JP2016029158A - 樹脂組成物、多層構造体、多層シート及び容器 - Google Patents

樹脂組成物、多層構造体、多層シート及び容器 Download PDF

Info

Publication number
JP2016029158A
JP2016029158A JP2015139179A JP2015139179A JP2016029158A JP 2016029158 A JP2016029158 A JP 2016029158A JP 2015139179 A JP2015139179 A JP 2015139179A JP 2015139179 A JP2015139179 A JP 2015139179A JP 2016029158 A JP2016029158 A JP 2016029158A
Authority
JP
Japan
Prior art keywords
resin composition
ethylene
evoh
molecular weight
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015139179A
Other languages
English (en)
Other versions
JP6780923B2 (ja
Inventor
河合 宏
Hiroshi Kawai
宏 河合
俊輔 藤岡
Shunsuke Fujioka
俊輔 藤岡
初代 三宅
Hatsuyo MIYAKE
初代 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2015139179A priority Critical patent/JP6780923B2/ja
Publication of JP2016029158A publication Critical patent/JP2016029158A/ja
Application granted granted Critical
Publication of JP6780923B2 publication Critical patent/JP6780923B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Packages (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】長時間運転時のコゲ発生抑制性と耐レトルト性とに共に優れる樹脂組成物の提供を目的とする。【解決手段】本発明は、エチレン含有量が10モル%以上60モル%以下のエチレン−ビニルアルコール共重合体、及びポリアミドを含有し、上記エチレン−ビニルアルコール共重合体と上記ポリアミドとの質量比が60/40以上95/5以下であり、上記エチレン−ビニルアルコール共重合体が、示差屈折率検出器及び紫外可視吸光度検出器を備えるゲルパーミエーションクロマトグラフを用い、窒素雰囲気下、220℃、50時間熱処理後に測定した分子量が、下記式(1)で表される条件を満たす樹脂組成物である。(Ma−Mb)/Ma<0.45 ・・・(1)Ma:示差屈折率検出器で測定されるピークの最大値におけるPMMA換算の分子量Mb:紫外可視吸光度検出器で測定される波長220nmでの吸収ピークの最大値におけるPMMA換算の分子量【選択図】なし

