JP2016031912A - Production method of conductive paste and conductive paste obtained by the method - Google Patents

Production method of conductive paste and conductive paste obtained by the method Download PDF

Info

Publication number
JP2016031912A
JP2016031912A JP2014155147A JP2014155147A JP2016031912A JP 2016031912 A JP2016031912 A JP 2016031912A JP 2014155147 A JP2014155147 A JP 2014155147A JP 2014155147 A JP2014155147 A JP 2014155147A JP 2016031912 A JP2016031912 A JP 2016031912A
Authority
JP
Japan
Prior art keywords
conductive paste
additive
acid
organic additive
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014155147A
Other languages
Japanese (ja)
Other versions
JP6314728B2 (en
Inventor
香織 中家
Kaori Nakaya
香織 中家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014155147A priority Critical patent/JP6314728B2/en
Publication of JP2016031912A publication Critical patent/JP2016031912A/en
Application granted granted Critical
Publication of JP6314728B2 publication Critical patent/JP6314728B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a conductive paste that can suppress changes in viscosity with time.SOLUTION: A production method of a conductive paste comprising a resin, an organic solvent, and a conductive metal powder is provided, which includes: dissolving a resin such as a cellulose resin or an acetal resin in an organic solvent to prepare a vehicle and mixing the vehicle with an amine base organic additive such as laurylamine, myristylamine, cetylamine, stearylamine, and oleylamine to prepare an additive-containing vehicle; and then mixing the additive-containing vehicle with a conductive metal powder such as a nickel powder, and if necessary, an acid organic additive such as an amino acid having an amide bond or a higher fatty acid having 11 or more carbon atoms. The above components are blended preferably to obtain a total content of the acid organic additive and the amine base organic additive of 1 mass% or less in the conductive paste.SELECTED DRAWING: None

Description

本発明は導電性ペーストの製造方法に関し、特に樹脂、有機溶剤、及び導電性金属粉末に加えてアミン塩基系有機添加剤を含有する導電性ペーストの製造方法に関する。   The present invention relates to a method for producing a conductive paste, and more particularly, to a method for producing a conductive paste containing an amine base organic additive in addition to a resin, an organic solvent, and a conductive metal powder.

導電性ペーストは、樹脂、溶剤、及び導電性金属粉末を含有しており、電子部品の電極などの導電部を形成する材料として広く用いられている。電子部品の電極を形成する場合は、セラミック等の基板やグリーンシートの表面にスクリーン印刷などの印刷技術を活用して所定の形状の印刷膜を形成した後、加熱乾燥により該印刷膜から溶媒を除去し、得られた乾燥膜に含まれる導電性金属粉末が焼結する温度で乾燥膜を焼成することで金属膜からなる電極が得られる。   The conductive paste contains a resin, a solvent, and a conductive metal powder, and is widely used as a material for forming a conductive portion such as an electrode of an electronic component. When forming an electrode of an electronic component, a printing film such as screen printing is used to form a printed film on a surface of a substrate such as a ceramic or a green sheet, and then a solvent is removed from the printed film by heat drying. The electrode made of a metal film is obtained by firing the dried film at a temperature at which the conductive metal powder contained in the obtained dried film is sintered.

このような導電性ペーストを材料に用いる電子部品の一例として、チップ部品である積層セラミックコンデンサが知られている。積層セラミックコンデンサは誘電体層と内部電極層とを交互に重ね合わせた積層体構造となっている。近年、電子機器の軽薄短小化に伴い、積層セラミックコンデンサに対しても小型化、大容量化が求められており、上記した誘電体層や内部電極層を薄層化して多層化する技術がますます重要となってきている。   As an example of an electronic component using such a conductive paste as a material, a multilayer ceramic capacitor which is a chip component is known. The multilayer ceramic capacitor has a multilayer structure in which dielectric layers and internal electrode layers are alternately stacked. In recent years, as electronic devices have become lighter, thinner, and smaller, multilayer ceramic capacitors are also required to be smaller and have larger capacities, and there is a technology to make the above dielectric layers and internal electrode layers thinner to make them multilayer. It has become increasingly important.

積層セラミックコンデンサは一般に次の工程を経て作製される。すなわち、先ずチタン酸バリウム(BaTiO)等で代表される誘電体粉末とポリビニルブチラール、アクリル等の有機バインダとからなるいわゆる誘電体グリーンシート(単にグリーンシートとも称する)上に導電性金属粉末を含有する内部電極用導電性ペーストをスクリーン印刷し、これを乾燥して乾燥積層体を得る。 A multilayer ceramic capacitor is generally manufactured through the following steps. That is, first, a conductive metal powder is contained on a so-called dielectric green sheet (also simply referred to as a green sheet) composed of a dielectric powder represented by barium titanate (BaTiO 3 ) or the like and an organic binder such as polyvinyl butyral or acrylic. The internal electrode conductive paste is screen-printed and dried to obtain a dry laminate.

この乾燥積層体を、グリーンシートと内部電極とが交互に重なるように所定の枚数重ね合わせた後、熱水による静水圧で熱圧着し、目的の大きさを有するいわゆるグリーンチップに切断する。次にこのグリーンチップを脱バインダを目的としてバッチ式若しくはベルト式電気炉にて所定の温度のガス雰囲気の下で加熱する。その後、誘電体になる部分と内部電極になる部分とをそれぞれ焼結させるために約1300℃で焼成する。このようにして得た焼成体に対して外部電極用の導電性ペーストを塗布し、この導電性ペースト中に含まれる有機分の脱バインダを行ってから焼成処理する。更に半田の濡れ性向上のため、上記焼成処理後の外部電極部にニッケルメッキとスズメッキとを施す。これにより、積層セラミックコンデンサが完成する。   A predetermined number of the laminated laminates are stacked so that the green sheets and the internal electrodes are alternately overlapped, followed by thermocompression bonding with hydrostatic pressure using hot water, and cut into so-called green chips having a desired size. Next, this green chip is heated in a gas atmosphere at a predetermined temperature in a batch-type or belt-type electric furnace for the purpose of removing the binder. Thereafter, firing is performed at about 1300 ° C. in order to sinter the portion to be a dielectric and the portion to be an internal electrode. A conductive paste for an external electrode is applied to the fired body thus obtained, and the organic component contained in the conductive paste is removed, followed by firing treatment. Furthermore, in order to improve the wettability of the solder, nickel plating and tin plating are applied to the external electrode portion after the above baking treatment. Thereby, a multilayer ceramic capacitor is completed.

