WO2019107500A1 - Conductive paste, electronic component, and laminate ceramic capacitor - Google Patents

Conductive paste, electronic component, and laminate ceramic capacitor Download PDF

Info

Publication number
WO2019107500A1
WO2019107500A1 PCT/JP2018/044004 JP2018044004W WO2019107500A1 WO 2019107500 A1 WO2019107500 A1 WO 2019107500A1 JP 2018044004 W JP2018044004 W JP 2018044004W WO 2019107500 A1 WO2019107500 A1 WO 2019107500A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive paste
mass
dispersant
conductive
powder
Prior art date
Application number
PCT/JP2018/044004
Other languages
French (fr)
Japanese (ja)
Inventor
剛 川島
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to JP2019557328A priority Critical patent/JP7279642B2/en
Priority to CN201880075013.1A priority patent/CN111373490B/en
Priority to KR1020207014784A priority patent/KR102613114B1/en
Publication of WO2019107500A1 publication Critical patent/WO2019107500A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/095Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • H01G4/302Stacked capacitors obtained by injection of metal in cavities formed in a ceramic body
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present invention relates to a conductive paste, an electronic component, and a multilayer ceramic capacitor.
  • a multilayer ceramic capacitor has a structure in which a plurality of dielectric layers and a plurality of internal electrode layers are alternately stacked, and miniaturization and high capacity can be realized by thinning the dielectric layers and the internal electrode layers.
  • the multilayer ceramic capacitor is manufactured, for example, as follows. First, a paste for an internal electrode containing a conductive powder, a binder resin, an organic solvent and the like on the surface of a dielectric green sheet containing a dielectric powder such as barium titanate (BaTiO 3 ) and a binder resin (conductive). The paste is printed with a predetermined electrode pattern and dried to form a dry film. Next, after stacking in multiple layers so that the dried film and the dielectric green sheets alternately overlap, heat and pressure are integrated to form a pressure-bonded body. The pressure-bonded body is cut, subjected to a deorganic binder treatment in an oxidizing atmosphere or an inert atmosphere, and then fired to obtain a fired chip. Subsequently, the paste for external electrodes is apply
  • screen printing has been generally used as a printing method to be used when printing conductive paste on a dielectric green sheet, but from the demand for miniaturization of electronic devices, reduction in thickness, and improvement in productivity. It is required to print a finer electrode pattern with high productivity.
  • Gravure which is a continuous printing method in which a conductive paste is filled in a recess provided in a plate and pressed against a surface to be printed as one of the printing methods of the conductive paste, thereby transferring the conductive paste from the plate.
  • a printing method has been proposed.
  • the gravure printing method has a high printing speed and is excellent in productivity. In the case of using the gravure printing method, it is necessary to appropriately select the binder resin, the dispersing agent, the solvent and the like in the conductive paste to adjust the properties such as viscosity to the range suitable for the gravure printing.
  • a conductive paste used to form the internal conductor film by gravure printing in a multilayer ceramic electronic component provided with a plurality of ceramic layers and an internal conductor film extending along a specific interface between the ceramic layers 30 to 70% by weight of a solid component containing metal powder, 1 to 10% by weight of an ethylcellulose resin component having an ethoxy group content of 49.6% or more, and 0.05 to 5% by weight of a dispersant And a solvent component as the remainder, and the viscosity ⁇ 0.1 at a shear rate of 0.1 (s ⁇ 1 ) is 1 Pa ⁇ s or more, and the viscosity at a shear rate of 0.02 (s ⁇ 1 )
  • a conductive paste is described, which is a thixotropic fluid, with a condition that ⁇ ⁇ ⁇ ⁇ 0.02 satisfies the specific formula.
  • Patent Document 2 is a conductive paste used for forming by gravure printing in the same manner as Patent Document 1 above, comprising 30 to 70% by weight of a solid component containing metal powder, and 1 to 10% by weight A thixotropic fluid containing a resin component, 0.05 to 5% by weight of a dispersant, and a solvent component as the balance, and having a viscosity of 1 Pa ⁇ s or more at a shear rate of 0.1 (s ⁇ 1 ), A conductive paste is described in which the rate of change in viscosity at a shear rate of 10 (s -1 ) is 50% or more, based on the viscosity at a shear rate of 0.1 (s -1 ).
  • these conductive pastes are thixotropic fluids having a viscosity of 1 Pa ⁇ s or more at a shear rate of 0.1 (s -1 ), and stable at high speed in gravure printing It is believed that continuous printability can be obtained, and multilayer ceramic electronic components such as multilayer ceramic capacitors can be manufactured with good production efficiency.
  • Patent Document 3 discloses a conductive material for a laminated ceramic capacitor internal electrode including a conductive powder (A), an organic resin (B), an organic solvent (C), an additive (D), and a dielectric powder (E).
  • the organic resin (B) is composed of polyvinyl butyral having a degree of polymerization of 10000 to 50000 and ethylcellulose having a weight average molecular weight of 10000 to 100000
  • the organic solvent (C) is propylene glycol monobutyl ether, Or a mixed solvent of propylene glycol monobutyl ether and propylene glycol methyl ether acetate, or a mixed solvent of propylene glycol monobutyl ether and mineral spirit
  • the additive (D) comprises a separation inhibitor and a dispersant, and the separation Polycarboxylic acid polymers as inhibitors Or gravure printing conductive paste made from a composition comprising a salt of a polycarboxylic acid. According to Patent Document 3, it is considered that this conductive material for
  • the conductive powder With the thinning of the internal electrode layer in recent years, the conductive powder also tends to be reduced in particle size. If the particle size of the conductive powder is small, the specific surface area of the particle surface will be large, so the surface activity of the conductive powder (metal powder) may be high, and the dispersibility of the conductive paste may be lowered. A conductive paste having dispersibility is required.
  • An object of the present invention is to provide a conductive paste which has a paste viscosity suitable for gravure printing and is excellent in the dispersibility and productivity of the paste.
  • a conductive paste containing a conductive powder, a dispersant, a binder resin, and an organic solvent, the dispersant containing a phosphoric acid alkyl ester compound which is an acid-based dispersant, and a binder resin
  • a conductive paste is provided, which comprises an acetal resin and the organic solvent comprises a glycol ether solvent.
  • an acid type dispersing agent is phosphoric acid alkyl polyoxyalkylene compound.
  • the dispersant may further contain a basic dispersant.
  • the dispersant is preferably contained in a total amount of 0.2 parts by mass or more and 1 part by mass or less with respect to 100 parts by mass of the conductive powder.
  • the conductive powder preferably contains at least one metal powder selected from Ni, Pd, Pt, Au, Ag, Cu and alloys thereof.
  • the conductive powder preferably has an average particle diameter of 0.05 ⁇ m or more and 1.0 ⁇ m or less.
  • the conductive paste preferably contains a ceramic powder.
  • the ceramic powder preferably contains a perovskite oxide.
  • the ceramic powder preferably has an average particle diameter of 0.01 ⁇ m or more and 0.5 ⁇ m or less.
  • the conductive paste is preferably for the internal electrode of the laminated ceramic component.
  • the conductive paste, the viscosity of the shear rate 100 sec -1 is not higher than 0.8 Pa ⁇ S, it is preferable that the viscosity of the shear rate 10000 sec -1 is less than 0.19 Pa ⁇ S.
  • a laminated ceramic capacitor comprising at least a laminated body in which a dielectric layer and an internal electrode are laminated, wherein the internal electrode is formed using the above-mentioned conductive paste.
  • the conductive paste of the present invention has a viscosity suitable for gravure printing, and is excellent in the dispersibility and productivity of the paste.
  • the electrode pattern of an electronic component such as a multilayer ceramic capacitor formed by using the conductive paste of the present invention is excellent in the printability of the conductive paste and has a uniform thickness even when forming a thin-filmed electrode.
  • FIG. 1 is a perspective view and a cross-sectional view showing a multilayer ceramic capacitor according to an embodiment.
  • the conductive paste of the present embodiment contains a conductive powder, a dispersant, a binder resin and an organic solvent. Each component will be described in detail below.
  • the conductive powder is not particularly limited, and for example, at least one powder selected from Ni, Pd, Pt, Au, Ag, Cu, and alloys thereof can be used. Among these, in view of conductivity, corrosion resistance and cost, powder of Ni or its alloy is preferable.
  • the Ni alloy for example, an alloy of Ni with at least one or more elements selected from the group consisting of Mn, Cr, Co, Al, Fe, Cu, Zn, Ag, Pt, and Pd may be used. it can.
  • the content of Ni in the Ni alloy is, for example, 50% by mass or more, preferably 80% by mass or more. Further, the Ni powder may contain about several hundreds ppm of S in order to suppress rapid gas generation due to partial thermal decomposition of the binder resin at the time of binder removal processing.
  • the average particle diameter of the conductive powder is preferably 0.05 ⁇ m or more and 1.0 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 0.5 ⁇ m or less.
  • the average particle diameter of the conductive powder is in the above range, it can be suitably used as a paste for the internal electrode of the laminated ceramic capacitor which has been made thin, and for example, the smoothness and the dry film density of the dry film are improved.
  • the average particle size of the conductive powder is a particle size calculated from the specific surface area obtained based on the BET method unless otherwise specified.
  • the content of the conductive powder is preferably 30% by mass to 70% by mass, and more preferably 40% by mass to 65% by mass, based on the total amount of the conductive paste.
  • the conductivity and the dispersibility are excellent.
  • the conductive paste may include ceramic powder.
  • the ceramic powder is not particularly limited.
  • a known ceramic powder is appropriately selected depending on the type of the laminated ceramic capacitor to be applied.
  • the ceramic powder includes, for example, a perovskite-type oxide containing Ba and Ti, preferably barium titanate (BaTiO 3 ).
  • a ceramic powder may use one type and may use two or more types.
  • ceramic powder ceramic powder containing barium titanate as a main component and oxide as a minor component may be used.
  • oxide include one or more oxides selected from Mn, Cr, Si, Ca, Ba, Mg, V, W, Ta, Nb and rare earth elements.
  • a ceramic powder for example, a ceramic powder of a perovskite type oxide ferroelectric substance in which Ba atoms or Ti atoms of barium titanate (BaTiO 3 ) are substituted with other atoms, for example, Sn, Pb, Zr, etc. It can also be done.
  • a powder having the same composition as that of the dielectric ceramic powder constituting the dielectric green sheet of the multilayer ceramic capacitor may be used.
  • the occurrence of cracks due to the mismatch of contraction at the interface between the dielectric layer and the internal electrode layer in the sintering step is suppressed.
  • a ceramic powder in addition to the above-mentioned perovskite type oxides containing Ba and Ti, for example, ZnO, ferrite, PZT, BaO, Al 2 O 3 , Bi 2 O 3 , R (rare earth element) 2 O 3 And oxides such as TiO 2 and Nd 2 O 3 .
  • the average particle size of the ceramic powder is, for example, not less than 0.01 ⁇ m and not more than 0.5 ⁇ m, and preferably not less than 0.01 ⁇ m and not more than 0.3 ⁇ m.
  • the average particle size of the ceramic powder is a particle size calculated from the specific surface area obtained based on the BET method, as in the case of the above-mentioned conductive powder.
  • the content of the ceramic powder is preferably 1 part by mass to 30 parts by mass, and more preferably 3 parts by mass to 30 parts by mass, with respect to 100 parts by mass of the conductive powder.
  • the content of the ceramic powder is preferably 1% by mass to 20% by mass, and more preferably 3% by mass to 20% by mass, with respect to the total amount of the conductive paste.
  • the binder resin contains an acetal resin.
  • a butyral-based resin such as polyvinyl butyral is preferable.
  • the binder resin may contain, for example, 20% by mass or more, 30% by mass or more, 60% by mass or more of the acetal-based resin with respect to the entire binder resin, and may be composed only of the acetal-based resin May be
  • the content of the acetal resin is preferably 1 to 10 parts by mass, and more preferably 1 to 8 parts by mass with respect to 100 parts by mass of the conductive powder.
  • binder resin may also contain other resin other than an acetal-type resin.
  • the other resin is not particularly limited, and known resins can be used.
  • Other resins include, for example, cellulose resins such as methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, nitrocellulose, acrylic resins, etc. Among them, ethyl cellulose is preferred from the viewpoint of solubility in solvents, combustion decomposition, etc. preferable.
  • the molecular weight of the binder resin is, for example, about 20000 to 200000.
  • the content of the binder resin is preferably 1 to 10 parts by mass, and more preferably 1 to 8 parts by mass, with respect to 100 parts by mass of the conductive powder.
  • the content of the binder resin is preferably 0.5% by mass or more and 10% by mass or less, and more preferably 0.5% by mass or more and 6% by mass or less based on the entire conductive paste.
  • content of binder resin is the said range, it is excellent in electroconductivity and dispersibility.
  • the organic solvent contains at least one of a glycol ether solvent and an acetate solvent, and preferably contains a glycol ether solvent.
  • glycol ether solvents include (di) ethylene glycol ethers such as diethylene glycol mono-2-ethylhexyl ether, ethylene glycol mono-2-ethylhexyl ether, diethylene glycol monohexyl ether, ethylene glycol monohexyl ether, and propylene glycol
  • examples thereof include propylene glycol monoalkyl ethers such as monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, and propylene glycol monobutyl ether (PNB).
  • propylene glycol monoalkyl ethers are preferable, and propylene glycol monobutyl ether is more preferable.
  • the organic solvent contains a glycol ether-based solvent, it is excellent in compatibility with the above-described binder resin, and excellent in drying property.
  • the organic solvent may contain, for example, 25% by mass or more, 50% by mass or more of the glycol ether-based solvent, or may consist only of the glycol ether-based solvent, based on the total amount of the organic solvent.
  • a glycol ether solvent may be used individually by 1 type, and may use 2 or more types together.
  • acetate solvents examples include dihydroterpinyl acetate, isobornyl acetate, isobornyl propionate, isobornyl butyrate, isobornyl isobutyrate, ethylene glycol monobutyl ether acetate, dipropylene glycol methyl ether And acetates, glycol ether acetates such as 3-methoxy-3-methylbutyl acetate, 1-methoxypropyl-2-acetate and the like.
  • the organic solvent contains an acetate solvent, for example, at least one acetate type selected from dihydroterpinyl acetate, isobornyl acetate, isobornyl propionate, isobornyl butyrate and isobornyl isobutyrate. It may contain a solvent (A). Among these, isobornyl acetate is more preferable.
  • the acetate solvent is preferably contained in an amount of 90% by mass to 100% by mass, more preferably 100% by mass, based on the total amount of the organic solvent excluding the glycol ether-based solvent.
  • the organic solvent contains an acetate solvent
  • the above-mentioned acetate solvent (A) and at least one acetate solvent (B) selected from ethylene glycol monobutyl ether acetate and dipropylene glycol methyl ether acetate May be included.
  • the viscosity of the conductive paste can be easily adjusted, and the drying speed of the conductive paste can be increased.
  • the acetate solvent (A) is preferably contained in an amount of 50% by mass to 90% by mass with respect to the entire acetate solvent Preferably, the content is 60% by mass or more and 80% by mass or less.
  • the acetate solvent (B) is contained in an amount of 10% by mass to 50% by mass, and more preferably 20% to 40% by mass, based on the entire acetate solvent.
  • the organic solvent may also contain other organic solvents other than glycol ether solvents and acetate solvents. It does not specifically limit as another organic solvent, The well-known organic solvent which can melt
  • Other organic solvents include, for example, acetate solvents such as ethyl acetate, propyl acetate, isobutyl acetate and butyl acetate, ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, terpene solvents such as terpineol and dihydroterpineol, tridecane, And aliphatic hydrocarbon solvents such as nonane and cyclohexane. Among them, aliphatic hydrocarbon solvents are preferable, and among the aliphatic hydrocarbon solvents, mineral spirit is more preferable.
  • the other organic solvents may be used alone or in combination of two or more.
  • the organic solvent can contain, for example, a glycol ether solvent as a main solvent, and an aliphatic hydrocarbon solvent as a cosolvent.
  • the glycol ether-based solvent is contained in an amount of preferably 30 to 50 parts by mass, more preferably 40 to 50 parts by mass with respect to 100 parts by mass of the conductive powder
  • the content of the organic solvent is preferably 50 parts by mass or more and 130 parts by mass or less, and more preferably 60 parts by mass or more and 90 parts by mass or less with respect to 100 parts by mass of the conductive powder.
  • the conductivity and the dispersibility are excellent.
  • the conductive paste of the present embodiment preferably contains an acid-based dispersant containing phosphorus as an acid-based dispersant, in particular, a phosphoric acid alkyl ester compound.
  • an acid-based dispersant containing phosphorus as an acid-based dispersant, in particular, a phosphoric acid alkyl ester compound.
  • the inventor of the present invention uses the dispersing agent containing the phosphoric acid alkyl ester compound in combination with the binder resin and the organic solvent described above. Although it is unknown, it was found that when the internal electrode was formed, the generation of lumps was greatly suppressed and the dispersibility of the paste was improved.
  • the phosphoric acid alkyl ester compound is a phosphoric acid ester having an alkyl group.