Description

本発明は、樹脂組成物、多層構造体、多層シート及び容器に関する。
エチレン−ビニルアルコール共重合体(以下、「EVOH」と略すことがある)は、酸素等のガスバリア性、耐油性、非帯電性、機械強度等に優れた有用な高分子材料であり、フィルム、シート、容器等に成形され、各種包装材料などとして広く用いられる。特に、EVOH層と他の熱可塑性樹脂層とからなる積層体は、食品のボイル殺菌用又はレトルト殺菌用の包装材料として有用であることが知られている。
但し、一般に使用される熱水式のボイル処理及びレトルト処理に用いた場合、処理時にEVOH層へ水が浸入し、EVOH層の機械物性が低下し易い。この機械物性の低下を改善し、ボイル処理及びレトルト処理への適性(以下、「耐レトルト性」ともいう)を向上する従来の方法として、EVOHに高い耐熱水性を有するポリアミド(以下、「PA」ともいう)をブレンドする方法が挙げられる。また、今日では、耐レトルト性をさらに向上する方法として、EVOH及びPAの質量比(EVOH/PA)が55/45以上97/3以下の樹脂組成物の層を最外層とし、内層に低透湿性の熱可塑性樹脂を積層する方法(特開平10−80981号公報参照)、EVOHとPAとを含有する樹脂組成物からなる中間層に金属化合物やホウ酸化合物を含有させる方法(特開平4−131237号公報参照)、及び中間層に2種のEVOH及びPAからなる樹脂組成物を用いる方法(特開平6−23924号公報参照)が開発されている。
しかしながら、EVOHとPAとを含有する樹脂組成物は、EVOHの水酸基及び末端カルボキシ基と、PAのアミド基、末端アミノ基及び末端カルボキシ基との間で架橋反応が進行し、樹脂粘度が不均一になり、それに起因して、長時間の溶融成形時等に、押出機、スクリュー及びダイス内におけるコゲの発生が顕著になるおそれがある。
このような押出機、スクリュー及びダイス内のコゲは、一定時間滞留した後、長時間の連続運転時に成形物へ混入する可能性がある。このように成形物へ混入したコゲは、外観性を低下させるだけでなく、これに起因して欠陥が発生し、その結果、種々の機械物性の低下を引き起こす。このようなコゲの成形物への混入を防ぐため、通常定期的に運転を停止し、一連の押出機器の分解及び掃除を実施する必要がある。しかし、本作業の頻度の増加は、製造コストの上昇のみならず、停止及び再立ち上げに要する材料の消費や、製造時間ロスにも繋がり、資源及びコストの両観点から改善が求められている。
しかし、上記文献の技術では、耐レトルト性に改善は見られるものの、長時間運転時の成形機内のコゲ発生の抑制という観点では未だ不十分であり、耐レトルト性と、長時間運転時のコゲを起因とした外観不良の改善とを共に向上させることはできていない。
特開平10−80981号公報 特開平4−131237号公報 特開平6−23924号公報
本発明は以上のような事情に基づいてなされたものであり、その目的は、長時間運転時のコゲ発生抑制性と耐レトルト性とに共に優れる樹脂組成物と、この樹脂組成物を用いた多層構造体、多層シート及び容器とを提供することにある。
上記課題を解決するためになされた発明は、エチレン含有量が10モル%以上60モル%以下のエチレン−ビニルアルコール共重合体(以下、「EVOH(A)」ともいう)、及びポリアミド(以下、「PA(B)」ともいう)を含有し、上記EVOH(A)と上記PA(B)との質量比が60/40以上95/5以下であり、上記EVOH(A)が、示差屈折率検出器及び紫外可視吸光度検出器を備えるゲルパーミエーションクロマトグラフを用い、窒素雰囲気下、220℃、50時間熱処理後に測定した分子量が、下記式(1)で表される条件を満たす樹脂組成物である。
(Ma−Mb)/Ma<0.45 ・・・(1)
Ma:示差屈折率検出器で測定されるピークの最大値におけるポリメタクリル酸メチル換算の分子量
Mb:紫外可視吸光度検出器で測定される波長220nmでの吸収ピークの最大値におけるポリメタクリル酸メチル換算の分子量
本発明の樹脂組成物は、特定のエチレン含有量のEVOH(A)及びPA(B)を上記特定の含有比で含有し、かつEVOH(A)が上記特定条件を満たすものであることで、長時間運転時のコゲ発生抑制性と耐レトルト性とに共に優れる。
上記エチレン−ビニルアルコール共重合体が、示差屈折率検出器及び紫外可視吸光度検出器を備えるゲルパーミエーションクロマトグラフを用い、窒素雰囲気下、220℃、50時間熱処理後に測定した分子量が、下記式(2)で表される条件をさらに満たすとよい。
(Ma−Mc)/Ma<0.45 ・・・(2)
Mc:紫外可視吸光度検出器で測定される波長280nmでの吸収ピークの最大値におけるポリメタクリル酸メチル換算の分子量
このように、EVOH(A)が上記特定条件をさらに満たすものであることで、コゲ発生抑制性及び耐レトルト性がより向上する。
当該樹脂組成物は、カルボン酸金属塩(以下、「カルボン酸金属塩(C)」ともいう)をさらに含有するとよい。このように、当該樹脂組成物がカルボン酸金属塩(C)をさらに含有することで、長時間運転時のゲル及びブツの発生をより抑制でき、その結果、長時間運転時のコゲの発生をより抑制でき、耐レトルト性をより向上させることができる。
上記カルボン酸金属塩(C)の樹脂分に対する含有量としては、金属元素換算で5ppm以上が好ましい。上記カルボン酸金属塩(C)の含有量を上記特定範囲とすることで、長時間運転時のゲル及びブツの発生をさらに抑制することができ、その結果、長時間運転時のコゲの発生をさらに抑制でき、耐レトルト性をさらに向上させることができる。
上記カルボン酸金属塩(C)の金属元素としては、マグネシウム、カルシウム及び亜鉛からなる群より選ばれる少なくとも1種が好ましい。このようにカルボン酸金属塩(C)を上記特定の金属元素のものとすることで、長時間運転時のゲル及びブツの発生をさらに抑制することができ、その結果、コゲの発生をさらに抑制することができ、耐レトルト性をさらに向上させることができる。
本発明は、当該樹脂組成物から形成されるバリア層と、このバリア層の少なくとも一方の面に積層される熱可塑性樹脂層とを備える多層構造体を含む。また、本発明の多層シートは、当該多層構造体からなる。当該多層構造体及び当該多層シートは、上述の特性を有する当該樹脂組成物から形成したバリア層と熱可塑性樹脂層とを備えることで、外観性、耐レトルト性及び加工特性に優れる。
本発明は、当該多層構造体又は多層シートからなる容器を含む。当該容器は、当該多層構造体又は当該多層シートから形成されているので、外観性及び耐レトルト性に優れる。
当該容器は、ボイル殺菌用又はレトルト殺菌用であるとよい。当該容器は、上述の性質を有する当該樹脂組成物を用いているので、上記用途に好適に用いることができる。
ここで、各成分の含有量を「ppm」で表す場合、この「ppm」は各成分の含有量の質量割合を意味し、1ppmは0.0001質量%である。
以上説明したように、本発明の樹脂組成物は、長時間運転時の成形機内におけるコゲ発生抑制性と耐レトルト性に共に優れる。そのため、当該樹脂組成物は、外観性及び機械的強度に優れる成形品を製造することができる。本発明の多層構造体及び多層シートは、外観性、耐レトルト性及び加工特性に優れる。本発明の容器は、外観性及び耐レトルト性に優れる。従って、当該樹脂組成物、多層構造体、多層シート及び容器は、ボイル殺菌用及びレトルト殺菌用の包装材の成形材料として好適である。
EVOHの分子量(対数値)と、示差屈折率検出器で測定されたシグナル値(RI)及び吸光度検出器(測定波長220nm及び280nm)で測定された吸光度(UV)との関係を模式的に示したグラフである。
本発明は、樹脂組成物、多層構造体、多層シート及び容器を含む。以下、これらについて説明する。但し、以下の説明に限定されない。また、以下において例示される材料は、特に記載がない限り、1種を単独で用いてもよいし、2種以上を併用してもよい。
<樹脂組成物>
本発明の樹脂組成物は、EVOH(A)及びPA(B)を含有する。当該樹脂組成物は、本発明の効果を損なわない範囲において、カルボン酸金属塩(C)、その他の任意成分等を含有していてもよい。当該樹脂組成物の樹脂分の下限としては、70質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましい。なお、「樹脂分」とは、EVOH(A)とPA(B)と後述する任意成分として含有していてもよい他の樹脂とからなる全樹脂成分をいう。以下、各成分について説明する。
[EVOH(A)]
EVOH(A)は、エチレン−ビニルエステル共重合体をけん化して得られる。
EVOH(A)のエチレン含有量の下限としては、10モル%であり、20モル%が好ましく、25モル%がより好ましい。一方、EVOH(A)のエチレン含有量の上限としては、60モル%であり、55モル%が好ましく、50モル%が好ましく、40モル%がより好ましく、35モル%がさらに好ましい。エチレン含有量が上記下限未満であると、当該樹脂組成物の溶融成形等の際に熱安定性が低下してゲル化しやすくなり、ストリーク、フィッシュアイ等の欠陥を発生し易くなる。特に、一般的な溶融押出時の条件よりも高温又は高速の条件下で長時間運転を行うと、当該樹脂組成物のゲル化が顕著となるおそれがある。一方、エチレン含有量が上記上限を超えると、当該樹脂組成物のガスバリア性が低下し、EVOH本来の特性を保持できないおそれがある。
EVOH(A)中のビニルエステル単位のけん化度の下限としては、90モル%が好ましく、95モル%がより好ましく、98モル%がさらに好ましく、99モル%が特に好ましい。上記けん化度が上記下限未満だと、当該樹脂組成物の熱安定性が不十分となるおそれがある。上記けん化度の上限としては、99.99モル%が好ましく、99.9モル%がより好ましい。
EVOH(A)の製造に用いるビニルエステルとしては、酢酸ビニルが代表的なものとして挙げられるが、それ以外にも、例えば、プロピオン酸ビニル、ピバリン酸ビニル等のその他の脂肪酸ビニルエステル等が挙げられる。
上記酢酸ビニルは、通常不可避的不純物として少量のアセトアルデヒドを含有する。この酢酸ビニルのアセトアルデヒドの含有量としては、100ppm未満が好ましい。この酢酸ビニルのアセトアルデヒドの含有量の上限としては、60ppmがより好ましく、25ppmがさらに好ましく、15ppmが特に好ましい。酢酸ビニルのアセトアルデヒドの含有量を上記範囲とすることで、後述する式(1)を満たすEVOH(A)を調製し易くなる。
EVOH(A)は、エチレン及びビニルエステルを重合させて製造することができるが、これらに加えて、さらにビニルシラン系化合物を共重合成分として使用することができる。EVOH(A)におけるビニルシラン系化合物に由来する単位の含有率としては、EVOH(A)を構成する全構造単位に対して、通常0.0002モル%以上0.2モル%以下である。さらに、EVOH(A)の製造においては、本発明の効果を損なわない範囲で、エチレン、ビニルエステル及びビニルシラン系化合物以外のその他の単量体を共重合成分として使用してもよい。
(ピークトップ分子量(Ma))
ピークトップ分子量(Ma)は、窒素雰囲気下、220℃で50時間熱処理した後のEVOH(A)をゲルパーミションクロマトグラフィー(以下「GPC」という)を用いて分離し、このときにカラムから溶出されるEVOH(A)の図1に模式的に示すように示差屈折率検出器において測定されるシグナル(図1中の「RI」)のメインピークの最大値に対応する値である。本発明におけるピークトップ分子量(Ma)は、後述の方法により作成される検量線を用いて算出されるポリメタクリル酸メチル換算(以下、「PMMA換算」ともいう)の値である。
ピークトップ分子量(Ma)の下限としては、30,000が好ましく、35,000がより好ましく、40,000がさらに好ましく、50,000が特に好ましい。一方、ピークトップ分子量(Ma)の上限としては、100,000が好ましく、80,000がより好ましく、65,000がさらに好ましく、60,000が特に好ましい。
(吸収ピーク分子量(Mb)及び(Mc))
吸収ピーク分子量(Mb)及び(Mc)は、図1に模式的に示すようにピークトップ分子量(Ma)の測定と同じ条件でGPCによりEVOH(A)を分離し、紫外可視吸光度検出器において測定される特定波長でのシグナル(図1中の「UV」)の吸収ピークの最大値に相当する値である。この吸収ピーク分子量(Mb)及び(Mc)は、ポリメタクリル酸メチル換算の分子量である。なお、波長220nmにおける吸収ピークの分子量は、「Mb」として表記し、波長280nmにおける吸収ピークの分子量は「Mc」として表記する。
吸収ピーク分子量(Mb)の下限としては、30,000が好ましく、35,000がより好ましく、40,000がさらに好ましく、50,000が特に好ましい。一方、吸収ピーク分子量(Mb)の上限としては、75,000が好ましく、60,000がより好ましく、55,000がさらに好ましい。
吸収ピーク分子量(Mc)の下限としては、35,000が好ましく、40,000がより好ましく、45,000がさらに好ましく、48,000が特に好ましい。一方、吸収ピーク分子量(Mc)の上限としては、75,000が好ましく、55,000がより好ましく、50,000がさらに好ましい。
(検量線の作成)
検量線は、例えば標品としてAgilent Technologies社の単分散のPMMA(ピークトップ分子量:1,944,000、790,000、467,400、271,400、144,000、79,250、35,300、13,300、7,100、1,960、1,020、690)を測定し、示差屈折率検出器及び吸光度検出器のそれぞれについて作成する。検量線の作成には、解析ソフトを用いることが好ましい。なお、本測定のPMMAの測定においては、例えば1,944,000と271,400との両分子量の標準試料同士のピークが分離できるカラムを用いる。
