solar power generators can be predicted with high accuracy.

上記センサ内蔵自動開閉器が計測した区間潮流の増減に対して、日射計が計測した日射量が一定の比率で増減しているかどうかに基づいて、配電区間の実負荷をほぼ一定と見なせる時間帯を決定するとよい。これにより、配電区間の実負荷をほぼ一定と見なせる時間帯を適切に決定することができる。   The time period during which the actual load in the distribution section can be considered to be almost constant based on whether the amount of solar radiation measured by the pyranometer is increasing or decreasing at a constant rate with respect to the increase or decrease in the section power flow measured by the sensor built-in automatic switch It is good to decide. Thereby, the time slot | zone which can consider that the real load of a power distribution area is substantially constant can be determined appropriately.

上記配電区間に複数の日射計が備えられており、上記情報取得ステップでは、この複数の日射計の計測値を平均化した日射量を取得するとよい。複数の地点で計測された日射量を平均化することで、日射量取得地点を局所的に雲が通過したりする影響を緩和することができる。よって、配電区間の日射量としてより適切(正確)な値を採用することができ、複数の太陽光発電機の総発電量をさらに高精度で予測することができる。   A plurality of pyranometers are provided in the power distribution section, and in the information acquisition step, the amount of solar radiation obtained by averaging the measurement values of the plural pyranometers may be acquired. By averaging the amount of solar radiation measured at a plurality of points, it is possible to mitigate the effect of clouds passing locally through the solar radiation amount acquisition point. Therefore, a more appropriate (accurate) value can be adopted as the amount of solar radiation in the distribution section, and the total power generation amount of a plurality of solar power generators can be predicted with higher accuracy.

本発明にかかる配電系統制御システムの代表的な構成は、対象とする配電区間において、この配電区間に備えられるセンサ内蔵自動開閉器が計測した区間潮流と、この配電区間に備えられる日射計が計測した日射量とを所定時間ごとに取得する情報取得部と、取得した区間潮流および日射量が記憶されるデータテーブルを有する記憶部と、区間潮流の増減に対して日射量が一定の比率で増減している時間帯を、配電区間の実負荷がほぼ一定な時間帯と判定する時間帯判定部と、実負荷がほぼ一定と判定された時間帯の区間潮流および日射量をデータテーブルから読み出し、次式「区間潮流=発電係数×日射量+補助係数」に基づき発電係数を回帰分析によって算出する発電係数算出部と、予測したい時点の日射量に発電係数を乗じることにより、その時間帯の配電区間に連系した複数の太陽光発電機の総発電量を予測する総発電量予測部と、総発電量予測部が予測した総発電量に基づいて、配電系統の運用を行う切替制御部と、を備えることを特徴とする。   The representative configuration of the distribution system control system according to the present invention is that the current flow measured by the sensor built-in automatic switch provided in the power distribution section and the pyranometer provided in the power distribution section are measured. An information acquisition unit that acquires the amount of solar radiation obtained every predetermined time, a storage unit that has a data table that stores the acquired section current and amount of solar radiation, and the amount of solar radiation increases and decreases at a constant rate A time zone determination unit that determines that the actual load of the power distribution section is a substantially constant time zone, and a section current and solar radiation amount of the time zone in which the actual load is determined to be substantially constant are read from the data table, A power generation coefficient calculation unit that calculates the power generation coefficient by regression analysis based on the following formula: “Section tidal current = Power generation coefficient x Solar radiation amount + Auxiliary coefficient”, and Multiplying the solar radiation amount at the time of prediction by the power generation coefficient Operating the distribution system based on the total power generation prediction unit that predicts the total power generation amount of a plurality of photovoltaic generators connected to the distribution section in that time zone, and the total power generation amount predicted by the total power generation prediction unit And a switching control unit for performing the above.

上記構成によれば、配電区間に連系する複数の太陽光発電機の総発電量を正確に把握(予測)して、無駄のない配電系統の運用を行うことができる。なお、上述した太陽光発電量予測方法における技術的思想に対応する構成要素やその説明は、当該配電系統制御システムにも適用可能である。   According to the above configuration, it is possible to accurately grasp (predict) the total power generation amount of a plurality of solar power generators linked to the power distribution section, and to operate the power distribution system without waste. In addition, the component corresponding to the technical idea in the photovoltaic power generation amount prediction method mentioned above and its description are applicable also to the said distribution system control system.

本発明によれば、高精度で手間をかけずに、任意の配電区間に連系した複数の太陽光発電機の総発電量を予測可能な太陽光発電量予測方法、およびこれを適用した配電系統制御システムを提供可能である。   According to the present invention, a solar power generation amount prediction method capable of predicting the total power generation amount of a plurality of solar power generators linked to an arbitrary power distribution section without taking time and effort with high accuracy, and power distribution using the same A system control system can be provided.

