JP2016034622A - Heat storage microcapsule having large particle size, and production method thereof - Google Patents

Heat storage microcapsule having large particle size, and production method thereof Download PDF

Info

Publication number
JP2016034622A
JP2016034622A JP2014158623A JP2014158623A JP2016034622A JP 2016034622 A JP2016034622 A JP 2016034622A JP 2014158623 A JP2014158623 A JP 2014158623A JP 2014158623 A JP2014158623 A JP 2014158623A JP 2016034622 A JP2016034622 A JP 2016034622A
Authority
JP
Japan
Prior art keywords
film
microcapsule
heat storage
porous
pcm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014158623A
Other languages
Japanese (ja)
Other versions
JP6682082B2 (en
Inventor
泰雄 幡手
Yasuo Hatate
泰雄 幡手
瑛子 園田
Eiko Sonoda
瑛子 園田
一路 飯田
Kazumichi Iida
一路 飯田
田中 眞人
Masato Tanaka
眞人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MC LABO CORP
Original Assignee
MC LABO CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MC LABO CORP filed Critical MC LABO CORP
Priority to JP2014158623A priority Critical patent/JP6682082B2/en
Publication of JP2016034622A publication Critical patent/JP2016034622A/en
Application granted granted Critical
Publication of JP6682082B2 publication Critical patent/JP6682082B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Manufacturing Of Micro-Capsules (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a heat storage microcapsule having a particle size of 200-2,000 microns, excellent in mechanical strength, and suppressing overcooling; and to provide a microcapsule obtained by the method, and a utilization method thereof.SOLUTION: A porous microcapsule having a structure of 200-2,000 microns in which overcooling is suppressed is filled with a PCM medium, and an inner wall is formed of at least either of a polyurea film and a polyurethane film, and a skin film is formed of a polyamide film, to thereby obtain a microcapsule.SELECTED DRAWING: Figure 1

Description

本発明は、簡便に製造でき、PCM(相変化物質)蓄熱物質を高濃度で内包可能な200から2000μmサイズのマイクロカプセルおよびその製造・使用方法に関する。   The present invention relates to a 200 to 2000 μm sized microcapsule that can be easily manufactured and can contain a PCM (phase change material) heat storage material at a high concentration, and a method for producing and using the same.

氷蓄熱空調システムでPCM蓄熱マイクロカプセルを貯水槽に浸漬し省エネルギー効果を得るには、浸漬するマイクロカプセルはその周囲を水が流動でき、伝熱特性が良い、200から2000ミクロンサイズが望ましい。 In order to obtain an energy saving effect by immersing PCM thermal storage microcapsules in a water storage tank in an ice thermal storage air-conditioning system, it is desirable that the microcapsules to be immersed have a size of 200 to 2000 microns, in which water can flow around them and heat transfer characteristics are good.

前記記載の氷蓄熱空調システムで蓄熱マイクロカプセルを利用すれば、大きな省エネルギー効果があるにもかかわらず、このシステムがいまだに普及していないのはサイズの大きな、強靭な、漏れのない、過冷却を抑制した蓄熱マイクロカプセルが提供されていないためである。 The use of thermal storage microcapsules in the ice thermal storage air conditioning system described above, despite the great energy saving effect, is that this system is not yet widespread because of its large size, toughness, leak-free, and supercooling. This is because the suppressed heat storage microcapsules are not provided.

漏れのないマイクロカプセルは、従来から、外壁膜をメラミン樹脂膜、ナイロン膜、ポリウレタン膜、架橋ポリマー膜等またはこれらを組み合わせて二重膜、三重膜にする方法が提案されている。 Conventionally, a microcapsule having no leakage has been proposed in which the outer wall film is a melamine resin film, a nylon film, a polyurethane film, a cross-linked polymer film or the like, or a combination thereof to form a double film or a triple film.

これらの方法のいずれでも大きなサイズのマイクロカプセルを調製する場合には液滴が不安定という問題を抱えており、200から2000ミクロンサイズの強靭なマイクロカプセルの安定的な、大量製造上の問題は解決されていない。 Any of these methods has the problem of unstable droplets when preparing large size microcapsules, and the problem of stable and mass production of tough microcapsules of 200 to 2000 micron size is It has not been solved.

すなわち、大量の、大きな液滴を安定的に壊れずに保つことが難しい上に、外壁単量体の重合が進行して粘性が大きくなった場合の液滴同士の合一問題も解決が難しい課題として残されている。これらの方法で、大きいサイズのマイクロカプセルを調製したとしても、その強度に解決すべき課題を残している。 That is, it is difficult to stably maintain a large number of large droplets without breaking them, and it is also difficult to solve the problem of coalescence between droplets when the polymerization of the outer wall monomer proceeds and the viscosity increases. It remains as an issue. Even if a microcapsule of a large size is prepared by these methods, there remains a problem to be solved for its strength.

また、中実粒子外壁を被覆する事で、強靭なマイクロカプセル調製技術は提供されているが100ミクロン以上の安定した中実粒子が無い事で、それ以上のサイズのマイクロカプセルを提供する技術は提供されていない。 In addition, by coating solid particle outer wall, tough microcapsule preparation technology is provided, but since there is no stable solid particle of 100 microns or more, technology to provide microcapsules of larger size Not provided.

そこで、上述の特許出願された技術等による安定的に調製できる様々な10ミクロンから50ミクロンサイズの蓄熱マイクロカプセルを数個から数百個を安定的に接着して強靭な、漏れのない、過冷却を抑制した200から1000ミクロンサイズのマイクロカプセルとする技術も提案されているが、現状では充分ではない。 Therefore, several to several hundreds of heat storage microcapsules having a size of 10 to 50 microns, which can be stably prepared by the above-mentioned patented technology, etc. are stably bonded to each other tough, leak-free, excess A technique for producing a microcapsule having a size of 200 to 1000 microns with suppressed cooling has also been proposed, but it is not sufficient at present.