導電性ペーストは、上記ペースト印刷により電子部品を形成するいわゆる厚膜技術に用いる場合に限らず、加熱乾燥及び焼成後に得られる電子部品の電極等において導電部が良好に機能するように十分な量の導電性金属粉末等の無機成分を含有する必要がある。しかし、導電性ペーストに含まれる無機成分の量が適量を超えて多くなると導電性ペーストの粘性が高くなりすぎ、上記した厚膜技術の印刷の際に導電性ペーストを良好に印刷できなくなるおそれがある。また、積層セラミックコンデンサにおいては、内部電極の薄層化のためには、導電ペーストから得られる膜は緻密で且つ平滑であることが望ましい。   The conductive paste is not limited to the so-called thick film technology for forming an electronic component by the above paste printing, but a sufficient amount so that the conductive portion functions well in the electrode of the electronic component obtained after heat drying and baking. It is necessary to contain an inorganic component such as conductive metal powder. However, if the amount of the inorganic component contained in the conductive paste increases beyond an appropriate amount, the viscosity of the conductive paste becomes too high, and there is a possibility that the conductive paste cannot be printed satisfactorily during the printing of the thick film technique described above. is there. In the multilayer ceramic capacitor, it is desirable that the film obtained from the conductive paste is dense and smooth in order to reduce the thickness of the internal electrode.

そこで、特許文献1には導電性ペーストの添加剤として分散剤を加えることで、膜密度を向上させたり乾燥膜の平滑性を向上させたりする技術が開示されている。また、特許文献2には導電性ペースト用の添加剤に酸系有機添加剤及びアミン塩基系有機添加剤を併用することで該導電性ペーストの粘度を良好に調整する技術が開示されている。   Therefore, Patent Document 1 discloses a technique for improving the film density and improving the smoothness of the dry film by adding a dispersant as an additive of the conductive paste. Patent Document 2 discloses a technique for favorably adjusting the viscosity of the conductive paste by using an acid organic additive and an amine base organic additive in combination with the additive for the conductive paste.

特開2012−226865号公報JP 2012-226865 A 特開2004−200450号公報JP 2004-200450 A

しかしながら、特許文献1及び特許文献2に開示されている技術は、導電性ペーストの粘性が経時的に変化する範囲が含まれている。導電性ペーストは上記したように印刷技術での膜形成に多用されているため、その粘性を安定化させることが望ましい。粘性が安定化することで導電性ペーストから得られる電子部品の品質のばらつきが減少し、歩留まりを向上させることができる。本発明は上記した従来の事情に鑑みてなされたものであり、粘性の経時変化を抑制できる導電性ペーストの製造方法とその製造方法で得られる導電性ペーストを提供することを目的としている。   However, the techniques disclosed in Patent Document 1 and Patent Document 2 include a range in which the viscosity of the conductive paste changes with time. Since the conductive paste is frequently used for film formation by the printing technique as described above, it is desirable to stabilize its viscosity. By stabilizing the viscosity, variations in the quality of electronic components obtained from the conductive paste are reduced, and the yield can be improved. This invention is made | formed in view of the above-mentioned conventional situation, and it aims at providing the electrically conductive paste obtained by the manufacturing method of the electrically conductive paste which can suppress a time-dependent change of viscosity, and its manufacturing method.

上記目的を達成するため、本発明が提供する導電性ペーストの製造方法は、樹脂、有機溶剤、及び導電性金属粉末を含有する導電性ペーストの製造方法であって、有機溶媒に樹脂を溶解して得たビヒクルにアミン塩基系有機添加剤を混合して添加剤含有ビヒクルを作製した後、前記添加剤含有ビヒクルに導電性金属粉末を混合することを特徴としている。   In order to achieve the above object, a method for producing a conductive paste provided by the present invention is a method for producing a conductive paste containing a resin, an organic solvent, and a conductive metal powder, wherein the resin is dissolved in the organic solvent. An amine-based organic additive is mixed with the obtained vehicle to produce an additive-containing vehicle, and then conductive metal powder is mixed with the additive-containing vehicle.

本発明によれば、導電性ペーストの粘性の経時変化を抑制できるので、電子部品の生産時の歩留まりが向上し、生産計画通りの電子部品の製造を実現することが可能になる。   According to the present invention, since the change in viscosity of the conductive paste with time can be suppressed, the yield during the production of electronic parts can be improved, and the production of electronic parts according to the production plan can be realized.

以下、本発明の導電性ペーストの製造方法の実施形態について、積層セラミックコンデンサの内部電極用のニッケルペースト、すなわち導電性ペーストに含まれる導電性金属粉末にニッケル粉末を用いた導電性ペーストを作製する場合を例に挙げて説明する。   Hereinafter, regarding an embodiment of the method for producing a conductive paste of the present invention, a nickel paste for an internal electrode of a multilayer ceramic capacitor, that is, a conductive paste using nickel powder as a conductive metal powder contained in the conductive paste is prepared. A case will be described as an example.

本発明の実施形態の導電性ペーストの製造方法では、作製される導電ペーストに含まれる導電性金属粉末に、例えば金、銀、パラジウム、銅、ニッケルなどの金属粉末又はその合金粉末を使用してもよいが、これらのなかでは安価なニッケル及び/又はその合金からなる粉末を使用するのが好ましい。導電性ペースト中に含まれる導電性金属粉末の含有量は40〜60質量%が好ましく、45〜55質量%がより好ましい。この含有量が40質量%未満では形成した電極の厚みが薄くなりすぎて良好な導電性が得られなくなるおそれがあり、一方、含有量が60質量%を超えると電極層を薄層化するのが困難になる。   In the method for producing a conductive paste according to an embodiment of the present invention, for example, a metal powder such as gold, silver, palladium, copper, nickel, or an alloy powder thereof is used as the conductive metal powder contained in the produced conductive paste. Of these, it is preferable to use a powder made of inexpensive nickel and / or an alloy thereof. The content of the conductive metal powder contained in the conductive paste is preferably 40 to 60% by mass, and more preferably 45 to 55% by mass. If the content is less than 40% by mass, the thickness of the formed electrode may be too thin and good conductivity may not be obtained. On the other hand, if the content exceeds 60% by mass, the electrode layer is thinned. Becomes difficult.