本発明の実施形態にかかる配電系統制御システムが適用される配電系統を示す図である。It is a figure which shows the power distribution system with which the power distribution system control system concerning embodiment of this invention is applied. 図1に示す配電系統制御システムの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the power distribution system control system shown in FIG. 図1に示す配電系統制御システムの動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the power distribution system control system shown in FIG. 実負荷をほぼ一定と見なせる時間帯において、配電区間に連系する太陽光発電機の総発電量と日射量との関係を示す図である。It is a figure which shows the relationship between the total electric power generation amount and solar radiation amount of the solar power generator linked to a power distribution area in the time slot | zone which can consider that an actual load is substantially constant. 快晴日である平日の配電区間の実負荷の変動を例示する図である。It is a figure which illustrates the fluctuation | variation of the real load of the distribution section of the weekday which is a fine day.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示に過ぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.

[配電系統]
図1は、本発明の実施形態にかかる配電系統制御システム100が適用される配電系統120を示す図である。図1に示すように、変電所124a、124bから送り出された電力は、配電系統120によって、複数の一般家庭128a〜128c等に供給される。一般家庭128b、128cには、太陽光発電機130a、130bが備えられており、配電系統120に連系している。ここでは、太陽光発電機130a、130bに隣接して、日射量を計測可能な日射計132a、132bが備えられる。
[Distribution system]
FIG. 1 is a diagram illustrating a power distribution system 120 to which a power distribution system control system 100 according to an embodiment of the present invention is applied. As shown in FIG. 1, the electric power sent from the substations 124 a and 124 b is supplied to a plurality of general households 128 a to 128 c by the power distribution system 120. The general households 128b and 128c are provided with solar power generators 130a and 130b, and are connected to the power distribution system 120. Here, the solar generators 132a and 132b which can measure the amount of solar radiation are provided adjacent to the solar power generators 130a and 130b.

配電系統120には、配電系統制御システム100によって制御される複数のセンサ内蔵自動開閉器126a〜126hが備えられる。センサ内蔵自動開閉器126a〜126hは、配電線路の開閉(ON/OFF)を行う区間開閉器であって、区間潮流(電流)を計測するセンサ機能を有している。なお、図1中、三角形で図示されるセンサ内蔵自動開閉器126a〜126fは区間自動開閉器であって、四角形で図示されるセンサ内蔵自動開閉器126g、126hは連系自動開閉器126g、126hである。   The power distribution system 120 includes a plurality of sensor built-in automatic switches 126 a to 126 h controlled by the power distribution system control system 100. The sensor built-in automatic switches 126a to 126h are section switches that open and close (ON / OFF) the distribution line, and have a sensor function that measures section current (current). In FIG. 1, sensor built-in automatic switches 126a to 126f illustrated by triangles are section automatic switches, and sensor built-in automatic switches 126g and 126h illustrated by squares are interconnected automatic switches 126g and 126h. It is.

例えば、配電区間122で事故が発生すると、その近傍のセンサ内蔵自動開閉器126eおよびセンサ内蔵自動開閉器126fが閉じられ電力供給が停止する。事故発生前に、変電所124aから電力が供給されていた場合には、センサ内蔵自動開閉器126f下流側の電力供給も停止する。センサ内蔵自動開閉器126f下流側への電力供給は、センサ内蔵自動開閉器126hを切り替えて他の変電所124bから逆送電することで、早期に復旧し得る。   For example, when an accident occurs in the power distribution section 122, the sensor built-in automatic switch 126e and the sensor built-in automatic switch 126f in the vicinity thereof are closed and the power supply is stopped. If power is supplied from the substation 124a before the accident occurs, the power supply downstream of the sensor built-in automatic switch 126f is also stopped. The power supply to the downstream side of the sensor built-in automatic switch 126f can be restored early by switching the sensor built-in automatic switch 126h and performing reverse power transmission from the other substation 124b.

配電区間122の負荷(見かけ上の負荷)は、その上流側のセンサ内蔵自動開閉器126eの区間潮流の計測値から、下流側のセンサ内蔵自動開閉器126fの区間潮流の計測値を差し引いて送電電圧を乗じ、求めることができる。しかし、配電区間122には複数の太陽光発電機130a、130bが連系しているため、このような単純な計算では真の負荷(実負荷)を求めることができない。   The load (apparent load) in the distribution section 122 is transmitted by subtracting the measured value of the section power flow of the sensor built-in automatic switch 126f on the downstream side from the measured value of the section power flow of the sensor built-in automatic switch 126e on the upstream side. Can be obtained by multiplying the voltage. However, since a plurality of solar power generators 130a and 130b are connected to the power distribution section 122, a true load (actual load) cannot be obtained by such a simple calculation.

そのため、配電系統制御システム100では、配電区間122に連系する複数の太陽光発電機130a、130bの総発電量を予測して、見かけ上の負荷にこれを足すことで実負荷を把握する。そして、この実負荷に基づき、センサ内蔵自動開閉器126a〜126hを制御して、配電系統120の運用(配電線路の切替など)を行う。   Therefore, in the power distribution system control system 100, the total power generation amount of the plurality of solar power generators 130a and 130b connected to the power distribution section 122 is predicted, and the actual load is grasped by adding this to the apparent load. And based on this actual load, the sensor built-in automatic switches 126a to 126h are controlled to operate the distribution system 120 (switching of distribution lines, etc.).