  • the phosphoric acid alkyl ester compound preferably has a polyoxyalkylene structure, and is preferably a phosphoric acid alkyl polyoxyalkylene compound.
  • the phosphoric acid alkyl ester compound may be a dispersant having a linear structure, or may be a dispersant having a complex branched structure (for example, two or more branched chains). Is preferred.
  • the phosphoric acid alkyl ester compound preferably contains, for example, a compound represented by the following general formula (1).
  • X represents a linear alkyl group having 1 to 18 carbon atoms
  • Y represents-(OCH 2 CH 2 ) n-
  • n is 1 to 18.
  • the acid type dispersing agent containing phosphorus may be a mixture of a phosphoric acid alkyl ester compound and other phosphoric acid type dispersing agents, it is preferable to consist of a phosphoric acid alkyl ester compound, and an alkyl polyphosphate is preferable. It is more preferable to consist of an oxyalkylene compound.
  • the acid type dispersing agent containing phosphorus may be a mixture, it is preferable that it is a single compound.
  • the acid-based dispersant containing phosphorus may be contained in an amount of, for example, 0.2 parts by mass or more and 2 parts by mass or less, and preferably 0.2 parts by mass or more and 1 part by mass or less based on 100 parts by mass of the conductive powder. Be done. When the content of the acid-based dispersant containing phosphorus is in the above range, the dispersibility of the conductive powder in the conductive paste is excellent.
  • the acid-based dispersant containing phosphorus is contained, for example, at 3% by mass or less based on the entire conductive paste.
  • the upper limit of the content of the phosphorus-containing acid-based dispersant is preferably 2% by mass or less, more preferably 1.5% by mass or less, and still more preferably 1% by mass or less.
  • the minimum of content of the above-mentioned acid system dispersing agent containing phosphorus is not limited, it is 0.1 mass% or more, for example.
  • An acid-based dispersant containing phosphorus such as a phosphoric acid alkyl ester compound can be used by, for example, selecting one satisfying the above characteristics from commercially available products.
  • the above-mentioned dispersant may be manufactured to satisfy the above-mentioned characteristics by using a conventionally known manufacturing method.
  • the conductive paste may use only the above-mentioned acid-based dispersant containing phosphoric acid as a dispersant, but may use another acid-based dispersant other than the phosphorus-containing acid-based dispersant.
  • acid-based dispersants include higher fatty acids and polymer surfactants. These dispersants may be used alone or in combination of two or more.
  • the higher fatty acid may be unsaturated carboxylic acid or saturated carboxylic acid, and is not particularly limited, but carbons such as stearic acid, oleic acid, behenic acid, myristic acid, palmitic acid, linoleic acid, lauric acid, linolenic acid, etc. There are 11 or more. Among these, oleic acid or stearic acid is preferred.
  • alkyl monoamine salt type represented by mono alkyl amine salt
  • alkyl diamine salt represented by N-alkyl (C14 to C18) propylene diamine dioleate.
  • Alkyl trimethyl ammonium salt type represented by alkyl trimethyl ammonium chloride
  • alkyl dimethyl benzyl ammonium salt type represented by coc alkyl dimethyl benzyl ammonium chloride
  • quaternary ammonium salt type represented by alkyl dipolyoxyethylene methyl ammonium chloride
  • Alkyl pyridinium salt type tertiary amine type represented by dimethyl stearyl amine
  • polyoxyethylene alkyl amine type represented by polyoxypropylene ⁇ polyoxyethylene alkylamine
  • the dispersant may contain a dispersant other than the acid dispersant.
  • Dispersants other than acid-based dispersions include basic dispersants, nonionic dispersants, amphoteric dispersants and the like. These dispersants may be used alone or in combination of two or more.
  • the basic dispersant examples include aliphatic amines such as laurylamine, polyethylene glycol laurylamine, rosinamine, cetylamine, myristylamine and stearylamine.
  • aliphatic amines such as laurylamine, polyethylene glycol laurylamine, rosinamine, cetylamine, myristylamine and stearylamine.
  • the base dispersant may be contained, for example, in an amount of 0.01 parts by mass or more and less than 2 parts by mass, preferably 0.01 parts by mass or more and 1 part by mass or less, more preferably 100 parts by mass of the conductive powder. 0.02 parts by mass or more and 1 part by mass or less, more preferably 0.02 parts by mass or more and 0.5 parts by mass or less.
  • the base dispersant can be contained, for example, in an amount of 10 to 300 parts by mass, preferably 50 to 150 parts by mass, with respect to 100 parts by mass of the acid dispersant. When the basic dispersion is contained in the above range, the viscosity stability with time of the paste is superior.
  • the base-based dispersant is contained, for example, in an amount of 0% by mass or more and 2.5% by mass or less, preferably 0% by mass or more and 1.5% by mass or less, based on the entire conductive paste. It is contained by mass% or more and 1.0 mass% or less, more preferably 0.1 mass% or more and 1.0 mass% or less, more preferably 0.1 mass% or more and 0.8 mass% or less.
  • the basic dispersion is contained in the above range, the viscosity stability with time of the paste is superior.
  • the content of the entire dispersing agent is, for example, 0.2 parts by mass with respect to 100 parts by mass of the conductive powder. It may be 2 parts by mass or less, and preferably 0.2 parts by mass or more and 1 part by mass or less.
  • the content of the dispersant exceeds the above range, the drying property of the conductive paste may be deteriorated, a sheet attack may occur, or the green sheet may not be peeled off from the backing PET film.
  • the conductive paste of the present embodiment may contain other components other than the above components, as necessary.
  • additives such as an antifoamer, a plasticizer, a surfactant, and a thickener can be used.
  • the method for producing the conductive paste of the present embodiment is not particularly limited, and a conventionally known method can be used.
  • the conductive paste can be produced, for example, by stirring and kneading the above-mentioned components with a three-roll mill, a ball mill, a mixer or the like. At this time, when a dispersant is previously applied to the surface of the conductive powder, the conductive powder is sufficiently loosened without aggregation, and the dispersant is spread on the surface, so that it is easy to obtain a uniform conductive paste.
  • the binder resin in a part of the organic solvent to prepare an organic vehicle
  • the conductive powder, the ceramic powder, the dispersing agent, and the organic vehicle after adding the conductive powder, the ceramic powder, the dispersing agent, and the organic vehicle to the organic solvent for paste adjustment
  • the mixture may be stirred and kneaded to prepare a conductive paste.
  • the conductive paste preferably has a viscosity of 100 sec ⁇ 1 at a shear rate of 0.8 Pa ⁇ S or less.
  • the viscosity at a shear rate of 100 sec -1 is in the above range, it can be suitably used as a conductive paste for gravure printing. If the above range is exceeded, the viscosity may be too high to be suitable for gravure printing.
  • the lower limit of the viscosity at a shear rate of 100 sec ⁇ 1 is not particularly limited, and is, for example, 0.2 Pa ⁇ S or more.
  • the conductive paste preferably has a viscosity at a shear rate of 10000 sec ⁇ 1 , preferably 0.19 Pa ⁇ S or less, more preferably 0.18 Pa ⁇ S or less.
  • a viscosity at a shear rate of 10000 sec ⁇ 1 is in the above range, it can be suitably used as a conductive paste for gravure printing. If the above range is exceeded, the viscosity may be too high to be suitable for gravure printing.
  • the lower limit of the viscosity at a shear rate of 10000 sec ⁇ 1 is not particularly limited, and is, for example, 0.05 Pa ⁇ S or more.
  • the conductive paste can be suitably used for electronic components such as multilayer ceramic capacitors.
  • a multilayer ceramic capacitor has a dielectric layer formed using a dielectric green sheet and an internal electrode layer formed using a conductive paste.
  • the dielectric ceramic powder contained in the dielectric green sheet and the ceramic powder contained in the conductive paste are powders having the same composition.
  • the thickness of the dielectric green sheet is, for example, 3 ⁇ m or less, the sheet attack and the peeling failure of the dielectric green sheet are suppressed.
  • FIGS. 1A and 1B are views showing a laminated ceramic capacitor 1 which is an example of an electronic component according to an embodiment.
  • the multilayer ceramic capacitor 1 includes a ceramic laminate 10 in which dielectric layers 12 and internal electrode layers 11 are alternately stacked, and an external electrode 20.
  • a conductive paste is formed on a dielectric green sheet by a printing method to form a dried film.
  • a plurality of dielectric green sheets having this dried film on the upper surface are laminated by pressure bonding, and then fired and integrated to produce a laminated ceramic sintered body (ceramic laminated body 10) to be a ceramic capacitor main body.
  • a pair of external electrodes are formed at both ends of the ceramic laminate 10, whereby the multilayer ceramic capacitor 1 is manufactured.
  • a dielectric green sheet which is an unfired ceramic sheet is prepared.
  • this dielectric green sheet for example, a dielectric layer paste obtained by adding an organic binder such as polyvinyl butyral and a solvent such as terpineol to a predetermined ceramic powder such as barium titanate is supported as a PET film or the like. What apply
  • the thickness of the dielectric layer formed of the dielectric green sheet is not particularly limited, but is preferably 0.05 ⁇ m or more and 3 ⁇ m or less from the viewpoint of demand for miniaturization of the multilayer ceramic capacitor.
  • the conductive paste described above is printed and coated on one side of this dielectric green sheet by gravure printing, and a plurality of the conductive electrode sheets 11 formed of the conductive paste are prepared.
  • the thickness of the internal electrode layer 11 made of a conductive paste is preferably 1 ⁇ m or less after drying from the viewpoint of the request for thinning of the internal electrode layer 11.
  • the dielectric green sheet is peeled off from the support film, and the dielectric green sheet and the conductive paste (dried film) formed on one side of the dielectric green sheet are alternately arranged, and then heated and pressed.
  • a laminated body (crimped body) is obtained by the treatment.
  • the laminate is cut into a predetermined size to form a green chip, and then the green chip is subjected to a binder removal treatment and fired in a reducing atmosphere to obtain a laminated ceramic fired body (ceramic laminate 10).
  • the atmosphere in the binder removal process be air or N 2 gas atmosphere.
  • the temperature at the time of debinding treatment is, for example, 200 ° C. or more and 400 ° C. or less.
  • it is preferable to make holding time of the said temperature into 0.5 to 24 hours at the time of performing a binder removal process.
  • the firing is performed in a reducing atmosphere to suppress oxidation of the metal used in the internal electrode layer, and the temperature at which the laminate is fired is, for example, 1000 ° C. or more and 1350 ° C. or less.
  • the holding time of temperature at the time of performing is 0.5 hours or more and 8 hours or less, for example.
  • the organic binder in the green sheet is completely removed, and the ceramic raw material powder is fired to form the dielectric layer 12 made of ceramic. Further, the organic vehicle in the internal electrode layer 11 is removed, and the nickel powder or the alloy powder containing nickel as a main component is sintered or melted to form an internal electrode, whereby the dielectric layer 12 and the internal electrode are formed.
  • a ceramic laminate 10 in which a plurality of layers 11 and a plurality of layers 11 are alternately stacked is formed. Note that from the viewpoint of incorporating oxygen into the inside of the dielectric layer to improve the reliability and suppressing reoxidation of the internal electrodes, the ceramic laminate 10 after firing may be subjected to an annealing treatment.
  • the laminated ceramic capacitor 1 is manufactured by providing the pair of external electrodes 20 with respect to the manufactured ceramic laminated body 10.
  • the external electrode 20 includes the external electrode layer 21 and the plating layer 22.
  • the external electrode layer 21 is electrically connected to the internal electrode layer 11.
  • copper, nickel, or these alloys can be used suitably, for example.
  • electronic components other than multilayer ceramic capacitors can also be used.
  • the dispersibility of the conductive paste was evaluated by the following method.
  • Ceramic powder As a ceramic powder, barium titanate (BaTiO 3 ; average particle diameter 0.06 ⁇ m) was used.
  • Binder resin As a binder resin, polyvinyl butyral resin (PVB, acetal resin) and ethyl cellulose (EC) were used.
  • PVB polyvinyl butyral resin
  • EC ethyl cellulose
  • Rosinamine (B), polyethylene glycol laurylamine (C), and oleylamine (D) were used as the base dispersant.
  • the system dispersant (E) was used.
  • organic solvent Propylene glycol monobutyl ether (PNB, glycol ether solvents), mineral spirits (MA) and terpineol (TPO) were used as the organic solvent.
  • Example 1 25 parts by mass of ceramic powder, 0.28 parts by mass of acid-based dispersant (A) as a dispersant, 4 parts by mass of EC as a binder resin, and 2 parts by mass of PVB with respect to 100 parts by mass of Ni powder which is a conductive powder
  • a conductive paste was prepared by mixing 48 parts by mass of PNB and 21 parts by mass of MA as organic solvents.
  • the viscosity of the produced conductive paste and the dispersibility of the paste were evaluated by the above method.
  • the content of the dispersant and the like of the conductive paste is shown in Table 1, and the evaluation results of the viscosity and dispersibility of the conductive paste are shown in Table 2.
  • Example 2 A conductive paste was produced and evaluated in the same manner as in Example 1 except that the acid dispersant (A) was changed to 0.5 parts by mass as a dispersant.
  • the content of the dispersant and the like of the conductive paste is shown in Table 1, and the evaluation results of the viscosity and dispersibility of the conductive paste are shown in Table 2.
  • Example 3 A conductive paste was prepared and evaluated in the same manner as in Example 1 except that the acid dispersant (A) was changed to 1.0 part by mass as a dispersant.
  • the content of the dispersant and the like of the conductive paste is shown in Table 1, and the evaluation results of the viscosity and dispersibility of the conductive paste are shown in Table 2.
  • Example 4 A conductive paste was prepared and evaluated in the same manner as in Example 1 except that 0.28 parts by mass of an acid-based dispersant (A) and 0.10 parts by mass of a rosin amine (B) were mixed as a dispersant.
  • the content of the dispersant and the like of the conductive paste is shown in Table 1, and the evaluation results of the viscosity and dispersibility of the conductive paste are shown in Table 2.
  • Example 5 A conductive paste was prepared and evaluated in the same manner as in Example 1 except that 0.28 parts by mass of an acid-based dispersant (A) and 0.10 parts by mass of polyethylene glycol laurylamine (C) were mixed as a dispersant. did.
  • the content of the dispersant and the like of the conductive paste is shown in Table 1, and the evaluation results of the viscosity and dispersibility of the conductive paste are shown in Table 2.
  • Example 6 A conductive paste was prepared and evaluated in the same manner as in Example 1 except that 0.28 parts by mass of an acid-based dispersant (A) and 0.10 parts by mass of oleylamine (D) were mixed as a dispersant.
  • Example 7 A conductive paste was prepared and evaluated in the same manner as in Example 1 except that 0.28 parts by mass of an acid-based dispersant (A) and 0.22 parts by mass of oleylamine (D) were mixed as a dispersant.
  • the content of the dispersant and the like of the conductive paste is shown in Table 1, and the evaluation results of the viscosity and dispersibility of the conductive paste are shown in Table 2.
  • Example 8 A conductive paste was prepared and evaluated in the same manner as in Example 1 except that 0.56 parts by mass of an acid-based dispersant (A) and 0.44 parts by mass of oleylamine (D) were mixed as a dispersant.
  • the content of the dispersant and the like of the conductive paste is shown in Table 1, and the evaluation results of the viscosity and dispersibility of the conductive paste are shown in Table 2.
  • Example 9 A conductive paste was produced and evaluated in the same manner as in Example 1 except that only 6 parts by mass of PVB was used as a binder resin.
  • Example 10 A conductive paste was prepared and evaluated in the same manner as in Example 1 except that 57 parts by mass of PNB and 12 parts by mass of MS were used as the organic solvent. The content of the dispersant and the like of the conductive paste is shown in Table 1, and the evaluation results of the viscosity and dispersibility of the conductive paste are shown in Table 2.
  • Comparative Example 1 The same as Example 1, except that 0.28 parts by mass of phosphoric acid based dispersing agent (E) containing phosphoric acid polyester as a main component and 0.10 parts by mass of basic dispersing agent (B) were used as the dispersing agent Conductive pastes were prepared and evaluated. The content of the dispersant and the like of the conductive paste is shown in Table 1, and the evaluation results of the viscosity and dispersibility of the conductive paste are shown in Table 2. Comparative Example 2 A conductive paste was produced and evaluated in the same manner as in Example 1 except that only terpineol (TPO) was used as the organic solvent.
  • TPO terpineol
  • the content of the dispersant and the like of the conductive paste is shown in Table 1, and the evaluation results of the viscosity and dispersibility of the conductive paste are shown in Table 2.
  • Comparative Example 3 A conductive paste was produced and evaluated in the same manner as in Example 1 except that only EC was used as a binder resin. The content of the dispersant and the like of the conductive paste is shown in Table 1, and the evaluation results of the viscosity and dispersibility of the conductive paste are shown in Table 2.
  • the conductive paste of the present invention has a viscosity suitable for gravure printing, and the dispersibility of the paste is good. Therefore, the conductive paste of the present embodiment can be suitably used as a raw material for the internal electrode of a multilayer ceramic capacitor which is a chip component of an electronic device such as a mobile phone or a digital device, in particular. It can be suitably used as a sex paste.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Conductive Materials (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