また、上記導電性ペーストに含まれる導電性金属粉末は、その平均粉末径が0.05〜1.0μmであるのが好ましい。その理由は、ニッケル粉末は凝集により粗大粒子が生じることがあり、平均粒径が1.0μmを超えると粒径1.5μmを超える粗大粒子が導電性ペーストに含まれることがあるからである。この様に導電性ペーストに粒径1.5μmを超える粗大粒子が含まれていると、得られる乾燥膜や焼成後の金属膜の平滑性が損なわれるおそれがあるため、積層セラミックコンデンサの内部電極用としては好ましくない。なお、ニッケル粉末の粗大粒子は、SEM等の電子顕微鏡で確認することもできるが、公知の粒度分布測定装置でも確認することができる。   The conductive metal powder contained in the conductive paste preferably has an average powder diameter of 0.05 to 1.0 μm. The reason is that the nickel powder may produce coarse particles due to aggregation, and if the average particle size exceeds 1.0 μm, coarse particles exceeding the particle size of 1.5 μm may be included in the conductive paste. If the conductive paste contains coarse particles having a particle size exceeding 1.5 μm in this way, the smoothness of the resulting dried film or fired metal film may be impaired. It is not preferable for use. In addition, although the coarse particle of nickel powder can also be confirmed with electron microscopes, such as SEM, it can also confirm with a well-known particle size distribution measuring apparatus.

一方、平均粒径が0.05μm未満では粒子の比表面積が大きくなりすぎ、表面活性が強くなって導電性ペーストの乾燥等の処理に悪影響を及ぼしたり導電性ペーストを長期保存している間に変質したりするおそれがある。ここで、ニッケル粉末の平均粒径は、BET法に基づいて測定した比表面積から下記式1で算出したものである。   On the other hand, if the average particle size is less than 0.05 μm, the specific surface area of the particles becomes too large, and the surface activity becomes strong, adversely affecting the treatment such as drying of the conductive paste, or while the conductive paste is stored for a long time. There is a risk of deterioration. Here, the average particle diameter of the nickel powder is calculated by the following formula 1 from the specific surface area measured based on the BET method.

[式1]
粒径=6/SNiρNi
[Formula 1]
Particle size = 6 / S Ni ρ Ni

上記式1において、SNiはニッケル粉末の比表面積(m/g)であり、ρNiはニッケルの真密度でありその値は8.9である。ニッケル粉末は、一般に液相還元法や気相法で製造することができる。液相還元法は、ニッケル塩水溶液を還元剤により還元してニッケル粉末を析出させる方法である。気相法は、PVD法(Physical Vapor Deposition)とCVD法(Chemical Vapor Deposition)とに大別される。 In the above formula 1, S Ni is the specific surface area (m 2 / g) of nickel powder, ρ Ni is the true density of nickel, and its value is 8.9. Nickel powder can be generally produced by a liquid phase reduction method or a gas phase method. The liquid phase reduction method is a method of depositing nickel powder by reducing an aqueous nickel salt solution with a reducing agent. The gas phase method is roughly classified into a PVD method (Physical Vapor Deposition) and a CVD method (Chemical Vapor Deposition).

PVD法は、ニッケル又はその合金の試料を直流又は交流アーク放電、高周波誘導プラズマ、マイクロ波プラズマ、高周波誘導加熱、レーザーなどの熱によって蒸発させ、急冷することで粉末を得る方法である。一方、CVD法は、ニッケルの塩化物又は炭酸化合物などのニッケル化合物の原材料を例えばマイクロリアクタ内で反応させてニッケル粉末を製造する方法である。   The PVD method is a method of obtaining a powder by evaporating a sample of nickel or an alloy thereof by direct heat or alternating current arc discharge, high frequency induction plasma, microwave plasma, high frequency induction heating, laser, or the like and quenching. On the other hand, the CVD method is a method for producing nickel powder by reacting nickel compound raw materials such as nickel chloride or carbonate compound in, for example, a microreactor.

本発明の実施形態の導電性ペーストの製造方法では、作製される導電性ペーストに含まれる樹脂にメチルセルロース、エチルセルロース、ニトロセルロースなどセルロース系樹脂、メタクリル酸メチル等のアクリル樹脂、ポリビニルブチラール樹脂等のポリアセタール樹脂を用いることができる。これら樹脂を加えることで、導電性ペーストの粘性を良好に保つことができるが、特にセルロース系樹脂が印刷性等の観点から望ましく、セルロースのOH基の一部を塩化メチルでエーテル化した樹脂であるエチルセルロースを用いることがより望ましい。上記樹脂は、導電性ペースト中に1〜5質量%程度含まれるように添加するのが好ましい。この含有量が1質量%未満では乾燥膜の強度が低下したり積層膜に剥がれが生じたりするおそれがある。一方、樹脂の含有量が5質量%を超えると脱バインダ性が損なわれるおそれがある。   In the method for producing a conductive paste according to an embodiment of the present invention, the resin contained in the produced conductive paste includes a cellulose resin such as methylcellulose, ethylcellulose, and nitrocellulose, an acrylic resin such as methyl methacrylate, and a polyacetal such as polyvinyl butyral resin. Resin can be used. By adding these resins, the viscosity of the conductive paste can be kept good. In particular, a cellulose resin is desirable from the viewpoint of printability and the like, and is a resin obtained by etherifying a part of OH groups of cellulose with methyl chloride. It is more desirable to use some ethyl cellulose. The resin is preferably added so as to be contained in the conductive paste in an amount of about 1 to 5% by mass. If the content is less than 1% by mass, the strength of the dry film may be reduced or the laminated film may be peeled off. On the other hand, if the resin content exceeds 5% by mass, the binder removal property may be impaired.

本発明の実施形態の導電性ペーストの製造方法では、作製される導電性ペーストに含まれる有機溶剤が上記樹脂成分と相溶性を有することが望ましい。また、導電性金属粉末などの無機成分粉末をペースト中で安定に分散させる機能を有しているのが好ましい。これにより、電子部品のグリーンシートや回路基板などの表面に無機成分粉末を均一に塗布(印刷)することができる。塗布された有機溶媒は、焼成時までには蒸発して大気中に拡散する。   In the manufacturing method of the electrically conductive paste of embodiment of this invention, it is desirable that the organic solvent contained in the electrically conductive paste produced has compatibility with the said resin component. Further, it preferably has a function of stably dispersing inorganic component powder such as conductive metal powder in the paste. Thereby, inorganic component powder can be uniformly apply | coated (printed) on the surface of a green sheet, a circuit board, etc. of an electronic component. The applied organic solvent evaporates and diffuses into the atmosphere by firing.

