JP2016037662A - Carbon fiber electrode and method for producing the same - Google Patents

Carbon fiber electrode and method for producing the same Download PDF

Info

Publication number
JP2016037662A
JP2016037662A JP2014170934A JP2014170934A JP2016037662A JP 2016037662 A JP2016037662 A JP 2016037662A JP 2014170934 A JP2014170934 A JP 2014170934A JP 2014170934 A JP2014170934 A JP 2014170934A JP 2016037662 A JP2016037662 A JP 2016037662A
Authority
JP
Japan
Prior art keywords
electrode
carbon fiber
thermosetting resin
hho gas
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014170934A
Other languages
Japanese (ja)
Inventor
一純 冨吉
Kazusumi Tomiyoshi
一純 冨吉
美樹 川名
Miki Kawana
美樹 川名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AQUA DESIGN KK
Original Assignee
AQUA DESIGN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AQUA DESIGN KK filed Critical AQUA DESIGN KK
Priority to JP2014170934A priority Critical patent/JP2016037662A/en
Publication of JP2016037662A publication Critical patent/JP2016037662A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

PROBLEM TO BE SOLVED: To provide a carbon fiber electrode, when HHO gas fine bubbles are generated in an electrolysis tank, in which consumption power is reduced even by long time continuous use, the HHO gas generation quantity is increased and HHO gas generation diffusion is not reduced, excellent in flexibility compared with a carbon electrode of graphite and the electrode is not dissolved, and a method for producing the same.SOLUTION: Provided is a carbon fiber electrode for generating an HHO gas by the electrolysis of water. In the electrode, a base material made of carbon fiber is set with a thermosetting resin mixed with a conductivity imparting agent, and, in the conductivity imparting agent, carbon nanotubes are mixed by 10 to 50% to the weight ratio of the whole of the thermosetting resin.SELECTED DRAWING: Figure 3

Description

本発明は、内燃機関に供給するガソリン、軽油、又は重油の液体燃料や燃焼ガスの気体燃料とHHOガスの微細気泡を混合させた混合燃料を製造する場合において、電気分解槽でHHOガス微細気泡を大量に発生させることができる炭素繊維電極と、その製造方法に関するものである。  In the case of producing a mixed fuel obtained by mixing a liquid fuel of gasoline, light oil or heavy oil supplied to an internal combustion engine, a gaseous fuel of combustion gas, and a fine bubble of HHO gas, the present invention provides a fine HHO gas bubble in an electrolysis tank. It is related with the carbon fiber electrode which can generate | occur | produce a large amount, and its manufacturing method.

水素原子と酸素原子が2対1の混合比で混ざり合った混合ガスは、HHOガスあるいはブラウンガスと称され、内燃機関の混合燃料として注目されている。HHOガスを発生する装置としては、電気分解を利用したHHOガス発生装置が一般的に知られている。  A mixed gas in which hydrogen atoms and oxygen atoms are mixed at a mixing ratio of 2 to 1 is called HHO gas or Brown gas, and has attracted attention as a mixed fuel of an internal combustion engine. As an apparatus for generating HHO gas, an HHO gas generator using electrolysis is generally known.

HHOガスの微細気泡を混合させた混合燃料を内燃機関の燃料として使用するためには、消費電力が少なく、かつ、大量のHHOガスが必要になる。消費電力に比して発生するHHOガス量が少なければ、有効に利用できるエネルギーの割合が低く損失が多いので、エネルギー変換効率の向上が実現できないからである。また、HHOガス発生装置を自動車に搭載するためには電気分解槽を小型化する必要もある。  In order to use a mixed fuel in which fine bubbles of HHO gas are mixed as fuel for an internal combustion engine, power consumption is small and a large amount of HHO gas is required. This is because if the amount of HHO gas generated relative to the power consumption is small, the rate of energy that can be used effectively is low and the loss is high, so that it is not possible to improve the energy conversion efficiency. In addition, in order to mount the HHO gas generator in an automobile, it is necessary to reduce the size of the electrolysis tank.

従来、水の電気分解において、電極にステンレス等の金属電極を使用すると、エネルギー変換効率が低いことや発熱の問題があり、また、電極に黒鉛の炭素電極を使用すると、エネルギー変換効率は若干改善されるが、電極や水溶液の発熱、電極の折損、又は電極の溶解等の問題があった。  Conventionally, in the electrolysis of water, if a metal electrode such as stainless steel is used as the electrode, there is a problem of low energy conversion efficiency and heat generation, and if a graphite carbon electrode is used as the electrode, the energy conversion efficiency is slightly improved. However, there are problems such as heat generation of electrodes and aqueous solutions, breakage of electrodes, and dissolution of electrodes.