A conductive paste is provided which has a viscosity suitable to gravure printing and has excellent paste dispersibility. In this conductive paste, which contains a conductive powder, a dispersant, a binder resin and an organic solvent, the dispersant contains a phosphoric acid alkyl ester compound, which is an acid-base dispersant, the binder resin contains an acetal resin, and the organic solvent contains a glycol ether solvent.

Description

導電性ペースト、電子部品、及び積層セラミックコンデンサConductive paste, electronic component, and multilayer ceramic capacitor
 本発明は、導電性ペースト、電子部品、及び積層セラミックコンデンサに関する。 The present invention relates to a conductive paste, an electronic component, and a multilayer ceramic capacitor.
 携帯電話やデジタル機器などの電子機器の小型化および高性能化に伴い、積層セラミックコンデンサなどを含む電子部品についても小型化および高容量化が望まれている。積層セラミックコンデンサは、複数の誘電体層と複数の内部電極層とを交互に積層した構造を有し、これらの誘電体層及び内部電極層を薄膜化することにより、小型化及び高容量化を図ることができる。 With the miniaturization and high performance of electronic devices such as mobile phones and digital devices, miniaturization and high capacity of electronic components including multilayer ceramic capacitors and the like are desired. A multilayer ceramic capacitor has a structure in which a plurality of dielectric layers and a plurality of internal electrode layers are alternately stacked, and miniaturization and high capacity can be realized by thinning the dielectric layers and the internal electrode layers. Can be
 積層セラミックコンデンサは、例えば、次のように製造される。まず、チタン酸バリウム(BaTiO)などの誘電体粉末及びバインダー樹脂を含有する誘電体グリーンシートの表面上に、導電性粉末、バインダー樹脂、及び、有機溶剤などを含む内部電極用ペースト(導電性ペースト)を、所定の電極パターンで印刷し、乾燥して乾燥膜を形成する。次に、乾燥膜と誘電体グリーンシートとが交互に重なるように、多層に積み重ねた後、加熱圧着して一体化し、圧着体を形成する。この圧着体を切断し、酸化性雰囲気または不活性雰囲気中にて脱有機バインダー処理を行った後、焼成を行い、焼成チップを得る。次いで、焼成チップの両端部に外部電極用ペーストを塗布し、焼成後、外部電極表面にニッケルメッキなどを施して、積層セラミックコンデンサが得られる。 The multilayer ceramic capacitor is manufactured, for example, as follows. First, a paste for an internal electrode containing a conductive powder, a binder resin, an organic solvent and the like on the surface of a dielectric green sheet containing a dielectric powder such as barium titanate (BaTiO 3 ) and a binder resin (conductive The paste is printed with a predetermined electrode pattern and dried to form a dry film. Next, after stacking in multiple layers so that the dried film and the dielectric green sheets alternately overlap, heat and pressure are integrated to form a pressure-bonded body. The pressure-bonded body is cut, subjected to a deorganic binder treatment in an oxidizing atmosphere or an inert atmosphere, and then fired to obtain a fired chip. Subsequently, the paste for external electrodes is apply | coated to the both ends of a baking chip | tip, after baking, nickel plating etc. are given to the surface of an external electrode, and a laminated ceramic capacitor is obtained.
 導電性ペーストを誘電体グリーンシートに印刷する際に用いられる印刷法としては、従来、スクリーン印刷法が一般的に用いられてきたが、電子デバイスの小型化、薄膜化や生産性向上の要求から、より微細な電極パターンを生産性高く印刷することが求められている。 Conventionally, screen printing has been generally used as a printing method to be used when printing conductive paste on a dielectric green sheet, but from the demand for miniaturization of electronic devices, reduction in thickness, and improvement in productivity. It is required to print a finer electrode pattern with high productivity.
 導電性ペーストの印刷法の一つとして、製版に設けられた凹部に導電性ペーストを充填し、これを被印刷面に押し当てることでその製版から導電性ペーストを転写する連続印刷法であるグラビア印刷法が提案されている。グラビア印刷法は、印刷速度が速く、生産性に優れる。グラビア印刷法を用いる場合、導電性ペースト中のバインダー樹脂、分散剤、溶剤等を適宜選択して、粘度等の特性をグラビア印刷に適した範囲に調整する必要がある。 Gravure which is a continuous printing method in which a conductive paste is filled in a recess provided in a plate and pressed against a surface to be printed as one of the printing methods of the conductive paste, thereby transferring the conductive paste from the plate. A printing method has been proposed. The gravure printing method has a high printing speed and is excellent in productivity. In the case of using the gravure printing method, it is necessary to appropriately select the binder resin, the dispersing agent, the solvent and the like in the conductive paste to adjust the properties such as viscosity to the range suitable for the gravure printing.
 例えば、特許文献1では、複数のセラミック層および前記セラミック層間の特定の界面に沿って延びる内部導体膜を備える積層セラミック電子部品における前記内部導体膜をグラビア印刷によって形成するために用いられる導電性ペーストであって、金属粉末を含む30~70重量%の固形成分と、1~10重量%のエトキシ基含有率が49.6%以上のエチルセルロース樹脂成分と、0.05~5重量%の分散剤と、残部としての溶剤成分とを含み、ずり速度0.1(s-1)での粘度η0.1が1Pa・s以上であり、かつずり速度0.02(s-1)での粘度η0.02が特定の式で表わされる条件を満たす、チキソトロピー流体である、導電性ペーストが記載されている。 For example, in Patent Document 1, a conductive paste used to form the internal conductor film by gravure printing in a multilayer ceramic electronic component provided with a plurality of ceramic layers and an internal conductor film extending along a specific interface between the ceramic layers. 30 to 70% by weight of a solid component containing metal powder, 1 to 10% by weight of an ethylcellulose resin component having an ethoxy group content of 49.6% or more, and 0.05 to 5% by weight of a dispersant And a solvent component as the remainder, and the viscosity η 0.1 at a shear rate of 0.1 (s −1 ) is 1 Pa · s or more, and the viscosity at a shear rate of 0.02 (s −1 ) A conductive paste is described, which is a thixotropic fluid, with a condition that 条件 を 満 た す0.02 satisfies the specific formula.
 また、特許文献2では、上記特許文献1と同様にグラビア印刷によって形成するために用いられる導電性ペーストであって、金属粉末を含む30~70重量%の固形成分と、1~10重量%の樹脂成分と、0.05~5重量%の分散剤と、残部としての溶剤成分とを含み、ずり速度0.1(s-1)での粘度が1Pa・s以上のチキソトロピー流体であって、ずり速度0.1(s-1)での粘度を基準としたときに、ずり速度10(s-1)での粘度変化率が50%以上である、導電性ペーストが記載されている。 Further, Patent Document 2 is a conductive paste used for forming by gravure printing in the same manner as Patent Document 1 above, comprising 30 to 70% by weight of a solid component containing metal powder, and 1 to 10% by weight A thixotropic fluid containing a resin component, 0.05 to 5% by weight of a dispersant, and a solvent component as the balance, and having a viscosity of 1 Pa · s or more at a shear rate of 0.1 (s −1 ), A conductive paste is described in which the rate of change in viscosity at a shear rate of 10 (s -1 ) is 50% or more, based on the viscosity at a shear rate of 0.1 (s -1 ).
 上記特許文献1、2によれば、これらの導電性ペーストは、ずり速度0.1(s-1)での粘度が1Pa・s以上であるチキソトロピー流体であり、グラビア印刷において高速での安定した連続印刷性が得られ、良好な生産効率をもって、積層セラミックコンデンサのような積層セラミック電子部品を製造することができるとされている。 According to the above Patent Documents 1 and 2, these conductive pastes are thixotropic fluids having a viscosity of 1 Pa · s or more at a shear rate of 0.1 (s -1 ), and stable at high speed in gravure printing It is believed that continuous printability can be obtained, and multilayer ceramic electronic components such as multilayer ceramic capacitors can be manufactured with good production efficiency.
 また、特許文献3には、導電性粉末(A)、有機樹脂(B)、及び有機溶剤(C)、添加剤(D)、及び誘電体粉末(E)を含む積層セラミックコンデンサ内部電極用導電性ペーストであって、有機樹脂(B)は、重合度が10000以上50000以下のポリビニルブチラールと、重量平均分子量が10000以上100000以下のエチルセルロースからなり、有機溶剤(C)は、プロピレングリコールモノブチルエーテル、もしくはプロピレングリコールモノブチルエーテルとプロピレングリコールメチルエーテルアセテートの混合溶剤、又はプロピレングリコールモノブチルエーテルとミネラルスピリットの混合溶剤のいずれかからなり、添加剤(D)は、分離抑制剤と分散剤からなり、該分離抑制剤としてポリカルボン酸ポリマーもしくはポリカルボン酸の塩を含む組成物からなるグラビア印刷用導電性ペーストが記載されている。特許文献3によれば、この導電性ペーストは、グラビア印刷に適した粘度を有し、ペーストの均一性・安定性が向上し、かつ、乾燥性がよいとされている。 Further, Patent Document 3 discloses a conductive material for a laminated ceramic capacitor internal electrode including a conductive powder (A), an organic resin (B), an organic solvent (C), an additive (D), and a dielectric powder (E). Paste, the organic resin (B) is composed of polyvinyl butyral having a degree of polymerization of 10000 to 50000 and ethylcellulose having a weight average molecular weight of 10000 to 100000, and the organic solvent (C) is propylene glycol monobutyl ether, Or a mixed solvent of propylene glycol monobutyl ether and propylene glycol methyl ether acetate, or a mixed solvent of propylene glycol monobutyl ether and mineral spirit, and the additive (D) comprises a separation inhibitor and a dispersant, and the separation Polycarboxylic acid polymers as inhibitors Or gravure printing conductive paste made from a composition comprising a salt of a polycarboxylic acid. According to Patent Document 3, it is considered that this conductive paste has a viscosity suitable for gravure printing, improves the uniformity and stability of the paste, and has a good drying property.
特開2003-187638号公報JP 2003-187638 A 特開2003-242835号公報JP 2003-242835 A 特開2012-174797号公報JP 2012-174797
 近年の内部電極層の薄膜化に伴い、導電性粉末も小粒径化する傾向がある。導電性粉末の粒径が小さい場合、その粒子表面の比表面積が大きくなるため、導電性粉末(金属粉末)の表面活性が高くなり、導電性ペーストの分散性が低下する場合があり、より高い分散性を有する導電性ペーストが求められている。 With the thinning of the internal electrode layer in recent years, the conductive powder also tends to be reduced in particle size. If the particle size of the conductive powder is small, the specific surface area of the particle surface will be large, so the surface activity of the conductive powder (metal powder) may be high, and the dispersibility of the conductive paste may be lowered. A conductive paste having dispersibility is required.
 また、導電性ペーストを、グラビア印刷法を用いて印刷する場合、スクリーン印刷法よりも低いペースト粘度が要求されるため、比較的比重の大きい導電性粉末が沈降し、ペーストの分散性が低下することが考えられる。なお、上記特許文献1、2に記載される導電性ペーストでは、フィルタを用いて、導電性ペースト中の塊状物を除去することにより、ペーストの分散性を改善させているが、塊状物を除去する工程が必要となるため、製造工程が煩雑となりやすい。 In addition, when the conductive paste is printed using a gravure printing method, a paste viscosity lower than that of the screen printing method is required, so the conductive powder having a relatively large specific gravity settles, and the dispersibility of the paste decreases. It is conceivable. The conductive pastes described in Patent Documents 1 and 2 improve the dispersibility of the paste by removing lumps in the conductive paste using a filter, but the lumps are removed Manufacturing process is likely to be complicated.
 本発明は、このような状況に鑑み、グラビア印刷に適したペースト粘度を有し、かつ、ペーストの分散性及び生産性に優れた導電性ペーストを提供することを目的とする。 An object of the present invention is to provide a conductive paste which has a paste viscosity suitable for gravure printing and is excellent in the dispersibility and productivity of the paste.
 本発明の第1の態様では、導電性粉末、分散剤、バインダー樹脂及び有機溶剤を含む導電性ペーストであって、分散剤は、酸系分散剤であるリン酸アルキルエステル化合物を含み、バインダー樹脂は、アセタール系樹脂を含み、有機溶剤は、グリコールエーテル系溶剤を含む、導電性ペーストが提供される。 In a first aspect of the present invention, a conductive paste containing a conductive powder, a dispersant, a binder resin, and an organic solvent, the dispersant containing a phosphoric acid alkyl ester compound which is an acid-based dispersant, and a binder resin A conductive paste is provided, which comprises an acetal resin and the organic solvent comprises a glycol ether solvent.
 また、酸系分散剤は、リン酸アルキルポリオキシアルキレン化合物であることが好ましい。 Moreover, it is preferable that an acid type dispersing agent is phosphoric acid alkyl polyoxyalkylene compound.
 また、分散剤は、さらに塩基系分散剤を含んでもよい。また、分散剤は、導電性粉末100質量部に対して、総量で0.2質量部以上1質量部以下含有されることが好ましい。 In addition, the dispersant may further contain a basic dispersant. The dispersant is preferably contained in a total amount of 0.2 parts by mass or more and 1 part by mass or less with respect to 100 parts by mass of the conductive powder.
 導電性粉末は、Ni、Pd、Pt、Au、Ag、Cu及びこれらの合金から選ばれる少なくとも1種の金属粉末を含むことが好ましい。また、導電性粉末は、平均粒径が0.05μm以上1.0μm以下であることが好ましい。また、導電性ペーストは、セラミック粉末を含むことが好ましい。また、セラミック粉末は、ペロブスカイト型酸化物を含むことが好ましい。また、セラミック粉末は、平均粒径が0.01μm以上0.5μm以下であることが好ましい。また、導電性ペーストは、積層セラミック部品の内部電極用であることが好ましい。また、導電性ペーストは、ずり速度100sec-1の粘度が0.8Pa・S以下であり、ずり速度10000sec-1の粘度が0.19Pa・S以下であることが好ましい。 The conductive powder preferably contains at least one metal powder selected from Ni, Pd, Pt, Au, Ag, Cu and alloys thereof. The conductive powder preferably has an average particle diameter of 0.05 μm or more and 1.0 μm or less. Further, the conductive paste preferably contains a ceramic powder. The ceramic powder preferably contains a perovskite oxide. Further, the ceramic powder preferably has an average particle diameter of 0.01 μm or more and 0.5 μm or less. The conductive paste is preferably for the internal electrode of the laminated ceramic component. The conductive paste, the viscosity of the shear rate 100 sec -1 is not higher than 0.8 Pa · S, it is preferable that the viscosity of the shear rate 10000 sec -1 is less than 0.19 Pa · S.
 本発明の第2の態様では、上記導電性ペーストを用いて形成される、電子部品が提供される。 In a second aspect of the present invention, there is provided an electronic component formed using the above conductive paste.
 本発明の第3の態様では、誘電体層と内部電極とを積層した積層体を少なくとも有する積層セラミックコンデンサであって、前記内部電極は、上記導電性ペーストを用いて形成される、積層セラミックコンデンサが提供される。 According to a third aspect of the present invention, there is provided a laminated ceramic capacitor comprising at least a laminated body in which a dielectric layer and an internal electrode are laminated, wherein the internal electrode is formed using the above-mentioned conductive paste. Is provided.
 本発明の導電性ペーストは、グラビア印刷に適した粘度を有し、かつ、ペーストの分散性及び生産性に優れる。また、本発明の導電性ペーストを用いて形成される積層セラミックコンデンサなどの電子部品の電極パターンは、薄膜化した電極を形成する際も導電性ペーストの印刷性に優れ、均一な厚みを有する。 The conductive paste of the present invention has a viscosity suitable for gravure printing, and is excellent in the dispersibility and productivity of the paste. In addition, the electrode pattern of an electronic component such as a multilayer ceramic capacitor formed by using the conductive paste of the present invention is excellent in the printability of the conductive paste and has a uniform thickness even when forming a thin-filmed electrode.