(EVOH(A)の分子量相関)
EVOH(A)は、下記式(1)で表される条件を満たすものである。
(Ma−Mb)/Ma<0.45 ・・・(1)
式(1)の左辺(Ma−Mb)/Maとしては、0.40未満であることが好ましく、0.30未満がより好ましく、0.10未満がさらに好ましい。ここで、MaとMbとの差(Ma−Mb)が小さくなれば、図1における示差屈折率検出器から得られるメインピーク(PRI)と紫外可視吸光度検出器から得られる吸収ピーク(PUV(220nm))とが近接していることを意味する。逆に、分子量差(Ma−Mb)の値が大きくなれば、これら両ピーク(PRI、PUV(220nm))が離れていること意味する。すなわち、両ピーク(PRI、PUV(220nm))の分子量差(Ma−Mb)の値が大きい場合には、比較的低分子量の成分に波長220nmの紫外線を吸収する成分が多いことを意味する。そのため、EVOH(A)が上記式(1)を満たさない場合、比較的低分子量の成分に波長220nmの紫外線を吸収する成分が多いことを意味する。そして、この場合、EVOH(A)を含有する樹脂組成物を用いた溶融成形時にEVOH(A)が熱劣化して着色やゲル化による増粘が起こり、その結果、長時間運転時にコゲの発生が顕在化する傾向にある。
上述の式(1)を満たすことによる効果は、以下の理由により生じると考えられる。すなわち、EVOHは、脱水等の熱劣化を生じることにより、波長220nmの紫外線を吸収する炭素−炭素二重結合やカルボニル基を分子内に生じ、これらの基によって樹脂組成物のゲル化を促進する。上述のゲル化の促進作用は、熱劣化したEVOHの分子量に依存し、熱劣化したEVOHの分子量が大きい場合には上記促進作用が弱く、分子量が小さくなるほど上記促進作用が強くなる。そのため、EVOHが上述の式(1)を満たす場合、つまり熱劣化しても比較的高分子量を維持できる場合、長時間運転時のコゲの発生を抑制できると考えられる。
EVOH(A)は、好ましくは下記式(2)の条件を満たすものである。
(Ma−Mc)/Ma<0.45 ・・・(2)
式(2)の左辺(Ma−Mc)/Maとしては、0.40未満がより好ましく、0.30未満がさらに好ましく、0.15未満が特に好ましい。ここで、式(2)の左辺(Ma−Mc)/Maの値が大きくなれば、示差屈折率検出器から得られるメインピーク(PRI)と紫外可視吸光度検出器から得られる吸収ピーク(PUV(280nm))とが離れており、比較的低分子量の成分に波長280nmの紫外線を吸収する成分が多くなる。この場合、EVOH(A)が溶融成形時に熱劣化して着色やゲル化による増粘が起こり、その結果、長時間運転時にコゲの発生が顕在化する傾向にある。
上述の式(2)を満たすことによる効果は、以下の理由により生じると考えられる。すなわち、EVOHは、上述の熱劣化によって炭素−炭素二重結合やカルボニル基が分子内に生じた後、熱劣化がさらに進行することにより、波長280nmの紫外線を吸収する共役二重結合が分子内に生じ、この共役二重結合によって樹脂組成物の黄変を促進する。上述の黄変の促進作用は、上述のゲル化の促進作用と同様に、熱劣化したEVOHの分子量に依存し、熱劣化したEVOHの分子量が大きい場合には上記促進作用が弱く、分子量が小さくなるほど上記促進作用が強くなる。そのため、EVOHが上述の式(2)を満たす場合、つまり熱劣化が進行しても比較的高分子量を維持できる場合、長時間運転時のコゲの発生をより抑制できると考えられる。
(式(1)で表される条件を満たすEVOH(A)を調製する方法)
式(1)で表される条件を満たすEVOH(A)を調製する方法としては、従来のEVOHの調製において、
(A)原料であるエチレンとビニルエステルとの共重合体の調製において、ビニルエステルに含まれるラジカル重合禁止剤を予め除去する方法、
(B)原料であるエチレンとビニルエステルとの共重合体の調製において、ラジカル重合に用いるビニルエステルに含まれる不純物を特定量とする方法、
(C)原料であるエチレンとビニルエステルとの共重合体の調製において、重合温度を特定範囲とする方法、
(D)原料であるエチレンとビニルエステルとの共重合体の調製において、重合工程、又は上記重合工程後に未反応のビニルエステルを回収再利用する工程において有機酸を添加する方法、
(E)原料であるエチレンとビニルエステルとの共重合体の調製において、重合に用いる溶媒の不純物を特定量とする方法、
(F)原料であるエチレンとビニルエステルとの共重合体の調製において、重合に用いる溶媒とビニルエステルとの質量比(溶媒/ビニルエステル)を高める方法、
(G)エチレンとビニルエステルモノマーとをラジカル重合する際に使用するラジカル重合開始剤として、アゾニトリル系開始剤又は有機過酸化物系開始剤を用いる方法、
(H)原料であるエチレンとビニルエステルとの共重合体の調製において、ラジカル重合後にラジカル重合禁止剤を添加する場合の添加量を残存する未分解のラジカル重合開始剤に対して特定量とする方法、
(I)残存するビニルエステルが極力除去されたエチレンとビニルエステルとの共重合体のアルコール溶液をけん化反応に用いる方法、
(J)けん化に用いるエチレンとビニルエステルとの共重合体に酸化防止剤を添加する方法等
が挙げられ、(A)〜(J)を適宜組み合わせてもよい。また、(A)〜(J)により、式(2)で表される条件を満たすEVOH(A)を調製することもできる。(A)〜(J)の方法について以下で説明する。
((A)原料であるエチレンとビニルエステルとの共重合体の調製において、ビニルエステルに含まれるラジカル重合禁止剤を予め除去する方法)
上記ラジカル重合禁止剤としては、後述する(H)でラジカル重合後に添加するラジカル重合禁止剤として例示するものと同様のもの等が挙げられる。また、ラジカル重合禁止剤を除去する方法としては、カラムクロマトグラフィーを用いる方法、再沈法、蒸留法等が挙げられ、通常蒸留法が採用される。蒸留法によりラジカル重合禁止剤を除去する場合、ビニルエステルの沸点はラジカル重合禁止剤の沸点よりも低いため、蒸留塔頂部から重合禁止剤が除去されたビニルエステルを得ることができる。
((B)原料であるエチレンとビニルエステルとの共重合体の調製において、ラジカル重合に用いるビニルエステルに含まれる不純物を特定量とする方法)
ラジカル重合に用いるビニルエステルに含まれる不純物の合計含有量の下限としては、1ppmが好ましく、3ppmがより好ましく、5ppmがさらに好ましい。また、上記不純物の合計含有量の上限としては、1,200ppmが好ましく、1,100ppmがより好ましく、1,000ppmがさらに好ましい。
上記不純物としては、アセトアルデヒド、クロトンアルデヒド、アクロレイン等のアルデヒド;このアルデヒドが溶媒のアルコールによりアセタール化したアセトアルデヒドジメチルアセタール、クロトンアルデヒドジメチルアセタール、アクロレインジメチルアセタール等のアセタール;アセトン等のケトン;酢酸メチル、酢酸エチル等のエステルなどが挙げられる。
なお、上記不純物のうちアセトアルデヒドは、酢酸ビニルの製造等で生じ易く、かつEVOH(A)が式(1)を満たすことを妨げ易い。そのため、本方法においては、特にアセトアルデヒドの含有量を低減するとよい。
((C)原料であるエチレンとビニルエステルとの共重合体の調製において、重合温度を特定範囲とする方法)
エチレンとビニルエステルとの共重合体の重合温度の下限としては、20℃が好ましく、40℃がより好ましい。一方、上記重合温度の上限としては、90℃が好ましく、70℃がより好ましい。
((D)原料であるエチレンとビニルエステルとの共重合体の調製において、アルコール溶媒を用い、かつ重合工程、又は重合工程後に未反応のビニルエステルを回収再利用する工程において有機酸を添加する方法)
本方法は、重合系への有機酸の添加により、ビニルエステルのアルコールによる加アルコール分解や微量の水分による加水分解を抑制することで、アセトアルデヒド等のアルデヒドの生成を抑制できる。上記有機酸としては、グリコール酸、グリセリン酸、リンゴ酸、クエン酸、乳酸、酒石酸、サリチル酸等のヒドロキシカルボン酸;マロン酸、コハク酸、マレイン酸、フタル酸、シュウ酸、グルタル酸等の多価カルボン酸などが挙げられる。
上記有機酸の添加量の下限としては、1ppmが好ましく、3ppmがより好ましく、5ppmがさらに好ましい。上記有機酸の添加量の上限としては、500ppmが好ましく、300ppmがより好ましく、100ppmがさらに好ましい。
((E)原料であるエチレンとビニルエステルとの共重合体の調製において、重合に用いる溶媒の不純物を特定量とする方法)
重合に用いる溶媒の不純物の合計含有量の下限としては、1ppmが好ましく、3ppmがより好ましく、5ppmがさらに好ましい。上記不純物の合計含有量の上限としては、1,200ppmが好ましく、1,100ppmがより好ましく、1,000ppmがさらに好ましい。重合に用いる溶媒の不純物としては、例えば上述のビニルエステルに含まれる不純物として例示したもの等が挙げられる。
((F)原料であるエチレンとビニルエステルとの共重合体の調製において、重合に用いる溶媒とビニルエステルとの質量比(溶媒/ビニルエステル)を高める方法)
上記重合に用いる溶媒とビニルエステルとの質量比(溶媒/ビニルエステル)の下限としては、0.03が好ましい。一方、上記質量比(溶媒/ビニルエステル)の上限としては、例えば0.4である。
((G)エチレンとビニルエステルモノマーとをラジカル重合する際に使用するラジカル重合開始剤として、アゾニトリル系開始剤又は有機過酸化物系開始剤を用いる方法)
アゾニトリル系開始剤としては、例えば2,2−アゾビスイソブチロニトリル、2,2−アゾビス−(2,4−ジメチルバレロニトリル)、2,2−アゾビス−(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2−アゾビス−(2−シクロプロピルプロピオニトリル)等が挙げられる。有機過酸化物としては、例えばアセチルパーオキシド、イソブチルパーオキシド、ジイソプロピルパーオキシカーボネート、ジアリルパーオキシジカーボネート、ジ−n−プロピルパーオキシジカーボネート、ジミリスチルパーオキシジカーボネート、ジ(2−エトキシエチル)パーオキシジカーボネート、ジ(2−エチルヘキシル)パーオキシジカーボネート、ジ(メトキシイソプロピル)パーオキシジカーボネート、ジ(4−tert−ブチルシクロヘキシル)パーオキシジカーボネート等が挙げられる。
((H)原料であるエチレンとビニルエステルとの共重合体の調製において、ラジカル重合後にラジカル重合禁止剤を添加する場合の添加量を残存する未分解のラジカル重合開始剤に対して特定量とする方法)
ラジカル重合後にラジカル重合禁止剤を添加する場合の添加量としては、残存する未分解のラジカル重合開始剤に対して、5モル当量以下が好ましい。上記ラジカル重合禁止剤としては、例えば共役二重結合を有する分子量1,000以下の化合物であって、ラジカルを安定化させて重合反応を阻害する化合物等が挙げられる。具体的な上記ラジカル重合禁止剤としては、イソプレン、2,3−ジメチル−1,3−ブタジエン、2,3−ジエチル−1,3−ブタジエン、2−t−ブチル−1,3−ブタジエン、1,3−ペンタジエン、2,3−ジメチル−1,3−ペンタジエン、2,4−ジメチル−1,3−ペンタジエン、3,4−ジメチル−1,3−ペンタジエン、3−エチル−1,3−ペンタジエン、2−メチル−1,3−ペンタジエン、3−メチル−1,3−ペンタジエン、4−メチル−1,3−ペンタジエン、1,3−ヘキサジエン、2,4−ヘキサジエン、2,5−ジメチル−2,4−ヘキサジエン、1,3−オクタジエン、1,3−シクロペンタジエン、1,3−シクロヘキサジエン、1−メトキシ−1,3−ブタジエン、2−メトキシ−1,3−ブタジエン、1−エトキシ−1,3−ブタジエン、2−エトキシ−1,3−ブタジエン、2−ニトロ−1,3−ブタジエン、クロロプレン、1−クロロ−1,3−ブタジエン、1−ブロモ−1,3−ブタジエン、2−ブロモ−1,3−ブタジエン、フルベン、トロポン、オシメン、フェランドレン、ミルセン、ファルネセン、センブレン、ソルビン酸、ソルビン酸エステル、ソルビン酸塩、アビエチン酸等の2個の炭素−炭素二重結合の共役構造を含む共役ジエン;1,3,5−ヘキサトリエン、2,4,6−オクタトリエン−1−カルボン酸、エレオステアリン酸、桐油、コレカルシフェロール等の3個の炭素−炭素二重結合を含む共役構造を含む共役トリエン;シクロオクタテトラエン、2,4,6,8−デカテトラエン−1−カルボン酸、レチノール、レチノイン酸等の4個以上の炭素−炭素二重結合の共役構造を含む共役ポリエンなどのポリエンが挙げられる。なお、1,3−ペンタジエン、ミルセン、ファルネセン等のように、複数の立体異性体を有するものについては、そのいずれを用いても良い。上記ラジカル重合禁止剤としては、p−ベンゾキノン、ヒドロキノン、ヒドロキノンモノメチルエーテル、2−フェニル−1−プロペン、2−フェニル−1−ブテン、2,4−ジフェニル−4−メチル−1−ペンテン、3,5−ジフェニル−5−メチル−2−ヘプテン、2,4,6−トリフェニル−4,6−ジメチル−1−ヘプテン、3,5,7−トリフェニル−5−エチル−7−メチル−2−ノネン、1,3−ジフェニル−1−ブテン、2,4−ジフェニル−4−メチル−2−ペンテン、3,5−ジフェニル−5−メチル−3−ヘプテン、1,3,5−トリフェニル−1−ヘキセン、2,4,6−トリフェニル−4,6−ジメチル−2−ヘプテン、3,5,7−トリフェニル−5−エチル−7−メチル−3−ノネン、1−フェニル−1,3−ブタジエン、1,4−ジフェニル−1,3−ブタジエン等の芳香族系化合物も挙げられる。