エネルギー変換効率を向上させるため、電極にチタン(Ti)を有する基材と、この基材の表面にイリジウム(Ir)を有する触媒層を備え、さらに、この触媒層の上に黒鉛の層を形成された電極、及び、電気分解槽は、不導体の隔壁部材により複数の電気分解室に区別された構造が提案されている(特許文献1参照)。
しかしながら、この方法ではエネルギー変換効率の向上は不充分であり、電極や水の発熱も解決されていないという問題があった。
In order to improve energy conversion efficiency, a substrate having titanium (Ti) as an electrode and a catalyst layer having iridium (Ir) on the surface of the substrate are formed, and a graphite layer is formed on the catalyst layer. In the proposed electrode and electrolysis tank, a structure in which a plurality of electrolysis chambers are distinguished by a non-conductive partition member has been proposed (see Patent Document 1).
However, this method has a problem that the energy conversion efficiency is not sufficiently improved, and the heat generation of electrodes and water has not been solved.

電極の表面積を大きくすると電気分解の化学反応を促進できるので、電極が可撓性の優れている炭素繊維をプラスチック等の網にらせん状に巻いて陰極を形成する構造が提案されている(特許文献2参照)。  Since the chemical reaction of electrolysis can be promoted by increasing the surface area of the electrode, there has been proposed a structure in which the electrode is spirally wound on a mesh of plastic or the like to form a cathode (Patent) Reference 2).

特開2012−122383号公報JP 2012-122383 A 特開2010−059530号公報JP 2010-059530 A

本発明は上記の問題点を解決するためになされたものであり、その目的は水の電気分解の際に長時間の連続使用によっても消費電力を少なく、HHOガス発生量を増やし、HHOガス発生拡散が低下せず、黒鉛の炭素電極に比較し可撓性が優れており、電極が溶解しない炭素繊維電極およびその製造方法を提供することにある。すなわち、エネルギー変換効率を大幅に向上させることを目的としている。  The present invention has been made to solve the above-described problems, and its purpose is to reduce power consumption, increase the amount of HHO gas generated, and increase the amount of HHO gas generated even when water is electrolyzed for a long time. An object of the present invention is to provide a carbon fiber electrode that does not decrease diffusion, has excellent flexibility compared with a graphite carbon electrode, and does not dissolve, and a method for producing the same. That is, the object is to greatly improve the energy conversion efficiency.

また、HHOガス発生装置を自動車に搭載することを想定し、電気分解槽内の電極の配置および構成を改善し、小型・軽量化することを目的としている。  In addition, assuming that the HHO gas generator is mounted on an automobile, the object is to improve the arrangement and configuration of the electrodes in the electrolysis tank, and to reduce the size and weight.

本発明は、水の電気分解によりHHOガス発生量させための電極であって、前記電極が炭素繊維からなる基材は導電性付与剤を混合した熱硬化性樹脂で硬化させたものであって、前記導電性付与剤は、前記熱硬化性樹脂全体の重量比に対し、カーボンナノチューブを10%〜50%混合したことを特徴とする炭素繊維電極である。  The present invention is an electrode for generating an amount of HHO gas by electrolysis of water, wherein the electrode is made of a carbon fiber and a base material cured with a thermosetting resin mixed with a conductivity-imparting agent. The conductivity imparting agent is a carbon fiber electrode in which carbon nanotubes are mixed in an amount of 10% to 50% with respect to the weight ratio of the entire thermosetting resin.

水を収容する電気分解槽と、前記電気分解槽内に配置され前記水を電気分解し、HHOガスを発生する複数のプラス電極と複数のマイナス電極と、を有し、前記プラス電極と前記マイナス電極が炭素繊維からなる基材は前記導電性付与剤を混合した前記熱硬化性樹脂で硬化させたものであって、前記導電性付与剤は、前記熱硬化性樹脂全体の重量比に対し、カーボンナノチューブを10%〜50%混合したことを特徴とする前記炭素繊維電極で構成された電気分解槽である。  An electrolysis tank containing water, and a plurality of positive electrodes and a plurality of negative electrodes which are disposed in the electrolysis tank and electrolyze the water to generate HHO gas, and the positive electrode and the negative electrode The substrate made of carbon fiber is a material cured with the thermosetting resin mixed with the conductivity-imparting agent, and the conductivity-imparting agent is based on the total weight ratio of the thermosetting resin. The electrolysis tank composed of the carbon fiber electrode, wherein carbon nanotubes are mixed at 10% to 50%.