図1は、実施形態に係る積層セラミックコンデンサを示す斜視図及び断面図である。FIG. 1 is a perspective view and a cross-sectional view showing a multilayer ceramic capacitor according to an embodiment.
[導電性ペースト]
 本実施形態の導電性ペーストは、導電性粉末、分散剤、バインダー樹脂及び有機溶剤を含む。以下、各成分について詳細に説明する。
[Conductive paste]
The conductive paste of the present embodiment contains a conductive powder, a dispersant, a binder resin and an organic solvent. Each component will be described in detail below.
(導電性粉末)
 導電性粉末は、特に限定されず、例えば、Ni、Pd、Pt、Au、Ag、Cu、およびこれらの合金から選ばれる1種以上の粉末を用いることができる。これらの中でも、導電性、耐食性及びコストの観点から、Ni、またはその合金の粉末が好ましい。Ni合金としては、例えば、Mn、Cr、Co、Al、Fe、Cu、Zn、Ag、Au、PtおよびPdからなる群より選択される少なくとも1種以上の元素とNiとの合金を用いることができる。Ni合金におけるNiの含有量は、例えば、50質量%以上、好ましくは80質量%以上である。また、Ni粉末は、脱バインダー処理の際、バインダー樹脂の部分的な熱分解による急激なガス発生を抑制するために、数百ppm程度のSを含んでもよい。
(Conductive powder)
The conductive powder is not particularly limited, and for example, at least one powder selected from Ni, Pd, Pt, Au, Ag, Cu, and alloys thereof can be used. Among these, in view of conductivity, corrosion resistance and cost, powder of Ni or its alloy is preferable. As the Ni alloy, for example, an alloy of Ni with at least one or more elements selected from the group consisting of Mn, Cr, Co, Al, Fe, Cu, Zn, Ag, Pt, and Pd may be used. it can. The content of Ni in the Ni alloy is, for example, 50% by mass or more, preferably 80% by mass or more. Further, the Ni powder may contain about several hundreds ppm of S in order to suppress rapid gas generation due to partial thermal decomposition of the binder resin at the time of binder removal processing.
 導電性粉末の平均粒径は、好ましくは0.05μm以上1.0μm以下であり、より好ましくは0.1μm以上0.5μm以下である。導電性粉末の平均粒径が上記範囲である場合、薄膜化した積層セラミックコンデンサの内部電極用ペーストとして好適に用いることができ、例えば、乾燥膜の平滑性及び乾燥膜密度が向上する。本明細書において、導電性粉末の平均粒径は、特に断らない限りBET法に基づいて得られた比表面積から算出した粒径である。例えば、ニッケル粉末の平均粒径の算出式は以下のとおりである。
  平均粒径=6/S.A×ρ・・・(式)
(ρ=8.9(ニッケルの真密度)、S.A=ニッケル粉末のBET比表面積)
The average particle diameter of the conductive powder is preferably 0.05 μm or more and 1.0 μm or less, and more preferably 0.1 μm or more and 0.5 μm or less. When the average particle diameter of the conductive powder is in the above range, it can be suitably used as a paste for the internal electrode of the laminated ceramic capacitor which has been made thin, and for example, the smoothness and the dry film density of the dry film are improved. In the present specification, the average particle size of the conductive powder is a particle size calculated from the specific surface area obtained based on the BET method unless otherwise specified. For example, the formula for calculating the average particle size of the nickel powder is as follows.
Average particle size = 6 / S. A × ・ ・ ・ ... (formula)
(Ρ = 8.9 (true density of nickel), SA = BET specific surface area of nickel powder)
 導電性粉末の含有量は、導電性ペースト全量に対して、好ましくは30質量%以上70質量%以下であり、より好ましくは40質量%以上65質量%以下である。導電性粉末の含有量が上記範囲である場合、導電性及び分散性に優れる。 The content of the conductive powder is preferably 30% by mass to 70% by mass, and more preferably 40% by mass to 65% by mass, based on the total amount of the conductive paste. When the content of the conductive powder is in the above range, the conductivity and the dispersibility are excellent.
(セラミック粉末)
 導電性ペーストは、セラミック粉末を含んでもよい。セラミック粉末としては、特に限定されず、例えば、積層セラミックコンデンサの内部電極用ペーストである場合、適用する積層セラミックコンデンサの種類により適宜、公知のセラミック粉末が選択される。セラミック粉末としては、例えば、Ba及びTiを含むペロブスカイト型酸化物が挙げられ、好ましくはチタン酸バリウム(BaTiO)である。なお、セラミック粉末は、1種類を用いてもよく、2種類以上を用いてもよい。
(Ceramic powder)
The conductive paste may include ceramic powder. The ceramic powder is not particularly limited. For example, when it is a paste for an internal electrode of a laminated ceramic capacitor, a known ceramic powder is appropriately selected depending on the type of the laminated ceramic capacitor to be applied. The ceramic powder includes, for example, a perovskite-type oxide containing Ba and Ti, preferably barium titanate (BaTiO 3 ). In addition, a ceramic powder may use one type and may use two or more types.
 セラミック粉末としては、チタン酸バリウムを主成分とし、酸化物を副成分として含むセラミック粉末を用いてもよい。酸化物としては、Mn、Cr、Si、Ca、Ba、Mg、V、W、Ta、Nbおよび希土類元素から選ばれる1種類以上の酸化物が挙げられる。 As the ceramic powder, ceramic powder containing barium titanate as a main component and oxide as a minor component may be used. Examples of the oxide include one or more oxides selected from Mn, Cr, Si, Ca, Ba, Mg, V, W, Ta, Nb and rare earth elements.
 また、セラミック粉末としては、例えば、チタン酸バリウム(BaTiO)のBa原子やTi原子を他の原子、例えば、Sn、Pb、Zrなどで置換したペロブスカイト型酸化物強誘電体のセラミック粉末を挙げることもできる。 Further, as a ceramic powder, for example, a ceramic powder of a perovskite type oxide ferroelectric substance in which Ba atoms or Ti atoms of barium titanate (BaTiO 3 ) are substituted with other atoms, for example, Sn, Pb, Zr, etc. It can also be done.
 内部電極用ペースト中のセラミック粉末としては、積層セラミックコンデンサの誘電体グリーンシートを構成する誘電体セラミック粉末と同一組成の粉末を用いてもよい。これにより、焼結工程における誘電体層と内部電極層との界面での収縮のミスマッチによるクラック発生が抑制される。このようなセラミック粉末としては、上記のBa及びTiを含むペロブスカイト型酸化物以外に、例えば、ZnO、フェライト、PZT、BaO、Al、Bi、R(希土類元素)、TiO、Ndなどの酸化物が挙げられる。 As a ceramic powder in the internal electrode paste, a powder having the same composition as that of the dielectric ceramic powder constituting the dielectric green sheet of the multilayer ceramic capacitor may be used. As a result, the occurrence of cracks due to the mismatch of contraction at the interface between the dielectric layer and the internal electrode layer in the sintering step is suppressed. As such a ceramic powder, in addition to the above-mentioned perovskite type oxides containing Ba and Ti, for example, ZnO, ferrite, PZT, BaO, Al 2 O 3 , Bi 2 O 3 , R (rare earth element) 2 O 3 And oxides such as TiO 2 and Nd 2 O 3 .
 セラミック粉末の平均粒径は、例えば、0.01μm以上0.5μm以下であり、好ましくは0.01μm以上0.3μm以下である。セラミック粉末の平均粒径が上記範囲であることにより、内部電極用ペーストとして用いた場合、十分に細く薄い均一な内部電極を形成することができる。セラミック粉末の平均粒径は、上記の導電性粉末と同様に、BET法に基づいて得られた比表面積から算出した粒径である。 The average particle size of the ceramic powder is, for example, not less than 0.01 μm and not more than 0.5 μm, and preferably not less than 0.01 μm and not more than 0.3 μm. When the average particle diameter of the ceramic powder is in the above range, a sufficiently thin and thin uniform internal electrode can be formed when used as a paste for an internal electrode. The average particle size of the ceramic powder is a particle size calculated from the specific surface area obtained based on the BET method, as in the case of the above-mentioned conductive powder.
 セラミック粉末の含有量は、導電性粉末100質量部に対して、好ましくは1質量部以上30質量部以下であり、より好ましくは3質量部以上30質量部以下である。 The content of the ceramic powder is preferably 1 part by mass to 30 parts by mass, and more preferably 3 parts by mass to 30 parts by mass, with respect to 100 parts by mass of the conductive powder.
 セラミック粉末の含有量は、導電性ペースト全量に対して、好ましくは1質量%以上20質量%以下であり、より好ましくは3質量%以上20質量%以下である。 The content of the ceramic powder is preferably 1% by mass to 20% by mass, and more preferably 3% by mass to 20% by mass, with respect to the total amount of the conductive paste.
(バインダー樹脂)
 バインダー樹脂は、アセタール系樹脂を含む。アセタール系樹脂としては、ポリビニルブチラールなどのブチラール系樹脂が好ましい。バインダー樹脂がアセタール系樹脂を含む場合、グラビア印刷に適した粘度に調整することができ、かつ、グリーンシートとの接着強度をより向上させることができる。バインダー樹脂は、例えば、バインダー樹脂全体に対して、アセタール系樹脂を20質量%以上含んでもよいし、30質量%以上含んでもよいし、60質量%以上含んでもよいし、アセタール系樹脂のみからなってもよい。
(Binder resin)
The binder resin contains an acetal resin. As the acetal-based resin, a butyral-based resin such as polyvinyl butyral is preferable. When the binder resin contains an acetal resin, it can be adjusted to a viscosity suitable for gravure printing, and can further improve the adhesive strength with the green sheet. The binder resin may contain, for example, 20% by mass or more, 30% by mass or more, 60% by mass or more of the acetal-based resin with respect to the entire binder resin, and may be composed only of the acetal-based resin May be
 アセタール系樹脂の含有量は、導電性粉末100質量部に対して、好ましくは1質量部以上10質量部以下であり、より好ましくは1質量部以上8質量部以下である。 The content of the acetal resin is preferably 1 to 10 parts by mass, and more preferably 1 to 8 parts by mass with respect to 100 parts by mass of the conductive powder.
 また、バインダー樹脂は、アセタール系樹脂以外の他の樹脂を含んでもよい。他の樹脂としては、特に限定されず、公知の樹脂を用いることができる。他の樹脂としては、例えば、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、ニトロセルロースなどのセルロース系樹脂、アクリル系樹脂などが挙げられ、中でも、溶剤への溶解性、燃焼分解性の観点などから、エチルセルロースが好ましい。また、バインダー樹脂の分子量は、例えば、20000~200000程度である。 Moreover, binder resin may also contain other resin other than an acetal-type resin. The other resin is not particularly limited, and known resins can be used. Other resins include, for example, cellulose resins such as methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, nitrocellulose, acrylic resins, etc. Among them, ethyl cellulose is preferred from the viewpoint of solubility in solvents, combustion decomposition, etc. preferable. The molecular weight of the binder resin is, for example, about 20000 to 200000.
 バインダー樹脂の含有量は、導電性粉末100質量部に対して、好ましくは1質量部以上10質量部以下であり、より好ましくは1質量部以上8質量部以下である。 The content of the binder resin is preferably 1 to 10 parts by mass, and more preferably 1 to 8 parts by mass, with respect to 100 parts by mass of the conductive powder.
 バインダー樹脂の含有量は、導電性ペースト全体に対して、好ましくは0.5質量%以上10質量%以下であり、より好ましくは0.5質量%以上6質量%以下である。バインダー樹脂の含有量が上記範囲である場合、導電性及び分散性に優れる。 The content of the binder resin is preferably 0.5% by mass or more and 10% by mass or less, and more preferably 0.5% by mass or more and 6% by mass or less based on the entire conductive paste. When content of binder resin is the said range, it is excellent in electroconductivity and dispersibility.
(有機溶剤)
 有機溶剤は、グリコールエーテル系溶剤、及び、アセテート系溶剤のうち、少なくとも一つを含み、グリコールエーテル系溶剤を含むことが好ましい。
(Organic solvent)
The organic solvent contains at least one of a glycol ether solvent and an acetate solvent, and preferably contains a glycol ether solvent.
 グリコールエーテル系溶剤としては、例えば、ジエチレングリコールモノ-2-エチルヘキシルエーテル、エチレングリコールモノ-2-エチルヘキシルエーテル、ジエチレングリコールモノヘキシルエーテル、エチレングリコールモノヘキシルエーテルなどの(ジ)エチレングリコールエーテル類、及び、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル(PNB)などのプロピレングリコールモノアルキルエーテル類などが挙げられる。中でも、プロピレングリコールモノアルキルエーテル類が好ましく、プロピレングリコールモノブチルエーテルがより好ましい。有機溶剤がグリコールエーテル系溶剤を含む場合、上述したバインダー樹脂との相溶性に優れ、かつ、乾燥性に優れる。 Examples of glycol ether solvents include (di) ethylene glycol ethers such as diethylene glycol mono-2-ethylhexyl ether, ethylene glycol mono-2-ethylhexyl ether, diethylene glycol monohexyl ether, ethylene glycol monohexyl ether, and propylene glycol Examples thereof include propylene glycol monoalkyl ethers such as monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, and propylene glycol monobutyl ether (PNB). Among them, propylene glycol monoalkyl ethers are preferable, and propylene glycol monobutyl ether is more preferable. When the organic solvent contains a glycol ether-based solvent, it is excellent in compatibility with the above-described binder resin, and excellent in drying property.
 有機溶剤は、例えば、有機溶剤全体に対し、グリコールエーテル系溶剤を25質量%以上含んでもよいし、50質量%以上含んでもよいし、グリコールエーテル系溶剤のみからなってもよい。また、グリコールエーテル系溶剤は、1種を単独で用いてもよく、2種以上を併用してもよい。 The organic solvent may contain, for example, 25% by mass or more, 50% by mass or more of the glycol ether-based solvent, or may consist only of the glycol ether-based solvent, based on the total amount of the organic solvent. Moreover, a glycol ether solvent may be used individually by 1 type, and may use 2 or more types together.
 アセテート系溶剤としては、例えば、ジヒドロターピニルアセテート、イソボルニルアセテート、イソボルニルプロピネート、イソボルニルブチレート、イソボルニルイソブチレートや、エチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、3-メトキシー3-メチルブチルアセテート、1-メトキシプロピル-2-アセテートなどのグリコールエーテルアセテート類などが挙げられる。 Examples of acetate solvents include dihydroterpinyl acetate, isobornyl acetate, isobornyl propionate, isobornyl butyrate, isobornyl isobutyrate, ethylene glycol monobutyl ether acetate, dipropylene glycol methyl ether And acetates, glycol ether acetates such as 3-methoxy-3-methylbutyl acetate, 1-methoxypropyl-2-acetate and the like.
 有機溶剤がアセテート系溶剤を含む場合、例えば、ジヒドロターピニルアセテート、イソボルニルアセテート、イソボルニルプロピネート、イソボルニルブチレート及びイソボルニルイソブチレートから選ばれる少なくとも1種のアセテート系溶剤(A)を含んでもよい。これらの中でもイソボルニルアセテートがより好ましい。アセテート系溶剤は、グリコールエーテル系溶剤を除く有機溶剤全体に対して、好ましくは90質量%以上100質量%以下含有され、より好ましくは100質量%含有される。 When the organic solvent contains an acetate solvent, for example, at least one acetate type selected from dihydroterpinyl acetate, isobornyl acetate, isobornyl propionate, isobornyl butyrate and isobornyl isobutyrate. It may contain a solvent (A). Among these, isobornyl acetate is more preferable. The acetate solvent is preferably contained in an amount of 90% by mass to 100% by mass, more preferably 100% by mass, based on the total amount of the organic solvent excluding the glycol ether-based solvent.
 また、有機溶剤がアセテート系溶剤を含む場合、例えば、上記のアセテート系溶剤(A)と、エチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテートから選ばれる少なくとも1種のアセテート系溶剤(B)とを含んでもよい。このような混合溶剤を用いる場合、容易に導電性ペーストの粘度調整を行うことができ、導電性ペーストの乾燥スピードを速くすることができる。 When the organic solvent contains an acetate solvent, for example, the above-mentioned acetate solvent (A) and at least one acetate solvent (B) selected from ethylene glycol monobutyl ether acetate and dipropylene glycol methyl ether acetate May be included. When such a mixed solvent is used, the viscosity of the conductive paste can be easily adjusted, and the drying speed of the conductive paste can be increased.