[配電系統制御システム]
図2は、配電系統制御システム100の概略構成を示すブロック図である。図3は、配電系統制御システム100の動作を説明するフローチャートである。図2に示すように、配電系統制御システム100は、システム制御部102および記憶部104を含んで構成されるコンピュータシステムである。
[Distribution system control system]
FIG. 2 is a block diagram illustrating a schematic configuration of the power distribution system control system 100. FIG. 3 is a flowchart for explaining the operation of the power distribution system control system 100. As shown in FIG. 2, the power distribution system control system 100 is a computer system that includes a system control unit 102 and a storage unit 104.

システム制御部102は、中央処理装置(CPU:Central Processing Unit)を含む半導体集積回路であって、配電系統制御システム100全体の管理、制御を行う。記憶部104は、ROM、RAM、EEPROM、不揮発性RAM、フラッシュメモリ、HDD等で構成され、システムで利用されるプログラムや各種データを記憶する。記憶部104に備えられたデータテーブル104aには、センサ内蔵自動開閉器126a〜126hが計測した区間潮流、および配電区間122の日射計132a、132bが計測した日射量が所定時間ごと(例えば、1分ごと)に記憶されている。   The system control unit 102 is a semiconductor integrated circuit including a central processing unit (CPU) and manages and controls the entire power distribution system control system 100. The storage unit 104 includes a ROM, RAM, EEPROM, nonvolatile RAM, flash memory, HDD, and the like, and stores programs and various data used in the system. In the data table 104a provided in the storage unit 104, the section tide measured by the sensor built-in automatic switches 126a to 126h and the amount of solar radiation measured by the solar meters 132a and 132b in the power distribution section 122 are set every predetermined time (for example, 1 Every minute).

また、配電系統制御システム100には、入力部106および出力部108が備えられている。入力部106は、キーボードやマウス、タッチパネル、あるいはファイル入出力装置やネットワークを通じたデータ通信等により、外部からシステムへ所定の情報を取り込む。出力部108は、ディスプレイやプリンタ等で構成され、使用者に情報を表示したり、印刷を行ったりする。また、出力内容をデータとして記録媒体に保存したり、ネットワークを通じたデータ通信やウェブ表示などを行ったりすることも可能である。   In addition, the power distribution system control system 100 includes an input unit 106 and an output unit 108. The input unit 106 takes in predetermined information from the outside to the system by a keyboard, a mouse, a touch panel, a file input / output device, data communication through a network, or the like. The output unit 108 includes a display, a printer, and the like, and displays information to the user and performs printing. It is also possible to save the output content as data in a recording medium, or to perform data communication or web display over a network.

以下、図3のフローチャートに則って、配電系統制御システム100の情報取得部110、時間帯判定部112、発電係数算出部114、総発電量予測部116および切替制御部118について説明する。図3に示すように、配電系統制御システム100は配電系統120の運用のために(配電系統運用ステップ142)、情報取得ステップ134、時間帯判定ステップ136および発電係数算出ステップ138によって、配電区間122に連系する太陽光発電機130a、130bの総発電量を予測する(総発電量予測ステップ140)。   Hereinafter, the information acquisition unit 110, the time zone determination unit 112, the power generation coefficient calculation unit 114, the total power generation amount prediction unit 116, and the switching control unit 118 of the power distribution system control system 100 will be described with reference to the flowchart of FIG. As shown in FIG. 3, the power distribution system control system 100 uses the information acquisition step 134, the time zone determination step 136, and the power generation coefficient calculation step 138 to operate the power distribution system 120 (power distribution system operation step 142). The total power generation amount of the solar power generators 130a and 130b connected to the power generator is predicted (total power generation amount prediction step 140).

情報取得ステップ134では、情報取得部110が、センサ内蔵自動開閉器126a〜126hが計測した区間潮流と、日射計132a、132bが計測した日射量とを所定時間毎に取得して、時刻(時間帯)に関連付けてデータテーブル104aに記憶させる。すなわち、所定時間ごとの対象配電区間122の区間潮流と日射量との変遷を記憶させる。   In the information acquisition step 134, the information acquisition unit 110 acquires the interval tide measured by the sensor built-in automatic switches 126a to 126h and the amount of solar radiation measured by the pyranometers 132a and 132b every predetermined time, and the time (time Associated with the band) and stored in the data table 104a. That is, the transition of the section power flow and the amount of solar radiation of the target distribution section 122 every predetermined time is stored.

本実施形態では、情報取得部110が配電区間122に備えられた複数の日射計132a、132bの計測値を平均化し、その平均化した日射量をデータテーブル104aに記憶させる。複数の地点で計測された日射量を平均化することで、日射量取得地点を局所的に雲が通過したりする影響を緩和することができる。よって、配電区間122の日射量としてより適切(正確)な値を採用することができる。   In the present embodiment, the information acquisition unit 110 averages the measured values of the plurality of pyranometers 132a and 132b provided in the power distribution section 122, and stores the averaged solar radiation amount in the data table 104a. By averaging the amount of solar radiation measured at a plurality of points, it is possible to mitigate the effect of clouds passing locally through the solar radiation amount acquisition point. Therefore, a more appropriate (accurate) value can be adopted as the amount of solar radiation in the power distribution section 122.