前記プラス電極とマイナス電極に対して、パルス状の直流電流が供給されていることを特徴とする電気分解槽である。  The electrolysis tank is characterized in that a pulsed direct current is supplied to the plus electrode and the minus electrode.

前記炭素繊維電極の素材は、導電性が優れており軽量である通常の市販されている炭素繊維を使用する。寸法安定性、熱伝導率、耐摩耗性や耐熱性、耐酸性、電気伝導性といった点で優れた特性を示す等方性ピッチ系炭素繊維であって、厚さは0.2mm程度が望ましい。  As the material for the carbon fiber electrode, an ordinary commercially available carbon fiber having excellent conductivity and light weight is used. An isotropic pitch-based carbon fiber exhibiting excellent characteristics in terms of dimensional stability, thermal conductivity, wear resistance, heat resistance, acid resistance, and electrical conductivity, and a thickness of about 0.2 mm is desirable.

硬質の前記炭素繊維電極を制作するために、超伝導性を有する熱硬化性樹脂の接着剤を製造する。接着剤の原料は、導電性の高い導電性付与剤を混合する。  In order to produce the hard carbon fiber electrode, an adhesive of a thermosetting resin having superconductivity is manufactured. The raw material of the adhesive is mixed with a highly conductive conductivity imparting agent.

導電性付与剤はカーボンナノチューブを、熱硬化性樹脂全体の重量比に対し10%〜50%混合して熱硬化性樹脂の接着剤を製造する第一工程と、炭素繊維を複数重ね合わせ、前記熱硬化性樹脂の接着剤を含浸及びコーティングする第二工程と、赤外線を照射し炭素繊維を固形化させる第三工程と、固形化された炭素繊維を高温炉に入れ、温度は300℃以上、圧力は30Mpa以上で5〜6時間加熱させ、完全炭化し硬化させる第四工程からなる超伝導性を有する炭素繊維電極の基材を製造する方法である。  The conductivity imparting agent is a first step in which carbon nanotubes are mixed at 10% to 50% with respect to the weight ratio of the entire thermosetting resin to produce a thermosetting resin adhesive, and a plurality of carbon fibers are stacked, A second step of impregnating and coating the thermosetting resin adhesive; a third step of irradiating infrared rays to solidify the carbon fiber; and putting the solidified carbon fiber in a high-temperature furnace; The pressure is a method of producing a carbon fiber electrode substrate having superconductivity comprising a fourth step of heating at 30 Mpa or more for 5 to 6 hours to complete carbonization and curing.

炭素繊維電極は金属電極と比較すると、消費電力が少なくHHOガス発生量が増加し、かつ、水の電気分解時に発熱量が低いので水溶液の発熱を抑えることが可能であるため、エネルギー変換効率が大幅に向上する。
具体例として、炭素繊維電極と金属電極が同一面積の場合、消費電力1W当たりに発生する水素、酸素ガスは3倍の15ccと増加し、消費電力も1/3から1/5に低減することが検証された。
Compared with metal electrodes, the carbon fiber electrode consumes less power, increases the amount of HHO gas generated, and generates less heat during electrolysis of water, so it is possible to suppress the heat generation of the aqueous solution. Greatly improved.
As a specific example, when the carbon fiber electrode and the metal electrode have the same area, the hydrogen and oxygen gas generated per 1 W of power consumption increase to 15 cc, which is tripled, and the power consumption is reduced from 1/3 to 1/5. Was verified.

また、金属電極は使用中にジュール熱が発生するので、電解槽が50℃から60℃に温度上昇するが、炭素繊維電極は電解槽の使用環境の温度を維持することができる。このことは、電解槽を隔離室に配置する場合であっても冷却は不要であることを意味する。  Further, since Joule heat is generated during use of the metal electrode, the temperature of the electrolytic cell rises from 50 ° C. to 60 ° C., but the carbon fiber electrode can maintain the temperature of the electrolytic cell usage environment. This means that cooling is not required even when the electrolytic cell is placed in the isolation chamber.

本発明により生成されたHHOガスは微細気泡であるため、気体燃料(例えばLPガス)との相性が良いので内燃機関の燃費削減が期待できる。  Since the HHO gas generated according to the present invention is fine bubbles, it has good compatibility with gaseous fuel (for example, LP gas), so that reduction in fuel consumption of the internal combustion engine can be expected.