 アセテート系溶剤(A)とアセテート系溶剤(B)とを含む混合液の場合、アセテート系溶剤全体に対して、アセテート系溶剤(A)を好ましくは50質量%以上90質量%以下含有し、より好ましくは60質量%以上80質量%以下含有する。上記混合液の場合、アセテート系溶剤全体に対して、アセテート系溶剤(B)を10質量%以上50質量%以下含有し、より好ましくは20%以上40質量%以下含有する。 In the case of a mixed solution containing an acetate solvent (A) and an acetate solvent (B), the acetate solvent (A) is preferably contained in an amount of 50% by mass to 90% by mass with respect to the entire acetate solvent Preferably, the content is 60% by mass or more and 80% by mass or less. In the case of the above mixed solution, the acetate solvent (B) is contained in an amount of 10% by mass to 50% by mass, and more preferably 20% to 40% by mass, based on the entire acetate solvent.
 また、有機溶剤は、グリコールエーテル系溶剤およびアセテート系溶剤以外の他の有機溶剤を含んでもよい。他の有機溶剤としては、特に限定されず、上記バインダー樹脂を溶解することができる公知の有機溶剤を用いることができる。他の有機溶剤としては、例えば、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸ブチルなどの酢酸エステル系溶剤、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶剤、ターピネオール、ジヒドロターピネオールなどのテルペン系溶剤、トリデカン、ノナン、シクロヘキサンなどの脂肪族系炭化水素溶剤などが挙げられる。中でも、脂肪族系炭化水素溶剤が好ましく、脂肪族系炭化水素溶剤のうちミネラルスピリットがより好ましい。なお、他の有機溶剤は、1種類を用いてもよく、2種類以上を用いてもよい。 The organic solvent may also contain other organic solvents other than glycol ether solvents and acetate solvents. It does not specifically limit as another organic solvent, The well-known organic solvent which can melt | dissolve the said binder resin can be used. Other organic solvents include, for example, acetate solvents such as ethyl acetate, propyl acetate, isobutyl acetate and butyl acetate, ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, terpene solvents such as terpineol and dihydroterpineol, tridecane, And aliphatic hydrocarbon solvents such as nonane and cyclohexane. Among them, aliphatic hydrocarbon solvents are preferable, and among the aliphatic hydrocarbon solvents, mineral spirit is more preferable. The other organic solvents may be used alone or in combination of two or more.
 有機溶剤は、例えば、主溶剤としてグリコールエーテル系溶剤を含み、副溶剤として脂肪族系炭化水素溶剤を含むことができる。この場合、グリコールエーテル系溶剤は、導電性粉末100質量部に対して、好ましくは30質量部以上50質量部以下、より好ましくは40質量部以上50質量部以下含まれ、脂肪族系炭化水素溶剤は、導電性粉末100質量部に対して、例えば、15質量部以上80質量部以下、好ましくは20質量部以上80質量部以下、より好ましくは20質量部以上40質量部以下含まれる。 The organic solvent can contain, for example, a glycol ether solvent as a main solvent, and an aliphatic hydrocarbon solvent as a cosolvent. In this case, the glycol ether-based solvent is contained in an amount of preferably 30 to 50 parts by mass, more preferably 40 to 50 parts by mass with respect to 100 parts by mass of the conductive powder, and an aliphatic hydrocarbon solvent Is contained in an amount of, for example, 15 parts by mass to 80 parts by mass, preferably 20 parts by mass to 80 parts by mass, and more preferably 20 parts by mass to 40 parts by mass with respect to 100 parts by mass of the conductive powder.
 有機溶剤の含有量は、導電性粉末100質量部に対して、好ましくは50質量部以上130質量部以下であり、より好ましくは60質量部以上90質量部以下である。有機溶剤の含有量が上記範囲である場合、導電性及び分散性に優れる。 The content of the organic solvent is preferably 50 parts by mass or more and 130 parts by mass or less, and more preferably 60 parts by mass or more and 90 parts by mass or less with respect to 100 parts by mass of the conductive powder. When the content of the organic solvent is in the above range, the conductivity and the dispersibility are excellent.
 有機溶剤の含有量は、導電性ペースト全量に対して、20質量%以上50質量%以下が好ましく、25質量%以上45質量%以下がより好ましい。有機溶剤の含有量が上記範囲である場合、導電性及び分散性に優れる。 20 mass% or more and 50 mass% or less are preferable with respect to the conductive paste whole quantity, and, as for content of the organic solvent, 25 mass% or more and 45 mass% or less are more preferable. When the content of the organic solvent is in the above range, the conductivity and the dispersibility are excellent.
(分散剤)
 本実施形態の導電性ペーストは、酸系分散剤としてリンを含む酸系分散剤、中でもリン酸アルキルエステル化合物を含むことが好ましい。本発明者は、導電性ペーストに用いる分散剤について、種々の分散剤を検討した結果、上述したバインダー樹脂及び有機溶剤と併せて、リン酸アルキルエステル化合物を含む分散剤を用いることにより、その理由は不明であるが、内部電極を形成した際に塊状物の発生が非常に抑制され、ペーストの分散性が向上することを見出した。
(Dispersant)
The conductive paste of the present embodiment preferably contains an acid-based dispersant containing phosphorus as an acid-based dispersant, in particular, a phosphoric acid alkyl ester compound. As a result of examining the various dispersing agents for the dispersing agent used for the conductive paste, the inventor of the present invention uses the dispersing agent containing the phosphoric acid alkyl ester compound in combination with the binder resin and the organic solvent described above. Although it is unknown, it was found that when the internal electrode was formed, the generation of lumps was greatly suppressed and the dispersibility of the paste was improved.
 リン酸アルキルエステル化合物は、アルキル基を有するリン酸エステルである。また、リン酸アルキルエステル化合物は、ポリオキシアルキレン構造を有することが好ましく、リン酸アルキルポリオキシアルキレン化合物であることが好ましい。 The phosphoric acid alkyl ester compound is a phosphoric acid ester having an alkyl group. The phosphoric acid alkyl ester compound preferably has a polyoxyalkylene structure, and is preferably a phosphoric acid alkyl polyoxyalkylene compound.
 また、リン酸アルキルエステル化合物は、直鎖構造の分散剤であってもよいし、複雑な分岐構造(例えば、分岐鎖が2つ以上)を有する分散剤であってもよいが、直鎖構造であることが好ましい。 The phosphoric acid alkyl ester compound may be a dispersant having a linear structure, or may be a dispersant having a complex branched structure (for example, two or more branched chains). Is preferred.
 リン酸アルキルエステル化合物は、例えば、以下の一般式(1)で示される化合物を含むことが好ましい。 The phosphoric acid alkyl ester compound preferably contains, for example, a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記一般式(1)中、Xは、炭素数1~18の直鎖のアルキル基を示し、Yは、-(OCHCH)n-を示し、nが1~18である。 In the above general formula (1), X represents a linear alkyl group having 1 to 18 carbon atoms, Y represents-(OCH 2 CH 2 ) n-, and n is 1 to 18.
 リンを含む分散剤としてリン酸アルキルエステル化合物を用いることにより、その詳細は不明であるが、リン酸部位が導電性粉末等の表面に吸着して、表面電位を中和、あるいは水素結合部位を不活性化し、かつ、リン酸以外の部位のアルキル基を含む特定の立体構造が、効果的に導電性粉末等の凝集を抑制し、ペースト粘度の安定性をより向上させることができると推察される。 By using a phosphoric acid alkyl ester compound as the dispersant containing phosphorus, the details are unknown, but the phosphoric acid site is adsorbed on the surface of the conductive powder or the like to neutralize the surface potential or the hydrogen bonding site. It is speculated that a specific steric structure that is inactivated and contains an alkyl group at a site other than phosphoric acid can effectively suppress the aggregation of conductive powder etc., and can further improve the stability of paste viscosity. Ru.
 なお、リンを含む酸系分散剤は、リン酸アルキルエステル化合物と、その他のリン酸系分散剤との混合物であってもよいが、リン酸アルキルエステル化合物からなることが好ましく、リン酸アルキルポリオキシアルキレン化合物からなることがより好ましい。また、リンを含む酸系分散剤は、混合物であってもよいが、単一の化合物であることが好ましい。  In addition, although the acid type dispersing agent containing phosphorus may be a mixture of a phosphoric acid alkyl ester compound and other phosphoric acid type dispersing agents, it is preferable to consist of a phosphoric acid alkyl ester compound, and an alkyl polyphosphate is preferable. It is more preferable to consist of an oxyalkylene compound. Moreover, although the acid type dispersing agent containing phosphorus may be a mixture, it is preferable that it is a single compound.
 リンを含む酸系分散剤は、導電性粉末100質量部に対して、例えば、0.2質量部以上2質量部以下含有されてもよく、好ましくは0.2質量部以上1質量部以下含有される。リンを含む酸系分散剤の含有量が上記範囲である場合、導電性ペースト中の導電性粉末の分散性に優れる。 The acid-based dispersant containing phosphorus may be contained in an amount of, for example, 0.2 parts by mass or more and 2 parts by mass or less, and preferably 0.2 parts by mass or more and 1 part by mass or less based on 100 parts by mass of the conductive powder. Be done. When the content of the acid-based dispersant containing phosphorus is in the above range, the dispersibility of the conductive powder in the conductive paste is excellent.
 リンを含む酸系分散剤は、導電性ペースト全体に対して、例えば、3質量%以下含有される。リンを含む酸系分散剤の含有量の上限は、好ましく2質量%以下であり、より好ましくは1.5質量%以下であり、さらに好ましくは1質量%以下である。上記のリンを含む酸系分散剤の含有量の下限は、特に限定されないが、例えば、0.1質量%以上である。 The acid-based dispersant containing phosphorus is contained, for example, at 3% by mass or less based on the entire conductive paste. The upper limit of the content of the phosphorus-containing acid-based dispersant is preferably 2% by mass or less, more preferably 1.5% by mass or less, and still more preferably 1% by mass or less. Although the minimum of content of the above-mentioned acid system dispersing agent containing phosphorus is not limited, it is 0.1 mass% or more, for example.
 リン酸アルキルエステル化合物などのリンを含む酸系分散剤は、例えば、市販の製品から、上記特性を満たすものを選択して用いることができる。また、上記の分散剤は、従来公知の製造方法を用いて、上記特性を満たすように製造してもよい。 An acid-based dispersant containing phosphorus such as a phosphoric acid alkyl ester compound can be used by, for example, selecting one satisfying the above characteristics from commercially available products. In addition, the above-mentioned dispersant may be manufactured to satisfy the above-mentioned characteristics by using a conventionally known manufacturing method.
 導電性ペーストは、分散剤として、上記のリン酸を含む酸系分散剤のみを用いてもよいが、リンを含む酸系分散剤以外の他の酸系分散剤を用いてもよい。他の酸系分散剤としては、例えば、高級脂肪酸、高分子界面活性剤などが挙げられる。これらの分散剤は、1種または2種以上組み合わせて用いてもよい。 The conductive paste may use only the above-mentioned acid-based dispersant containing phosphoric acid as a dispersant, but may use another acid-based dispersant other than the phosphorus-containing acid-based dispersant. Examples of other acid-based dispersants include higher fatty acids and polymer surfactants. These dispersants may be used alone or in combination of two or more.
 高級脂肪酸としては、不飽和カルボン酸でも飽和カルボン酸でもよく、特に限定されるものではないが、ステアリン酸、オレイン酸、ベヘン酸、ミリスチン酸、パルミチン酸、リノール酸、ラウリン酸、リノレン酸など炭素数11以上のものが挙げられる。中でも、オレイン酸、またはステアリン酸が好ましい。 The higher fatty acid may be unsaturated carboxylic acid or saturated carboxylic acid, and is not particularly limited, but carbons such as stearic acid, oleic acid, behenic acid, myristic acid, palmitic acid, linoleic acid, lauric acid, linolenic acid, etc. There are 11 or more. Among these, oleic acid or stearic acid is preferred.
 それ以外の酸系分散剤としては、特に限定されず、モノアルキルアミン塩に代表されるアルキルモノアミン塩型、N-アルキル(C14~C18)プロピレンジアミンジオレイン酸塩に代表されるアルキルジアミン塩型、アルキルトリメチルアンモニウムクロライドに代表されるアルキルトリメチルアンモニウム塩型、ヤシアルキルジメチルベンジルアンモニウムクロライドに代表されるアルキルジメチルベンジルアンモニウム塩型、アルキル・ジポリオキシエチレンメチルアンモニウムクロライドに代表される4級アンモニウム塩型、アルキルピリジニウム塩型、ジメチルステアリルアミンに代表される3級アミン型、ポリオキシプロピレン・ポリオキシエチレンアルキルアミンに代表されるポリオキシエチレンアルキルアミン型、N、N’、N’-トリス(2-ヒドロキシエチル)-N-アルキル(C14~18)1,3-ジアミノプロパンに代表されるジアミンのオキシエチレン付加型から選択される界面活性剤が挙げられる。 The other acid dispersants are not particularly limited, and alkyl monoamine salt type represented by mono alkyl amine salt, and alkyl diamine salt represented by N-alkyl (C14 to C18) propylene diamine dioleate. , Alkyl trimethyl ammonium salt type represented by alkyl trimethyl ammonium chloride, alkyl dimethyl benzyl ammonium salt type represented by coc alkyl dimethyl benzyl ammonium chloride, quaternary ammonium salt type represented by alkyl dipolyoxyethylene methyl ammonium chloride Alkyl pyridinium salt type, tertiary amine type represented by dimethyl stearyl amine, polyoxyethylene alkyl amine type represented by polyoxypropylene · polyoxyethylene alkylamine, N, ', N'- tris (2-hydroxyethyl) -N- alkyl (C14 ~ 18) 1,3-diaminopropane surfactant selected from polyoxyethylene-added diamine represented by like.
 また、分散剤は、酸系分散剤以外の分散剤を含んでもよい。酸系分散以外の分散剤としては、塩基系分散剤、非イオン系分散剤、両性分散剤などが挙げられる。これらの分散剤は、1種または2種以上組み合わせて用いてもよい。 In addition, the dispersant may contain a dispersant other than the acid dispersant. Dispersants other than acid-based dispersions include basic dispersants, nonionic dispersants, amphoteric dispersants and the like. These dispersants may be used alone or in combination of two or more.
 塩基系分散剤としては、例えば、ラウリルアミン、ポリエチレングリコールラウリルアミン、ロジンアミン、セチルアミン、ミリスチルアミン、ステアリルアミンなどの脂肪族アミンなどが挙げられる。導電性ペーストは、リンを含む酸系分散剤と合わせて、さらに塩基系分散とを含有する場合、経時的な粘度安定性と、ペースト分散性とを非常に高いレベルで両立させることができる。 Examples of the basic dispersant include aliphatic amines such as laurylamine, polyethylene glycol laurylamine, rosinamine, cetylamine, myristylamine and stearylamine. When the conductive paste further contains a basic dispersion in combination with a phosphorus-containing acid dispersant, it is possible to achieve both viscosity stability over time and paste dispersibility at a very high level.
 塩基系分散剤は、例えば、導電性粉末100質量部に対して、0.01質量部以上2質量部未満含有されてもよく、好ましくは0.01質量部以上1質量部以下、より好ましくは0.02質量部以上1質量部以下、さらに好ましくは0.02質量部以上0.5質量部以下含有される。また、塩基系分散剤は、例えば、上記の酸系分散剤100質量部に対して、10質量部以上300質量部以下、好ましくは50質量部以上150質量部以下含有されることができる。塩基系分散を上記範囲で含有する場合、ペーストの経時的な粘度安定性により優れる。 The base dispersant may be contained, for example, in an amount of 0.01 parts by mass or more and less than 2 parts by mass, preferably 0.01 parts by mass or more and 1 part by mass or less, more preferably 100 parts by mass of the conductive powder. 0.02 parts by mass or more and 1 part by mass or less, more preferably 0.02 parts by mass or more and 0.5 parts by mass or less. The base dispersant can be contained, for example, in an amount of 10 to 300 parts by mass, preferably 50 to 150 parts by mass, with respect to 100 parts by mass of the acid dispersant. When the basic dispersion is contained in the above range, the viscosity stability with time of the paste is superior.
 塩基系分散剤は、例えば、導電性ペースト全体に対して、例えば、0質量%以上2.5質量%以下含有され、好ましくは0質量%以上1.5質量%以下含有され、より好ましくは0質量%以上1.0質量%以下、より好ましくは0.1質量%以上1.0質量%以下含有され、より好ましくは0.1質量%以上0.8質量%以下含有される。塩基系分散を上記範囲で含有する場合、ペーストの経時的な粘度安定性により優れる。 The base-based dispersant is contained, for example, in an amount of 0% by mass or more and 2.5% by mass or less, preferably 0% by mass or more and 1.5% by mass or less, based on the entire conductive paste. It is contained by mass% or more and 1.0 mass% or less, more preferably 0.1 mass% or more and 1.0 mass% or less, more preferably 0.1 mass% or more and 0.8 mass% or less. When the basic dispersion is contained in the above range, the viscosity stability with time of the paste is superior.