時間帯判定ステップ136では、時間帯判定部112が、データテーブル104aに記憶された所定時間ごとの区間潮流と日射量とを読み出す。そして、区間潮流の増減に対して日射量が一定の比率で増減している時間帯を見つけ出し、配電区間122の実負荷がほぼ一定な時間帯を判定(決定)する。   In the time zone determination step 136, the time zone determination unit 112 reads the section tide and the amount of solar radiation for each predetermined time stored in the data table 104a. Then, a time zone in which the amount of solar radiation increases and decreases at a constant rate with respect to the increase and decrease in the section tide is found, and a time zone in which the actual load in the power distribution section 122 is substantially constant is determined (determined).

図4は、実負荷をほぼ一定と見なせる時間帯において、配電区間122に連系する太陽光発電機130a、130bの総発電量と日射量との関係を示す図である。図4に示すように、実負荷がほぼ一定な時間帯では、区間潮流と日射量とが逆比例の関係にある。これは、実負荷が一定の場合には、区間潮流は日射量に比例する太陽光発電機130a、130bの総発電量を補うように増減するためである。   FIG. 4 is a diagram illustrating a relationship between the total power generation amount and solar radiation amount of the solar power generators 130a and 130b connected to the power distribution section 122 in a time zone in which the actual load can be regarded as substantially constant. As shown in FIG. 4, in a time zone where the actual load is almost constant, the section tide and the amount of solar radiation are in an inversely proportional relationship. This is because, when the actual load is constant, the section tidal current increases or decreases to compensate for the total power generation amount of the solar power generators 130a and 130b that is proportional to the solar radiation amount.

なお、図4では、「快晴日」である「平日」の「13時〜15時」の区間潮流および日射量をプロットしている。図5は、快晴日である平日の配電区間122の実負荷の変動を例示する図である。図5に例示するように、快晴日である平日の13時〜15時の実負荷は実際にほぼ一定となる。   In FIG. 4, the section tide and the amount of solar radiation of “13:00 to 15:00” of “weekdays” that are “sunny days” are plotted. FIG. 5 is a diagram exemplifying fluctuations in the actual load in the distribution section 122 on weekdays that are sunny days. As illustrated in FIG. 5, the actual load from 13:00 to 15:00 on weekdays, which is a sunny day, is actually substantially constant.

図3のフローチャートに戻り、発電係数算出ステップ138では、発電係数算出部114が、配電区間122の実負荷をほぼ一定と見なせる時間帯の区間潮流および日射量をデータテーブル104aから読み出す。ここで、式1に示すように、実負荷は、区間潮流と太陽光発電機130a、130bの総発電量の和として考えることができる。
実負荷=区間潮流+太陽光発電機の総発電量 …(式1)
Returning to the flowchart of FIG. 3, in the power generation coefficient calculation step 138, the power generation coefficient calculation unit 114 reads, from the data table 104a, the section power flow and the amount of solar radiation in the time zone in which the actual load in the power distribution section 122 can be regarded as substantially constant. Here, as shown in Expression 1, the actual load can be considered as the sum of the section power flow and the total power generation amount of the solar power generators 130a and 130b.
Actual load = section tidal current + total amount of power generated by solar power generator (Formula 1)

一方、太陽光発電機130a、130bの総発電量は日射量に依存して増減するため、式2のように表すことができる。
太陽光発電機の総発電量=未知の係数×日射量 …(式2)
On the other hand, since the total power generation amount of the solar power generators 130a and 130b increases and decreases depending on the solar radiation amount, it can be expressed as Equation 2.
Total amount of power generated by photovoltaic generators = unknown coefficient x amount of solar radiation (Formula 2)

式2を式1に代入し、また一定である実負荷を定数として、実負荷を包含する定数を補助係数と表現する。また、未知の係数を符号を逆転させて発電係数とする。すると、下記の式3のように表せる。そして、式3に基づいて、発電係数および補助係数を回帰分析によって算出する。すなわち、区間潮流と日射量との関係を示す1次近似式(図4参照)を導出する。
区間潮流=発電係数×日射量+補助係数 …(式3)
Expression 2 is substituted into Expression 1, and a constant actual load is defined as a constant, and a constant including the actual load is expressed as an auxiliary coefficient. In addition, the unknown coefficient is reversed in sign to obtain a power generation coefficient. Then, it can be expressed as Equation 3 below. Then, based on Equation 3, the power generation coefficient and the auxiliary coefficient are calculated by regression analysis. That is, a first-order approximate expression (see FIG. 4) showing the relationship between the section tide and the amount of solar radiation is derived.
Sectional tide = power generation coefficient x solar radiation + auxiliary coefficient (Equation 3)