炭素繊維は可撓性に優れているため、表面積を大きく確保でき、自由なデザインで製造することができ大量生産可能である。また、小型・軽量化されるので、内燃機関の燃料装置に装着が簡単で扱いやすい。  Since carbon fiber is excellent in flexibility, it can secure a large surface area, can be manufactured with a free design, and can be mass-produced. Moreover, since it is reduced in size and weight, it can be easily mounted and handled in the fuel device of the internal combustion engine.

本発明による炭素繊維電極を電気分解槽に浸漬した状態を示す側面図である。It is a side view which shows the state which immersed the carbon fiber electrode by this invention in the electrolysis tank. 本発明による炭素繊維電極の構造例を示す平面図である。It is a top view which shows the structural example of the carbon fiber electrode by this invention. 本発明による炭素繊維電極を使用した電気分解槽の内部構造例を示す側面図である。It is a side view which shows the example of an internal structure of the electrolysis tank using the carbon fiber electrode by this invention. 本発明による炭素繊維電極を有する電気分解槽中で測定されたHHOガス排出量と消費電力との関係を示す。The relationship between the HHO gas emission amount measured in the electrolysis tank which has the carbon fiber electrode by this invention, and power consumption is shown. 本発明による炭素繊維電極を有する電気分解槽中で測定された水温の変化を示す。3 shows the change in water temperature measured in an electrolysis tank having a carbon fiber electrode according to the present invention.

<炭素繊維電極及びその製造方法><Carbon fiber electrode and manufacturing method thereof>

炭素繊維電極の素材は、導電性が優れており軽量である、通常の市販されている炭素繊維を使用する。寸法安定性、熱伝導率、耐摩耗性や耐熱性、耐酸性、電気伝導性といった点で優れた特性を示す等方性ピッチ系炭素繊維であって、厚さは0.2mm程度が望ましい。  As a material for the carbon fiber electrode, an ordinary commercially available carbon fiber having excellent electrical conductivity and light weight is used. An isotropic pitch-based carbon fiber exhibiting excellent characteristics in terms of dimensional stability, thermal conductivity, wear resistance, heat resistance, acid resistance, and electrical conductivity, and a thickness of about 0.2 mm is desirable.

硬質の炭素繊維電極を制作するために、超伝導性を有する熱硬化性樹脂の接着剤を製造する。接着剤の原料である熱硬化性樹脂に導電性の高い導電性付与剤を混合する。  In order to produce a hard carbon fiber electrode, a superconductive thermosetting resin adhesive is manufactured. A highly conductive conductivity imparting agent is mixed with the thermosetting resin that is the raw material of the adhesive.

導電性付与剤はカーボンナノチューブを、熱硬化性樹脂全体の重量比に対し10%〜50%混合して熱硬化性樹脂の接着剤を製造する。導電性付与剤を混合することにより、超伝導に近い熱硬化性樹脂が安価に製造することができる。  The conductivity imparting agent is produced by mixing carbon nanotubes in an amount of 10% to 50% with respect to the weight ratio of the entire thermosetting resin to produce an adhesive for the thermosetting resin. By mixing a conductivity imparting agent, a thermosetting resin close to superconductivity can be produced at a low cost.

可撓性に優れた炭素繊維を複数重ね合わせ、導電性付与剤が混合された超伝導性を有する熱硬化性樹脂の接着剤を含浸及びコーティングし、赤外線を照射し炭素繊維を固形化させる。  A plurality of carbon fibers excellent in flexibility are superposed, impregnated and coated with a superconductive thermosetting resin adhesive mixed with a conductivity imparting agent, and irradiated with infrared rays to solidify the carbon fibers.

固形化された炭素繊維を高温炉に入れ、温度は300℃以上、圧力は30Mpa以上で5〜6時間加熱させ、完全炭化し硬化させる。硬化した後は表面を研磨して仕上げ、炭素繊維電極の結合重合体を制作する。  The solidified carbon fiber is put in a high temperature furnace, heated at a temperature of 300 ° C. or higher and a pressure of 30 Mpa or higher for 5 to 6 hours, completely carbonized and cured. After curing, the surface is polished and finished to produce a carbon fiber electrode bonded polymer.