 導電性ペーストにおいて、分散剤全体(リンを含む酸性分散剤、及び、それ以外の任意の分散剤を含む)の含有量は、例えば、導電性粉末100質量部に対して、0.2質量部以上2質量部以下であってもよく、0.2質量部以上1質量部以下であることが好ましい。分散剤(全体)の含有量が上記範囲を超える場合、導電性ペーストの乾燥性が悪化したり、シートアタックが生じたり、グリーンシートを台紙のPETフィルムから剥離できなくなる場合がある。 In the conductive paste, the content of the entire dispersing agent (including the acidic dispersing agent containing phosphorus and any other dispersing agent) is, for example, 0.2 parts by mass with respect to 100 parts by mass of the conductive powder. It may be 2 parts by mass or less, and preferably 0.2 parts by mass or more and 1 part by mass or less. When the content of the dispersant (overall) exceeds the above range, the drying property of the conductive paste may be deteriorated, a sheet attack may occur, or the green sheet may not be peeled off from the backing PET film.
(その他の成分)
 本実施形態の導電性ペーストは、必要に応じて、上記の成分以外のその他の成分を含んでもよい。その他の成分としては、例えば、消泡剤、可塑剤、界面活性剤、増粘剤などの従来公知の添加物を用いることができる。
(Other ingredients)
The conductive paste of the present embodiment may contain other components other than the above components, as necessary. As other components, for example, conventionally known additives such as an antifoamer, a plasticizer, a surfactant, and a thickener can be used.
(導電性ペースト)
 本実施形態の導電性ペーストの製造方法は、特に限定されず、従来公知の方法を用いることができる。導電性ペーストは、例えば、上記の各成分を、3本ロールミル、ボールミル、ミキサーなどで攪拌・混練することにより製造することができる。その際、導電性粉末表面に予め分散剤を塗布すると、導電性粉末が凝集することなく十分にほぐれて、その表面に分散剤が行きわたるようになり、均一な導電性ペーストを得やすい。また、予め、バインダー樹脂を有機溶剤の一部に溶解させて、有機ビヒクルを作製した後、ペースト調整用の有機溶剤へ、導電性粉末、セラミック粉末、分散剤、及び、有機ビヒクルを添加した後、攪拌・混練し、導電性ペーストを作製してもよい。
(Conductive paste)
The method for producing the conductive paste of the present embodiment is not particularly limited, and a conventionally known method can be used. The conductive paste can be produced, for example, by stirring and kneading the above-mentioned components with a three-roll mill, a ball mill, a mixer or the like. At this time, when a dispersant is previously applied to the surface of the conductive powder, the conductive powder is sufficiently loosened without aggregation, and the dispersant is spread on the surface, so that it is easy to obtain a uniform conductive paste. In addition, after dissolving the binder resin in a part of the organic solvent to prepare an organic vehicle, after adding the conductive powder, the ceramic powder, the dispersing agent, and the organic vehicle to the organic solvent for paste adjustment The mixture may be stirred and kneaded to prepare a conductive paste.
 導電性ペーストは、ずり速度100sec-1の粘度が、好ましくは0.8Pa・S以下である。ずり速度100sec-1の粘度が上記範囲である場合、グラビア印刷用の導電性ペーストとして好適に用いることができる。上記範囲を超えると粘度が高すぎてグラビア印刷用として適さない場合がある。ずり速度100sec-1の粘度の下限は、特に限定されないが、例えば、0.2Pa・S以上である。 The conductive paste preferably has a viscosity of 100 sec −1 at a shear rate of 0.8 Pa · S or less. When the viscosity at a shear rate of 100 sec -1 is in the above range, it can be suitably used as a conductive paste for gravure printing. If the above range is exceeded, the viscosity may be too high to be suitable for gravure printing. The lower limit of the viscosity at a shear rate of 100 sec −1 is not particularly limited, and is, for example, 0.2 Pa · S or more.
 また、導電性ペーストは、ずり速度10000sec-1の粘度が、好ましくは0.19Pa・S以下であり、より好ましくは0.18Pa・S以下である。ずり速度10000sec-1の粘度が上記範囲である場合、グラビア印刷用の導電性ペーストとして好適に用いることができる。上記範囲を超えた場合も、粘度が高すぎてグラビア印刷用として適さない場合がある。ずり速度10000sec-1の粘度の下限は、特に限定されないが、例えば、0.05Pa・S以上である。 The conductive paste preferably has a viscosity at a shear rate of 10000 sec −1 , preferably 0.19 Pa · S or less, more preferably 0.18 Pa · S or less. When the viscosity at a shear rate of 10000 sec −1 is in the above range, it can be suitably used as a conductive paste for gravure printing. If the above range is exceeded, the viscosity may be too high to be suitable for gravure printing. The lower limit of the viscosity at a shear rate of 10000 sec −1 is not particularly limited, and is, for example, 0.05 Pa · S or more.
 導電性ペーストは、積層セラミックコンデンサなどの電子部品に好適に用いることができる。積層セラミックコンデンサは、誘電体グリーンシートを用いて形成される誘電体層及び導電性ペーストを用いて形成される内部電極層を有する。 The conductive paste can be suitably used for electronic components such as multilayer ceramic capacitors. A multilayer ceramic capacitor has a dielectric layer formed using a dielectric green sheet and an internal electrode layer formed using a conductive paste.
 積層セラミックコンデンサは、誘電体グリーンシートに含まれる誘電体セラミック粉末と導電性ペーストに含まれるセラミック粉末とが同一組成の粉末であることが好ましい。本実施形態の導電性ペーストを用いて製造される積層セラミックデバイスは、誘電体グリーンシートの厚さが、例えば3μm以下である場合でも、シートアタックや誘電体グリーンシートの剥離不良が抑制される。 In the laminated ceramic capacitor, preferably, the dielectric ceramic powder contained in the dielectric green sheet and the ceramic powder contained in the conductive paste are powders having the same composition. In the laminated ceramic device manufactured using the conductive paste of the present embodiment, even if the thickness of the dielectric green sheet is, for example, 3 μm or less, the sheet attack and the peeling failure of the dielectric green sheet are suppressed.
[電子部品]
 以下、本発明の電子部品等の実施形態について、図面を参照しながら説明する。図面においては、適宜、模式的に表現することや、縮尺を変更して表現することがある。また、部材の位置や方向などを、適宜、図1などに示すXYZ直交座標系を参照して説明する。このXYZ直交座標系において、X方向およびY方向は水平方向であり、Z方向は鉛直方向(上下方向)である。
[Electronic parts]
Hereinafter, embodiments of the electronic component and the like of the present invention will be described with reference to the drawings. In the drawings, they may be represented schematically or may be represented by changing the scale as appropriate. Further, the positions, directions, and the like of the members will be appropriately described with reference to an XYZ orthogonal coordinate system shown in FIG. In this XYZ orthogonal coordinate system, the X direction and the Y direction are horizontal directions, and the Z direction is a vertical direction (vertical direction).
 図1A及びBは、実施形態に係る電子部品の一例である、積層セラミックコンデンサ1を示す図である。積層セラミックコンデンサ1は、誘電体層12及び内部電極層11を交互に積層したセラミック積層体10と外部電極20とを備える。 FIGS. 1A and 1B are views showing a laminated ceramic capacitor 1 which is an example of an electronic component according to an embodiment. The multilayer ceramic capacitor 1 includes a ceramic laminate 10 in which dielectric layers 12 and internal electrode layers 11 are alternately stacked, and an external electrode 20.
 以下、上記導電性ペーストを使用した積層セラミックコンデンサの製造方法について説明する。まず、誘電体グリーンシート上に、導電性ペーストを印刷法により形成し、乾燥膜を形成する。この乾燥膜を上面に有する複数の誘電体グリーンシートを、圧着により積層させた後、焼成して一体化することにより、セラミックコンデンサ本体となる積層セラミック焼成体(セラミック積層体10)を作製する。その後、セラミック積層体10の両端部に一対の外部電極を形成することにより積層セラミックコンデンサ1が製造される。以下に、より詳細に説明する。 Hereinafter, the manufacturing method of the laminated ceramic capacitor using the said conductive paste is demonstrated. First, a conductive paste is formed on a dielectric green sheet by a printing method to form a dried film. A plurality of dielectric green sheets having this dried film on the upper surface are laminated by pressure bonding, and then fired and integrated to produce a laminated ceramic sintered body (ceramic laminated body 10) to be a ceramic capacitor main body. Thereafter, a pair of external electrodes are formed at both ends of the ceramic laminate 10, whereby the multilayer ceramic capacitor 1 is manufactured. A more detailed description will be given below.
 まず、未焼成のセラミックシートである誘電体グリーンシートを用意する。この誘電体グリーンシートとしては、例えば、チタン酸バリウム等の所定のセラミック粉末に、ポリビニルブチラール等の有機バインダーとターピネオール等の溶剤とを加えて得た誘電体層用ペーストを、PETフィルム等の支持フィルム上にシート状に塗布し、乾燥させて溶剤を除去したもの等が挙げられる。なお、誘電体グリーンシートからなる誘電体層の厚みは、特に限定されないが、積層セラミックコンデンサの小型化の要請の観点から、0.05μm以上3μm以下が好ましい。 First, a dielectric green sheet which is an unfired ceramic sheet is prepared. As this dielectric green sheet, for example, a dielectric layer paste obtained by adding an organic binder such as polyvinyl butyral and a solvent such as terpineol to a predetermined ceramic powder such as barium titanate is supported as a PET film or the like. What apply | coated in a sheet form on a film, was made to dry, and the solvent was removed etc. are mentioned. The thickness of the dielectric layer formed of the dielectric green sheet is not particularly limited, but is preferably 0.05 μm or more and 3 μm or less from the viewpoint of demand for miniaturization of the multilayer ceramic capacitor.
 次いで、この誘電体グリーンシートの片面に、グラビア印刷法を用いて、上述の導電性ペーストを印刷して塗布し、導電性ペーストからなる内部電極層11を形成したものを複数枚、用意する。なお、導電性ペーストからなる内部電極層11の厚みは、当該内部電極層11の薄層化の要請の観点から、乾燥後1μm以下とすることが好ましい。 Next, the conductive paste described above is printed and coated on one side of this dielectric green sheet by gravure printing, and a plurality of the conductive electrode sheets 11 formed of the conductive paste are prepared. The thickness of the internal electrode layer 11 made of a conductive paste is preferably 1 μm or less after drying from the viewpoint of the request for thinning of the internal electrode layer 11.
 次いで、支持フィルムから、誘電体グリーンシートを剥離するとともに、誘電体グリーンシートとその片面に形成された導電性ペースト(乾燥膜)とが交互に配置されるように積層した後、加熱・加圧処理により積層体(圧着体)を得る。なお、積層体(圧着体)の両面に、導電性ペーストを塗布していない保護用の誘電体グリーンシートを更に配置する構成としても良い。 Next, the dielectric green sheet is peeled off from the support film, and the dielectric green sheet and the conductive paste (dried film) formed on one side of the dielectric green sheet are alternately arranged, and then heated and pressed. A laminated body (crimped body) is obtained by the treatment. In addition, it is good also as a structure which arrange | positions a dielectric dielectric green sheet for protection which has not apply | coated the conductive paste on both surfaces of a laminated body (crimping body).
 次いで、積層体を所定サイズに切断してグリーンチップを形成した後、当該グリーンチップに対して脱バインダー処理を施し、還元雰囲気下において焼成することにより、積層セラミック焼成体(セラミック積層体10)を製造する。なお、脱バインダー処理における雰囲気は、大気またはNガス雰囲気にすることが好ましい。脱バインダー処理を行う際の温度は、例えば200℃以上400℃以下である。また、脱バインダー処理を行う際の、上記温度の保持時間を0.5時間以上24時間以下とすることが好ましい。また、焼成は、内部電極層に用いる金属の酸化を抑制するために還元雰囲気で行われ、また、積層体の焼成を行う際の温度は、例えば、1000℃以上1350℃以下であり、焼成を行う際の、温度の保持時間は、例えば、0.5時間以上8時間以下である。 Next, the laminate is cut into a predetermined size to form a green chip, and then the green chip is subjected to a binder removal treatment and fired in a reducing atmosphere to obtain a laminated ceramic fired body (ceramic laminate 10). Manufacture. In addition, it is preferable that the atmosphere in the binder removal process be air or N 2 gas atmosphere. The temperature at the time of debinding treatment is, for example, 200 ° C. or more and 400 ° C. or less. Moreover, it is preferable to make holding time of the said temperature into 0.5 to 24 hours at the time of performing a binder removal process. The firing is performed in a reducing atmosphere to suppress oxidation of the metal used in the internal electrode layer, and the temperature at which the laminate is fired is, for example, 1000 ° C. or more and 1350 ° C. or less. The holding time of temperature at the time of performing is 0.5 hours or more and 8 hours or less, for example.
 グリーンチップの焼成を行うことにより、グリーンシート中の有機バインダーが完全に除去されるとともに、セラミックの原料粉末が焼成されて、セラミック製の誘電体層12が形成される。また内部電極層11中の有機ビヒクルが除去されるとともに、ニッケル粉末またはニッケルを主成分とする合金粉末が焼結もしくは溶融、一体化されて、内部電極が形成され、誘電体層12と内部電極層11とが複数枚、交互に積層されたセラミック積層体10が形成される。なお、酸素を誘電体層の内部に取り込んで信頼性を高めるとともに、内部電極の再酸化を抑制するとの観点から、焼成後のセラミック積層体10に対して、アニール処理を施してもよい。 By firing the green chip, the organic binder in the green sheet is completely removed, and the ceramic raw material powder is fired to form the dielectric layer 12 made of ceramic. Further, the organic vehicle in the internal electrode layer 11 is removed, and the nickel powder or the alloy powder containing nickel as a main component is sintered or melted to form an internal electrode, whereby the dielectric layer 12 and the internal electrode are formed. A ceramic laminate 10 in which a plurality of layers 11 and a plurality of layers 11 are alternately stacked is formed. Note that from the viewpoint of incorporating oxygen into the inside of the dielectric layer to improve the reliability and suppressing reoxidation of the internal electrodes, the ceramic laminate 10 after firing may be subjected to an annealing treatment.
 そして、作製したセラミック積層体10に対して、一対の外部電極20を設けることにより、積層セラミックコンデンサ1が製造される。例えば、外部電極20は、外部電極層21及びメッキ層22を備える。外部電極層21は、内部電極層11と電気的に接続する。なお、外部電極20の材料としては、例えば、銅やニッケル、またはこれらの合金が好適に使用できる。なお、電子部品は、積層セラミックコンデンサ以外の電子部品を用いることもできる。 Then, the laminated ceramic capacitor 1 is manufactured by providing the pair of external electrodes 20 with respect to the manufactured ceramic laminated body 10. For example, the external electrode 20 includes the external electrode layer 21 and the plating layer 22. The external electrode layer 21 is electrically connected to the internal electrode layer 11. In addition, as a material of the external electrode 20, copper, nickel, or these alloys can be used suitably, for example. In addition, electronic components other than multilayer ceramic capacitors can also be used.
 以下、本発明を実施例と比較例に基づき詳細に説明するが、本発明は実施例によって何ら限定されるものではない。 Hereinafter, the present invention will be described in detail based on examples and comparative examples, but the present invention is not limited to the examples.
[評価方法]
(導電性ペーストの粘度)
 導電性ペーストの製造後の粘度を、レオメーターを用いて、ずり速度100sec-1、10000sec-1の条件で測定した。
[Evaluation method]