特開平4−82036号公報JP-A-4-82036 特開平5−163486号公報JP-A-5-163486 特開平7−213890号公報JP-A-7-213890 特開2001−247855号公報JP 2001-247855 A 特開2009−19857号公報JP 2009-19857 A 特開2011−213750号公報JP 2011-213750 A

特許文献5に記載されているように、冷熱蓄熱マイクロカプセルを氷蓄熱空調システムの貯水槽に浸漬した場合に、取扱い上、伝熱特性上、効果的なサイズは200〜2000ミクロンである。この範囲に当たる、200〜2000ミクロンサイズの冷熱蓄熱マイクロカプセルについては、上述の理由で調製技術が完成されていないために、実用化のネックになっており、解決しなければならない課題である。    As described in Patent Document 5, when a cold heat storage microcapsule is immersed in a water storage tank of an ice storage air conditioning system, an effective size is 200 to 2000 microns in terms of handling and heat transfer characteristics. About the 200-2000 micron size thermal storage microcapsule which corresponds to this range, since the preparation technique is not completed for the above-mentioned reason, it becomes a bottleneck of practical use and is a problem to be solved.

上記問題は、200〜2000μmの大粒径な、空洞を多く持つ多孔質球粒子内にPCM蓄熱物質を含浸させ、球粒子表面にメラミン膜、アミド膜、ウレタン膜またはウレア膜を単独または複合して被覆させたマイクロカプセルを提供する事で解決できる。   The above problem is that a porous sphere particle having a large particle size of 200 to 2000 μm and having many cavities is impregnated with a PCM heat storage material, and a melamine film, an amide film, a urethane film, or a urea film is used alone or in combination on the sphere particle surface. This can be solved by providing coated microcapsules.

本発明に係るマイクロカプセル製造法は以下の通りである。 The method for producing microcapsules according to the present invention is as follows.

S. Kiyoyama, H. Ueno, K. Shiomori, Y. Kawano and Y. Hatate,“ Preparation of Cross−Linked Microcapsules Entrapping Inorganic Salt by In−situ Polymerization in (W/O/W) Emulsion System”,Journal of Chemical Engineering of Japan, Vol.34, No.1, pp.36−42(2001)等に掲載)によって、200〜2000μmサイズの空洞を多く持つ多孔質球粒子を得る第一工程(多孔質大粒子形成)と、
多孔質粒子表面を被覆する材料をポリウレア膜或いはポリウレタン膜およびポリアミド膜の複合膜とする場合にはPCM蓄熱有機物媒体に予め、ポリイソシアナート或いはポリイソシアナートとポリオール付加物と酸クロライドを溶解させておき、この蓄熱有機物媒体溶液を第一工程で得た多孔質粒子に含浸させる事で、200〜2000μmサイズの蓄熱有機物媒体で満たされた球形粒子を得る第二工程(PCM蓄熱媒体含有大粒子形成)と、
別個に用意したポリアミンを溶解した水相に対して、この粒子群相を分散させ、水相のPHを中性或いは弱アルカリにする事で、球粒子表面にポリアミド樹脂被膜を生成させ、その後、40〜90℃に加温する事によって、ポリウレア樹脂壁を内側から形成させる第三工程(樹脂被覆PCM蓄熱粒子形成)と、を有する事を特徴とする。
当然のことながら、必ずしも複合膜である必要はなく1種類の膜でもよい。
S. Kiyoyama, H .; Ueno, K .; Shiomiri, Y. et al. Kawano and Y.K. Hatate, “Preparation of Cross-Linked Microcapsules Entrapping Inorganic Salt by In-situ Polymerization in (W / O / W) Emulsion System”. 34, no. 1, pp. 36-42 (2001) etc.), the first step (formation of porous large particles) to obtain porous spherical particles having many cavities of 200 to 2000 μm size,
When the material covering the porous particle surface is a polyurea film or a composite film of polyurethane film and polyamide film, polyisocyanate or polyisocyanate, polyol adduct and acid chloride are dissolved in the PCM heat storage organic medium in advance. Then, the porous particles obtained in the first step are impregnated with the heat storage organic medium solution to obtain spherical particles filled with the heat storage organic medium having a size of 200 to 2000 μm (PCM heat storage medium-containing large particle formation). )When,
Disperse this particle group phase in an aqueous phase in which a separately prepared polyamine is dissolved, and make the PH of the aqueous phase neutral or weakly alkaline to produce a polyamide resin film on the surface of the spherical particles. It has the 3rd process (resin coating PCM thermal storage particle formation) which forms a polyurea resin wall from the inside by heating at 40-90 ° C.
As a matter of course, it is not always necessary to use a composite film, and one kind of film may be used.

上述の製造方法における、マイクロカプセルのサイズおよび空隙率は第一工程(多孔質大粒子形成)のW/O/Wエマルション形成時の操作条件を変える事により容易にコントロールできる。 The size and porosity of the microcapsules in the production method described above can be easily controlled by changing the operating conditions during the formation of the W 1 / O / W 2 emulsion in the first step (formation of porous large particles).

実施例1の第一工程で得られた多孔質粒子の走査型電子顕微鏡写真。2 is a scanning electron micrograph of porous particles obtained in the first step of Example 1. FIG. 実施例1で調製したPCM蓄熱マイクロカプセルのDSC測定結果。The DSC measurement result of the PCM thermal storage microcapsule prepared in Example 1.

第一工程で使用する試薬は、以下の通りである。内水相(W)は塩化ナトリウム、塩化カルシウム等の塩を溶解した水相で構成されている。油相(O)は油溶性分散安定剤とラジカル重合開始剤及び有機溶媒を含む単量体で構成されている。また、外水相(W)は水溶性分散安定剤を含む水相で構成されている。油溶性分散安定剤としてポリグリセリン縮合リシノレイン酸、ポリオキシエチレンラウリルエーテル等が挙げられる。少なくとも単独でもしくは2種類以上併せて用いられる。 The reagents used in the first step are as follows. The inner aqueous phase (W 1 ) is composed of an aqueous phase in which a salt such as sodium chloride or calcium chloride is dissolved. The oil phase (O) is composed of a monomer containing an oil-soluble dispersion stabilizer, a radical polymerization initiator, and an organic solvent. The outer aqueous phase (W 2 ) is composed of an aqueous phase containing a water-soluble dispersion stabilizer. Examples of the oil-soluble dispersion stabilizer include polyglycerin condensed ricinoleic acid and polyoxyethylene lauryl ether. It is used alone or in combination of two or more.