<炭素繊維電極を利用した電解槽の構造>
本発明による炭素繊維電極を利用して、導電性の良い水溶液にわずかな電力を与え電気分解することで、効率よくHHOガスを発生させ、エネルギー変換効率を大幅に向上させることが可能な電気分解装置を提供する。
<Structure of electrolytic cell using carbon fiber electrode>
Using the carbon fiber electrode according to the present invention, electrolysis can be performed by efficiently generating HHO gas by applying a small amount of electric power to an aqueous solution having good electrical conductivity, thereby greatly improving energy conversion efficiency. Providing equipment.

以下、本発明を実施するための実施形態について図を参照しながら説明する。図1は、本発明の実施形態に係る炭素繊維電極の構成例を示す説明図である。炭素繊維電極の陽極1と陰極2を電気分解槽の水溶液3に浸漬されて配置し、陽極1と陰極2は電源に対して電気的に接続されている。  Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram showing a configuration example of a carbon fiber electrode according to an embodiment of the present invention. An anode 1 and a cathode 2 of a carbon fiber electrode are disposed so as to be immersed in an aqueous solution 3 of an electrolysis tank, and the anode 1 and the cathode 2 are electrically connected to a power source.

電源が導電性の良い水溶液3内の陽極1と陰極2に対し直流電源を通電することにより、陽極1からは酸素ガスが生成されるとともに陰極2からは水素ガスが生成される。結果として酸素ガスと水素ガスからなるHHOガスが生成される。  By supplying a direct current power source to the anode 1 and the cathode 2 in the aqueous solution 3 having a good electrical conductivity, oxygen gas is generated from the anode 1 and hydrogen gas is generated from the cathode 2. As a result, HHO gas composed of oxygen gas and hydrogen gas is generated.

図2は複数の炭素繊維電極4からなる構造例を示す真上から見た平面図である。  FIG. 2 is a plan view seen from directly above showing a structural example composed of a plurality of carbon fiber electrodes 4.

炭素繊維電極4どうしを約1.5mm間隔で並行に複数配置し、互いに接触しないように絶縁棒6、絶縁体7、ナット8を用いて形成する。炭素繊維電極4どうしは互いに電気的に接続されないように構成されている。  A plurality of carbon fiber electrodes 4 are arranged in parallel at intervals of about 1.5 mm, and are formed using an insulating rod 6, an insulator 7, and a nut 8 so as not to contact each other. The carbon fiber electrodes 4 are configured not to be electrically connected to each other.

炭素繊維電極4の一端に導電ボルト5を用いて複数の炭素繊維電極4とマイナス電極と結合して、電気的に接続する。また、炭素繊維電極4の他端に導電ボルト5を用いて複数の炭素繊維電極4とプラス電極と結合して、電気的に接続する。したがって、隣り合う炭素電極4どうしはプラスとマイナスが交互になるように、複数のプラス電極とマイナス電極を形成している。  A plurality of carbon fiber electrodes 4 and negative electrodes are coupled to one end of the carbon fiber electrode 4 using a conductive bolt 5 to be electrically connected. Moreover, the other end of the carbon fiber electrode 4 is electrically connected by being coupled to the plurality of carbon fiber electrodes 4 and the plus electrode using the conductive bolt 5. Therefore, a plurality of plus electrodes and minus electrodes are formed so that adjacent carbon electrodes 4 alternate between plus and minus.

図3は電気分解槽の内部構造例を示す側面図である。  FIG. 3 is a side view showing an example of the internal structure of the electrolysis tank.

電気分解槽に水溶液3を収容し、複数の炭素繊維電極4を水溶液3に浸漬されて配置し、プラス電極とマイナス電極は電源9に対し、電気的に接続されている。この電源9は、例えば直流24Vの電源である。  The aqueous solution 3 is accommodated in the electrolysis tank, a plurality of carbon fiber electrodes 4 are immersed in the aqueous solution 3 and arranged, and the plus electrode and the minus electrode are electrically connected to the power source 9. The power source 9 is a DC 24V power source, for example.

図4に示すように、電源9は矩形波のパルス状の直流電流を炭素繊維電極4のプラス電極とマイナス電極に供給することもできる。供給する電流値は2A〜20Aである。直流電流が2Aより小さいと、水の電気分解効率が低下するのでHHOガス発生量が低下し、直流電流が20Aより大きいとHHOガス発生量は増えるが消費電力が大きくなるので適さない。  As shown in FIG. 4, the power source 9 can also supply a square-wave pulsed direct current to the plus electrode and the minus electrode of the carbon fiber electrode 4. The supplied current value is 2A to 20A. If the direct current is smaller than 2A, the electrolysis efficiency of water decreases, so the amount of HHO gas generated decreases. If the direct current is larger than 20A, the amount of HHO gas generated increases but the power consumption increases, which is not suitable.