このとき、発電係数算出部114は、配電区間122に連系した太陽光発電機130a、130bの総発電量を予測する予測日に至近の日であって、時間帯判定部112が実負荷をほぼ一定と判定した時間帯の区間潮流および日射量を読み出すとよい。なるべく、至近の日の区間潮流および日射量を使用することで、精度を高めるためである。プロット数(データ数)が足りていればある一日のその時間帯の区間潮流および日射量のみでよいし、プロット数(データ数)が足りていなければ複数の日のその時間帯の区間潮流および日射量を使用するとよい。   At this time, the power generation coefficient calculation unit 114 is a day closest to the prediction date for predicting the total power generation amount of the solar power generators 130a and 130b linked to the power distribution section 122, and the time zone determination unit 112 determines the actual load. It is preferable to read out the tidal current and the amount of solar radiation in the time zone determined to be almost constant. This is to improve the accuracy by using the tidal current and the amount of solar radiation on the nearest day as much as possible. If the number of plots (the number of data) is sufficient, only the current and the amount of solar radiation in that time zone for a certain day is needed. If the number of plots (the number of data) is not enough, the current in the time zone of that time zone for multiple days And use solar radiation.

なお、時間帯判定部112を設けずに、例えば、「快晴日」である「平日」の「13時〜15時」は実負荷がほぼ一定と仮定(決めうち)して、発電係数算出部114がこれらの条件を満たす区間潮流および日射量を読み出すように構成してもよい。このような場合、入力部106より気象情報(快晴か否か)や暦情報(平日、休日情報)がシステムに入力され、データテーブル104aに蓄積される区間潮流および日射量に、そのときの時刻(時間帯)に加え天候や暦も関連付けて格納される。   In addition, without providing the time zone determination unit 112, for example, “13:00 to 15:00” of “weekdays” that are “sunny days” is assumed (determined) that the actual load is almost constant, and the power generation coefficient calculation unit 114 may be configured to read the section tide and the amount of solar radiation that satisfy these conditions. In such a case, weather information (whether clear or not) and calendar information (weekdays, holiday information) are input to the system from the input unit 106, and the current time and the amount of current in the tidal current and solar radiation accumulated in the data table 104a are displayed. In addition to (time zone), weather and calendar are also stored in association with each other.

総発電量予測ステップ140では、総発電量予測部116が、予測したい時点の日射量に上記で求めた発電係数を乗じて、その時間帯の配電区間122に連系した複数の太陽光発電機130a、130bの総発電量を予測する(予測値を算出する)。予測したい時点の日射量とは、例えば、管理者が入力部106より指定した時点(任意の時点)について、情報取得部110が日射計132a、132bより取得した日射量とすることができる。発電係数は、そのときの日射量に対して、どれくらい太陽光発電機130a、130bが発電するかを示すものであるから、時間帯や天候に依存することなく使用することができる。   In the total power generation amount prediction step 140, the total power generation amount prediction unit 116 multiplies the solar radiation amount at the time of the prediction by the power generation coefficient obtained above, and a plurality of solar power generators linked to the power distribution section 122 in that time zone. The total power generation amount of 130a and 130b is predicted (predicted value is calculated). The amount of solar radiation to be predicted can be, for example, the amount of solar radiation acquired by the information acquisition unit 110 from the solar meters 132a and 132b at a time point (arbitrary time point) designated by the administrator from the input unit 106. Since the power generation coefficient indicates how much the solar power generators 130a and 130b generate electricity with respect to the amount of solar radiation at that time, the power generation coefficient can be used without depending on the time zone or the weather.

このようにして配電区間122に連系した複数の太陽光発電機130a、130bの総発電量を求めることで、非常に高い精度で総発電量を予測することができる。これは、配電区間122に連系する太陽光発電機130a、130bの発電量を個々として捉えず、複数の太陽光発電機130a、130bの全体の総発電量として捉えているためである。また、複数の日射計132a、132bの計測値の平均値を日射量として採用し、誤差を低減しているためでもある。このように、個々の太陽光発電機130a、130bの情報(定格発電容量、設置条件等)を必要とすることもなく、予測値算出までにかかる労力(必要な情報の収集等)や計算も軽減される。   Thus, by calculating | requiring the total power generation amount of the several solar power generators 130a and 130b linked to the power distribution area 122, total power generation amount can be estimated with very high precision. This is because the power generation amount of the solar power generators 130a and 130b connected to the power distribution section 122 is not regarded as individual, but as the total power generation amount of the plurality of solar power generators 130a and 130b. Moreover, it is also because the average value of the measured values of the plurality of pyranometers 132a and 132b is adopted as the amount of solar radiation to reduce errors. As described above, the information (rated power generation capacity, installation conditions, etc.) of the individual solar power generators 130a, 130b is not required, and labor (collection of necessary information, etc.) and calculation required to calculate the predicted value are also possible. It is reduced.