このような有機溶剤としては、ターピネオール(α、β、若しくはγ又はこれらの混合物)、ジヒドロターピネオール、オクタノール、デカノール、トリデカノール、フタル酸ジブチル、酢酸ブチル、ブチルカルビトール、ブチルカルビトールアセテート、ジプロピレングリコールモノメチルエーテルなどを挙げることができ、具体的な有機溶剤は導電性ペーストが塗布される基材に応じて適宜選択すればよい。また、上記導電性ペーストには、所望の無機成分濃度となるように炭化水素系有機溶剤を用いて希釈してもよい。   Such organic solvents include terpineol (α, β, or γ or a mixture thereof), dihydroterpineol, octanol, decanol, tridecanol, dibutyl phthalate, butyl acetate, butyl carbitol, butyl carbitol acetate, dipropylene glycol A monomethyl ether etc. can be mentioned, The specific organic solvent should just be suitably selected according to the base material with which the electrically conductive paste is apply | coated. The conductive paste may be diluted with a hydrocarbon-based organic solvent so as to have a desired inorganic component concentration.

本発明の実施形態の導電性ペーストの製造方法では、作製される導電性ペーストには、必要に応じてカルボキシル基を有する酸系有機添加剤を加えることができる。かかる酸系有機添加剤はアミド結合を有するアミノ酸や炭素数11以上の高級脂肪酸、またはそれらの誘導体から選ばれる1種以上が望ましい。前者のアミド結合を有するアミノ酸としては、グリシンと高級脂肪酸とがアミド結合したアミド化合物が望ましく、例えば、グリシンとオレイン酸とのアミド化合物であるオレオイルサルコシンを挙げることができる。この場合、オレオイルサルコシンのオレイン酸をステアリン酸に変えた化合物でも同様に機能する。あるいは、オレイン酸をラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、パルミトレイン酸、マルガリン酸、バクセン酸、リノール酸、アラキジン酸、アラキドン酸、ベヘン酸、リグノセリン酸などに変えてもよい。アミド結合する高級脂肪酸は不飽和カルボン酸でも飽和カルボン酸でもよい。また、後者の炭素数11以上の高級脂肪酸に用いる高級脂肪酸も、不飽和カルボン酸でも飽和カルボン酸でもよい。このような高級脂肪酸としては、ラウリン酸、ステアリン酸、オレイン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、パルミトレイン酸、マルガリン酸、バクセン酸、リノール酸、アラキジン酸、アラキドン酸、ベヘン酸、リグノセリン酸等の炭素数11以上の高級脂肪酸を挙げることができる。   In the method for producing a conductive paste according to the embodiment of the present invention, an acid organic additive having a carboxyl group can be added to the produced conductive paste as necessary. Such an acid organic additive is desirably one or more selected from amino acids having an amide bond, higher fatty acids having 11 or more carbon atoms, or derivatives thereof. The former amino acid having an amide bond is preferably an amide compound in which glycine and a higher fatty acid are amide-bonded, and examples thereof include oleoyl sarcosine, which is an amide compound of glycine and oleic acid. In this case, a compound obtained by replacing oleic acid of oleoyl sarcosine with stearic acid functions similarly. Alternatively, oleic acid may be changed to lauric acid, myristic acid, pentadecylic acid, palmitic acid, palmitoleic acid, margaric acid, vaccenic acid, linoleic acid, arachidic acid, arachidonic acid, behenic acid, lignoceric acid and the like. The higher fatty acid for amide bonding may be an unsaturated carboxylic acid or a saturated carboxylic acid. Also, the higher fatty acid used for the latter higher fatty acid having 11 or more carbon atoms may be an unsaturated carboxylic acid or a saturated carboxylic acid. Examples of such higher fatty acids include lauric acid, stearic acid, oleic acid, myristic acid, pentadecylic acid, palmitic acid, palmitoleic acid, margaric acid, vaccenic acid, linoleic acid, arachidic acid, arachidonic acid, behenic acid, lignoceric acid, etc. And higher fatty acids having 11 or more carbon atoms.

本発明の実施形態の導電性ペーストの製造方法では、作製される導電性ペーストにアミン塩基系有機添加剤が含まれている。使用するアミン塩基系有機添加剤は、炭素数10以上の高級アミンやロジンアミンが望ましい。前者の高級アミンは、不飽和炭素結合を有しても有していなくてもよく、ラウリルアミン、ミリスチルアミン、セチルアミン、ステアリルアミン、オレイルアミン等を挙げることができる。   In the method for producing a conductive paste according to the embodiment of the present invention, an amine base organic additive is contained in the produced conductive paste. The amine base organic additive used is preferably a higher amine or rosin amine having 10 or more carbon atoms. The former higher amine may or may not have an unsaturated carbon bond, and examples thereof include laurylamine, myristylamine, cetylamine, stearylamine, and oleylamine.

本発明の実施形態の導電性ペーストの製造方法では、上記有機溶媒に好適には含有率1〜30質量%となるように上記樹脂を溶解させて得られるビヒクルに上記アミン塩基系有機添加剤を予め添加して混合することで添加剤含有ビヒクルを一旦作製し、この添加剤含有ビヒクルに導電性金属粉末を添加し、3本のローラで構成されるいわゆるスリーロールミルなど混練装置で混練することにより導電性ペーストを作製することを特徴としている。なお、ビヒクルの作製では加熱や撹拌などを併用するのが好ましい。また、ビヒクルにアミン塩基系有機添加剤を添加し混合するには、アミン塩基系有機添加剤をビヒクルに加えて撹拌したり、上記スリーロールミルなどの混練装置を用いたりするのが好ましい。   In the method for producing a conductive paste according to an embodiment of the present invention, the amine-base organic additive is added to a vehicle obtained by dissolving the resin so that the content is preferably 1 to 30% by mass in the organic solvent. By adding and mixing in advance, an additive-containing vehicle is once prepared, and conductive metal powder is added to the additive-containing vehicle and kneaded by a kneading apparatus such as a so-called three-roll mill composed of three rollers. It is characterized by producing a conductive paste. In the production of the vehicle, it is preferable to use heating or stirring together. In addition, in order to add and mix the amine base organic additive to the vehicle, it is preferable to add the amine base organic additive to the vehicle and stir, or to use a kneading apparatus such as the above three roll mill.

導電性ペーストの製造方法と、これにより得られるペーストの粘性の経時変化との関係について調べたところ、導電性金属粉末、アミン塩基系有機添加剤、酸系有機添加剤、及びビヒクルを同時に混練して得たペーストと、先ずビヒクルとアミン塩基系有機添加剤とを混合して添加剤含有ビヒクルを作製し、これに導電性金属粉末と酸系有機添加剤とを混練して得たペーストとの比較では、後者が前者より粘度の経時変化が少ないことが確認された。   When the relationship between the method for producing a conductive paste and the change in viscosity of the resulting paste with time was investigated, a conductive metal powder, an amine base organic additive, an acid organic additive, and a vehicle were kneaded simultaneously. First, a vehicle and an amine base organic additive are mixed to produce an additive-containing vehicle, and a paste obtained by kneading a conductive metal powder and an acid organic additive to the paste. In comparison, it was confirmed that the latter had less change in viscosity with time than the former.