(Viscosity of conductive paste)
The viscosity after preparation of the conductive paste, by using a rheometer, shear rate 100 sec -1, measured under the conditions of 10000 sec -1.
 (導電性ペーストの分散性)
 導電性ペーストの分散性を下記の方法により評価した。
 ガラス基板(2inch)上に、サンプル(作製した導電性ペースト)を印刷し(GAP厚=5μm)、乾燥する。乾燥は、ベルト炉内の最大温度120~150℃、大気雰囲気にて行った。乾燥後に得られた乾燥膜(2cm×2cm、厚さ3μm)を、光学顕微鏡を用いて、ガラス基板の裏面から光(バックライト)を当てながら、×100(接眼、対物;各10倍)で観察して(バックライト=ガラス基板の裏面から光を当てる)、塊状物の有無を確認した。塊状物が観察されない場合、導電性ペーストの分散性を「良好」である、塊状物が1以上観察される場合、導電性ペーストの分散性を「不良」である、と評価した。
(Dispersivity of conductive paste)
The dispersibility of the conductive paste was evaluated by the following method.
The sample (made conductive paste) is printed (GAP thickness = 5 μm) on a glass substrate (2 inch) and dried. Drying was carried out in a belt furnace at a maximum temperature of 120 to 150 ° C. in the air. The dried film (2 cm × 2 cm, thickness 3 μm) obtained after drying is irradiated with light (backlight) from the back side of the glass substrate using an optical microscope, × 100 (eyepiece, objective; 10 times each) It observed (backlight = light was irradiated from the back surface of a glass substrate), and the presence or absence of the lump was confirmed. When no lump was observed, the dispersibility of the conductive paste was evaluated as “good”, and when one or more lumps were observed, the dispersibility of the conductive paste was evaluated as “bad”.
[使用材料]
(導電性粉末)
 導電性粉末としては、Ni粉末(平均粒径0.3μm)を使用した。
[Material used]
(Conductive powder)
Ni powder (average particle diameter 0.3 μm) was used as the conductive powder.
(セラミック粉末)
 セラミック粉末としては、チタン酸バリウム(BaTiO;平均粒径0.06μm)を使用した。
(Ceramic powder)
As a ceramic powder, barium titanate (BaTiO 3 ; average particle diameter 0.06 μm) was used.
(バインダー樹脂)
 バインダー樹脂としては、ポリビニルブチラール樹脂(PVB、アセタール系樹脂)、エチルセルロース(EC)を使用した。
(Binder resin)
As a binder resin, polyvinyl butyral resin (PVB, acetal resin) and ethyl cellulose (EC) were used.
(分散剤)
(1)酸系分散剤(A)として、リン酸アルキルポリオキシアルキレン化合物を用いた。
(Dispersant)
(1) An alkyl polyoxyalkylene phosphate compound was used as an acid dispersant (A).
(2)塩基系分散剤として、ロジンアミン(B)、ポリエチレングリコールラウリルアミン(C)、オレイルアミン(D)を用いた。
(3)上記の酸系分散剤(A)以外の酸系分散剤(比較例用)として、リン酸ポリエステル(リン酸基を有するポリエステル)を主成分として含み、残部がリン酸であるリン酸系分散剤(E)を用いた。
(2) Rosinamine (B), polyethylene glycol laurylamine (C), and oleylamine (D) were used as the base dispersant.
(3) Phosphoric acid containing a phosphoric acid polyester (polyester having a phosphoric acid group) as the main component, and the balance being phosphoric acid, as an acid dispersant (other than the acid dispersant (A) described above (for comparative example) The system dispersant (E) was used.
(有機溶剤)
 有機溶剤としては、プロピレングリコールモノブチルエーテル(PNB、グリコールエーテル系溶剤)、ミネラルスピリット(MA)、ターピネオール(TPO)を使用した。
(Organic solvent)
Propylene glycol monobutyl ether (PNB, glycol ether solvents), mineral spirits (MA) and terpineol (TPO) were used as the organic solvent.
[実施例1]
 導電性粉末であるNi粉末100質量部に対して、セラミック粉末25質量部と、分散剤として酸系分散剤(A)0.28質量部と、バインダー樹脂として、EC4質量部と、PVB2質量部と、有機溶剤としてPNB48質量部およびMA21質量部と、を混合して導電性ペーストを作製した。作製した導電性ペーストの粘度及びペーストの分散性を上記方法で評価した。導電性ペーストの分散剤等の含有量を表1に、導電性ペーストの粘度、及び、分散性の評価結果を表2に示す。
[実施例2]
 分散剤として、酸系分散剤(A)を0.5質量部とした以外は、実施例1と同様に導電性ペーストを作製して、評価した。導電性ペーストの分散剤等の含有量を表1に、導電性ペーストの粘度、及び、分散性の評価結果を表2に示す。
[実施例3]
 分散剤として、酸系分散剤(A)を1.0質量部とした以外は、実施例1と同様に導電性ペーストを作製して、評価した。導電性ペーストの分散剤等の含有量を表1に、導電性ペーストの粘度、及び、分散性の評価結果を表2に示す。
Example 1
25 parts by mass of ceramic powder, 0.28 parts by mass of acid-based dispersant (A) as a dispersant, 4 parts by mass of EC as a binder resin, and 2 parts by mass of PVB with respect to 100 parts by mass of Ni powder which is a conductive powder A conductive paste was prepared by mixing 48 parts by mass of PNB and 21 parts by mass of MA as organic solvents. The viscosity of the produced conductive paste and the dispersibility of the paste were evaluated by the above method. The content of the dispersant and the like of the conductive paste is shown in Table 1, and the evaluation results of the viscosity and dispersibility of the conductive paste are shown in Table 2.
Example 2
A conductive paste was produced and evaluated in the same manner as in Example 1 except that the acid dispersant (A) was changed to 0.5 parts by mass as a dispersant. The content of the dispersant and the like of the conductive paste is shown in Table 1, and the evaluation results of the viscosity and dispersibility of the conductive paste are shown in Table 2.
[Example 3]
A conductive paste was prepared and evaluated in the same manner as in Example 1 except that the acid dispersant (A) was changed to 1.0 part by mass as a dispersant. The content of the dispersant and the like of the conductive paste is shown in Table 1, and the evaluation results of the viscosity and dispersibility of the conductive paste are shown in Table 2.
[実施例4]
 分散剤として、酸系分散剤(A)0.28質量部およびロジンアミン(B)0.10質量部を混合した以外は、実施例1と同様に導電性ペーストを作製して、評価した。導電性ペーストの分散剤等の含有量を表1に、導電性ペーストの粘度、及び、分散性の評価結果を表2に示す。
Example 4
A conductive paste was prepared and evaluated in the same manner as in Example 1 except that 0.28 parts by mass of an acid-based dispersant (A) and 0.10 parts by mass of a rosin amine (B) were mixed as a dispersant. The content of the dispersant and the like of the conductive paste is shown in Table 1, and the evaluation results of the viscosity and dispersibility of the conductive paste are shown in Table 2.
[実施例5]
 分散剤として、酸系分散剤(A)0.28質量部およびポリエチレングリコールラウリルアミン(C)0.10質量部を混合した以外は、実施例1と同様に導電性ペーストを作製して、評価した。導電性ペーストの分散剤等の含有量を表1に、導電性ペーストの粘度、及び、分散性の評価結果を表2に示す。
[実施例6]
 分散剤として、酸系分散剤(A)0.28質量部およびオレイルアミン(D)0.10質量部を混合した以外は、実施例1と同様に導電性ペーストを作製して、評価した。導電性ペーストの分散剤等の含有量を表1に、導電性ペーストの粘度、及び、分散性の評価結果を表2に示す。
[実施例7]
 分散剤として、酸系分散剤(A)0.28質量部およびオレイルアミン(D)0.22質量部を混合した以外は、実施例1と同様に導電性ペーストを作製して、評価した。導電性ペーストの分散剤等の含有量を表1に、導電性ペーストの粘度、及び、分散性の評価結果を表2に示す。
[実施例8]
 分散剤として、酸系分散剤(A)0.56質量部およびオレイルアミン(D)0.44質量部を混合した以外は、実施例1と同様に導電性ペーストを作製して、評価した。導電性ペーストの分散剤等の含有量を表1に、導電性ペーストの粘度、及び、分散性の評価結果を表2に示す。
[実施例9]
 バインダー樹脂として、PVB6質量部のみを用いた以外は、実施例1と同様に導電性ペーストを作製して、評価した。導電性ペーストの分散剤等の含有量を表1に、導電性ペーストの粘度、及び、分散性の評価結果を表2に示す。
[実施例10]
 有機溶剤としてPNB57質量部およびMS12質量部を用いた以外は、実施例1と同様に導電性ペーストを作製して、評価した。導電性ペーストの分散剤等の含有量を表1に、導電性ペーストの粘度、及び、分散性の評価結果を表2に示す。
[Example 5]
A conductive paste was prepared and evaluated in the same manner as in Example 1 except that 0.28 parts by mass of an acid-based dispersant (A) and 0.10 parts by mass of polyethylene glycol laurylamine (C) were mixed as a dispersant. did. The content of the dispersant and the like of the conductive paste is shown in Table 1, and the evaluation results of the viscosity and dispersibility of the conductive paste are shown in Table 2.
[Example 6]
A conductive paste was prepared and evaluated in the same manner as in Example 1 except that 0.28 parts by mass of an acid-based dispersant (A) and 0.10 parts by mass of oleylamine (D) were mixed as a dispersant. The content of the dispersant and the like of the conductive paste is shown in Table 1, and the evaluation results of the viscosity and dispersibility of the conductive paste are shown in Table 2.
[Example 7]
A conductive paste was prepared and evaluated in the same manner as in Example 1 except that 0.28 parts by mass of an acid-based dispersant (A) and 0.22 parts by mass of oleylamine (D) were mixed as a dispersant. The content of the dispersant and the like of the conductive paste is shown in Table 1, and the evaluation results of the viscosity and dispersibility of the conductive paste are shown in Table 2.
[Example 8]
A conductive paste was prepared and evaluated in the same manner as in Example 1 except that 0.56 parts by mass of an acid-based dispersant (A) and 0.44 parts by mass of oleylamine (D) were mixed as a dispersant. The content of the dispersant and the like of the conductive paste is shown in Table 1, and the evaluation results of the viscosity and dispersibility of the conductive paste are shown in Table 2.
[Example 9]
A conductive paste was produced and evaluated in the same manner as in Example 1 except that only 6 parts by mass of PVB was used as a binder resin. The content of the dispersant and the like of the conductive paste is shown in Table 1, and the evaluation results of the viscosity and dispersibility of the conductive paste are shown in Table 2.
[Example 10]
A conductive paste was prepared and evaluated in the same manner as in Example 1 except that 57 parts by mass of PNB and 12 parts by mass of MS were used as the organic solvent. The content of the dispersant and the like of the conductive paste is shown in Table 1, and the evaluation results of the viscosity and dispersibility of the conductive paste are shown in Table 2.
[比較例1]
 分散剤として、リン酸ポリエステルを主成分として含むリン酸系分散剤(E)0.28質量部及び塩基系分散剤(B)0.10質量部を用いた以外は、実施例1と同様に導電性ペーストを作製して、評価した。導電性ペーストの分散剤等の含有量を表1に、導電性ペーストの粘度、及び、分散性の評価結果を表2に示す。
[比較例2]
 有機溶剤としてターピネオール(TPO)のみを用いた以外は、実施例1と同様に導電性ペーストを作製して、評価した。導電性ペーストの分散剤等の含有量を表1に、導電性ペーストの粘度、及び、分散性の評価結果を表2に示す。
[比較例3]
 バインダー樹脂としてECのみを用いた以外は、実施例1と同様に導電性ペーストを作製して、評価した。導電性ペーストの分散剤等の含有量を表1に、導電性ペーストの粘度、及び、分散性の評価結果を表2に示す。
[比較例4]
 バインダー樹脂としてECのみ、有機溶剤としてターピネオールのみを用いた以外は、実施例1と同様に導電性ペーストを作製して、評価した。導電性ペーストの分散剤等の含有量を表1に、導電性ペーストの粘度、及び、分散性の評価結果を表2に示す。
Comparative Example 1
The same as Example 1, except that 0.28 parts by mass of phosphoric acid based dispersing agent (E) containing phosphoric acid polyester as a main component and 0.10 parts by mass of basic dispersing agent (B) were used as the dispersing agent Conductive pastes were prepared and evaluated. The content of the dispersant and the like of the conductive paste is shown in Table 1, and the evaluation results of the viscosity and dispersibility of the conductive paste are shown in Table 2.
Comparative Example 2
A conductive paste was produced and evaluated in the same manner as in Example 1 except that only terpineol (TPO) was used as the organic solvent. The content of the dispersant and the like of the conductive paste is shown in Table 1, and the evaluation results of the viscosity and dispersibility of the conductive paste are shown in Table 2.
Comparative Example 3
A conductive paste was produced and evaluated in the same manner as in Example 1 except that only EC was used as a binder resin. The content of the dispersant and the like of the conductive paste is shown in Table 1, and the evaluation results of the viscosity and dispersibility of the conductive paste are shown in Table 2.
Comparative Example 4
A conductive paste was prepared and evaluated in the same manner as in Example 1 except that only EC was used as the binder resin and only terpineol was used as the organic solvent. The content of the dispersant and the like of the conductive paste is shown in Table 1, and the evaluation results of the viscosity and dispersibility of the conductive paste are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(評価結果)
 実施例の導電性ペーストは、ずり速度100sec-1の粘度が0.34~0.69Pa・Sであり、ずり速度10000sec-1の粘度が0.12~0.19Pa・Sであり、グラビア印刷に適した粘度であった。また、本実施例の導電性ペーストは、印刷後の乾燥膜表面に塊状物が観察されず、ペーストの分散性に優れることが示された。
(Evaluation results)
Conductive paste examples, the viscosity of the shear rate 100 sec -1 is 0.34 ~ 0.69Pa · S, a viscosity of shear rate 10000 sec -1 is 0.12 ~ 0.19 Pa · S, gravure printing The viscosity was suitable for Moreover, in the conductive paste of this example, no lumps were observed on the surface of the dried film after printing, and it was shown that the dispersibility of the paste was excellent.
 一方、酸系分散剤(A)以外のリン酸系分散剤(E)を用いた比較例1の導電性ペーストでは、印刷後の乾燥膜表面に塊状物が観察され、ペーストの分散性が不良であることが示された。また、有機溶剤が本発明の範囲から外れる比較例2、バインダー樹脂が本発明の範囲から外れる比較例3、および、有機溶剤とバインダー樹脂とが本発明の範囲から外れる比較例4の導電性ペーストでは、グラビア印刷に適した粘度を得ることができなかった。そのため、比較例2~4では、適切な乾燥膜を得ることができず、分散性の評価を行えなかった。 On the other hand, in the conductive paste of Comparative Example 1 using a phosphoric acid based dispersing agent (E) other than the acid based dispersing agent (A), lumps are observed on the dry film surface after printing, and the dispersibility of the paste is poor. It was shown to be. The conductive paste of Comparative Example 2 in which the organic solvent is out of the scope of the present invention, Comparative Example 3 in which the binder resin is out of the scope of the present invention, and Comparative Example 4 of Comparative Example 4 in which the organic solvent and the binder resin are out of the scope of the present invention However, it was not possible to obtain a viscosity suitable for gravure printing. Therefore, in Comparative Examples 2 to 4, an appropriate dry film could not be obtained, and the evaluation of dispersibility could not be performed.
 本発明の導電性ペーストは、グラビア印刷に適した粘度を有し、かつ、ペーストの分散性が良好である。よって、本実施形態の導電性ペーストは、特に携帯電話やデジタル機器などの電子機器のチップ部品である積層セラミックコンデンサの内部電極用の原料として好適に用いることができ、特に、グラビア印刷用の導電性ペーストとして好適に用いることができる。 The conductive paste of the present invention has a viscosity suitable for gravure printing, and the dispersibility of the paste is good. Therefore, the conductive paste of the present embodiment can be suitably used as a raw material for the internal electrode of a multilayer ceramic capacitor which is a chip component of an electronic device such as a mobile phone or a digital device, in particular. It can be suitably used as a sex paste.
1    積層セラミックコンデンサ
10   セラミック積層体
11   内部電極層
12   誘電体層
20   外部電極
21   外部電極層
22   メッキ層
 