パルス状の直流電流の周波数は1000kHz〜4000kHzの範囲内が適切であり、1000kHzより小さいと、消費電力が大きくなり、4000kHzより大きいと、電流量が多くなり適さない。炭素繊維の固有振動数のn倍、またはn分の1の周波数が最もエネルギー変換効率が良い(nは正の整数)。  The frequency of the pulsed direct current is suitably in the range of 1000 kHz to 4000 kHz. If the frequency is less than 1000 kHz, the power consumption increases. If the frequency is greater than 4000 kHz, the amount of current increases, which is not suitable. A frequency that is n times or 1 / n times the natural frequency of the carbon fiber has the highest energy conversion efficiency (n is a positive integer).

一定直流電流を供給する場合に比較し、パルス波の直流電流を供給すると電気分解槽内の水温上昇を大幅に迎えることができる。このため、電気分解槽に冷却装置の設置は不要である。  Compared with the case where a constant DC current is supplied, if the pulsed DC current is supplied, the temperature of the water in the electrolyzer can be greatly increased. For this reason, it is not necessary to install a cooling device in the electrolysis tank.

<実験データ>
図4は本発明による炭素繊維電極4を使用した場合と、金属電極(Ti+Ir)を使用した場合の必要電流とHHOガス発生量を示すグラフである。各々の電極は10cm×18cmの同一サイズである。
グラフからも明らかなように、炭素繊維電極4は少ない消費電力で多くのHHOガスを発生させることが可能である。
<Experimental data>
FIG. 4 is a graph showing the required current and the amount of HHO gas generated when the carbon fiber electrode 4 according to the present invention is used and when the metal electrode (Ti + Ir) is used. Each electrode has the same size of 10 cm × 18 cm.
As is apparent from the graph, the carbon fiber electrode 4 can generate a large amount of HHO gas with low power consumption.

図5は本発明による炭素繊維電極4を使用した場合と、金属電極(Ti+Ir)と、金属電極(ステンレス鋼)を使用した場合の必要電流とHHOガス発生量を示すグラフである。各々の電極のサイズは同一であるが、供給する直流電流値は、炭素繊維電極4が4A、金属電極(Ti+Ir)は10A、金属電極(ステンレス鋼)は18Aである。
この実験データから考察すると炭素繊維電極4を使用した場合、電気分解槽内の水温上昇を大幅に迎えることができ、かつ、消費電力が最も少ない。
FIG. 5 is a graph showing the required current and the amount of HHO gas generated when the carbon fiber electrode 4 according to the present invention is used, and when the metal electrode (Ti + Ir) and the metal electrode (stainless steel) are used. Although the size of each electrode is the same, the DC current supplied is 4A for the carbon fiber electrode 4, 10A for the metal electrode (Ti + Ir), and 18A for the metal electrode (stainless steel).
Considering from this experimental data, when the carbon fiber electrode 4 is used, the water temperature in the electrolysis tank can be greatly increased, and the power consumption is the smallest.

電気化学電池やあらゆる燃料機関に応用展開できるので、燃料改質装置として産業上有効利用することができる。また導電性の高い炭素繊維電極であるため、燃料電池用の電基板としても利用することができる。  Since it can be applied to electrochemical cells and any fuel engine, it can be effectively used industrially as a fuel reformer. Moreover, since it is a highly conductive carbon fiber electrode, it can also be used as an electric substrate for a fuel cell.

1 陽極
2 陰極
3 水溶液
4 炭素繊維電極
5 導電ボルト
6 絶縁棒
7 絶縁体
8 ナット
9 電源
1 Anode 2 Cathode 3 Aqueous Solution 4 Carbon Fiber Electrode 5 Conductive Bolt 6 Insulating Rod 7 Insulator 8 Nut 9 Power Supply

本発明は、水の電気分解によりHHOガス発生させための電極であって、前記電極が炭素繊維からなる基材は導電性付与剤を混合した熱硬化性樹脂で硬化させたものであって、前記導電性付与剤は、前記熱硬化性樹脂全体の重量比に対し、カーボンナノチューブを10%〜50%混合したことを特徴とする炭素繊維電極である。The present invention is an electrode for Ru generates the HHO gas by electrolysis of water, be one wherein the electrode substrate made of carbon fibers cured with a thermosetting resin mixed with conductive agent In addition, the conductivity imparting agent is a carbon fiber electrode in which 10% to 50% of carbon nanotubes are mixed with respect to the weight ratio of the entire thermosetting resin.