このように添加剤含有ビヒクルを経て作製した導電性ペーストの粘性の経時変化が少なくなる理由としては、ビヒクル中でアミン塩基系有機添加剤がビヒクル中の樹脂分子間の水素結合等の分子間力を緩和すると共に、アミン塩基系有機添加剤が樹脂と協働して導電性金属粉末の分散状態を保つので、導電性金属粉末のミクロ的な凝集が抑えられ、よって導電性ペーストの粘性の経時変化が少なくなると考えられる。   The reason why the time-dependent change in viscosity of the conductive paste prepared through the additive-containing vehicle is reduced is that the amine-based organic additive in the vehicle has intermolecular forces such as hydrogen bonding between resin molecules in the vehicle. In addition, the amine base organic additive cooperates with the resin to maintain the dispersed state of the conductive metal powder, so that the microscopic aggregation of the conductive metal powder is suppressed. Change is expected to be less.

上記したように、導電性ペーストに用いるアミン塩基系有機添加剤は、ビヒクルに含まれる樹脂の水素結合等の分子間力を適度に制御する働きを有している。ビヒクルに用いる樹脂のうち、セルロース系樹脂やアセタール系樹脂は分子間に水素結合が作用していると考えられるので、本発明の実施形態の導電性ペーストの製造方法では、導電性ペーストに使用する樹脂としては、かかるアミン塩基系有機添加剤からの作用を考慮してセルロース系樹脂やアセタール系樹脂を選択するのが望ましい。特にセルロース系樹脂ではエチルセルロースが、アセタール系樹脂ではブチラール樹脂がより望ましい。   As described above, the amine base organic additive used in the conductive paste has a function of appropriately controlling intermolecular forces such as hydrogen bonding of the resin contained in the vehicle. Among the resins used for the vehicle, cellulose-based resins and acetal-based resins are considered to have hydrogen bonds acting between molecules, and therefore, in the method for producing a conductive paste according to the embodiment of the present invention, they are used for the conductive paste. As the resin, it is desirable to select a cellulose resin or an acetal resin in consideration of the action from such an amine base organic additive. In particular, ethyl cellulose is more preferable for cellulosic resins, and butyral resin is more preferable for acetal resins.

これに対して、導電性金属粉末、酸系有機添加剤、アミン塩基系有機添加剤、及びビヒクルを同時に混練して得た導電性ペーストでは、酸系有機添加剤及びアミン塩基系有機添加剤が導電性金属粉末等と混練する際に導電性金属粉末に優先的に作用し、ビヒクル中の樹脂に及ぼす影響が少なくなる。その結果、ほとんど酸系有機添加剤及びアミン塩基系有機添加剤のみで導電性金属粒子の分散性を維持させることになるため、ミクロ的な凝集が生じやすくなり、導電性ペーストの粘性の経時変化が大きくなると考えられる。   On the other hand, in the conductive paste obtained by simultaneously kneading the conductive metal powder, the acid organic additive, the amine base organic additive, and the vehicle, the acid organic additive and the amine base organic additive are When kneading with the conductive metal powder or the like, the conductive metal powder acts preferentially, and the influence on the resin in the vehicle is reduced. As a result, the dispersibility of the conductive metal particles is maintained with almost only the acid organic additive and the amine base organic additive, so that micro-aggregation is likely to occur, and the viscosity of the conductive paste changes with time. Is expected to increase.

導電性ペーストの粘性の経時変化を抑制するには、導電性ペーストに対する酸系有機添加剤及びアミン塩基系有機添加剤の合計添加量を多くすることが考えられる。しかし、この場合は内部電極膜(金属膜)への影響を考慮しなければならない。すなわち、酸系有機添加剤及びアミン塩基系有機添加剤は、通常は導電性ペーストを焼成する際に熱分解などにより焼成後の内部電極(金属膜)には残留しないが、導電性ペーストに対する酸系有機添加剤及びアミン塩基系有機添加剤の合計添加量が多くなると、これら添加剤が完全に除去されずに炭素等の状態で残留することがある。このように内部電極(金属膜)に残留する炭素が多くなると、製品としての積層セラミックコンデンサは勿論のこと、他の電子部品においても電気的特性の劣化や機械的特性の劣化につながる。従って、導電性ペースト中の酸系有機添加剤及びアミン塩基系有機添加剤の合計含有量は1質量%以下が望ましく、0.7質量%以下がより望ましい。   In order to suppress the change with time of the viscosity of the conductive paste, it is conceivable to increase the total amount of the acid organic additive and the amine base organic additive added to the conductive paste. However, in this case, the influence on the internal electrode film (metal film) must be considered. That is, the acid-based organic additive and the amine-based organic additive generally do not remain on the internal electrode (metal film) after firing due to thermal decomposition or the like when firing the conductive paste. When the total amount of the organic organic additive and the amine base organic additive is increased, these additives may not be completely removed and remain in a state of carbon or the like. When the carbon remaining in the internal electrode (metal film) increases in this way, it leads to deterioration of electrical characteristics and mechanical characteristics of not only multilayer ceramic capacitors as products but also other electronic components. Accordingly, the total content of the acid organic additive and the amine base organic additive in the conductive paste is preferably 1% by mass or less, and more preferably 0.7% by mass or less.

なお、酸系有機添加剤とアミン塩基系有機添加剤との配合比は、それら酸系有機添加剤及びアミン塩基系有機添加剤の種類のほか、導電性ペーストに使用する導電性金属粉末や樹脂の種類により最適値が異なり得るので、上記した導電性ペースト中の添加剤の合計含有量をも考慮しつつ適宜調整すればよい。上記した導電性ペーストの粘性の経時変化から考慮すると、添加剤含有ビヒクルを用いる本発明の実施形態の導電性ペーストの製造方法によれば、導電性金属粉末、酸系有機添加剤、アミン塩基系有機添加剤、及びビヒクルを同時に混練する導電性ペーストの製造方法の場合よりも、酸系有機添加剤及びアミン塩基系有機添加剤の合計含有量を少なくすることができる。このように、酸系有機添加剤及びアミン塩基系有機添加剤の合計含有量を少なくすることで、積層セラミックコンデンサのみならずその他の電子部品においても、電気的特性や機械的特性を向上させることができる。   In addition, the compounding ratio of the acid organic additive and the amine base organic additive is not limited to the types of the acid organic additive and the amine base organic additive, and the conductive metal powder or resin used for the conductive paste. Since the optimum value may vary depending on the type of the above, it may be appropriately adjusted in consideration of the total content of the additives in the conductive paste. Considering the change in the viscosity of the conductive paste over time, according to the method of manufacturing the conductive paste of the embodiment of the present invention using the additive-containing vehicle, the conductive metal powder, the acid organic additive, the amine base The total content of the acid-based organic additive and the amine-based organic additive can be reduced as compared with the method for producing a conductive paste in which the organic additive and the vehicle are kneaded simultaneously. In this way, by reducing the total content of acid-based organic additives and amine-based organic additives, electrical and mechanical properties can be improved not only in multilayer ceramic capacitors but also in other electronic components. Can do.