ラジカル重合開始剤としてα,α−アゾビスイソブチロニトリルやアゾビスシクロヘキサンカルボニトリルのようなアゾ化合物やクメンヒドロペルオキシド、t-ブチルヒドロペルオキシド、過酸化ベンゾイル、過酸化ラウロイルのような過酸化物を例示することができる。少なくとも単独でもしくは2種類以上併せて用いられる。 As radical polymerization initiators, azo compounds such as α, α-azobisisobutyronitrile and azobiscyclohexanecarbonitrile, and peroxides such as cumene hydroperoxide, t-butyl hydroperoxide, benzoyl peroxide and lauroyl peroxide Can be illustrated. It is used alone or in combination of two or more.

単量体として、単官能性または架橋性単量体があり、スチレン、アクリロニトリル、クロロスチレン、スチレンメチルスチレン、エチルスチレン、メトキシスチレン、ニトロスチレン、アミノスチレン、メタクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸フェニル、アクリル酸シクロヘキシル、酢酸ビニル、ギ酸ビニル、ビニルフェニルエーテル、ビニルメチルエーテル、ビニルシクロヘキシルエーテル、ジビニルベンゼン、エチレングリコールジメタクリエート、トリエチレンジメタクリエート、トリメチロールプロパントリメタクリレート等が挙げられる。少なくとも単独でもしくは2種類以上併せて用いられる。 Monomers include monofunctional or crosslinkable monomers, such as styrene, acrylonitrile, chlorostyrene, styrene methyl styrene, ethyl styrene, methoxy styrene, nitro styrene, amino styrene, methyl methacrylate, methyl acrylate, acrylic acid Ethyl, phenyl acrylate, cyclohexyl acrylate, vinyl acetate, vinyl formate, vinyl phenyl ether, vinyl methyl ether, vinyl cyclohexyl ether, divinyl benzene, ethylene glycol dimethacrylate, triethylene dimethacrylate, trimethylolpropane trimethacrylate, etc. Can be mentioned. It is used alone or in combination of two or more.

外水相中の水溶性分散安定剤として、スチレン-無水マレイン酸共重合体加水分解物、ドデシルベンゼンスルホン酸ナトリウム、レシチン、ゼラチン、アラビアゴム、カゼイン、デキストリン、ペクチン、ポリビニルアルコール、ポリビニルピロリドン、ポリビニルエーテル、ポリアクリル酸、ポリオキシエチレンが付加したトリあるいはジスチリルフェニルエーテル、ポリオキシエチレンが付加したアルコールエーテル、ポリオキシエチレンが付加したソルビタンオレエート等のツイーン系界面活性剤、ソルビタンオレエート等のスパン系界面活性剤、ポリアクリル酸塩、セルロース誘導体(カルボキシメチルセルロースのアルカリ金属塩、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルエチルセルロース、メチルセルロース、エチルセルロース)、多価アルコール(グリセリン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ポリプロピレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、マルチトール、キシリトール等))が挙げられる。水溶性分散安定剤は、少なくとも単独でもしくは2種類以上併せて用いられる。 As a water-soluble dispersion stabilizer in the outer aqueous phase, styrene-maleic anhydride copolymer hydrolyzate, sodium dodecylbenzenesulfonate, lecithin, gelatin, gum arabic, casein, dextrin, pectin, polyvinyl alcohol, polyvinylpyrrolidone, polyvinyl Ether, polyacrylic acid, tri- or distyryl phenyl ether added with polyoxyethylene, alcohol ether added with polyoxyethylene, tween surfactant such as sorbitan oleate added with polyoxyethylene, sorbitan oleate, etc. Span surfactant, polyacrylate, cellulose derivative (alkali metal salt of carboxymethylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydride Loxypropylethylcellulose, methylcellulose, ethylcellulose), polyhydric alcohols (glycerin, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, 1,3-propanediol, 1,4-butanediol, maltitol, Xylitol and the like)). The water-soluble dispersion stabilizer is used alone or in combination of two or more.

第二工程で用いる使用する試薬は、PCM蓄熱有機物媒体、クロライド系重合性反応性物質、イソシアネート基を有する重合性反応物質であり以下の通りである。 Reagents used in the second step are PCM heat storage organic medium, chloride-based polymerizable reactive material, and polymerizable reactive material having an isocyanate group, and are as follows.

第二工程で用いるPCM蓄熱有機物媒体として、パラフィンワックス、脂肪酸、脂肪酸エステル等が、少なくとも単独でもしくは2種類以上併せて用いられる。   As the PCM heat storage organic medium used in the second step, paraffin wax, fatty acid, fatty acid ester and the like are used alone or in combination of two or more.

第二工程で用いるクロライド系重合性反応性物質としては、マロニルジクロライド、琥珀酸クロライド、グルタルジクロライド、アジポイルジクロライド、セバコイルジクロライド、塩化フマリン、塩化フマリル、塩化イタコニル、テレフタル酸クロライド、トリメソイルクロライド等が挙げられる。少なくとも単独でもしくは2種類以上併せて用いられる。 The chloride polymerizable reactive substances used in the second step include malonyl dichloride, succinic acid chloride, glutaric dichloride, adipoyl dichloride, sebacoyl dichloride, fumarine chloride, fumaryl chloride, itaconyl chloride, terephthalic acid chloride, trimesoyl chloride. Etc. It is used alone or in combination of two or more.