Reference Signs List 1 laminated ceramic capacitor 10 ceramic laminated body 11 internal electrode layer 12 dielectric layer 20 external electrode 21 external electrode layer 22 plated layer

Claims (13)

  1.  導電性粉末、分散剤、バインダー樹脂及び有機溶剤を含む導電性ペーストであって、
     前記分散剤は、酸系分散剤であるリン酸アルキルエステル化合物を含み、
     前記バインダー樹脂は、アセタール系樹脂を含み、
     前記有機溶剤は、グリコールエーテル系溶剤を含む、
    導電性ペースト。
    A conductive paste comprising a conductive powder, a dispersant, a binder resin and an organic solvent,
    The dispersant includes a phosphoric acid alkyl ester compound which is an acid dispersant,
    The binder resin contains an acetal resin,
    The organic solvent includes glycol ether solvents.
    Conductive paste.
  2.  前記酸系分散剤は、リン酸アルキルポリオキシアルキレン化合物である、請求項1に記載の導電性ペースト。 The conductive paste according to claim 1, wherein the acid-based dispersant is an alkyl polyoxyalkylene phosphate compound.
  3.  前記分散剤は、さらに塩基系分散剤を含む、請求項1又は請求項2に記載の導電性ペースト。 The conductive paste according to claim 1, wherein the dispersant further contains a basic dispersant.
  4.  前記分散剤は、前記導電性粉末100質量部に対して、総量で0.2質量部以上1質量部以下含有される、請求項1~請求項3のいずれか一項に記載の導電性ペースト。 The conductive paste according to any one of claims 1 to 3, wherein the dispersant is contained in a total amount of 0.2 parts by mass or more and 1 part by mass or less with respect to 100 parts by mass of the conductive powder. .
  5.  前記導電性粉末は、Ni、Pd、Pt、Au、Ag、Cu及びこれらの合金から選ばれる少なくとも1種の金属粉末を含む、請求項1~請求項4のいずれか一項に記載の導電性ペースト。 The conductive according to any one of claims 1 to 4, wherein the conductive powder includes at least one metal powder selected from Ni, Pd, Pt, Au, Ag, Cu and alloys thereof. paste.
  6.  前記導電性粉末は、平均粒径が0.05μm以上1.0μm以下である、請求項1~請求項5のいずれか一項に記載の導電性ペースト。 The conductive paste according to any one of claims 1 to 5, wherein the conductive powder has an average particle diameter of 0.05 μm or more and 1.0 μm or less.
  7.  セラミック粉末を含む、請求項1~請求項6のいずれか一項に記載の導電性ペースト。 The conductive paste according to any one of claims 1 to 6, comprising a ceramic powder.
  8.  前記セラミック粉末は、ペロブスカイト型酸化物を含む、請求項7に記載の導電性ペースト。 The conductive paste according to claim 7, wherein the ceramic powder comprises a perovskite-type oxide.
  9.  前記セラミック粉末は、平均粒径が0.01μm以上0.5μm以下である、請求項7又は請求項8に記載の導電性ペースト。 The conductive paste according to claim 7, wherein the ceramic powder has an average particle diameter of 0.01 μm or more and 0.5 μm or less.
  10.  積層セラミック部品の内部電極用である、請求項1~請求項9のいずれか一項に記載の導電性ペースト。 The conductive paste according to any one of claims 1 to 9, which is for an internal electrode of a laminated ceramic component.
  11.  ずり速度100sec-1での粘度が0.8Pa・S以下であり、ずり速度10000sec-1での粘度が0.19Pa・S以下である、請求項1~請求項10のいずれか一項に記載の導電性ペースト。 Viscosity at shear rate 100 sec -1 is not higher than 0.8 Pa · S, the viscosity at shear rate 10000 sec -1 is less than 0.19 Pa · S, according to any one of claims 1 to 10 Conductive paste.
  12.  請求項1~請求項11のいずれか一項に記載の導電性ペーストを用いて形成される、電子部品。 An electronic component formed using the conductive paste according to any one of claims 1 to 11.
  13.  誘電体層と内部電極とを積層した積層体を少なくとも有する積層セラミックコンデンサであって、
     前記内部電極は、請求項1~請求項11のいずれか一項に記載の導電性ペーストを用いて形成される、積層セラミックコンデンサ。
    A multilayer ceramic capacitor comprising at least a laminated body in which a dielectric layer and an internal electrode are laminated, wherein
    A multilayer ceramic capacitor, wherein the internal electrode is formed using the conductive paste according to any one of claims 1 to 11.
PCT/JP2018/044004 2017-11-30 2018-11-29 Conductive paste, electronic component, and laminate ceramic capacitor WO2019107500A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019557328A JP7279642B2 (en) 2017-11-30 2018-11-29 Conductive paste, electronic parts, and laminated ceramic capacitors
CN201880075013.1A CN111373490B (en) 2017-11-30 2018-11-29 Conductive paste, electronic component, and multilayer ceramic capacitor
KR1020207014784A KR102613114B1 (en) 2017-11-30 2018-11-29 Conductive pastes, electronic components, and multilayer ceramic capacitors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017230980 2017-11-30
JP2017-230980 2017-11-30

Publications (1)

Publication Number Publication Date
WO2019107500A1 true WO2019107500A1 (en) 2019-06-06

Family

ID=66665664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044004 WO2019107500A1 (en) 2017-11-30 2018-11-29 Conductive paste, electronic component, and laminate ceramic capacitor

Country Status (5)

Country Link
JP (1) JP7279642B2 (en)
KR (1) KR102613114B1 (en)
CN (1) CN111373490B (en)
TW (1) TWI798301B (en)
WO (1) WO2019107500A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020557A1 (en) * 2019-07-31 2021-02-04 住友金属鉱山株式会社 Conductive paste for gravure printing, electronic component, and laminate ceramic capacitor
WO2024010075A1 (en) * 2022-07-08 2024-01-11 住友金属鉱山株式会社 Conductive paste, dried film, internal electrode and layered ceramic capacitor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1092226A (en) * 1996-09-11 1998-04-10 Murata Mfg Co Ltd Conductive composition
JP2005298792A (en) * 2003-06-26 2005-10-27 Sekisui Chem Co Ltd Binder resin for conductive paste, and conductive paste
JP2007021475A (en) * 2005-07-15 2007-02-01 Samsung Electro Mech Co Ltd Phosphoric acid series dispersing agent, and paste composition and dispersing method using the same
JP2010118470A (en) * 2008-11-12 2010-05-27 Sekisui Chem Co Ltd Conductive paste for laminated ceramic capacitor
US20120147514A1 (en) * 2010-12-10 2012-06-14 Samsung Electro-Mechanics Co., Ltd. Ceramic paste composition for multilayer ceramic capacitor, multilayer ceramic capacitor comprising the same, and methods of manufacturing the same
JP2012174797A (en) * 2011-02-18 2012-09-10 Sumitomo Metal Mining Co Ltd Conductive paste for photogravure used for multilayer ceramic capacitor internal electrode

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3707941A1 (en) * 1987-03-12 1988-09-22 Henkel Kgaa DISPERSING AGENTS AND THEIR USE IN AQUEOUS CARBON SUSPENSIONS
JP4389431B2 (en) 2001-12-13 2009-12-24 株式会社村田製作所 Conductive paste for gravure printing, method for producing the same, and multilayer ceramic electronic component
JP2003187638A (en) 2001-12-20 2003-07-04 Murata Mfg Co Ltd Conductive paste for gravure printing and its manufacturing method as well as laminated ceramic electronic component
JP4650794B2 (en) * 2005-07-01 2011-03-16 昭栄化学工業株式会社 Conductive paste for multilayer electronic component and multilayer electronic component using the same
JP2007281306A (en) * 2006-04-10 2007-10-25 Sekisui Chem Co Ltd Screen-print paste for multilayer ceramic electronic component
KR101022415B1 (en) * 2008-08-29 2011-03-15 에스에스씨피 주식회사 Conductive paste composition
JP5051553B2 (en) * 2010-04-19 2012-10-17 住友金属鉱山株式会社 Method for producing conductive paste
JP5276137B2 (en) * 2011-04-13 2013-08-28 太陽誘電株式会社 Multilayer capacitor
HUE041582T2 (en) 2012-01-20 2019-05-28 Dowa Electronics Materials Co Bonding material and bonding method in which said bonding material is used
US9796866B2 (en) * 2014-03-20 2017-10-24 Sekisui Chemical Co., Ltd. Electroconductive paste
JP6836941B2 (en) * 2016-03-22 2021-03-03 積水化学工業株式会社 Conductive paste

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1092226A (en) * 1996-09-11 1998-04-10 Murata Mfg Co Ltd Conductive composition
JP2005298792A (en) * 2003-06-26 2005-10-27 Sekisui Chem Co Ltd Binder resin for conductive paste, and conductive paste
JP2007021475A (en) * 2005-07-15 2007-02-01 Samsung Electro Mech Co Ltd Phosphoric acid series dispersing agent, and paste composition and dispersing method using the same
JP2010118470A (en) * 2008-11-12 2010-05-27 Sekisui Chem Co Ltd Conductive paste for laminated ceramic capacitor
US20120147514A1 (en) * 2010-12-10 2012-06-14 Samsung Electro-Mechanics Co., Ltd. Ceramic paste composition for multilayer ceramic capacitor, multilayer ceramic capacitor comprising the same, and methods of manufacturing the same
JP2012174797A (en) * 2011-02-18 2012-09-10 Sumitomo Metal Mining Co Ltd Conductive paste for photogravure used for multilayer ceramic capacitor internal electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020557A1 (en) * 2019-07-31 2021-02-04 住友金属鉱山株式会社 Conductive paste for gravure printing, electronic component, and laminate ceramic capacitor
WO2024010075A1 (en) * 2022-07-08 2024-01-11 住友金属鉱山株式会社 Conductive paste, dried film, internal electrode and layered ceramic capacitor

Also Published As

Publication number Publication date
JPWO2019107500A1 (en) 2020-12-24
TWI798301B (en) 2023-04-11
KR102613114B1 (en) 2023-12-12
CN111373490A (en) 2020-07-03
KR20200088341A (en) 2020-07-22
JP7279642B2 (en) 2023-05-23
TW201926364A (en) 2019-07-01
CN111373490B (en) 2022-05-31

Similar Documents

Publication Publication Date Title
WO2019107501A1 (en) Conductive paste, electronic component, and laminate ceramic capacitor
WO2017150438A1 (en) Electrically conductive paste, electronic component, and laminated ceramic capacitor
TWI801445B (en) Conductive paste, electronic parts, and laminated ceramic capacitors
JP7405098B2 (en) Conductive paste, electronic components, and multilayer ceramic capacitors
JP2024032861A (en) Conductive paste, electronic components, and multilayer ceramic capacitors
WO2019107500A1 (en) Conductive paste, electronic component, and laminate ceramic capacitor
CN111066098B (en) Conductive paste, electronic component, and multilayer ceramic capacitor
CN111386579B (en) Conductive paste, electronic component, and multilayer ceramic capacitor
JP2019046782A (en) Conductive paste and methods for manufacturing electronic component and multilayer ceramic capacitor
WO2019043674A2 (en) Conductive paste, electronic component, and multilayer ceramic capacitor
WO2019043672A2 (en) Conductive paste, electronic component, and multilayer ceramic capacitor
WO2019043673A2 (en) Conductive paste, electronic component, and multilayer ceramic capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884212

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557328

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18884212

Country of ref document: EP

Kind code of ref document: A1