以上、本発明の導電性ペーストの製造方法について、積層セラミックコンデンサの内部電極用導電ペーストとしてニッケルペーストを作製する場合を例に挙げて説明したが、本発明はかかるニッケルペーストの製造方法に限定されるものではなく、本発明の趣旨から逸脱しない範囲内において種々の変形例や代替例が含まれる。   As described above, the method for producing the conductive paste of the present invention has been described by taking as an example the case of producing a nickel paste as the conductive paste for internal electrodes of a multilayer ceramic capacitor. However, the present invention is limited to the method for producing such a nickel paste. The present invention is not intended to include various modifications and alternatives without departing from the spirit of the present invention.

例えば、積層セラミックコンデンサの内部電極用の導電ペーストであれば、ニッケル粉末よりも平均粒径の細かいチタン酸バリウムを主要成分とする共材を添加してもよい。共材の添加量は、ニッケル粉末100質量部に対し5〜30質量部を加えることができる。更に、レベリング剤、消泡剤など導電性ペーストで公知の添加物を加えることもできる。また、本発明は内部電極用の導電性ペーストの製造方法のほか、チップ抵抗器等に用いる銀ペーストの製造方法などにも適用することができる。   For example, in the case of a conductive paste for an internal electrode of a multilayer ceramic capacitor, a co-material mainly composed of barium titanate having an average particle diameter smaller than that of nickel powder may be added. The added amount of the common material can be 5 to 30 parts by mass with respect to 100 parts by mass of the nickel powder. Furthermore, a well-known additive can also be added with conductive pastes, such as a leveling agent and an antifoamer. Further, the present invention can be applied to a method for producing a silver paste used for a chip resistor or the like in addition to a method for producing a conductive paste for internal electrodes.

内部電極用の導電性ペーストを下記の方法で作製した。すなわち、先ず有機溶剤(ターピネオールα、β、γ混合体)を70℃まで加熱し、インペラー(羽根車)で攪拌しながら樹脂としてのエチルセルロースを所定量になるまで徐々に加えてエチルセルロースを溶解させた。これによりビヒクルAを得た。なお、エチルセルロースはトルエン80%・エタノール20%からなる溶液100質量%にエチルセルロース5質量%を溶解したときの粘度が約40〜330cpsの範囲にある1グレードの市販品を使用した。   A conductive paste for internal electrodes was produced by the following method. That is, first, an organic solvent (terpineol α, β, γ mixture) was heated to 70 ° C., and while stirring with an impeller (impeller), ethyl cellulose as a resin was gradually added to a predetermined amount to dissolve the ethyl cellulose. . This gave vehicle A. The ethyl cellulose used was a one-grade commercial product having a viscosity in the range of about 40 to 330 cps when 5% by mass of ethyl cellulose was dissolved in 100% by mass of a solution composed of 80% toluene and 20% ethanol.

次に、上記にて得たビヒクルAを5つに小分けしてそれぞれ異なる種類のアミン塩基系有機添加剤を添加し、スリーロールミルで混練することで5種類の添加剤含有ビヒクルBを得た。また、導電性金属粉末として、BET平均粒径が0.3μmの市販のニッケル粉末を用意した。このニッケル粉末50質量%に対しエチルセルロースが1質量%となるように、上記した5種類の添加剤含有ビヒクルBの各々にニッケル粉末を添加し、更に様々な種類の系有機添加剤と、残部の有機溶媒とを混ぜてスリーロールミルでほぼ完全に分散させることで実施例1〜5の導電性ペーストを作製した。下記表1にこれら実施例1〜5の導電性ペーストの添加剤の種類と含有率とを示す。なお、これら導電性ペーストは、ブルックフィールド(株)社製B型粘度計HBTスピンドルNo.14を用いた製造後1日目の10回転/分の粘度が10〜20Pa・sになるように有機溶媒が調整されたものである。   Next, the vehicle A obtained above was subdivided into five, different types of amine base organic additives were added, and kneaded with a three-roll mill to obtain five types of additive-containing vehicle B. In addition, a commercially available nickel powder having a BET average particle size of 0.3 μm was prepared as the conductive metal powder. Nickel powder is added to each of the five types of additive-containing vehicles B so that ethyl cellulose becomes 1% by mass with respect to 50% by mass of the nickel powder, and various types of organic organic additives and the remaining amount are added. The electrically conductive paste of Examples 1-5 was produced by mixing with an organic solvent and disperse | distributing almost completely with a three roll mill. Table 1 below shows the types and contents of additives of the conductive pastes of Examples 1 to 5. These conductive pastes are organic so that the viscosity at 10 rotations / min on the first day after production using a B-type viscometer HBT spindle No. 14 manufactured by Brookfield Corporation is 10 to 20 Pa · s. The solvent is adjusted.

Figure 2016031912
Figure 2016031912

比較のため、上記した添加剤含有ビヒクルBを経ずに、ニッケル粉末と、酸系有機添加剤と、アミン塩基系有機添加剤と、有機溶媒とをビヒクルAに混ぜてスリーロールミルで同時に混合することで導電性ペーストを作製した以外は上記実施例1〜3の作製方法とそれぞれ同様にして比較例1〜3の導電性ペーストを作製した。このようにして作製した導電性ペーストに対して製造してから6日後、10日後、及び15日後のスピンドル回転数10回転の粘度からの粘度の経時変化率をブルックフィールド(株)社製B型粘度計HBTスピンドルNo.14を用いて測定した。その結果を下記表2に示す。   For comparison, the nickel powder, the acid organic additive, the amine base organic additive, and the organic solvent are mixed in the vehicle A and mixed at the same time with a three-roll mill without passing through the additive-containing vehicle B described above. Except having produced the electrically conductive paste by this, the electrically conductive paste of Comparative Examples 1-3 was produced similarly to the preparation methods of the said Examples 1-3, respectively. The change rate of viscosity over time from the viscosity of 10 rotations of the spindle after 6 days, 10 days, and 15 days after the production of the conductive paste thus prepared is B type manufactured by Brookfield. The viscosity was measured using a viscometer HBT spindle No. 14. The results are shown in Table 2 below.