((I)残存するビニルエステルが極力除去されたエチレンとビニルエステルとの共重合体のアルコール溶液をけん化反応に用いる方法)
残存モノマーの除去率の下限としては、99モル%が好ましく、99.5モル%がより好ましく、99.8モル%がさらに好ましい。残存モノマーを除去する方法としては、例えばカラムクロマトグラフィーを用いる方法、再沈法、蒸留法等が挙げられ、蒸留法が好ましい。蒸留法で残存モノマーを除去する場合、ラシヒリングを充填した蒸留塔の上部からエチレンとビニルエステルとの共重合体溶液を一定速度で連続的に供給し、蒸留塔下部よりメタノール等の有機溶媒蒸気を吹き込む。これにより、蒸留塔頂部より上記有機溶媒と未反応ビニルエステルとの混合蒸気を留出させることができ、蒸留塔底部より未反応のビニルエステルが除去されたエチレンとビニルエステルとの共重合体溶液を取り出すことができる。ここで、「残存モノマーの除去率」とは、エチレンとビニルエステルとの共重合体のアルコール溶液について除去処理前後のモノマー含有量を測定し、以下の式で算出される値である。
残存モノマーの除去率(モル%)={1−(除去後の残存モノマー含有量/除去前の残存モノマー含有量)}×100
((J)けん化に用いるエチレンとビニルエステルとの共重合体に酸化防止剤を添加する方法)
上記酸化防止剤としては、特に限定されないが、例えばフェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤等が挙げられる。上記酸化防止剤としては、これらの中でフェノール系酸化防止剤が好ましく、アルキル置換フェノール系酸化防止剤がより好ましい。
フェノール系酸化防止剤としては、例えば2−t−ブチル−6−(3−t−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェニルアクリレート、2,4−ジ−t−アミル−6−(1−(3,5−ジ−t−アミル−2−ヒドロキシフェニル)エチル)フェニルアクリレート等のアクリレート系化合物;2,6−ジ−t−ブチル−4−メチルフェノール、2,6−ジ−t−ブチル−4−エチルフェノール、オクタデシル−3−(3,5−)ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2,2’−メチレン−ビス(4−メチル−6−t−ブチルフェノール)、4,4’−ブチリデン−ビス(4−メチル−6−t−ブチルフェノール)、4,4’−ブチリデン−ビス(6−t−ブチル−m−クレゾール)、4,4’−チオビス(3−メチル−6−t−ブチルフェノール)、ビス(3−シクロヘキシル−2−ヒドロキシ−5−メチルフェニル)メタン、3,9−ビス(2−(3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ)−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、テトラキス(メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート)メタン、トリエチレングリコールビス(3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート)などのアルキル置換フェノール系化合物;6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−2,4−ビス−オクチルチオ−1,3,5−トリアジン、6−(4−ヒドロキシ−3,5−ジメチルアニリノ)−2,4−ビス−オクチルチオ−1,3,5−トリアジン、6−(4−ヒドロキシ−3−メチル−5−t−ブチルアニリノ)−2,4−ビス−オクチルチオ−1,3,5−トリアジン、2−オクチルチオ−4,6−ビス−(3,5−ジ−t−ブチル−4−オキシアニリノ)−1,3,5−トリアジン等のトリアジン基含有フェノール系化合物などが挙げられる。
リン系酸化防止剤としては、例えばトリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2−t−ブチル−4−メチルフェニル)ホスファイト、トリス(シクロヘキシルフェニル)ホスファイト、2,2−メチレンビス(4,6−ジ−t−ブチルフェニル)オクチルホスファイト、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、10−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、10−デシロキシ−9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン等のモノホスファイト系化合物;4,4’−ブチリデン−ビス(3−メチル−6−t−ブチルフェニル−ジトリデシルホスファイト)、4,4’−イソプロピリデン−ビス(フェニル−ジアルキル(炭素数12〜15)ホスファイト)、4,4’−イソプロピリデン−ビス(ジフェニルモノアルキル(炭素数12〜15)ホスファイト)、1,1,3−トリス(2−メチル−4−ジトリデシルホスファイト−5−t−ブチルフェニル)ブタン、テトラキス(2,4−ジ−t−ブチルフェニル)−4,4’−ビフェニレンホスファイト等のジホスファイト系化合物などが挙げられる。リン系酸化防止剤としては、これらの中で、モノホスファイト系化合物が好ましい。
硫黄系酸化防止剤としては、例えばジラウリル3,3’−チオジプロピオネート、ジステアリル3,3’−チオジプロピオネート、ラウリルステアリル3,3’−チオジプロピオネート、ペンタエリスリトール−テトラキス−(β−ラウリル−チオプロピオネート)、3,9−ビス(2−ドデシルチオエチル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン等が挙げられる。
エチレンとビニルエステルとの共重合体に酸化防止剤を添加する場合、酸化防止剤の含有量の下限としては、特に限定されないが、上記共重合体100質量部に対して、0.001質量部が好ましく、0.01質量部がより好ましい。一方、酸化防止剤の含有量の上限としては、特に限定されないが、上記共重合体100質量部に対して、5質量部が好ましく、1質量部がより好ましい。酸化防止剤の含有量が上記下限未満であると、式(1)を満たすEVOH(A)の調製が困難となるおそれがある。逆に、酸化防止剤の含有量が上記上限を超えると、含有量の増加によるコスト上昇等に見合う効果が得られないおそれがある。
なお、上記(A)、(C)〜(J)の方法でEVOH(A)を調製する場合、ビニルエステル(酢酸ビニル)中に含まれるアセトアルデヒドの含有量は上記範囲でなくてもよい。この場合のアセトアルデヒドの含有量の下限としては、150ppmが好ましく、250ppmがより好ましく、350ppmがさらに好ましい。このように、アセトアルデヒドの含有量を上記範囲とすることで、酢酸ビニルからアセトアルデヒドを除去する工程を省略できるため、製造コストを低減できる。なお、この場合のアセトアルデヒドの含有量の上限としては、特に限定されないが、例えば1,000ppmである。
(EVOH(A)の溶融粘度(メルトフローレート))
EVOH(A)のメルトフローレートの下限としては、0.5g/10minが好ましく、1.0g/10minがより好ましく、1.4g/10minがさらに好ましい。一方、EVOH(A)のメルトフローレートの上限としては、30g/10minが好ましく、25g/10minがより好ましく、20g/10minがさらに好ましく、15g/10minが特に好ましく、10g/10minがさらに特に好ましく、1.6g/10minが最も好ましい。EVOH(A)のメルトフローレートが上記下限未満である場合、又は上記上限を超える場合、当該樹脂組成物の成形性及び外観性が悪化するおそれがある。
なお、メルトフローレートは、JIS−K7210(1999)に準拠し、温度190℃、荷重2,160gで測定した値である。
当該樹脂組成物の樹脂分におけるEVOH(A)の含有量の下限としては、48質量%が好ましく、52質量%がより好ましく、56質量%がさらに好ましく、60質量%が特に好ましい。一方、上記含有量の上限としては、95質量%が好ましく、90質量%がより好ましく、85質量%がさらに好ましい。上記含有量が上記下限未満であると、ガスバリア性や耐油性といった特性が損なわれるおそれがある。逆に、上記含有量が上記上限を超えると、PA(B)の含有量が低下し、当該樹脂組成物の耐レトルト性が低下するおそれがある。
[PA(B)]
PA(B)は、アミド結合を含む樹脂である。PA(B)は、3員環以上のラクタムの開環重合、重合可能なω−アミノ酸の重縮合、二塩基酸とジアミンとの重縮合等によって得られる。PA(B)としては、例えばポリカプラミド(ナイロン6)、ポリ−ω−アミノヘプタン酸(ナイロン7)、ポリ−ω−アミノノナン酸(ナイロン9)、ポリウンデカンアミド(ナイロン11)、ポリラウリルラクタム(ナイロン12)、ポリエチレンジアミンアジパミド(ナイロン26)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリオクタメチレンアジパミド(ナイロン86)、ポリデカメチレンアジパミド(ナイロン108)、カプロラクタム/ラウリルラクタム共重合体(ナイロン6/12)、カプロラクタム/ω−アミノノナン酸共重合体(ナイロン6/9)、カプロラクタム/ヘキサメチレンジアンモニウムアジペート共重合体(ナイロン6/66)、ラウリルラクタム/ヘキサメチレンジアンモニウムアジペート共重合体(ナイロン12/66)、ヘキサメチレンジアンモニウムアジペート/ヘキサメチレンジアンモニウムセバケート共重合体(ナイロン66/610)、エチレンジアンモニウムアジペート/ヘキサメチレンジアンモニウムアジペート共重合体(ナイロン26/66)、カプロラクタム/ヘキサメチレンジアンモニウムアジペート/ヘキサメチレンジアンモニウムセバケート共重合体(ナイロン6/66/610)、ポリヘキサメチレンイソフタルアミド(ナイロン6I)、ポリヘキサメチレンテレフタルアミド(ナイロン6T)、ヘキサメチレンイソフタルアミド/テレフタルアミド共重合体(ナイロン6I/6T)等が挙げられる。
また、PA(B)において、ジアミンとして2,2,4−トリメチルヘキサメチレンジアミン及び2,4,4−トリメチルヘキサメチレンジアミン等の置換基を導入した脂肪族ジアミン;メチルベンジルアミン、メタキシリレンジアミン等の芳香族アミンなどを使用してもよく、またこれらを用いてポリアミドへの変性を行っても構わない。さらに、ジカルボン酸として2,2,4−トリメチルアジピン酸及び2,4,4−トリメチルアジピン酸等の置換基を導入した脂肪族カルボン酸;1,4−シクロヘキサンジカルボン酸等の脂環式ジカルボン酸;フタル酸、キシリレンジカルボン酸、アルキル置換テレフタル酸、アルキル置換イソフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸などを使用してもよく、またこれらを用いてポリアミドへの変性を行っても構わない。
PA(B)としては、これらの中で、ポリカプラミド(ナイロン6)が好ましい。その他にも、カプロラクタム/ラウリルラクタム共重合体(ナイロン6/12)も好ましい。この場合、6単位と12単位の含有比は特に限定されないが、12単位の含有量の下限としては、5質量%が好ましい。一方、12単位の含有量の上限としては、60質量%が好ましく、50質量%がより好ましい。
当該樹脂組成物中のEVOH(A)とPA(B)との質量比(A/B)の下限としては、60/40であり、65/35が好ましく、70/30がより好ましく、75/25がさらに好ましい。また、上記質量比(A/B)の上限としては、95/5であり、90/10が好ましく、85/15がより好ましい。上記質量比(A/B)が上記下限未満であると、EVOH(A)が本来有するガスバリア性や耐油性といった特性が損なわれるおそれがある。上記質量比(A/B)が上記上限を超えると、当該樹脂組成物の耐レトルト性が低下するおそれがある。
当該樹脂組成物の樹脂分におけるEVOH(A)及びPA(B)の合計含有量の下限としては、80質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましい。また、当該樹脂組成物の樹脂分におけるEVOH(A)及びPA(B)の合計含有量としては、100質量%が特に好ましい。
当該樹脂組成物の樹脂分におけるPA(B)の含有量の下限としては、4質量%が好ましく、8質量%がより好ましく、12質量%がさらに好ましい。一方、上記含有量の上限としては、40質量%が好ましく、35質量%がより好ましく、30質量%がさらに好ましく、25質量%が特に好ましい。PA(B)の含有量を上記範囲とすることで、耐衝撃性をより高めることができる。上記含有量が上記下限未満であると、当該樹脂組成物の耐レトルト性が低下するおそれがある。逆に、上記含有量が上記上限を超えると、PA(B)の含有量が低下し、ガスバリア性や耐油性といった特性が損なわれるおそれがある。
[カルボン酸金属塩(C)]
当該樹脂組成物は、カルボン酸金属塩(C)を含有することが好ましい。当該樹脂組成物がカルボン酸金属塩(C)を含有することで、長時間運転時のゲル及びブツの発生を抑制することができ、その結果、長時間運転時のコゲ発生抑制性及び耐レトルト性が向上する。