第二工程で用いるイソシアネート基を有する重合性反応物質としては、フェニルイソシアネート、トリレンイソシアネート、フェニレンジイソシアネート、ヘキサメチレンジイソシアネート、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート、トリフェニルメタントリイソシアネート等が用いられる。少なくとも単独でもしくは2種類以上併せて用いられる。この中には、デスモジュールLのようなトルイジンイソシアネートとヘキサントリオールの付加物も含まれる。 Examples of the polymerizable reactive substance having an isocyanate group used in the second step include phenyl isocyanate, tolylene isocyanate, phenylene diisocyanate, hexamethylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate, triphenylmethane triisocyanate and the like. It is used alone or in combination of two or more. This includes an adduct of toluidine isocyanate and hexanetriol, such as Desmodur L.

第三工程で新たに用いるアミン系重合性反応性物質としては、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、p−フェニレンジアミン、2−メチルピペラジン、ジエチレントリアミン、トリエチレンテトラミン等が挙げられる。少なくとも単独でもしくは2種類以上併せて用いられる。 As amine-based polymerizable reactive substances newly used in the third step, ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, p-phenylenediamine, 2-methylpiperazine, diethylenetriamine, triethylenetetramine Etc. It is used alone or in combination of two or more.

以下、本発明に従いPCM蓄熱材を内包する200から2000μmのマイクロカプセルを製造する各工程、並びに、得られたマイクロカプセルの特徴と用途に沿って本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described in accordance with each step of manufacturing a 200 to 2000 μm microcapsule containing a PCM heat storage material according to the present invention, and the characteristics and applications of the obtained microcapsule.

(第一工程)多孔質構造を有する大粒子径を持つマイクロカプセルの調製は以下の通りである。重合禁止剤の除去を行った架橋剤単量体ジビニルベンゼンやトリメタクリル酸トリメチロールプロパンに、油溶性界面活性剤ポリグリセリン縮合リシノレイン酸、ラジカル重合開始剤アゾビスバレロニトリル及び有機溶媒トルエンからなる有機相(O相)に塩化ナトリウム水溶液(W相)を加え、激しく混合し、W/Oエマルションを形成する。このW/Oエマルションを、予め用意した水溶性分散安定剤ポリビニルアルコールを溶解させた外水相Wに加え撹拌混合し、W/O/Wエマルションを形成させる。その後、窒素雰囲気下、重合反応を完結させる。重合反応終了後、調製したマイクロカプセルを100μmメッシュでろ過し、蒸留水で洗浄し、真空乾燥し、回収する。 (First Step) The preparation of microcapsules having a large particle size having a porous structure is as follows. An organic solvent consisting of divinylbenzene and trimethylol propane trimethacrylate, a water-soluble surfactant, polyglycerin condensed ricinoleic acid, radical polymerization initiator azobisvaleronitrile, and organic solvent toluene. Add aqueous sodium chloride solution (W 1 phase) to phase (O phase) and mix vigorously to form a W 1 / O emulsion. This W 1 / O emulsion is added to an outer aqueous phase W 2 in which a water-soluble dispersion stabilizer polyvinyl alcohol prepared in advance is added and stirred to form a W 1 / O / W 2 emulsion. Thereafter, the polymerization reaction is completed under a nitrogen atmosphere. After completion of the polymerization reaction, the prepared microcapsules are filtered through a 100 μm mesh, washed with distilled water, vacuum dried and collected.

(第二工程)テレフタル酸クロライドやジフェニルメタンジイソシアネートを溶解したPCM溶剤であるテトラデカンを用意する。この有機液に予め、油溶性界面活性剤ポリグリセリン縮合リシノレイン酸を加え、先に得られた上述の多孔質マイクロカプセルを投入・撹拌し、場合によっては真空操作を繰り返す事によって脱気して、有機液をマイクロカプセル内部まで充分馴染ませ、マイクロカプセル中に有機液を充満させる。 (Second step) Tetradecane which is a PCM solvent in which terephthalic acid chloride or diphenylmethane diisocyanate is dissolved is prepared. Add the oil-soluble surfactant polyglycerin-condensed ricinoleic acid to this organic liquid in advance, add and stir the above-mentioned porous microcapsules obtained above, and in some cases degas by repeating the vacuum operation, The organic liquid is fully adjusted to the inside of the microcapsule, and the microcapsule is filled with the organic liquid.

(第三工程)マイクロカプセル外殻にポリアミド膜を形成させるため、ヘキサメチレンジアミンを溶解した水溶液を用意する。この水溶液にポリビニルアルコールを分散安定剤として加え、上述の有機液を充満させたマイクロカプセルを投入して撹拌・混合しつつ、液を弱アルカリ性に保ち、マイクロカプセル外壁をポリアミド膜で被覆する。この後、反応温度を上げてマイクロカプセル内壁にポリウレア膜を形成させることによって内部にPCM 蓄熱媒体を含む丈夫な漏れのないマイクロカプセルが得られる。 (Third step) In order to form a polyamide film on the outer shell of the microcapsule, an aqueous solution in which hexamethylenediamine is dissolved is prepared. To this aqueous solution, polyvinyl alcohol is added as a dispersion stabilizer, and the microcapsules filled with the above-described organic liquid are added, and the liquid is kept weakly alkaline while stirring and mixing, and the outer wall of the microcapsules is covered with a polyamide film. Thereafter, the reaction temperature is raised to form a polyurea film on the inner wall of the microcapsule, thereby obtaining a strong and leak-free microcapsule containing the PCM heat storage medium inside.

このマイクロカプセルは、多孔質構造を持つ球状粒子であり、粒子径は、主として第一工程における内水相中の塩濃度で制御でき、円の度が高いほど粒子径は大きくなる。マイクロカプセル強度は、第二工程におけるクロライド系重合性反応性物質やイソシアネート基を有する重合性反応物質の濃度で制御でき、これらの濃度が高い程、マイクロカプセル強度は増大する。   This microcapsule is a spherical particle having a porous structure, and the particle size can be controlled mainly by the salt concentration in the inner aqueous phase in the first step. The higher the degree of circle, the larger the particle size. The microcapsule strength can be controlled by the concentration of the chloride-based polymerizable reactive material or the polymerizable reactive material having an isocyanate group in the second step, and the higher the concentration, the higher the microcapsule strength.