Figure 2016031912
Figure 2016031912

上記表2から分かるように、本発明の要件を満たす製造方法で作製した実施例1〜5の導電性ペーストは、いずれも添加剤含有ビヒクルを経ずに作製した比較例1〜3の導電性ペーストに比べて粘度の経時変化が小さく、実施例1〜5の導電性ペーストは比較例1〜3の導電性ペーストよりも使用できる期間が長いことが分かる。すなわち、実施例1〜5の導電性ペーストを用いれば長期間に亘ってほぼ同程度の品質の導電性ペーストの印刷膜が得られるので、焼成して得られる内部電極(金属膜)の品質も安定する。   As can be seen from Table 2 above, the conductive pastes of Examples 1 to 5 produced by the production method satisfying the requirements of the present invention are all conductive examples of Comparative Examples 1 to 3 produced without going through an additive-containing vehicle. It can be seen that the change in viscosity with time is smaller than that of the paste, and the conductive pastes of Examples 1 to 5 have a longer usable period than the conductive pastes of Comparative Examples 1 to 3. That is, if the conductive pastes of Examples 1 to 5 are used, a printed film of a conductive paste having substantially the same quality can be obtained over a long period of time. Therefore, the quality of the internal electrode (metal film) obtained by firing is also high. Stabilize.

Claims (7)

樹脂、有機溶剤、及び導電性金属粉末を含有する導電性ペーストの製造方法であって、有機溶媒に樹脂を溶解して得たビヒクルにアミン塩基系有機添加剤を混合して添加剤含有ビヒクルを作製した後、前記添加剤含有ビヒクルに導電性金属粉末を混合することを特徴とする導電性ペーストの製造方法。   A method for producing a conductive paste containing a resin, an organic solvent, and a conductive metal powder, wherein an amine-based organic additive is mixed with a vehicle obtained by dissolving a resin in an organic solvent, and an additive-containing vehicle is prepared. A method for producing a conductive paste, comprising producing a conductive metal powder in the additive-containing vehicle after production. 前記添加剤含有ビヒクルに酸系有機添加剤を更に添加することを特徴とする、請求項1に記載の導電性ペーストの製造方法。   The method for producing a conductive paste according to claim 1, further comprising adding an acid organic additive to the additive-containing vehicle. 前記酸系有機添加剤がアミド結合を有するアミノ酸又は炭素数11以上の高級脂肪酸であり、前記アミン塩基系有機添加剤が炭素数10以上の高級アミン又はロジンアミンであることを特徴とする、請求項2に記載の導電性ペーストの製造方法。   The acid organic additive is an amino acid having an amide bond or a higher fatty acid having 11 or more carbon atoms, and the amine base organic additive is a higher amine or rosin amine having 10 or more carbon atoms. The manufacturing method of the electrically conductive paste of 2. 前記樹脂がセルロース系樹脂又はアセタール系樹脂を含有することを特徴とする、請求項1〜3のいずれかに記載の導電性ペーストの製造方法。   The method for producing a conductive paste according to claim 1, wherein the resin contains a cellulose resin or an acetal resin. 前記導電性金属粉末がニッケル粉末であることを特徴とする、請求項1〜4のいずれかに記載の導電性ペーストの製造方法。   The method for producing a conductive paste according to claim 1, wherein the conductive metal powder is nickel powder. 前記導電性ペースト中の前記酸系有機添加剤及び前記アミン塩基系有機添加剤の合計含有量が1質量%以下となるように配合することを特徴とする、請求項2〜5のいずれかに記載の導電性ペーストの製造方法。   It mix | blends so that the total content of the said acid type organic additive in the said electrically conductive paste and the said amine base type organic additive may be 1 mass% or less, In any one of Claims 2-5 characterized by the above-mentioned. The manufacturing method of the electrically conductive paste of description. 請求項1〜6のいずれかに記載の導電性ペーストの製造方法により得られた導電性ペースト。   The electrically conductive paste obtained by the manufacturing method of the electrically conductive paste in any one of Claims 1-6.
JP2014155147A 2014-07-30 2014-07-30 Method for producing conductive paste and conductive paste obtained thereby Active JP6314728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014155147A JP6314728B2 (en) 2014-07-30 2014-07-30 Method for producing conductive paste and conductive paste obtained thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014155147A JP6314728B2 (en) 2014-07-30 2014-07-30 Method for producing conductive paste and conductive paste obtained thereby

Publications (2)

Publication Number Publication Date
JP2016031912A true JP2016031912A (en) 2016-03-07
JP6314728B2 JP6314728B2 (en) 2018-04-25

Family

ID=55442168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014155147A Active JP6314728B2 (en) 2014-07-30 2014-07-30 Method for producing conductive paste and conductive paste obtained thereby

Country Status (1)