本発明による炭素繊維電極を電気分解槽に浸漬した状態を示す側面図である。It is a side view which shows the state which immersed the carbon fiber electrode by this invention in the electrolysis tank. 本発明による炭素繊維電極の構造例を示す平面図である。It is a top view which shows the structural example of the carbon fiber electrode by this invention. 本発明による炭素繊維電極を使用した電気分解槽の内部構造例を示す側面図である。It is a side view which shows the example of an internal structure of the electrolysis tank using the carbon fiber electrode by this invention. パルス状の直流電流を電極板に供給する模式図である。It is a schematic diagram which supplies a pulsed direct current to an electrode plate. 本発明による炭素繊維電極を有する電気分解槽中で測定されたHHOガス排出量と消費電力との関係を示す。The relationship between the HHO gas emission amount measured in the electrolysis tank which has the carbon fiber electrode by this invention, and power consumption is shown. 本発明による炭素繊維電極を有する電気分解槽中で測定された水温の変化を示す。3 shows the change in water temperature measured in an electrolysis tank having a carbon fiber electrode according to the present invention.

Claims (4)

水の電気分解によりHHOガス発生量させための電極であって、前記電極が炭素繊維からなる基材は導電性付与剤を混合した熱硬化性樹脂で硬化させたものであって、前記導電性付与剤は、前記熱硬化性樹脂全体の重量比に対し、カーボンナノチューブを10%〜50%混合したことを特徴とする炭素繊維電極。An electrode for generating an HHO gas generation amount by electrolysis of water, wherein the substrate is made of carbon fiber and is cured with a thermosetting resin mixed with a conductivity-imparting agent, The carbon fiber electrode, wherein the imparting agent is a mixture of 10% to 50% of carbon nanotubes with respect to the weight ratio of the entire thermosetting resin. 水を収容する電気分解槽と、前記電気分解槽内にHHOガスを発生する複数のプラス電極と複数のマイナス電極を有し、前記プラス電極と前記マイナス電極が請求項1記載の炭素繊維電極で構成されたことを特徴とする電気分解槽。The carbon fiber electrode according to claim 1, comprising an electrolysis tank for containing water, a plurality of positive electrodes for generating HHO gas in the electrolysis tank, and a plurality of negative electrodes, wherein the positive electrode and the negative electrode are An electrolysis tank characterized by being configured. 前記プラス電極とマイナス電極に対して、パルス状の直流電流が供給されていることを特徴とする請求項2に記載の電気分解槽。The electrolysis tank according to claim 2, wherein a pulsed direct current is supplied to the plus electrode and the minus electrode. 導電性付与剤であるカーボンナノチューブを、熱硬化性樹脂全体の重量比に対し10%〜50%混合して熱硬化性樹脂の接着剤を製造する第一工程と、炭素繊維を複数重ね合わせ、前記熱硬化性樹脂の接着剤を含浸及びコーティングする第二工程と、赤外線を照射し前記炭素繊維を固形化させる第三工程と、固形化された前記炭素繊維を高温炉に入れ、温度は300℃以上、圧力は30Mpa以上で5〜6時間加熱させ、完全炭化し硬化させる第四工程からなることを特徴とする超伝導性を有する炭素繊維電極の基材を製造する方法。The first step of producing a thermosetting resin adhesive by mixing 10% to 50% of the carbon nanotube as a conductivity imparting agent with respect to the weight ratio of the entire thermosetting resin, and superposing a plurality of carbon fibers, A second step of impregnating and coating the adhesive of the thermosetting resin, a third step of irradiating infrared rays to solidify the carbon fiber, and putting the solidified carbon fiber in a high-temperature furnace at a temperature of 300 A method for producing a superconducting carbon fiber electrode substrate characterized by comprising a fourth step of heating at 5 ° C. or higher at a temperature of 30 ° C. or higher and completely carbonizing and curing.
JP2014170934A 2014-08-07 2014-08-07 Carbon fiber electrode and method for producing the same Pending JP2016037662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014170934A JP2016037662A (en) 2014-08-07 2014-08-07 Carbon fiber electrode and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014170934A JP2016037662A (en) 2014-08-07 2014-08-07 Carbon fiber electrode and method for producing the same

Publications (1)

Publication Number Publication Date
JP2016037662A true JP2016037662A (en) 2016-03-22

Family

ID=55529001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014170934A Pending JP2016037662A (en) 2014-08-07 2014-08-07 Carbon fiber electrode and method for producing the same

Country Status (1)

Country Link
JP (1) JP2016037662A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109292919A (en) * 2018-10-18 2019-02-01 浙江田成环境科技有限公司 A kind of carbon/carbon compound material for heavy metal in waste water recycling
KR102024357B1 (en) * 2019-06-04 2019-09-23 에콜그린텍(주) Plastic magnet cnt composite electrode catalyst and method for fabricating the same
KR102075923B1 (en) * 2019-06-04 2020-02-11 에콜그린텍(주) metal CNT Polymer Composite and Manufacturing Method
WO2020241802A1 (en) * 2019-05-28 2020-12-03 三輪 有子 Oxyhydrogen gas mixture generation device, suction apparatus, oxyhydrogen gas mixture generation method and oxyhydrogen gas mixture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109292919A (en) * 2018-10-18 2019-02-01 浙江田成环境科技有限公司 A kind of carbon/carbon compound material for heavy metal in waste water recycling
WO2020241802A1 (en) * 2019-05-28 2020-12-03 三輪 有子 Oxyhydrogen gas mixture generation device, suction apparatus, oxyhydrogen gas mixture generation method and oxyhydrogen gas mixture
JPWO2020241802A1 (en) * 2019-05-28 2021-09-13 三輪 有子 Oxygen-hydrogen mixed gas generator, suction device, oxygen-hydrogen mixed gas generation method, and oxygen-hydrogen mixed gas
KR102024357B1 (en) * 2019-06-04 2019-09-23 에콜그린텍(주) Plastic magnet cnt composite electrode catalyst and method for fabricating the same
KR102075923B1 (en) * 2019-06-04 2020-02-11 에콜그린텍(주) metal CNT Polymer Composite and Manufacturing Method

Similar Documents

Publication Publication Date Title
Yuvaraj et al. A systematic study on electrolytic production of hydrogen gas by using graphite as electrode
Xiao et al. In situ growth of Ru nanoparticles on (Fe, Ni)(OH) 2 to boost hydrogen evolution activity at high current density in alkaline media
Liu et al. Monolithic Ni‐Mo‐B bifunctional electrode for large current water splitting
Wu et al. High-performance zinc bromine flow battery via improved design of electrolyte and electrode
Chen et al. Efficient and stable bifunctional electrocatalysts Ni/NixMy (M= P, S) for overall water splitting
Chen et al. Interfacial engineering of heterostructured Co (OH) 2/NiPx nanosheets for enhanced oxygen evolution reaction
JP6106766B2 (en) Polyacrylonitrile-based carbon fiber co-doped with oxygen and nitrogen and method for producing the same
JP6539285B2 (en) Anode for oxygen generation
JP2016037662A (en) Carbon fiber electrode and method for producing the same
CN107833758B (en) A kind of preparation method and application of Ni-based integrated electrode
US20100089746A1 (en) Hydragen-oxygen electrolyzing device and carbon paper electrodes thereof with material-changed outer surfaces
TWI539651B (en) Non-stationary seawater battery
CN103943381B (en) Nickel-base super-capacitor electrode material, preparation method thereof and super-capacitor
Haleem et al. A new accelerated durability test protocol for water oxidation electrocatalysts of renewable energy powered alkaline water electrolyzers
JP2012041578A (en) Water electrolysis cell
Rocha et al. Pulsed water electrolysis: A review
JP6438664B2 (en) Method for manufacturing membrane electrode assembly
JP2010133026A (en) Hydrogen-oxygen mixture generating apparatus
US20140083843A1 (en) Preparation apparatus for porous alumina template
KR100896436B1 (en) A hydrogen-oxygen generating apparatus
Loktionov et al. Fluoropolymer impregnated graphite foil as a bipolar plates of vanadium flow battery
CN109868483B (en) Water electrolytic cell metal bipolar plate with corrosion-resistant protective layer, preparation and application
JP5457951B2 (en) Electrolytic cell
Sun et al. A Na-ion direct formate fuel cell converting solar fuel to electricity and hydrogen
Fatouh et al. Effect of operating and geometric parameters on hydrogen production from an alkali electrolyzer

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160224

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160421

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160425