以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれに何ら限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

(第一工程) 重合禁止剤の除去を行った架橋単量体ジビニルベンゼン9.8g、トリメタクリル酸トリメチロールプロパン25.5g、油溶性界面活性剤ポリグリセリン縮合リシノレイン酸4.5g、重合開始剤アゾビスジメチルバレロニトリル0.5g及び有機溶媒トルエン4.5gからなる有機相を用意した。氷冷下、この有機相に塩化ナトリウム6.0 モル/リッター水溶液5.0gを投入し、ホモジナイザーで8000rpm、10分間、撹拌混合し、(W/O)エマルションを調製した。この(W/O)エマルションを部分けん化型ポリビニルアルコール9.0gおよびドデシル硫酸ナトリウム1.1gを溶解させた外水相(W相)450gに加え250rpmで撹拌混合し、(W/O/W)エマルションを形成した。その後、窒素雰囲気下、250rpm、70℃で重合反応を進行させ5時間で重合を終了した。調製したマイクロカプセルを100μmメッシュでろ過し、蒸留水で洗浄、真空乾燥後、多孔質マイクロカプセルを回収した。収率は86%であった。 (First Step) 9.8 g of a crosslinking monomer divinylbenzene from which a polymerization inhibitor has been removed, 25.5 g of trimethylolpropane trimethacrylate, 4.5 g of an oil-soluble surfactant polyglycerin condensed ricinoleic acid, a polymerization initiator An organic phase consisting of 0.5 g of azobisdimethylvaleronitrile and 4.5 g of organic solvent toluene was prepared. Under ice-cooling, 5.0 g of sodium chloride 6.0 mol / liter aqueous solution was added to this organic phase, and stirred and mixed with a homogenizer at 8000 rpm for 10 minutes to prepare a (W 1 / O) emulsion. This (W 1 / O) emulsion was added to 450 g of an outer aqueous phase (W 2 phase) in which 9.0 g of partially saponified polyvinyl alcohol and 1.1 g of sodium dodecyl sulfate were dissolved, and the mixture was stirred and mixed at 250 rpm (W 1 / O). / W 2 ) An emulsion was formed. Thereafter, the polymerization reaction was allowed to proceed at 250 rpm and 70 ° C. in a nitrogen atmosphere, and the polymerization was completed in 5 hours. The prepared microcapsules were filtered through a 100 μm mesh, washed with distilled water, and vacuum-dried, and then the porous microcapsules were collected. The yield was 86%.

(第二工程)テレフタル酸クロライド0.5gとジフェニルメタンジイソシアネート0.5gを溶解したPCM溶剤であるテトラデカン溶液50gを用意する。この有機液に、油溶性界面活性剤ポリグリセリン縮合リシノレイン酸1gを加え、さらに上述の方法で得た空洞を多く持つ多孔質マイクロカプセル5.0gを投入・撹拌し溶液にマイクロカプセルを充分馴染ませた。マイクロカプセル中に残存する気体は、この系を真空ポンプで脱気する事で取り除き、マイクロカプセルに有機液体を充分取り込ませ、100μmメッシュ中に保持した。 (Second Step) A tetradecane solution 50 g which is a PCM solvent in which 0.5 g of terephthalic acid chloride and 0.5 g of diphenylmethane diisocyanate are dissolved is prepared. Add 1 g of oil-soluble surfactant polyglycerin condensed ricinoleic acid to this organic liquid, and then add and stir the porous microcapsules 5.0 g with many cavities obtained by the above-mentioned method, so that the microcapsules are fully adapted to the solution. It was. The gas remaining in the microcapsules was removed by deaeration of the system with a vacuum pump, and the organic liquid was sufficiently taken into the microcapsules and held in a 100 μm mesh.

(第三工程)マイクロカプセル外殻にポリアミド膜を形成させるため、ヘキサメチレンジアミン5.3gを溶解した水溶液200g用意した。この水溶液にはマイクロカプセル粒子を安定的に分散させるために分散安定剤としてポリビニルアルコール2gを加えた。ジアミン、PVAを含む、この溶液に上述の100μmメッシュ中のマイクロカプセル5gを投入し、撹拌・混合しつつ、液を弱アルカリ性に保ち、マイクロカプセル外壁をポリアミド膜で被覆した。この後、反応温度を70℃に上げて3時間維持し、マイクロカプセル内壁にポリウレア膜を形成させることによって内部にPCM 蓄熱媒体を含む丈夫な漏れのないマイクロカプセルが得られた。 (Third step) In order to form a polyamide film on the outer shell of the microcapsule, 200 g of an aqueous solution in which 5.3 g of hexamethylenediamine was dissolved was prepared. In order to stably disperse the microcapsule particles, 2 g of polyvinyl alcohol was added to this aqueous solution as a dispersion stabilizer. To this solution containing diamine and PVA, 5 g of the microcapsules in the above-mentioned 100 μm mesh were added, and while stirring and mixing, the liquid was kept weakly alkaline and the outer wall of the microcapsules was covered with a polyamide film. Thereafter, the reaction temperature was raised to 70 ° C. and maintained for 3 hours, and a polyurea film was formed on the inner wall of the microcapsule to obtain a strong and non-leakable microcapsule containing a PCM heat storage medium inside.