Country Link
JP (1) JP6314728B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019046783A (en) * 2017-08-30 2019-03-22 住友金属鉱山株式会社 Conductive paste and methods for manufacturing electronic component and multilayer ceramic capacitor
JP2019046782A (en) * 2017-08-30 2019-03-22 住友金属鉱山株式会社 Conductive paste and methods for manufacturing electronic component and multilayer ceramic capacitor
JP2019046781A (en) * 2017-08-30 2019-03-22 住友金属鉱山株式会社 Conductive paste and methods for manufacturing electronic component and multilayer ceramic capacitor
WO2019043674A3 (en) * 2017-08-30 2019-05-02 住友金属鉱山株式会社 Conductive paste, electronic component, and multilayer ceramic capacitor
WO2019043672A3 (en) * 2017-08-30 2019-05-02 住友金属鉱山株式会社 Conductive paste, electronic component, and multilayer ceramic capacitor
WO2019043671A3 (en) * 2017-08-30 2019-05-02 住友金属鉱山株式会社 Conductive paste, electronic component, and multilayer ceramic capacitor
JP2019157089A (en) * 2018-03-16 2019-09-19 住友金属鉱山株式会社 Method for producing organic vehicle and method for producing conductive paste
KR20200089267A (en) * 2017-11-30 2020-07-24 스미토모 긴조쿠 고잔 가부시키가이샤 Conductive paste, electronic components, and multilayer ceramic capacitors
KR20200133356A (en) 2018-03-19 2020-11-27 가부시키가이샤 노리타케 캄파니 리미티드 Conductive paste with stable viscosity over time
JP7405098B2 (en) 2018-12-25 2023-12-26 住友金属鉱山株式会社 Conductive paste, electronic components, and multilayer ceramic capacitors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200450A (en) * 2002-12-19 2004-07-15 Sumitomo Metal Mining Co Ltd Conductive paste for internal electrode of multilayer ceramic capacitor
JP2004220807A (en) * 2003-01-09 2004-08-05 Sumitomo Metal Mining Co Ltd Conductive paste composition and laminated ceramic capacitor using it
JP2010049849A (en) * 2008-08-20 2010-03-04 Murata Mfg Co Ltd Inorganic powder paste manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200450A (en) * 2002-12-19 2004-07-15 Sumitomo Metal Mining Co Ltd Conductive paste for internal electrode of multilayer ceramic capacitor
JP2004220807A (en) * 2003-01-09 2004-08-05 Sumitomo Metal Mining Co Ltd Conductive paste composition and laminated ceramic capacitor using it
JP2010049849A (en) * 2008-08-20 2010-03-04 Murata Mfg Co Ltd Inorganic powder paste manufacturing method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111066098A (en) * 2017-08-30 2020-04-24 住友金属矿山株式会社 Conductive paste, electronic component, and multilayer ceramic capacitor
JP2019046781A (en) * 2017-08-30 2019-03-22 住友金属鉱山株式会社 Conductive paste and methods for manufacturing electronic component and multilayer ceramic capacitor
CN111095439A (en) * 2017-08-30 2020-05-01 住友金属矿山株式会社 Conductive paste, electronic component, and multilayer ceramic capacitor
JP2019046783A (en) * 2017-08-30 2019-03-22 住友金属鉱山株式会社 Conductive paste and methods for manufacturing electronic component and multilayer ceramic capacitor
WO2019043672A3 (en) * 2017-08-30 2019-05-02 住友金属鉱山株式会社 Conductive paste, electronic component, and multilayer ceramic capacitor
WO2019043671A3 (en) * 2017-08-30 2019-05-02 住友金属鉱山株式会社 Conductive paste, electronic component, and multilayer ceramic capacitor
TWI801445B (en) * 2017-08-30 2023-05-11 日商住友金屬鑛山股份有限公司 Conductive paste, electronic parts, and laminated ceramic capacitors
CN111052263A (en) * 2017-08-30 2020-04-21 住友金属矿山株式会社 Conductive paste, electronic component, and multilayer ceramic capacitor
CN111052263B (en) * 2017-08-30 2022-12-27 住友金属矿山株式会社 Conductive paste, electronic component, and multilayer ceramic capacitor
JP2019046782A (en) * 2017-08-30 2019-03-22 住友金属鉱山株式会社 Conductive paste and methods for manufacturing electronic component and multilayer ceramic capacitor
WO2019043674A3 (en) * 2017-08-30 2019-05-02 住友金属鉱山株式会社 Conductive paste, electronic component, and multilayer ceramic capacitor
CN111066098B (en) * 2017-08-30 2022-10-14 住友金属矿山株式会社 Conductive paste, electronic component, and multilayer ceramic capacitor
KR102621947B1 (en) * 2017-11-30 2024-01-05 스미토모 긴조쿠 고잔 가부시키가이샤 Conductive pastes, electronic components, and multilayer ceramic capacitors
KR20200089267A (en) * 2017-11-30 2020-07-24 스미토모 긴조쿠 고잔 가부시키가이샤 Conductive paste, electronic components, and multilayer ceramic capacitors
JP7119454B2 (en) 2018-03-16 2022-08-17 住友金属鉱山株式会社 Method for producing organic vehicle and method for producing conductive paste
JP2019157089A (en) * 2018-03-16 2019-09-19 住友金属鉱山株式会社 Method for producing organic vehicle and method for producing conductive paste
KR20200133356A (en) 2018-03-19 2020-11-27 가부시키가이샤 노리타케 캄파니 리미티드 Conductive paste with stable viscosity over time
JP7405098B2 (en) 2018-12-25 2023-12-26 住友金属鉱山株式会社 Conductive paste, electronic components, and multilayer ceramic capacitors

Also Published As

Publication number Publication date
JP6314728B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
JP6314728B2 (en) Method for producing conductive paste and conductive paste obtained thereby
CN105321711B (en) Electrocondution slurry
JP5843821B2 (en) Metal powder paste and method for producing the same
WO2017150438A1 (en) Electrically conductive paste, electronic component, and laminated ceramic capacitor
JP2012174797A (en) Conductive paste for photogravure used for multilayer ceramic capacitor internal electrode
WO2016017463A1 (en) Paste for internal electrode of laminated ceramic capacitor, and laminated ceramic capacitor
JP2018198202A (en) Conductive paste, electronic component, and multilayer ceramic capacitor
TWI801445B (en) Conductive paste, electronic parts, and laminated ceramic capacitors
JP2018037630A (en) Paste for internal electrodes, method for manufacturing the same, and multilayer ceramic capacitor
WO2019107501A1 (en) Conductive paste, electronic component, and laminate ceramic capacitor
JP6578966B2 (en) Conductive paste and manufacturing method thereof
JP2024032861A (en) Conductive paste, electronic components, and multilayer ceramic capacitors
JP6361356B2 (en) Multilayer ceramic capacitor internal electrode paste and multilayer ceramic capacitor
JPWO2012114925A1 (en) Conductive composition and external electrode using the same
WO2019107500A1 (en) Conductive paste, electronic component, and laminate ceramic capacitor
JP2017143202A (en) Paste for internal electrodes, method for manufacturing the same, and multilayer ceramic capacitor
JP2016031807A (en) Conductive paste and production method of the same
WO2019043671A2 (en) Conductive paste, electronic component, and multilayer ceramic capacitor
JP2014122368A (en) Nickel ultrafine powder, conductive paste and method of producing nickel ultrafine powder
WO2020067362A1 (en) Conductive paste, electronic component, and laminated ceramic capacitor
JP6152808B2 (en) Conductive paste for multilayer ceramic capacitor internal electrode and multilayer ceramic capacitor
JP2018125433A (en) Paste for internal electrodes and method for manufacturing the same, and multilayer ceramic capacitor
JP7059636B2 (en) A conductive paste, a dry film thereof, an internal electrode formed by firing the dry film, and a laminated ceramic capacitor having the internal electrode.
JP2011198470A (en) Conductive paste for film electrode, conductive film for electrode, and film electrode
JP2016031874A (en) Conductive paste for multilayer ceramic capacitor internal electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180312

R150 Certificate of patent or registration of utility model

Ref document number: 6314728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150