表1の左側では、実負荷をほぼ一定と見なせる「快晴日」の「平日」の「13時〜15時」の区間潮流および日射量から発電係数を算出し、総発電量を求めた場合の予測精度を示している。表1の右側では、一年間の6時〜18時の区間潮流および日射量から発電係数を算出し、総発電量を求めた場合の予測精度を示している。表1に示すように、実負荷をほぼ一定と見なせる時間帯の区間潮流および日射量を用いて配電区間122に連系された太陽光発電機130a、130bの総発電量を予測することで、一年間の6時〜18時の区間潮流および日射量を用いて(一年間の平均値を取って)総発電量を求める場合よりも、大幅に予測精度が向上する。   On the left side of Table 1, the power generation coefficient is calculated from the tidal current and the amount of solar radiation from “13:00 to 15:00” on “weekdays” on “sunny days” where the actual load can be regarded as almost constant, and the total power generation is calculated. The prediction accuracy is shown. The right side of Table 1 shows the prediction accuracy when the power generation coefficient is calculated based on the tidal current and solar radiation from 6 o'clock to 18 o'clock in a year and the total power generation amount is obtained. As shown in Table 1, by predicting the total power generation amount of the solar power generators 130a and 130b connected to the power distribution section 122 using the section power flow and the amount of solar radiation in a time zone in which the actual load can be regarded as almost constant, The prediction accuracy is greatly improved as compared with the case where the total power generation amount is obtained by using the tidal current and the amount of solar radiation from 6 o'clock to 18 o'clock in the year (taking the average value for the year).

Figure 0005505191
Figure 0005505191

配電系統運用ステップ142では、切替制御部118が、高い精度で算出される太陽光発電機130a、130bの総発電量の予測値に基づき実負荷を算出する。そして、センサ内蔵自動開閉器126a〜126hを制御して、その実負荷に基づき無駄のない配電系統120の運用を行う。   In the distribution system operation step 142, the switching control unit 118 calculates the actual load based on the predicted value of the total power generation amount of the solar power generators 130a and 130b calculated with high accuracy. Then, the automatic switches 126a to 126h with built-in sensors are controlled to operate the power distribution system 120 without waste based on the actual load.

以上、添付図面を参照しながら本発明の好適な実施形態について説明した。上記構成によれば、高精度で手間をかけずに、任意の配電区間122に連系した複数の太陽光発電機130a、130bの総発電量を予測することができる。なお、本発明は上述した例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described above with reference to the accompanying drawings. According to the above configuration, it is possible to predict the total power generation amount of the plurality of solar power generators 130a and 130b connected to an arbitrary power distribution section 122 without taking time and effort with high accuracy. Needless to say, the present invention is not limited to the examples described above. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

本発明は、任意の配電区間に連系する複数の太陽光発電機の総発電量を予測する太陽光発電量予測方法、およびこれを利用した配電系統制御システムとして利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used as a solar power generation amount prediction method for predicting the total power generation amount of a plurality of solar power generators linked to an arbitrary power distribution section, and a distribution system control system using the method.

100…配電系統制御システム、102…システム制御部、104…記憶部、104a…データテーブル、106…入力部、108…出力部、110…情報取得部、112…時間帯判定部、114…発電係数算出部、116…総発電量予測部、118…切替制御部、120…配電系統、122…配電区間、124a、124b…変電所、126a〜126h…センサ内蔵自動開閉器、128a〜128c…一般家庭、130a、130b…太陽光発電機、132a、132b…日射計、134…情報取得ステップ、136…時間帯判定ステップ、138…発電係数算出ステップ、140…総発電量予測ステップ、142…配電系統運用ステップ DESCRIPTION OF SYMBOLS 100 ... Distribution system control system, 102 ... System control part, 104 ... Memory | storage part, 104a ... Data table, 106 ... Input part, 108 ... Output part, 110 ... Information acquisition part, 112 ... Time zone determination part, 114 ... Power generation coefficient Calculation unit 116 ... Total power generation amount prediction unit 118 ... Switching control unit 120 ... Distribution system 122 ... Distribution section 124a, 124b Substation 126a-126h Automatic sensor built-in switch 128a-128c General household , 130a, 130b ... solar generator, 132a, 132b ... pyranometer, 134 ... information acquisition step, 136 ... time zone determination step, 138 ... power generation coefficient calculation step, 140 ... total power generation amount prediction step, 142 ... distribution system operation Step

Claims (4)