カルボン酸金属塩(C)の金属元素としては、特に限定されないが、ゲル及びブツの抑制効果の観点から、マグネシウム、カルシウム、バリウム、ベリリウム、亜鉛、銅等の2価の金属塩を形成する金属元素が好ましく、これらの中でも、マグネシウム、カルシウム及び亜鉛がより好ましい。また、上記金属元素としては、ロングラン性及び多層構造体とした際の層間接着力の向上の観点から、アルカリ金属も好ましく、これらの中で、ナトリウムがより好ましい。つまり、カルボン酸金属塩(C)としては、カルボン酸アルカリ金属塩(C1)及びカルボン酸2価金属塩(C2)が好ましい。
カルボン酸金属塩(C)のアニオンとしては、カルボン酸アニオンであれば特に限定されないが、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、パルミチン酸、ステアリン酸、コハク酸、リノール酸、オレイン酸等の脂肪族カルボン酸;安息香酸、サリチル酸、フタル酸等の芳香族カルボン酸;乳酸、酒石酸、クエン酸、リンゴ酸等のヒドロキシカルボン酸;エチレンジアミン四酢酸などのカルボン酸のアニオンが挙げられる。カルボン酸アニオンとしては、これらの中で、脂肪族カルボン酸アニオンが好ましく、酢酸アニオンがより好ましい。
カルボン酸金属塩(C)の含有量(乾燥樹脂組成物中の含有量)の下限としては、樹脂分に対して、金属元素換算で1ppmが好ましく、3ppmがより好ましく、5ppmがさらに好ましく、10ppmが特に好ましい。カルボン酸金属塩(C)の含有量の上限としては、樹脂分に対して、金属元素換算で1,000ppmが好ましく、500ppmがより好ましく、350ppmがさらに好ましく、200ppmが特に好ましく、150ppmがさらに特に好ましい。上記含有量が上記下限未満だと、当該樹脂組成物の長時間運転時におけるゲル及びブツの抑制効果が不十分となるおそれがある。上記含有量が上記上限を超えると、当該樹脂組成物の着色が顕著になり、また分解反応による劣化反応が促進されることで適度な溶融粘度を有するEVOHが得られないため、得られる成形体の外観性が低下し、かつ所望の成形体を得ることが困難になるおそれがある。ここで、当該樹脂組成物中のカルボン酸金属塩(C)の含有量とは、当該樹脂組成物中の樹脂分に対する割合、すなわち、樹脂成分の合計質量に対する金属元素換算の質量割合であり、具体的には、乾燥させた当該樹脂組成物中の樹脂分に対する割合をいう。
(カルボン酸アルカリ金属塩(C1))
カルボン酸アルカリ金属塩(C1)としては、例えばリチウム、ナトリウム、カリウム等の脂肪族カルボン酸塩、芳香族カルボン酸塩などが挙げられる。具体的なアルカリ金属塩(B1)としては、酢酸ナトリウム、酢酸カリウム、ステアリン酸ナトリウム、ステアリン酸カリウム、エチレンジアミン四酢酸のナトリウム塩等が挙げられる。アルカリ金属塩(B1)としては、これらの中で酢酸ナトリウム及び酢酸カリウムが好ましく、酢酸ナトリウムがより好ましい。
当該樹脂組成物がカルボン酸アルカリ金属塩(C1)を含有する場合、カルボン酸アルカリ金属塩(C1)の含有量の下限としては、樹脂分に対して、金属元素換算で、1ppmが好ましく、5ppmがより好ましく、10ppmがさらに好ましく、80ppmが特に好ましい。一方、カルボン酸アルカリ金属塩(C1)の含有量の上限としては、樹脂分に対して、金属元素換算で、1,000ppmが好ましく、800ppmがより好ましく、550ppmがさらに好ましく、250ppmが特に好ましく、150ppmがさらに特に好ましい。カルボン酸アルカリ金属塩(C1)の含有量を上記範囲とすることで、当該樹脂組成物のロングラン性及び多層構造体とした際の層間接着力をより向上できる。
(カルボン酸2価金属塩(C2))
当該樹脂組成物がカルボン酸2価金属塩(C2)を含有する場合、カルボン酸2価金属塩(C2)の含有量の下限としては、樹脂分に対して、金属元素換算で、1ppmが好ましく、3ppmがより好ましく、5ppmがさらに好ましく、10ppmが特に好ましく、50ppmがさらに特に好ましく、100ppmが最も好ましい。カルボン酸2価金属塩(C2)の含有量の上限としては、樹脂分に対して、金属元素換算で、500ppmが好ましく、350ppmがより好ましく、300ppmがさらに好ましく、250ppmが特に好ましい。カルボン酸2価金属塩(C2)の含有量を上記範囲とすることで、ゲル及びブツをより抑制することができる。
[他の任意成分]
他の任意成分としては、例えば酸化防止剤、紫外線吸収剤、可塑剤、帯電防止剤、滑剤、着色剤、充填剤、ヒンダードフェノール系化合物やヒンダードアミン系化合物等の熱安定剤、ポリオレフィン等の他の樹脂、ハイドロタルサイト化合物などが挙げられる。当該樹脂組成物の他の任意成分の合計含有量としては、通常1質量%以下である。
充填剤としては、例えばグラスファイバー、バラストナイト、ケイ酸カルシウム、タルク、モンモリロナイト等が挙げられる。
なお、ゲル化対策として、例えば上記熱安定剤として例示したヒンダードフェノール系化合物及びヒンダードアミン系化合物、ハイドロタルサイト化合物等を当該樹脂組成物に添加してもよい。当該樹脂組成物にゲル化対策のための化合物を添加する場合、その添加量としては、通常0.01質量%以上1質量%以下である。
[樹脂組成物の溶融粘度(メルトフローレート)]
当該樹脂組成物のメルトフローレートの下限としては、0.5g/10minが好ましく、1.0g/10minがより好ましく、1.4g/10minがさらに好ましい。一方、当該樹脂組成物のメルトフローレートの上限としては、30g/10minが好ましく、25g/10minがより好ましく、20g/10minがさらに好ましく、15g/10minが特に好ましく、10g/10minがさらに特に好ましく、1.6g/10minが最も好ましい。当該樹脂組成物のメルトフローレートが上記下限未満である場合、又は上記上限を超える場合、成形性及び外観性が悪化するおそれがある。
<樹脂組成物の製造方法>
当該樹脂組成物の製造方法としては、EVOH(A)及びPA(B)と、カルボン酸金属塩(C)等の任意成分とを均一にブレンドできる方法であれば特に限定されない。上記ブレンドには、例えばリボンブレンダー、高速ミキサーコニーダー、ミキシングロール、押出機、インテンシブミキサー等を用いることができる。
<成形品>
当該樹脂組成物は、溶融成形等により、フィルム、シート、容器、パイプ、ホース、繊維等の各種の成形品に成形することができる。ここで、フィルムとは、通常300μm程度未満の平均厚みを有するものをいい、シートとは、通常300μm程度以上の平均厚みを有するものをいう。溶融成形の方法としては、例えば押出成形、インフレーション押出、ブロー成形、溶融紡糸、射出成形、射出ブロー成形等が挙げられる。溶融成形温度としては、EVOH(A)の融点等により異なるが、150℃以上270℃以下が好ましい。
上記溶融成形等により得られた成形品は、必要に応じて、曲げ加工、真空成形、ブロー成形、プレス成形等の二次加工成形を行って、目的とする成形品にしてもよい。
上記成形品としては、当該樹脂組成物から形成されるバリア層(以下、単に「バリア層」ともいう)のみからなる単層構造の成形品としてもよいが、機能向上の観点から、バリア層と、このバリア層の少なくとも一方の面に積層される他の層とを備える多層構造体とすることが好ましい。上記成形品は、上述の性質を有する樹脂組成物から形成されるバリア層を備えているので、ボイル殺菌用又はレトルト殺菌用に好適に用いることができる。
多層構造体としては、例えば多層シート、多層パイプ、多層ホース、多層繊維等が挙げられる。上記多層構造体を構成する他の層としては、熱可塑性樹脂から形成される熱可塑性樹脂層が好ましい。多層構造体は、バリア層と熱可塑性樹脂層とを備えることで、外観性、耐レトルト性及び加工特性に優れる。
[多層構造体]
当該多層構造体は、バリア層と、このバリア層の少なくとも一方の面に積層される熱可塑性樹脂層とを備える。当該多層構造体は、バリア層と熱可塑性樹脂層とを備えることで、外観性、耐レトルト性及び加工特性に優れる。
上記熱可塑性樹脂層を形成する樹脂としては、
高密度、中密度又は低密度のポリエチレン;
酢酸ビニル、アクリル酸エステル、又はブテン、ヘキセン等のα−オレフィン類を共重合したポリエチレン;
アイオノマー樹脂;
ポリプロピレンホモポリマー;
エチレン、ブテン、ヘキセン等のα−オレフィン類を共重合したポリプロピレン;
ゴム系ポリマーをブレンドした変性ポリプロピレン等のポリオレフィン類;
これらの樹脂に無水マレイン酸を付加又はグラフトした樹脂;
ポリアミド、ポリエステル、ポリスチレン、ポリ塩化ビニル、アクリル系樹脂、ポリウレタン、ポリカーボネート、ポリ酢酸ビニルなどを用いることができる。
熱可塑性樹脂層を形成する樹脂としては、これらの中で、ポリプロピレン及びポリアミドが好ましい。熱可塑性樹脂層を形成する具体的樹脂材としては、無延伸ポリプロピレンフィルム及びナイロン6フィルムが好ましい。
当該多層構造体の各層間は接着性樹脂層を介して積層されていてもよい。上記接着性樹脂層の形成に使用される接着性樹脂としては、例えば酸変性ポリオレフィン等が挙げられる。この酸変性ポリオレフィンとしては、例えば不飽和カルボン酸又はその誘導体を化学結合で導入したオレフィン系重合体等を挙げることができる。
当該多層構造体の層構成に関しては、特に限定されるものではないが、成形性及びコスト等の観点から、例えば熱可塑性樹脂層/バリア層/熱可塑性樹脂層、バリア層/接着性樹脂層/熱可塑性樹脂層、熱可塑性樹脂層/接着性樹脂層/バリア層/接着性樹脂層/熱可塑性樹脂層等が代表的なものとして挙げられる。当該多層構造体の層構成としては、熱可塑性樹脂層/バリア層/熱可塑性樹脂層、及び熱可塑性樹脂層/接着性樹脂層/バリア層/接着性樹脂層/熱可塑性樹脂層が好ましい。バリア層の両外層に熱可塑性樹脂層を設ける場合は、両外層の熱可塑性樹脂層は互いに異なる樹脂からなる層であってもよいし、同一の樹脂からなる層であってもよい。
当該多層構造体を製造する方法としては、特に限定されるものではないが、例えば押出ラミネート法、ドライラミネート法、押出ブロー成形法、共押出ラミネート法、共押出成形法、共押出パイプ成形法、共押出ブロー成形法、共射出成形法、溶液コート法等が挙げられる。
当該多層構造体を製造する方法としては、これらの中で、共押出ラミネート法及び共押出成形法が好ましく、共押出成形法がより好ましい。バリア層と熱可塑性樹脂層とが上記方法により積層されることで、当該多層構造体を容易かつ確実に製造することができ、その結果、高い外観性、耐レトルト性及び加工特性を効果的に達成することができる。
[多層シート]
当該多層シートは、当該多層構造体からなる。当該多層シートは、当該樹脂組成物から形成したバリア層と熱可塑性樹脂層とを備えることで、外観性、耐レトルト性及び加工特性に優れる。
当該多層構造体又は当該多層シートを用いて成形品を成形する方法としては、例えば真空成形法、圧空成形法、真空圧空成形法、ブロー成形法等が挙げられ、これらの中で真空圧空成形法が好ましい。これらの成形は、通常EVOHの融点以下の温度範囲で行われる。ここで、真空圧空成形法とは、当該多層構造体又は当該多層シートを加熱し、真空及び圧空を併用して成形する方法である。上記成形品は、当該多層構造体又は当該多層シートを用いて真空圧空成形法等により形成されることで、容易かつ確実に製造することができ、その結果、得られる容器等の外観性及び耐レトルト性により優れる。
なお、当該多層構造体又は当該多層シートを用いて押出成形、ブロー成形等の溶融成形を行う際に発生するスクラップは、上記熱可塑性樹脂層にブレンドして再利用してもよいし、別途回収層として用いてもよい。
[容器]
当該容器は、当該多層構造体又は当該多層シートからなり、上述の真空圧空成形法等の成形により製造できる。当該容器は、外観性及び耐レトルト性に優れる。そのため、当該容器は、ボイル殺菌用及びレトルト殺菌用に好適に用いることができる。
以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
[EVOHの合成]
[合成例1](EVOHペレットの合成)
(エチレン−酢酸ビニル共重合体の重合)
ジャケット、攪拌機、窒素導入口、エチレン導入口及び開始剤添加口を備えた250L加圧反応槽に、酢酸ビニルを83kg、メタノールを14.9kg仕込み、60℃に昇温した後、反応液に窒素ガスを30分間バブリングして反応槽内を窒素置換した。次いで反応槽圧力(エチレン圧力)が4.0MPaとなるようにエチレンを導入した。反応槽内の温度を60℃に調整した後、開始剤として12.3gの2,2’−アゾビス(2,4−ジメチルバレロニトリル)(和光純薬工業株式会社の「V−65」)をメタノール溶液として添加し、重合を開始した。重合中はエチレン圧力を4.0MPaに、重合温度を60℃に維持した。5時間後、酢酸ビニルの重合率が40%となったところで冷却して重合を停止した。反応槽からエチレンを排気し、さらに反応液に窒素ガスをバブリングしてエチレンを完全に除去した。次いで減圧下で未反応の酢酸ビニルを除去した後、エチレン−酢酸ビニル共重合体(以下、「EVAc」と称する)を得た。合成に使用する酢酸ビニルは下記表1に示す含有量のアセトアルデヒドを添加したものを用いた。
(けん化)
得られたEVAc溶液にメタノールを加え、濃度15質量%のEVAc溶液を得た。このEVAcのメタノール溶液253.4kg(溶液中のEVAcが38kg)に、水酸化ナトリウムを10質量%含むメタノール溶液76.6L(EVAc中の酢酸ビニルユニットに対してモル比0.4)を添加して60℃で4時間撹拌することにより、EVAcのけん化を行った。反応開始から6時間後、酢酸9.2kg及び水60Lを添加して上記反応液を中和し、反応を停止させた。
(洗浄)