(第一工程) 重合禁止剤の除去を行った架橋単量体ジビニルベンゼン9.8g、トリメタクリル酸トリメチロールプロパン25.5g、油溶性界面活性剤ポリグリセリン縮合リシノレイン酸4.5g、重合開始剤アゾビスジメチルバレロニトリル0.5g及び有機溶媒トルエン4.5gからなる有機相を用意した。氷冷下、この有機相に塩化ナトリウム6.0 モル/リッター水溶液5.0gを投入し、ホモジナイザーで8000rpm、10分間、撹拌混合し、(W/O)エマルションを調製した。この(W/O)エマルションを部分けん化型ポリビニルアルコール9.0gおよびドデシル硫酸ナトリウム1.1gを溶解させた外水相(W相)450gに加え250rpmで撹拌混合し、(W/O/W)エマルションを形成した。その後、窒素雰囲気下、250rpm、70℃で重合反応を進行させ5時間で重合を終了した。調製したマイクロカプセルを100μmメッシュでろ過し、蒸留水で洗浄、真空乾燥後、多孔質マイクロカプセルを回収した。収率は90%であった。 (First Step) 9.8 g of a crosslinking monomer divinylbenzene from which a polymerization inhibitor has been removed, 25.5 g of trimethylolpropane trimethacrylate, 4.5 g of an oil-soluble surfactant polyglycerin condensed ricinoleic acid, a polymerization initiator An organic phase consisting of 0.5 g of azobisdimethylvaleronitrile and 4.5 g of organic solvent toluene was prepared. Under ice-cooling, 5.0 g of sodium chloride 6.0 mol / liter aqueous solution was added to this organic phase, and stirred and mixed with a homogenizer at 8000 rpm for 10 minutes to prepare a (W 1 / O) emulsion. This (W 1 / O) emulsion was added to 450 g of an outer aqueous phase (W 2 phase) in which 9.0 g of partially saponified polyvinyl alcohol and 1.1 g of sodium dodecyl sulfate were dissolved, and the mixture was stirred and mixed at 250 rpm (W 1 / O). / W 2 ) An emulsion was formed. Thereafter, the polymerization reaction was allowed to proceed at 250 rpm and 70 ° C. in a nitrogen atmosphere, and the polymerization was completed in 5 hours. The prepared microcapsules were filtered through a 100 μm mesh, washed with distilled water, and vacuum-dried, and then the porous microcapsules were collected. The yield was 90%.

(第二工程)テレフタル酸クロライド0.5gおよびヘキサメチレンジイソシアネートとヘキサントリオールとの3:1モル付加物1gを溶解したPCM溶剤であるテトラデカン溶液50gを用意する。この有機液に、油溶性界面活性剤ポリグリセリン縮合リシノレイン酸1gを加え、さらに上述の方法で得た空洞を多く持つ多孔質マイクロカプセル5.0gを投入・撹拌し溶液にマイクロカプセルを充分馴染ませた。マイクロカプセル中に残存する気体は、この系を真空ポンプで脱気する事で取り除き、マイクロカプセルに有機液体を充分取り込ませ、100μmメッシュ中に保持した。 (Second step) 50 g of a tetradecane solution which is a PCM solvent in which 0.5 g of terephthalic acid chloride and 1 g of a 3: 1 molar adduct of hexamethylene diisocyanate and hexanetriol are dissolved are prepared. Add 1 g of oil-soluble surfactant polyglycerin condensed ricinoleic acid to this organic liquid, and then add and stir the porous microcapsules 5.0 g with many cavities obtained by the above-mentioned method, so that the microcapsules are fully adapted to the solution. It was. The gas remaining in the microcapsules was removed by deaeration of the system with a vacuum pump, and the organic liquid was sufficiently taken into the microcapsules and held in a 100 μm mesh.

(第三工程)マイクロカプセル外殻にポリアミド膜を形成させるため、ヘキサメチレンジアミン5.3gを溶解した水溶液200g用意した。この水溶液にはマイクロカプセル粒子を安定的に分散させるために分散安定剤としてポリビニルアルコール2gを加えた。ジアミン、PVAを含む、この溶液に上述の100μmメッシュ中のマイクロカプセル5gを投入し、撹拌・混合しつつ、液を弱アルカリ性に保ち、マイクロカプセル外壁をポリアミド膜で被覆した。この後、反応温度を70℃に上げて3時間維持し、マイクロカプセル内壁にポリウレタン膜を形成させることによって内部にPCM 蓄熱媒体を含む丈夫な漏れのないマイクロカプセルが得られた。 (Third step) In order to form a polyamide film on the outer shell of the microcapsule, 200 g of an aqueous solution in which 5.3 g of hexamethylenediamine was dissolved was prepared. In order to stably disperse the microcapsule particles, 2 g of polyvinyl alcohol was added to this aqueous solution as a dispersion stabilizer. To this solution containing diamine and PVA, 5 g of the microcapsules in the above-mentioned 100 μm mesh were added, and while stirring and mixing, the liquid was kept weakly alkaline and the outer wall of the microcapsules was covered with a polyamide film. Thereafter, the reaction temperature was raised to 70 ° C. and maintained for 3 hours, and a polyurethane film was formed on the inner wall of the microcapsule to obtain a strong and leak-free microcapsule containing a PCM heat storage medium inside.

(第一工程) 重合禁止剤の除去を行った架橋単量体トリメタクリル酸トリメチロールプロパン30.5g、油溶性界面活性剤ポリグリセリン縮合リシノレイン酸4.5g、重合開始剤アゾビスジメチルバレロニトリル0.5g及び有機溶媒ベンゼン4.5gからなる有機相を用意した。氷冷下、この有機相に塩化ナトリウム6.0 モル/リッター水溶液5.0gを投入し、ホモジナイザーで8000rpm、10分間、撹拌混合し、(W/O)エマルションを調製した。この(W/O)エマルションを部分けん化型ポリビニルアルコール9.0gおよびドデシル硫酸ナトリウム1.1gを溶解させた外水相(W相)450gに加え250rpmで撹拌混合し、(W/O/W)エマルションを形成した。その後、窒素雰囲気下、250rpm、70℃で重合反応を進行させ5時間で重合を終了した。調製したマイクロカプセルを100μmメッシュでろ過し、蒸留水で洗浄、真空乾燥後、多孔質マイクロカプセルを回収した。収率は92%であった。 (First step) 30.5 g of a trimethylolpropane cross-linking monomer from which a polymerization inhibitor has been removed, 4.5 g of an oil-soluble surfactant polyglycerin condensed ricinoleic acid, a polymerization initiator azobisdimethylvaleronitrile 0 An organic phase consisting of 0.5 g and 4.5 g of organic solvent benzene was prepared. Under ice-cooling, 5.0 g of sodium chloride 6.0 mol / liter aqueous solution was added to this organic phase, and stirred and mixed with a homogenizer at 8000 rpm for 10 minutes to prepare a (W 1 / O) emulsion. This (W 1 / O) emulsion was added to 450 g of an outer aqueous phase (W 2 phase) in which 9.0 g of partially saponified polyvinyl alcohol and 1.1 g of sodium dodecyl sulfate were dissolved, and the mixture was stirred and mixed at 250 rpm (W 1 / O). / W 2 ) An emulsion was formed. Thereafter, the polymerization reaction was allowed to proceed at 250 rpm and 70 ° C. in a nitrogen atmosphere, and the polymerization was completed in 5 hours. The prepared microcapsules were filtered through a 100 μm mesh, washed with distilled water, and vacuum-dried, and then the porous microcapsules were collected. The yield was 92%.