対象とする配電区間において、該配電区間に備えられるセンサ内蔵自動開閉器が計測した区間潮流と、該配電区間に備えられる日射計が計測した日射量とを所定時間ごとに取得してデータテーブルに記憶させる情報取得ステップと、
前記配電区間の実負荷をほぼ一定と見なせる時間帯の前記区間潮流および前記日射量を前記データテーブルから読み出し、次式「区間潮流=発電係数×日射量+補助係数」に基づき発電係数を回帰分析によって算出する発電係数算出ステップと、
予測したい時点の日射量に前記発電係数を乗じることにより、その時間帯の前記配電区間に連系した複数の太陽光発電機の総発電量を予測する総発電量予測ステップと、
を含むことを特徴とする太陽光発電量予測方法。
In the target power distribution section, the section current measured by the sensor built-in automatic switch provided in the power distribution section and the amount of solar radiation measured by the pyranometer provided in the power distribution section are acquired every predetermined time and stored in the data table. An information acquisition step to be stored;
The section current and the amount of solar radiation in the time zone in which the actual load of the distribution section can be regarded as almost constant are read from the data table, and the power generation coefficient is regressively analyzed based on the following formula: "section power flow = power generation coefficient x solar radiation amount + auxiliary coefficient" A power generation coefficient calculation step calculated by:
A total power generation amount prediction step of predicting the total power generation amount of a plurality of solar power generators linked to the power distribution section in that time zone by multiplying the solar radiation amount at the time of prediction by the power generation coefficient;
A method for predicting the amount of photovoltaic power generation, comprising:
前記センサ内蔵自動開閉器が計測した区間潮流の増減に対して、前記日射計が計測した日射量が一定の比率で増減しているかどうかに基づいて、前記配電区間の実負荷をほぼ一定と見なせる時間帯を決定することを特徴とする請求項1に記載の太陽光発電量予測方法。   Based on whether or not the amount of solar radiation measured by the pyranometer is increasing or decreasing at a constant rate with respect to the increase or decrease of the section power flow measured by the sensor built-in automatic switch, the actual load of the distribution section can be regarded as almost constant. The method for predicting the amount of photovoltaic power generation according to claim 1, wherein a time zone is determined. 前記配電区間に複数の日射計が備えられており、前記情報取得ステップでは、該複数の日射計の計測値を平均化した日射量を取得することを特徴とする請求項1または2に記載の太陽光発電量予測方法。   The solar power meter according to claim 1 or 2, wherein a plurality of pyranometers are provided in the power distribution section, and in the information acquisition step, a solar radiation amount obtained by averaging measured values of the plural pyranometers is acquired. Solar power generation forecasting method. 対象とする配電区間において、該配電区間に備えられるセンサ内蔵自動開閉器が計測した区間潮流と、該配電区間に備えられる日射計が計測した日射量とを所定時間ごとに取得する情報取得部と、
前記取得した区間潮流および日射量が記憶されるデータテーブルを有する記憶部と、
前記区間潮流の増減に対して前記日射量が一定の比率で増減している時間帯を、前記配電区間の実負荷がほぼ一定な時間帯と判定する時間帯判定部と、
前記実負荷がほぼ一定と判定された時間帯の前記区間潮流および前記日射量を前記データテーブルから読み出し、次式「区間潮流=発電係数×日射量+補助係数」に基づき発電係数を回帰分析によって算出する発電係数算出部と、
予測したい時点の日射量に前記発電係数を乗じることにより、その時間帯の前記配電区間に連系した複数の太陽光発電機の総発電量を予測する総発電量予測部と、
前記総発電量予測部が予測した総発電量に基づいて、配電系統の運用を行う切替制御部と、
を備えることを特徴とする配電系統制御システム。
An information acquisition unit that acquires a current flow measured by a sensor built-in automatic switch provided in the power distribution section and a solar radiation amount measured by a pyranometer provided in the power distribution section at a predetermined time in a target power distribution section; ,
A storage unit having a data table in which the acquired section tide and solar radiation are stored;
A time zone determination unit that determines a time zone in which the amount of solar radiation is increasing or decreasing at a constant rate with respect to an increase or decrease in the zone power flow as a time zone in which the actual load of the power distribution zone is substantially constant;
The section power flow and the solar radiation amount in the time zone in which the actual load is determined to be substantially constant are read from the data table, and the power generation coefficient is calculated by regression analysis based on the following equation “section power flow = power generation coefficient × sun radiation amount + auxiliary coefficient”. A power generation coefficient calculation unit to calculate,
A total power generation amount prediction unit that predicts the total power generation amount of a plurality of solar power generators linked to the power distribution section of the time zone by multiplying the solar radiation amount at the time of prediction by the power generation coefficient;
Based on the total power generation amount predicted by the total power generation amount prediction unit, a switching control unit that operates the distribution system,
A distribution system control system comprising:
JP2010181650A 2010-08-16 2010-08-16 Photovoltaic power generation amount prediction method and distribution system control system Active JP5505191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010181650A JP5505191B2 (en) 2010-08-16 2010-08-16 Photovoltaic power generation amount prediction method and distribution system control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010181650A JP5505191B2 (en) 2010-08-16 2010-08-16 Photovoltaic power generation amount prediction method and distribution system control system

Publications (2)

Publication Number Publication Date
JP2012044740A JP2012044740A (en) 2012-03-01
JP5505191B2 true JP5505191B2 (en) 2014-05-28

Family

ID=45900420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010181650A Active JP5505191B2 (en) 2010-08-16 2010-08-16 Photovoltaic power generation amount prediction method and distribution system control system

Country Status (1)