中和した上記反応液を反応器からドラム缶に移して16時間室温で放置し、ケーキ状に冷却固化させた。その後、遠心分離機(国産遠心器株式会社の「H−130」、回転数1200rpm)を用いて、上記ケーキ状の樹脂を脱液した。次に、遠心分離機の中央部に、上方よりイオン交換水を連続的に供給しながら洗浄し、上記樹脂を水洗する工程を10時間行った。洗浄開始から10時間後の洗浄液の伝導度は、30μS/cm(東亜電波工業株式会社の「CM−30ET」で測定)であった。
(造粒)
上記洗浄後の樹脂を乾燥機を用いて60℃で48時間乾燥し、粉末状のEVOHを得た。乾燥した粉末状のEVOH20kgを水及びメタノール混合溶液(質量比:水/メタノール=4/6)43Lに溶解させ、80℃で12時間撹拌した。次に、撹拌を止めて溶解槽の温度を65℃に下げて5時間放置し、上述のEVOHの水及びメタノール溶液の脱泡を行った。そして、直径3.5mmの円形の開口部を有する金板から、5℃の水及びメタノール混合溶液(質量比:水/メタノール=9/1)中に押出してストランド状に析出させ、切断することで直径約4mm、長さ約5mmの含水EVOHペレットを得た。
(精製)
上記含水EVOHペレットを遠心分離機で脱液し、さらに大量の水を加え脱液する操作を繰り返し行って洗浄し、EVOH(A)ペレットを得た。得られたEVOH(A)のけん化度は99モル%であった。
得られたEVOH(A)のペレット20kgを酢酸水溶液及びイオン交換水を用いて洗浄した後、酢酸ナトリウムを含む水溶液で浸漬処理を行った。この浸漬処理用水溶液と樹脂組成物ペレットとを分離して脱液した後、熱風乾燥機に入れて80℃で4時間乾燥を行い、さらに100℃で16時間乾燥を行って、合成例1の酢酸ナトリウム含有EVOH(A)をペレットとして得た。
[合成例2〜6及び比較合成例1]
酢酸ビニルのアセトアルデヒド含有量と、EVOH(A)のエチレン含有量及びけん化度と、カルボン酸アルカリ金属塩(C1)及びカルボン酸2価金属塩の含有量とが表1に示すものになるようにした以外は合成例1と同様にして合成例2〜6の及び比較合成例1の酢酸ナトリウム含有EVOH(A)のペレットを得た。
以下に説明する方法にて、上記合成したEVOH(A)のけん化度、エチレン含有量、アルカリ金属含有量等の測定を行った。
[EVOHのエチレン含有量及びけん化度]
乾燥EVOHペレットを凍結粉砕により粉砕した。得られた粉砕EVOHを呼び寸法1mmのふるい(標準フルイ規格JIS−Z8801準拠)でふるい分けした。このふるいを通過したEVOH粉末5gを100gのイオン交換水中に浸漬し、85℃で4時間撹拌した後、脱液して乾燥する操作を二回行った。得られた洗浄後の粉末EVOHを用いて、下記の測定条件でH−NMRの測定を行い、下記解析方法でエチレン含有量及びけん化度を求めた。
(測定条件)
装置名 :超伝導核磁気共鳴装置(日本電子株式会社の「Lambda500」)
観測周波数 :500MHz
溶媒 :DMSO−d
ポリマー濃度 :4質量%
測定温度 :40℃及び95℃
積算回数 :600回
パルス遅延時間:3.836秒
サンプル回転速度:10Hz〜12Hz
パルス幅(90°パルス):6.75μsec
(解析方法)
40℃での測定では、3.3ppm付近に水分子中の水素のピークが観測され、EVOHのビニルアルコール単位のメチン水素のピークのうちの、3.1ppm〜3.7ppmの部分と重なった。一方、95℃での測定では、上記40℃で生じた重なりは解消するものの、4ppm〜4.5ppm付近に存在するEVOHのビニルアルコール単位の水酸基の水素のピークが、EVOHのビニルアルコール単位のメチン水素のピークのうちの、3.7ppm〜4ppmの部分と重なった。すなわち、EVOHのビニルアルコール単位のメチン水素(3.1ppm〜4ppm)の定量については、水又は水酸基の水素のピークとの重複を避けるために、3.1ppm〜3.7ppmの部分については、95℃の測定データを採用し、3.7ppm〜4ppmの部分については40℃の測定データを採用し、これらの合計値として当該メチン水素の全量を定量した。なお、水又は水酸基の水素のピークは測定温度を上昇させることで高磁場側にシフトすることが知られている。従って、以下のように40℃及び95℃の両方の測定結果を用いて解析した。上記の40℃で測定したスペクトルより、3.7ppm〜4ppmのケミカルシフトのピークの積分値(I)及び0.6ppm〜1.8ppmのケミカルシフトのピークの積分値(I)を求めた。
一方、95℃で測定したスペクトルより、3.1ppm〜3.7ppmのケミカルシフトのピークの積分値(I)、0.6ppm〜1.8ppmのケミカルシフトのピークの積分値(I)及び1.9ppm〜2.1ppmのケミカルシフトのピークの積分値(I)を求めた。ここで、0.6ppm〜1.8ppmのケミカルシフトのピークは、主にメチレン水素に由来するものであり、1.9ppm〜2.1ppmのケミカルシフトのピークは、未けん化の酢酸ビニル単位中のメチル水素に由来するものである。これらの積分値から下記式(3)によりエチレン含有量を計算し、下記式(4)によりけん化度を計算した。
Figure 2016029158
Figure 2016029158
[アルカリ金属含有量]
アルカリ金属含有量の測定は、分光分析装置を用いて定量した。具体的には、乾燥EVOHペレット0.5gをアクタック社のテフロン(登録商標)製耐圧容器に添加し、硝酸(和光純薬工業社の精密分析用)5mLを添加した。30分放置後、ラプチャーディスク付きキャップリップにて容器に蓋をし、マイクロウェーブ高速分解システム(アクタック社の「スピードウェーブ MWS−2」)にて150℃、10分、次いで180℃、10分の処理を行って乾燥EVOHペレットを分解させた。なお、上述の処理では乾燥EVOHペレットの分解が完了できていない場合、処理条件を適宜調節した。得られた分解物を10mLのイオン交換水で希釈し、全液を50mLのメスフラスコに移しとり、イオン交換水で定容することで分解溶液を得た。ICP発光分光分析装置(パーキンエルマージャパン社の「Optima 4300 DV」)を用い、上記分解溶液をNaの波長589.592nmで定量分析することで、アルカリ金属含有量を測定した。
[溶融粘度(メルトフローレート)]
溶融粘度(メルトフローレート)は、JIS−K7210(1999)に準拠し、温度190℃、荷重2,160gで測定した。
[EVOH(A)の分子量の測定]
(測定サンプルの準備)
測定サンプルは、窒素雰囲気下、EVOH(A)を220℃で50時間加熱することで作製した。
(GPC測定)
GPC測定は、VISCOTECH社の「GPCmax」を用いて行った。分子量は、示差屈折率検出器及び紫外可視吸光度検出器で検出されるシグナル強度に基づいて算出した。示差屈折率検出器及び紫外可視吸光度検出器としては、VISCOTECH社の「TDA305」及び「UV Detector2600」を用いた。この吸光度検出器の検出用セルとしては、光路長が10mmのものを用いた。GPCカラムとしては、昭和電工株式会社の「GPC HFIP−806M」を用いた。また、解析ソフトとしては、装置付属の「OmniSEC(Version 4.7.0.406)」を用いた。
(測定条件)
測定サンプルを採取し、トリフルオロ酢酸ナトリウム20mmol/Lを含有するヘキサフルオロイソプロパノール(以下「HFIP」という)に溶解し、0.100wt/vol%溶液を調製した。測定には、0.45μmのポリテトラフルオロエチレン製フィルターでろ過した溶液を用いた。測定サンプルの溶解は、室温にて一晩静置することで行った。
移動相には、20mmol/Lトリフルオロ酢酸ナトリウム含有HFIPを用いた。移動相の流速は1.0mL/分とした。試料注入量は100μLとし、GPCカラム温度40℃にて測定した。
(検量線の作成)
標品として、Agilent Technologies社のポリメタクリル酸メチル(以下「PMMA」と略記する)(ピークトップ分子量:1,944,000、790,000、467,400、271,400、144,000、79,250、35,300、13,300、7,100、1,960、1,020又は690)を測定し、示差屈折率検出器及び吸光度検出器のそれぞれについて、溶出容量をPMMA分子量に換算するための検量線を作成した。各検量線の作成には、上記解析ソフトを用いた。なお、本測定においてはPMMAの測定において、1,944,000及び271,400の両分子量の標準試料同士のピークが分離できるカラムを用いた。
なお、示差屈折率検出器から得られるピーク強度は、「mV」で表され、標準サンプルとしてAmerican Polymer Standard Corp.社のPMMAサンプル(PMMA85K:重量平均分子量85,450、数平均分子量74,300、固有粘度0.309)を1.000mg/mL濃度として用いた場合のピーク強度は358.31mVであった。
また、紫外可視吸光度検出器から得られるピーク強度は吸光度(アブソーバンスユニット)で表され、紫外可視吸光度検出器の吸光度は解析ソフトにおいて、1アブソーバンスユニット=1,000mVに変換した。
<樹脂組成物の調製>
[実施例1〜6及び比較例1]
上記合成例1〜5及び比較合成例1で得られた酢酸ナトリウム含有EVOH(A)ペレットと、ポリアミド(宇部興産株式会社の「Ny1018A」(ナイロン6))、及び酢酸マグネシウム・4水和物、酢酸亜鉛・2水和物又は酢酸カルシウム・2水和物を表1に示す各含有量になるように混合し、ドライブレンド後、二軸押出機(株式会社東洋精機製作所の「2D25W」、25mmφ)を用い、ダイ温度250℃,スクリュー回転数100rpm)の押出条件で、窒素雰囲気下で押出しペレット化を行い、目的の樹脂組成物ペレットを得た。
<多層シートの製造>
単軸押出装置(株式会社東洋精機製作所の「D2020」、(D(mm)=20、L/D=20、圧縮比=2.0、スクリュー:フルフライト))を用い、上記得られた各樹脂組成物ペレットから平均厚み20μmの単層フィルムを作製した。このときの各押出条件は以下に示す通りである。
押出温度:250℃
スクリュー回転数:40rpm
ダイス幅:30cm
引取りロール温度:80℃
引取りロール速度:3.1m/分
上記作製した単層フィルム、市販されている二軸延伸ナイロン6フィルム(ユニチカ社の「エンブレムON」、平均厚み15μm)及び市販されている無延伸ポリプロピレンフィルム(三井化学東セロ社の「ト−セロCP」、平均厚み60μm)をそれぞれA4サイズにカットし、単層フィルムの両面にドライラミネート用接着剤を塗布し、外層がナイロン6フィルム、内層が無延伸ポリプロピレンフィルムとなるようドライラミネ−トを実施し、得られたラミネートフィルムを80℃で3分間乾燥させて希釈液を蒸発させ、3層からなる透明な多層シートを得た。上記ドライラミネ−ト用接着剤としては三井化学株式会社の「タケラックA−385」を主剤、三井化学株式会社の「タケネ−トA−50」を硬化剤、希釈液として酢酸エチルを用いたものを使用した。この接着剤の塗布量は4.0g/mとした。ラミネ−ト後、40℃で3日間養生を実施した。
<評価>
上記得られた樹脂組成物及び多層シートについて、以下の評価を行った。評価結果を表1に合わせて示す。
[コゲ発生抑制性]
単軸押出装置(株式会社東洋精機製作所の「D2020」、D(mm)=20、L/D=20、圧縮比=2.0、スクリュー:フルフライト)を用い、各乾燥樹脂組成物ペレットから平均厚み20μmの単層フィルムを作製した。このときの各条件は以下に示す通りである。
押出温度:250℃
スクリュー回転数:40rpm
ダイス幅:30cm
引取りロール温度:80℃
引取りロール速度:3.1m/分
上記条件で連続運転して単層フィルムを作製し、運転開始から8時間後に低密度ポリエチレン(日本ポリエチレン株式会社の「ノバテックLF128」)に樹脂を切り替え、30分間、同条件で製膜を行った。その後、ダイスを分解して低密度ポリエチレンを除去し、ダイス流路表面に付着しているコゲ量を測定し、コゲ発生抑制性を下記評価基準により評価した。
「良好(A)」 :0.01g未満
「やや良好(B)」:0.01g以上1.0g未満
「不良(C)」 :1.0g以上
[成形品の耐レトルト性]
上記得られた多層シートを用いて、12×12cm内寸の四方をシ−ルしたパウチを作製した。内容物は水とした。これをレトルト装置(株式会社日阪製作所の高温高圧調理殺菌試験機「RCS−40RTGN」)を使用して、120℃で20分のレトルト処理を実施した。レトルト処理後、表面水を拭き20℃、65%RHの高温高湿の部屋で1日放置してから耐レトルト性を評価した。耐レトルト性は、透明性が確保されている場合は「良好(A)」と、まだらに白化している場合は「やや良好(B)」と、全面が白化している場合は「不良(C)」と評価した。
Figure 2016029158
表1の結果から明らかなように、実施例の樹脂組成物及びこの樹脂組成物から形成された多層シートは、長時間運転時の成形機内におけるコゲ発生抑制性及び耐レトルト性に優れる。一方、分子量相関が規定範囲外である比較例の樹脂組成物及びこの樹脂組成物から形成された多層シートは、成形機内におけるコゲ発生抑制性及び耐レトルト性に劣ることがわかった。
本発明の樹脂組成物は、長時間運転時の成形機内におけるコゲ発生抑制性と耐レトルト性に共に優れる。そのため、当該樹脂組成物は、外観性及び機械的強度に優れる成形品を製造することができる。本発明の多層構造体及び多層シートは、外観性、耐レトルト性及び加工特性に優れる。本発明の容器は、外観性及び耐レトルト性に優れる。従って、当該樹脂組成物、多層構造体、多層シート及び容器は、ボイル殺菌用又はレトルト殺菌用等の各種包装材の成形材料として好適である。