(第二工程)テレフタル酸クロライド0.5gとジフェニルメタンジイソシアネート0.5gおよびヘキサメチレンジイソシアネートとヘキサントリオールとの3:1モル付加物1gをを溶解したPCM溶剤であるテトラデカン溶液50gを用意する。この有機液に、油溶性界面活性剤ポリグリセリン縮合リシノレイン酸1gを加え、さらに上述の方法で得た多孔質マイクロカプセル5.0gを投入・撹拌し溶液にマイクロカプセルを充分馴染ませた。マイクロカプセル中に残存する気体は、この系を真空ポンプで脱気する事で取り除き、マイクロカプセルに有機液体を充分取り込ませ、100μmメッシュ中に保持した。 (Second step) 50 g of a tetradecane solution which is a PCM solvent in which 0.5 g of terephthalic acid chloride and 0.5 g of diphenylmethane diisocyanate and 1 g of a 3: 1 molar adduct of hexamethylene diisocyanate and hexanetriol are dissolved is prepared. To this organic liquid was added 1 g of an oil-soluble surfactant polyglycerin condensed ricinoleic acid, and 5.0 g of the porous microcapsules obtained by the above-described method was added and stirred to fully adjust the microcapsules to the solution. The gas remaining in the microcapsules was removed by deaeration of the system with a vacuum pump, and the organic liquid was sufficiently taken into the microcapsules and held in a 100 μm mesh.

(第三工程)マイクロカプセル外殻にポリアミド膜を形成させるため、ヘキサメチレンジアミン5.3gを溶解した水溶液200g用意した。この水溶液にはマイクロカプセル粒子を安定的に分散させるために分散安定剤としてポリビニルアルコール2gを加えた。ジアミン、PVAを含む、この溶液に上述の100μmメッシュ中のマイクロカプセル5gを投入し、撹拌・混合しつつ、液を弱アルカリ性に保ち、マイクロカプセル外壁をポリアミド膜で被覆した。この後、反応温度を70℃に上げて3時間維持し、マイクロカプセル内壁にポリウレタンとポリウレアの複合膜を形成させることによって内部にPCM 蓄熱媒体を含む丈夫な漏れのないマイクロカプセルが得られた。
(Third step) In order to form a polyamide film on the outer shell of the microcapsule, 200 g of an aqueous solution in which 5.3 g of hexamethylenediamine was dissolved was prepared. In order to stably disperse the microcapsule particles, 2 g of polyvinyl alcohol was added to this aqueous solution as a dispersion stabilizer. To this solution containing diamine and PVA, 5 g of the microcapsules in the above-mentioned 100 μm mesh were added, and while stirring and mixing, the liquid was kept weakly alkaline and the outer wall of the microcapsules was covered with a polyamide film. Thereafter, the reaction temperature was raised to 70 ° C. and maintained for 3 hours, and a composite film of polyurethane and polyurea was formed on the inner wall of the microcapsule to obtain a strong and leak-free microcapsule containing a PCM heat storage medium inside.

Claims (2)

200〜2000ミクロンサイズの空洞を多く持つ多孔質マイクロカプセルにPCM媒体を充満させ、内壁を少なくともポリウレア膜とポリウレタン膜のいずれか一方とし、外皮膜をポリアミド膜とするマイクロカプセル。 A microcapsule in which a porous microcapsule having many cavities of 200 to 2000 microns is filled with a PCM medium, the inner wall is at least one of a polyurea film and a polyurethane film, and the outer film is a polyamide film. W/O/Wエマルションを用いた公知の操作によって、200〜2000μmサイズの多孔質球粒子を得る第一工程(多孔質大粒子形成)と、
多孔質粒子表面を被覆する材料をポリウレア膜或いはポリウレタン膜およびポリアミド膜の複合膜とする場合にはPCM蓄熱有機物媒体に予め、ポリイソシアナート或いはポリイソシアナートとポリオール付加物と酸クロライドを溶解させておき、この蓄熱有機物媒体溶液を第一工程で得た多孔質粒子に含浸させる事で、200〜2000μmサイズの蓄熱有機物媒体で満たされた球形粒子を得る第二工程(PCM蓄熱媒体含有大粒子形成)と、
別個に用意したポリアミンを溶解した水相に対して、この粒子群相を分散させ、水相のPHを中性或いは弱アルカリにする事で、球粒子表面にポリアミド樹脂被膜を生成させ、その後、加温する事によって、ポリウレア樹脂壁を内側から形成させる第三工程(樹脂被覆PCM蓄熱粒子形成)と、を有する製造方法。
A first step of obtaining porous spherical particles having a size of 200 to 2000 μm by a known operation using a W / O / W emulsion (forming porous large particles);
When the material covering the porous particle surface is a polyurea film or a composite film of polyurethane film and polyamide film, polyisocyanate or polyisocyanate, polyol adduct and acid chloride are dissolved in the PCM heat storage organic medium in advance. Then, the porous particles obtained in the first step are impregnated with the heat storage organic medium solution to obtain spherical particles filled with the heat storage organic medium having a size of 200 to 2000 μm (PCM heat storage medium-containing large particle formation). )When,
Disperse this particle group phase in an aqueous phase in which a separately prepared polyamine is dissolved, and make the PH of the aqueous phase neutral or weakly alkaline to produce a polyamide resin film on the surface of the spherical particles. A third process (resin-coated PCM thermal storage particle formation) in which a polyurea resin wall is formed from the inside by heating.
JP2014158623A 2014-08-04 2014-08-04 Large particle size heat storage microcapsule and its manufacturing method Expired - Fee Related JP6682082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014158623A JP6682082B2 (en) 2014-08-04 2014-08-04 Large particle size heat storage microcapsule and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014158623A JP6682082B2 (en) 2014-08-04 2014-08-04 Large particle size heat storage microcapsule and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2016034622A true JP2016034622A (en) 2016-03-17
JP6682082B2 JP6682082B2 (en) 2020-04-15