Country Link
JP (1) JP5505191B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157135A1 (en) * 2012-04-20 2013-10-24 株式会社日立製作所 Power monitoring device and method
WO2014054107A1 (en) 2012-10-01 2014-04-10 富士通株式会社 Power distribution management device, pattern extraction method, and pattern extraction program
CN102946117B (en) * 2012-10-26 2014-12-17 广东电网公司电力调度控制中心 Method and system for optimizing starting sequence of power generators
WO2014129045A1 (en) 2013-02-19 2014-08-28 日本電気株式会社 Power flow control system and power flow control method
JP6193008B2 (en) * 2013-06-21 2017-09-06 株式会社東芝 Prediction system, prediction device, and prediction method
JP6489846B2 (en) * 2015-01-27 2019-03-27 関西電力株式会社 Photovoltaic power output estimation device, solar power output estimation system, and solar power output estimation method
JP6449670B2 (en) * 2015-02-16 2019-01-09 北陸電力株式会社 Method and apparatus for estimating photovoltaic power generation output
JP6547374B2 (en) * 2015-04-03 2019-07-24 富士電機株式会社 Power estimation apparatus and power estimation method
JP6548955B2 (en) * 2015-05-26 2019-07-24 東京電力ホールディングス株式会社 Support system for power generation estimation learning in photovoltaic power generation
JP6410962B2 (en) * 2015-11-26 2018-10-24 三菱電機株式会社 Distribution system management device, measuring device, distribution system management system, and power generation amount estimation method
CN107026473A (en) * 2017-05-06 2017-08-08 杨子琦 A kind of grid-connected control cabinet of novel intelligent economize on electricity
CN111861794B (en) * 2020-07-30 2024-04-12 国网能源研究院有限公司 Solar power generation capacity reliability acquisition method and device considering probability distribution

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3926616B2 (en) * 2001-12-12 2007-06-06 関西電力株式会社 Operating system of distribution system linked to distributed power supply
JP2010193594A (en) * 2009-02-17 2010-09-02 Tokyo Electric Power Co Inc:The Maximum power generation amount estimating method for photovoltaic power generation system, method for controlling power distribution system, and distribution system control apparatus
JP5493886B2 (en) * 2010-01-08 2014-05-14 富士電機株式会社 Photovoltaic power generation amount prediction system and solar power generation amount prediction method
JP4999947B2 (en) * 2010-03-17 2012-08-15 中国電力株式会社 Photovoltaic power generation output estimation method and solar power generation output estimation device
JP5606114B2 (en) * 2010-03-19 2014-10-15 株式会社東芝 Power generation amount prediction device, prediction method, and prediction program

Also Published As

Publication number Publication date
JP2012044740A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP5505191B2 (en) Photovoltaic power generation amount prediction method and distribution system control system
Wang et al. Operational optimization and demand response of hybrid renewable energy systems
Holttinen Impact of hourly wind power variations on the system operation in the Nordic countries
JP5493886B2 (en) Photovoltaic power generation amount prediction system and solar power generation amount prediction method
Zhu et al. The case for efficient renewable energy management in smart homes
US9286646B1 (en) Method for managing centralized power generation with the aid of a digital computer
JP2010193594A (en) Maximum power generation amount estimating method for photovoltaic power generation system, method for controlling power distribution system, and distribution system control apparatus
JP5638546B2 (en) Load estimation device
Zhang et al. The performance of a grid-tied microgrid with hydrogen storage and a hydrogen fuel cell stack
WO2017145462A1 (en) Power supply and demand prediction system, power supply and demand prediction method and power supply and demand prediction program
Jiménez-Castillo et al. Effects of smart meter time resolution when analyzing photovoltaic self-consumption system on a daily and annual basis
Oh et al. Energy-storage system sizing and operation strategies based on discrete Fourier transform for reliable wind-power generation
JP2010193605A (en) Load estimating method of power distribution section and power distribution system control method
JP5475632B2 (en) Cogeneration system, cogeneration control device, cogeneration control method, and program
Aristizábal et al. Experimental investigation of the performance of 6 kW BIPV system applied in laboratory building
Ayala-Gilardón et al. Influence of time resolution in the estimation of self-consumption and self-sufficiency of photovoltaic facilities
JP5565193B2 (en) Load prediction method for distribution section and distribution system control system
CN104025409A (en) Multi-inverter photovoltaic power generation system
KR20200114424A (en) Methods and apparatuses for operating power generator combined with heterogeneous renewable energy
Ma et al. Strategy comparison and techno-economic evaluation of a grid-connected photovoltaic-battery system
JP2012043857A (en) Bright and clear time determination device and photovoltaic power generation amount prediction system
Poti et al. Intelligent solar photovoltaic power forecasting
JP2014095941A (en) Photovoltaic power generation output estimation device
Schulte et al. Forecast-based charging strategy to prolong the lifetime of lithium-ion batteries in standalone PV battery systems in Sub-Saharan Africa
Yassin et al. Battery capacity estimation for building-integrated photovoltaic system: Design study of a Southern Norway ZEB house

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5505191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350