Claims (9)

  1. エチレン含有量が10モル%以上60モル%以下のエチレン−ビニルアルコール共重合体、及びポリアミドを含有し、
    上記エチレン−ビニルアルコール共重合体と上記ポリアミドとの質量比が60/40以上95/5以下であり、
    上記エチレン−ビニルアルコール共重合体が、
    示差屈折率検出器及び紫外可視吸光度検出器を備えるゲルパーミエーションクロマトグラフを用い、窒素雰囲気下、220℃、50時間熱処理後に測定した分子量が、下記式(1)で表される条件を満たす樹脂組成物。
    (Ma−Mb)/Ma<0.45 ・・・(1)
    Ma:示差屈折率検出器で測定されるピークの最大値におけるポリメタクリル酸メチル換算の分子量
    Mb:紫外可視吸光度検出器で測定される波長220nmでの吸収ピークの最大値におけるポリメタクリル酸メチル換算の分子量
  2. 上記エチレン−ビニルアルコール共重合体が、
    示差屈折率検出器及び紫外可視吸光度検出器を備えるゲルパーミエーションクロマトグラフを用い、窒素雰囲気下、220℃、50時間熱処理後に測定した分子量が、下記式(2)で表される条件をさらに満たす請求項1に記載の樹脂組成物。
    (Ma−Mc)/Ma<0.45 ・・・(2)
    Mc:紫外可視吸光度検出器で測定される波長280nmでの吸収ピークの最大値におけるポリメタクリル酸メチル換算の分子量
  3. カルボン酸金属塩をさらに含有する請求項1又は請求項2に記載の樹脂組成物。
  4. 上記カルボン酸金属塩の樹脂分に対する含有量が金属元素換算で5ppm以上である請求項3に記載の樹脂組成物。
  5. 上記カルボン酸金属塩の金属元素が、マグネシウム、カルシウム及び亜鉛からなる群より選ばれる少なくとも1種である請求項3又は請求項4に記載の樹脂組成物。
  6. 請求項1から請求項5のいずれか1項に記載の樹脂組成物から形成されるバリア層と、
    このバリア層の少なくとも一方の面に積層される熱可塑性樹脂層と
    を備える多層構造体。
  7. 請求項6に記載の多層構造体からなる多層シート。
  8. 請求項6に記載の多層構造体又は請求項7に記載の多層シートからなる容器。
  9. ボイル殺菌用又はレトルト殺菌用である請求項8に記載の容器。
JP2015139179A 2014-07-11 2015-07-10 樹脂組成物、多層構造体、多層シート及び容器 Active JP6780923B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015139179A JP6780923B2 (ja) 2014-07-11 2015-07-10 樹脂組成物、多層構造体、多層シート及び容器

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014143749 2014-07-11
JP2014143749 2014-07-11
JP2015139179A JP6780923B2 (ja) 2014-07-11 2015-07-10 樹脂組成物、多層構造体、多層シート及び容器

Publications (2)

Publication Number Publication Date
JP2016029158A true JP2016029158A (ja) 2016-03-03
JP6780923B2 JP6780923B2 (ja) 2020-11-04

Family

ID=55435184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015139179A Active JP6780923B2 (ja) 2014-07-11 2015-07-10 樹脂組成物、多層構造体、多層シート及び容器

Country Status (1)

Country Link
JP (1) JP6780923B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054848A1 (ja) * 2018-09-13 2020-03-19 株式会社クラレ 樹脂組成物、成形体、二次加工品及び樹脂組成物の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5549339A (en) * 1978-10-05 1980-04-09 Wacker Chemie Gmbh Separation of aldehydes from vinyl acetate
JPH0797491A (ja) * 1993-09-29 1995-04-11 Kuraray Co Ltd 樹脂組成物および包装体
JP2001200123A (ja) * 2000-01-20 2001-07-24 Nippon Synthetic Chem Ind Co Ltd:The 樹脂組成物ペレットおよび成形物
JP2002194009A (ja) * 2000-10-18 2002-07-10 Kuraray Co Ltd エチレン−酢酸ビニル共重合体の製造方法と、この方法により得た共重合体のけん化物およびこれを含む成形物
JP2009242645A (ja) * 2008-03-31 2009-10-22 Kuraray Co Ltd エチレン−酢酸ビニル共重合体ケン化物の製造方法
WO2013187455A1 (ja) * 2012-06-13 2013-12-19 株式会社クラレ エチレン-ビニルアルコール樹脂組成物、多層シート、包装材及び容器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5549339A (en) * 1978-10-05 1980-04-09 Wacker Chemie Gmbh Separation of aldehydes from vinyl acetate
JPH0797491A (ja) * 1993-09-29 1995-04-11 Kuraray Co Ltd 樹脂組成物および包装体
JP2001200123A (ja) * 2000-01-20 2001-07-24 Nippon Synthetic Chem Ind Co Ltd:The 樹脂組成物ペレットおよび成形物
JP2002194009A (ja) * 2000-10-18 2002-07-10 Kuraray Co Ltd エチレン−酢酸ビニル共重合体の製造方法と、この方法により得た共重合体のけん化物およびこれを含む成形物
JP2009242645A (ja) * 2008-03-31 2009-10-22 Kuraray Co Ltd エチレン−酢酸ビニル共重合体ケン化物の製造方法
WO2013187455A1 (ja) * 2012-06-13 2013-12-19 株式会社クラレ エチレン-ビニルアルコール樹脂組成物、多層シート、包装材及び容器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054848A1 (ja) * 2018-09-13 2020-03-19 株式会社クラレ 樹脂組成物、成形体、二次加工品及び樹脂組成物の製造方法
CN112639016A (zh) * 2018-09-13 2021-04-09 株式会社可乐丽 树脂组合物、成型体、二次加工品及树脂组合物的制造方法
JPWO2020054848A1 (ja) * 2018-09-13 2021-08-30 株式会社クラレ 樹脂組成物、成形体、二次加工品及び樹脂組成物の製造方法
JP7161541B2 (ja) 2018-09-13 2022-10-26 株式会社クラレ 樹脂組成物、成形体、二次加工品及び樹脂組成物の製造方法

Also Published As

Publication number Publication date
JP6780923B2 (ja) 2020-11-04

Similar Documents

Publication Publication Date Title
TWI701265B (zh) 乙烯-乙烯醇共聚物、樹脂組成物、及使用此等之成形體
JP6704688B2 (ja) 樹脂組成物及び多層構造体
JP6704689B2 (ja) 樹脂組成物、多層構造体、多層シート、ブロー成形容器及び熱成形容器
JP6113723B2 (ja) エチレン−ビニルアルコール樹脂組成物、多層構造体、多層シート、容器及び包装材
TWI558728B (zh) Ethylene-vinyl alcohol copolymer resin composition and method for producing the same
JP6073860B2 (ja) エチレン−ビニルアルコール共重合体含有樹脂組成物
KR101795094B1 (ko) 수지 조성물, 그 제조 방법 및 다층 구조체
WO2015050224A1 (ja) エチレン-ビニルアルコール樹脂組成物、多層構造体、多層シート、容器及び包装材
JP6749079B2 (ja) 蒸着フィルム、包装材及び真空断熱体
JP2020196889A (ja) 樹脂組成物、多層シート、包装材及び容器
JP2020023364A (ja) ブロー成形容器、燃料容器及びブロー成形容器の製造方法
JP6454460B2 (ja) 樹脂組成物、樹脂成形体及び多層構造体
JP2015071709A (ja) 樹脂組成物、多層構造体及びそれからなる熱成形容器
JP2016029156A (ja) 樹脂組成物、フィルム、多層構造体及び包装材料
JP6454461B2 (ja) 樹脂組成物、樹脂成形体及び多層構造体
JP6780923B2 (ja) 樹脂組成物、多層構造体、多層シート及び容器
JP2020023365A (ja) 熱成形容器及びその製造方法
JPWO2018124234A1 (ja) エチレン−ビニルアルコール系共重合体ペレットおよび、共役ポリエンおよびアルカリ土類金属を含有するエチレン−ビニルアルコール系共重合体ペレットの製造方法
JP6454464B2 (ja) エチレン−ビニルアルコール樹脂組成物、多層構造体、多層シート、容器及び包装材
JP6454463B2 (ja) エチレン−ビニルアルコール樹脂組成物、多層構造体、多層シート、容器及び包装材
JP6473563B2 (ja) 樹脂組成物、多層シート、包装材及び容器
JP6653726B2 (ja) 樹脂組成物、多層構造体、熱成形容器及びその製造方法
JP6653728B2 (ja) 樹脂組成物、多層構造体、熱成形容器及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190730

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20191025

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200602

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200714

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20200811

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20200915

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201015

R150 Certificate of patent or registration of utility model

Ref document number: 6780923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150