Family

ID=55522863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014158623A Expired - Fee Related JP6682082B2 (en) 2014-08-04 2014-08-04 Large particle size heat storage microcapsule and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6682082B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017137437A (en) * 2016-02-04 2017-08-10 Jsr株式会社 Heat storage particle, method for producing the same and heat storage material
CN109679584A (en) * 2018-12-10 2019-04-26 西安工程大学 A kind of multicomponent mesh casing phase-change microcapsule and preparation method thereof
CN113058513A (en) * 2021-03-22 2021-07-02 四川大学 Flame-retardant phase-change energy-storage microcapsule and preparation method thereof
CN113198399A (en) * 2021-05-20 2021-08-03 吉林建筑大学 Phase change microcapsule, preparation method and application thereof, and composite AB coating
CN114950290A (en) * 2022-06-29 2022-08-30 南京工业大学 Preparation method of phase change energy storage microcapsule with uniform particle size

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128589B1 (en) * 1967-12-28 1976-08-20
JPH09286978A (en) * 1996-04-19 1997-11-04 Chubu Electric Power Co Inc Production of capsule-type heat storage material
JP2005527359A (en) * 2002-05-28 2005-09-15 ナノ−スポーツ テクノロジーズ リミティド Method for encapsulating paraffinic compounds capable of phase transition and microcapsules obtained therefrom
JP2008144054A (en) * 2006-12-11 2008-06-26 Enex Co Ltd Particulate heat storage material and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128589B1 (en) * 1967-12-28 1976-08-20
JPH09286978A (en) * 1996-04-19 1997-11-04 Chubu Electric Power Co Inc Production of capsule-type heat storage material
JP2005527359A (en) * 2002-05-28 2005-09-15 ナノ−スポーツ テクノロジーズ リミティド Method for encapsulating paraffinic compounds capable of phase transition and microcapsules obtained therefrom
JP2008144054A (en) * 2006-12-11 2008-06-26 Enex Co Ltd Particulate heat storage material and method for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017137437A (en) * 2016-02-04 2017-08-10 Jsr株式会社 Heat storage particle, method for producing the same and heat storage material
WO2017135025A1 (en) * 2016-02-04 2017-08-10 Jsr株式会社 Heat storage particles, method for producing same, and heat storage material
CN109679584A (en) * 2018-12-10 2019-04-26 西安工程大学 A kind of multicomponent mesh casing phase-change microcapsule and preparation method thereof
CN113058513A (en) * 2021-03-22 2021-07-02 四川大学 Flame-retardant phase-change energy-storage microcapsule and preparation method thereof
CN113058513B (en) * 2021-03-22 2022-04-12 四川大学 Flame-retardant phase-change energy-storage microcapsule and preparation method thereof
CN113198399A (en) * 2021-05-20 2021-08-03 吉林建筑大学 Phase change microcapsule, preparation method and application thereof, and composite AB coating
CN114950290A (en) * 2022-06-29 2022-08-30 南京工业大学 Preparation method of phase change energy storage microcapsule with uniform particle size

Also Published As

Publication number Publication date
JP6682082B2 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
JP6682082B2 (en) Large particle size heat storage microcapsule and its manufacturing method
CN107556973B (en) Phase change energy storage microcapsule and preparation method thereof
CN1986721B (en) Double shell microcapsule phase change material with paraffin compound as core and its preparing process
JP4320356B2 (en) Thermally expansible microspheres, production method and use thereof
KR101987757B1 (en) Heat-expandable microspheres, process for producing same, and uses
JP2008507605A (en) Microcapsule manufacturing method using latent heat storage material
EP3733276B1 (en) Method for low temperature microencapsulation of phase change materials
KR101574522B1 (en) Heat storage materials and fabrication method thereof
JP6152237B2 (en) Method for producing thermally expandable microsphere and use thereof
JP2012140600A (en) Heat storage microcapsule and method for manufacturing the same
KR102464182B1 (en) The water repellant silica microcapsules and a method for their preparation
CN104762066B (en) Compound microcapsules of storing energy through phase change and preparation method thereof
CA2897716A1 (en) Microcapsule heat storage material, method of producing the same, and use of the same
CN114515553B (en) Self-repairing self-lubricating difunctional microcapsule and preparation method and application thereof
CN104804711B (en) Embedded enhanced thermal conduction microcapsules of storing energy through phase change and preparation method thereof
CN110465251B (en) Long-acting repairing type double-layer microcapsule
Al-Shannaq et al. Methods for the synthesis of phase change material microcapsules with enhanced thermophysical properties—A state-of-the-art review
Sakurai et al. Hollow polylactic acid microcapsules fabricated by gas/oil/water and bubble template methods
JP5588141B2 (en) Method for producing thermally expandable microcapsules
JP5213040B2 (en) Method for producing dispersion
KR101848413B1 (en) Latent heat regenerative materials with microcapsule structure using paraffin oil and manufacturing method thereof
CN108285362A (en) A kind of method of sic foam element surface hydrophobically modified
JP6156868B2 (en) Thermal storage microcapsule and manufacturing method thereof
JP5766418B2 (en) Method for producing thermally expandable microcapsules
JPWO2016093220A1 (en) Thermally foamable microspheres and compositions and molded bodies containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191119

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200225

R150 Certificate of patent or registration of utility model

Ref document number: 6682082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees