JP2016024056A - Fatigue limit stress specification system and method for specifying fatigue limit stress - Google Patents

Fatigue limit stress specification system and method for specifying fatigue limit stress Download PDF

Info

Publication number
JP2016024056A
JP2016024056A JP2014148402A JP2014148402A JP2016024056A JP 2016024056 A JP2016024056 A JP 2016024056A JP 2014148402 A JP2014148402 A JP 2014148402A JP 2014148402 A JP2014148402 A JP 2014148402A JP 2016024056 A JP2016024056 A JP 2016024056A
Authority
JP
Japan
Prior art keywords
fatigue limit
limit stress
load
temperature
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014148402A
Other languages
Japanese (ja)
Other versions
JP6397678B2 (en
Inventor
入江 庸介
Yasusuke Irie
庸介 入江
裕嗣 井上
Hirotsugu Inoue
裕嗣 井上
亮悟 河合
Ryogo Kawai
亮悟 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2014148402A priority Critical patent/JP6397678B2/en
Publication of JP2016024056A publication Critical patent/JP2016024056A/en
Application granted granted Critical
Publication of JP6397678B2 publication Critical patent/JP6397678B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fatigue limit stress specification system capable of finding the fatigue limit stress of an object to be measured with high accuracy.SOLUTION: A load is applied repeatedly, by a shaker (1a), to an object (1b) to be measured, the object to be measured at that time is photographed by an infrared camera (1c), and the photographed image is processed by an information processing device (1d). The information processing device (1d) has a dissipated energy measurement step (21) for Fourier-transforming the image, acquiring the temperature amplitude image of the fundamental frequency component of shaking and a second harmonic component, and extracting the dissipated energy of a pixel area in which the inclination of load characteristic relative to the temperature amplitude image of the fundamental frequency component is maximum within an area indicating the maximum of the temperature amplitude image of the second harmonic component, and a fatigue limit stress specification step (22) for specifying a fatigued limit stress from the measurement result of the dissipated energy measurement step (21), making it possible to standardize a fatigued limit stress specification process and find a fatigued limit stress with high accuracy.SELECTED DRAWING: Figure 1

Description

本発明は、繰り返し応力振幅を測定対象物に加えて、材料内部のエネルギー散逸によって生じる平均温度上昇量の一定領域内における分布を赤外線サーモグラフィによって測定する散逸エネルギー測定手段を用いた疲労限度応力特定システムおよび疲労限度応力特定方法に関するものである。   The present invention relates to a fatigue limit stress identification system using a dissipative energy measuring means for applying a repeated stress amplitude to an object to be measured and measuring a distribution of an average temperature rise caused by energy dissipation within a material within a certain region by infrared thermography. And a fatigue limit stress identification method.

従来、疲労限度応力の特定方法としては、例えば、非特許文献1〜5、特許文献1,2に記載されているようなものが報告されている。
図13は、非特許文献1に示された疲労限度応力の特定方法を示している。
Conventionally, methods for identifying fatigue limit stress have been reported, for example, as described in Non-Patent Documents 1 to 5 and Patent Documents 1 and 2.
FIG. 13 shows a method for specifying the fatigue limit stress shown in Non-Patent Document 1.

これは、XC55スチール試験片に加えられる周期的な引張−圧縮荷重を段階的に変化させて、温度上昇量を赤外線サーモグラフィで測定した結果を示す。荷重380Mpa付近で、荷重に対する温度上昇量の傾きが変化する様子を示している。非特許文献1では、この傾きが変化する点がXC55スチール試験片の疲労限度応力荷重とほぼ一致することを述べている。   This shows the result of measuring the amount of temperature increase by infrared thermography by changing the periodic tensile-compressive load applied to the XC55 steel test piece stepwise. A state is shown in which the gradient of the temperature rise with respect to the load changes in the vicinity of the load of 380 Mpa. Non-Patent Document 1 describes that the point at which the slope changes substantially matches the fatigue limit stress load of the XC55 steel specimen.

非特許文献2では、焼鈍された鋳物(UNI3545−68)でノッチなしの試験片、および棒溶接接合された自動車部品に対して、非特許文献1と同様の報告がされている。
非特許文献3では、クランクシャフトなど自動車部品への適応例が示されている。
In Non-Patent Document 2, a report similar to that in Non-Patent Document 1 is reported for an annealed casting (UNI 3545-68) and a test piece without a notch, and an automobile part joined by bar welding.
Non-Patent Document 3 shows an application example to automobile parts such as a crankshaft.

非特許文献4では、XC48(カーボン含有量0.48%の炭素鋼)スチール、残留応力を除去したステンレス鋼SUS316L、及びアルミニウムAl7010、Al2024(Al−Cu系)について、試験片レベルであるが非特許文献1と同様の疲労限度応力の特定方法が述べられている。   In Non-Patent Document 4, although XC48 (carbon steel with a carbon content of 0.48%) steel, stainless steel SUS316L from which residual stress has been removed, and aluminum Al7010 and Al2024 (Al-Cu system) are at the test piece level, A method for specifying the fatigue limit stress similar to that of Patent Document 1 is described.

また、非特許文献5では、鋼のエネルギー散逸を疲労限度応力以下の荷重では擬弾性変化に関連付け、応力の二乗に比例するとして二次の関数による近似線を用い、疲労限度応力以上の荷重ではミクロな塑性変形と関連付け、応力を負荷したときにミクロな塑性変形が単位体積あたりいくつの粒子において発生するのかを確率分布を求めることによって、応力の累乗に比例することが述べられている。
特許文献1では、応力集中係数を評価する工程、散逸エネルギーを測定する工程、疲労限度を特定する工程から構成される。応力集中係数を評価する工程では応力集中係数3を基準値として、それ以上、未満であることを判断する。散逸エネルギーを測定する工程では、撮影された温度画像を加振周波数の2〜3倍の周波数で高速フーリエ変換することで得られる温度振幅画像、または応力分布画像を用いて、温度振幅または応力振幅の分布画像の最大を示すピクセルに着目し、散逸エネルギー曲線を作成することが記載されている。疲労限度を特定する工程では、作成された散逸エネルギー曲線を構成する測定点の内、少なくとも3点以上用いて、統計処理によって引かれる近似線の交点によって求められることが記載されている。更に、応力集中係数を評価する工程で求められた情報をもとに、応力集中係数が3以上であれば散逸エネルギー曲線の屈曲点の初段を疲労限度とし、それ未満では初段以降の屈曲点を疲労限度とすることが記載されている。また、特許文献1で示される疲労限度応力の特定方法は、少なくとも1つ以上のボルトまたはネジからなる締結体と、締結体によって締結される1つ以上の被締結体から構成される金属締結体へも適応可能で、それらを構成する材料は主成分が主に鉄からなる、炭素鋼、オーステナイト系ステンレス鋼であることが記載されている。
In Non-Patent Document 5, the energy dissipation of steel is related to pseudoelastic change for loads below the fatigue limit stress, and an approximate line based on a quadratic function is used as proportional to the square of the stress. In connection with micro plastic deformation, it is stated that the probability distribution is proportional to the power of stress by obtaining the probability distribution of how many particles per unit volume the micro plastic deformation occurs when stress is applied.
Patent Document 1 includes a step of evaluating a stress concentration factor, a step of measuring dissipation energy, and a step of specifying a fatigue limit. In the step of evaluating the stress concentration factor, the stress concentration factor 3 is used as a reference value, and it is determined that the stress concentration factor is more than or less than that. In the step of measuring the dissipated energy, the temperature amplitude or the stress amplitude is obtained by using a temperature amplitude image or a stress distribution image obtained by performing a fast Fourier transform on the photographed temperature image at a frequency two to three times the excitation frequency. It is described that a dissipative energy curve is created by focusing on a pixel indicating the maximum of the distribution image. It is described that, in the step of specifying the fatigue limit, it is determined by the intersection of approximate lines drawn by statistical processing using at least three or more measurement points constituting the created dissipation energy curve. Furthermore, based on the information obtained in the process of evaluating the stress concentration factor, if the stress concentration factor is 3 or more, the first stage of the inflection point of the dissipative energy curve is set as the fatigue limit. It is stated that it is a fatigue limit. In addition, the method for specifying the fatigue limit stress disclosed in Patent Document 1 is a metal fastening body including a fastening body composed of at least one bolt or screw and one or more fastened bodies fastened by the fastening body. It is described that the materials constituting them are carbon steel and austenitic stainless steel whose main component is mainly iron.

特許文献2では、散逸エネルギーを測定する工程、疲労限度を特定する工程から構成される。散逸エネルギーを測定する工程では、散逸エネルギーを測定するタイミングについて具体的に記載され、散逸エネルギーとひずみ量で表されるグラフのヒステリシスループの面積が一定、もしくは、発生応力範囲の周波数成分の1倍、2倍、3倍の周波数成分が一定変化になるタイミングで測定することが記載されている。また、この時着目するピクセルについては主応力和もしくは、発生応力範囲の周波数成分が最大を示すピクセルである。疲労限度を特定する工程では、疲労限度の特定に用いるデータ範囲について、高サイクル疲労である荷重領域か、横軸を荷重、縦軸を温度変化量もしくは主応力和のグラフ、横軸を主応力和、縦軸を散逸エネルギーとしたグラフで急激な変化をしない領域と記載されている。更に、疲労限度の特定に用いる近似線は、2本の近似線と近似に用いるデータ点の残差の二乗和が最小となるように引かれることが記載されている。   Patent Document 2 includes a process for measuring dissipated energy and a process for specifying a fatigue limit. In the process of measuring the dissipated energy, the timing for measuring the dissipated energy is specifically described, and the area of the hysteresis loop of the graph represented by the dissipated energy and the strain amount is constant, or 1 time the frequency component of the generated stress range It is described that the measurement is performed at a timing at which the frequency components of 2 times and 3 times become constant changes. Further, the pixel of interest at this time is a pixel in which the main stress sum or the frequency component of the generated stress range is maximum. In the process of specifying the fatigue limit, the data range used to specify the fatigue limit is the load region that is high cycle fatigue, the horizontal axis is the load, the vertical axis is the graph of temperature change or principal stress sum, and the horizontal axis is the principal stress. It is described as a region where there is no sudden change in the graph with the sum and dissipated energy on the vertical axis. Furthermore, it is described that the approximate line used for specifying the fatigue limit is drawn so that the sum of squares of the residuals of the two approximate lines and the data point used for the approximation is minimized.

特許第5411020号公報Japanese Patent No. 5411020 特開2012−163420号公報JP 2012-163420 A

M.P. Luong,“Fatigue limit evaluation of metals using an infrared thermographic technique”Mechanics of Materials Vol. 28,Issues 1−4 (July 1998),p.155-163M.P. Luong, “Fatigue limit evaluation of metals using an infrared thermographic technique” Mechanics of Materials Vol. 28, Issues 1–4 (July 1998), p.155-163 G. La Rosa and A. Risitano,“Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components”International Journal of Fatigue Vol. 22,Issues 1 (January 2000),p.65-73G. La Rosa and A. Risitano, “Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components” International Journal of Fatigue Vol. 22, Issues 1 (January 2000), p.65-73 矢尾板達也、「赤外線サーモグラフィによる応力画像と散逸エネルギー測定による疲労限界予測」日本非破壊検査協会,2002年第51巻第6号,p.333-337Tatsuya Yao, "Fatigue limit prediction by infrared thermography stress image and dissipation energy measurement" Japan Nondestructive Inspection Association, Vol. 51, No. 6, 2002, p.333-337 J.C. Krapez and D. Pacou,“Thermography detection of damage initiation during fatigue tests”,Proceedings of SPIE Vol. 4710(March 2002)p.435-449J.C. Krapez and D. Pacou, “Thermography detection of damage initiation during fatigue tests”, Proceedings of SPIE Vol. 4710 (March 2002) p.435-449 F. Cura, A. E. Gallinatti and R. Sesana, “Dissipative aspects in thermographic methods”Journal of Fatigue & Fracture of Engineering Materials & Structures, Vol.35, Issue 12 (December 2012), p.1133-1147F. Cura, A. E. Gallinatti and R. Sesana, “Dissipative aspects in thermographic methods” Journal of Fatigue & Fracture of Engineering Materials & Structures, Vol. 35, Issue 12 (December 2012), p.1133-1147

しかしながら、散逸エネルギー測定による疲労限度応力の特定方法については、以前から多くの報告がなされているものの、その多くは研究者各々が独自の主観的判断に基づいた測定および疲労限度応力特定を行っていた。例えば、散逸エネルギーを抽出するピクセルの選択方法や近似線の求め方、使用するデータ範囲など基本的な条件についての決定方法である。   However, although there have been many reports on how to identify fatigue limit stress by measuring dissipative energy, many researchers have made measurements based on their own subjective judgments and identified fatigue limit stress. It was. For example, it is a method for determining basic conditions such as a method for selecting a pixel for extracting dissipated energy, a method for obtaining an approximate line, and a data range to be used.

これらの理由として、散逸エネルギー測定による疲労限度応力の特定方法については、測定対象物の疲労試験から求められた疲労限度応力と散逸エネルギー測定から求められた疲労限度応力の比較による現象論から特定可能かどうかの議論が殆どであった。また、特定に用いられる近似線の引き方も疲労限度応力以下の荷重では擬弾性変化に関連付けられることから二次関数で示されているが、測定データによる裏付けは示されず、鋼が擬似弾性的な変化をしているであろうという推測をもとに二次関数での近似が述べられている。   For these reasons, the method for specifying the fatigue limit stress by measuring the dissipative energy can be specified from the phenomenology by comparing the fatigue limit stress obtained from the fatigue test of the object to be measured and the fatigue limit stress obtained from the dissipated energy measurement. There was almost no debate about whether or not. In addition, the method of drawing the approximate line used for identification is shown by a quadratic function because it is related to the pseudoelastic change at loads below the fatigue limit stress, but it is not supported by the measurement data, and the steel is pseudoelastic. Approximation with a quadratic function is described based on the assumption that it is likely to change.

一方、疲労限度応力以上では、応力を負荷したときにミクロな塑性変形が単位体積あたりいくつの結晶粒において発生するのかを確率分布として求めた結果から、応力の累乗に比例するとしてn次の多項式で近似するとしているが、測定データに対して次数を高くすることによってフィッティング性を高めているだけで、決して疲労のメカニズムであるミクロな塑性変形の発生を反映したものではない。   On the other hand, when the stress is greater than the fatigue limit stress, the nth order polynomial is assumed to be proportional to the power of the stress from the result of obtaining the probability distribution of how many crystal grains per unit volume when micro plastic deformation occurs when stress is applied. However, it does not reflect the occurrence of micro plastic deformation, which is a fatigue mechanism, by merely increasing the fitting property by increasing the order of the measurement data.

更に、応用面においても引張、圧縮など荷重の負荷方法によっても異なる結果が得られるなど不明な点が多く、物性値として定性的あるいは定量的に適応可能な範囲が不明である点などが挙げられる。   In addition, there are many unclear points such as different results depending on the load method such as tension and compression in terms of application, and the range that can be applied qualitatively or quantitatively as physical property values is unknown. .

このため、単品部品や非常に単純な部品および複雑な構成の応力集中部に関して疲労限度応力を客観的に特定できる方法およびシステムは無かった。
本発明は、応力集中を有する材料や部品の疲労限度応力を客観的に特定可能な方法およびそれらを実現するシステムを提供することを目的とする。
For this reason, there has been no method and system that can objectively specify the fatigue limit stress for a single component, a very simple component, or a stress concentration portion having a complicated configuration.
It is an object of the present invention to provide a method capable of objectively specifying the fatigue limit stress of a material or part having a stress concentration and a system for realizing the method.

それ故に、本発明の目的は、上記課題を解決するものであり、散逸エネルギーを抽出するピクセルの選択から近似線を表現する関数の次数など基本的な散逸エネルギーによる疲労限度応力特定プロセスや測定対象物の適応可能な範囲を明確にすると共に、高精度に散逸エネルギー測定が可能な疲労限度応力特定システム、および疲労限度応力特定方法を提供することである。   Therefore, an object of the present invention is to solve the above-mentioned problem, and to identify a fatigue limit stress by a basic dissipative energy such as the order of a function expressing an approximate line from selection of a pixel from which the dissipated energy is extracted and a measurement target. It is to provide a fatigue limit stress identification system and a fatigue limit stress identification method capable of clarifying the applicable range of an object and measuring a dissipated energy with high accuracy.

本発明は、疲労限度応力特定システムおよび疲労限度応力特定方法に向けられている。そして、上記目的を達成するために、本発明の疲労限度応力特定システムは、測定対象物に作用させる荷重を段階的に増加させ、前記荷重毎に発生する前記測定対象物の温度振幅を測定する疲労限度応力特定システムであって、測定対象物に対して荷重を繰り返し加える加振機と、前記測定対象物の温度画像を得る赤外線カメラと、前記赤外線カメラから得た前記測定対象物の温度画像を処理するフーリエ変換手段を有する情報処理装置とを備え、前記情報処理装置は、散逸エネルギーを測定する散逸エネルギー測定工程と、前記散逸エネルギー測定工程から得られた測定結果から疲労限度応力を特定する疲労限度応力特定工程を有し、前記散逸エネルギー測定工程は、前記赤外線カメラが撮影した温度画像より、加振の基本周波数の成分および第2高調波の成分の温度振幅画像を取得し、前記第2高調波の成分の温度振幅画像の最大を示す領域内において、前記基本周波数の成分の温度振幅画像に対する荷重特性の傾きが最大であるピクセル領域の散逸エネルギーを抽出する、ことを特徴とする。   The present invention is directed to a fatigue limit stress identification system and a fatigue limit stress identification method. And in order to achieve the said objective, the fatigue limit stress specific system of this invention increases the load made to act on a measurement object in steps, and measures the temperature amplitude of the said measurement object generate | occur | produced for every said load. A fatigue limit stress identification system, a vibrator that repeatedly applies a load to a measurement object, an infrared camera that obtains a temperature image of the measurement object, and a temperature image of the measurement object obtained from the infrared camera An information processing device having a Fourier transform means for processing the energy, and the information processing device specifies a dissipated energy measuring step for measuring the dissipated energy and a fatigue limit stress from the measurement result obtained from the dissipated energy measuring step. A fatigue limit stress specifying step, and the dissipative energy measuring step includes a component of a fundamental frequency of excitation from a temperature image taken by the infrared camera. Temperature amplitude image of the second harmonic component is acquired, and the gradient of the load characteristic with respect to the temperature amplitude image of the fundamental frequency component is maximum in the region indicating the maximum of the temperature amplitude image of the second harmonic component. Extracting the dissipated energy of a pixel region.

前記疲労限度応力特定システムの概要を、一例として図1(a)(b)に示す。加振機1aに固定した測定対象物としての試験片1bの温度を赤外線カメラ1cによって測定する。赤外線カメラ1cから得た温度画像を処理する情報処理装置1dは、散逸エネルギー測定工程21と疲労限度応力特定工程22を有している。情報処理装置1dにはモニタ1eが接続されている。   An outline of the fatigue limit stress specifying system is shown in FIGS. 1A and 1B as an example. The temperature of the test piece 1b as the measurement object fixed to the vibration exciter 1a is measured by the infrared camera 1c. The information processing apparatus 1d that processes the temperature image obtained from the infrared camera 1c has a dissipated energy measurement step 21 and a fatigue limit stress identification step 22. A monitor 1e is connected to the information processing apparatus 1d.

散逸エネルギー測定工程21は、加振の基本周波数fの成分およびその2倍の周波数2f(これを第2高調波と称す)の成分の温度振幅画像を取得し、図3(a)に示されるように第2高調波の成分の温度振幅画像の最大を示す領域23内において、図3(b)に示す基本周波数成分の温度振幅画像に対する荷重特性の傾きが最大であるピクセルを選択する。なお、図3(a)における仮想線24は、測定対象物としての試験片1bの輪郭を示している。   The dissipative energy measurement step 21 acquires temperature amplitude images of the component of the fundamental frequency f of the vibration and the component of the frequency 2f (referred to as the second harmonic) that is twice that, as shown in FIG. In this way, in the region 23 indicating the maximum temperature amplitude image of the second harmonic component, a pixel having the maximum inclination of the load characteristic with respect to the temperature amplitude image of the fundamental frequency component shown in FIG. 3B is selected. In addition, the virtual line 24 in Fig.3 (a) has shown the outline of the test piece 1b as a measuring object.

疲労限度応力特定工程22は、横軸に前記加振の基本周波数の成分である温度振幅、縦軸に第2高調波の成分である温度振幅をプロットすることを特徴とする。   The fatigue limit stress specifying step 22 is characterized in that the horizontal axis plots the temperature amplitude that is a component of the fundamental frequency of the excitation, and the vertical axis plots the temperature amplitude that is a second harmonic component.

図4は、横軸に基本周波数の成分の主応力和(Δσ=−ΔT/(k・T)、ΔT:温度変化量,k:熱弾性係数,T:絶対温度)、縦軸に加振の基本周波数の第2高調波の成分である温度振幅をプロットした図である。試験片など単純な形状をした測定対象物であれば、加振機などから負荷された荷重と測定対象物に発生する応力は比例するが、実物の測定対象物は接合部や切り欠きなど複雑な形状をしているため、加振機で負荷された荷重と実物に発生する応力は必ずしも比例するとは限らない。一方、第2高調波の成分の温度振幅が得られる部分の基本周波数の成分の温度振幅成分は、測定対象物に発生する応力成分に依存している。そのため、横軸に荷重ではなく、基本周波数の成分の温度振幅を用いることが望ましい。 4, the main stress sum of components of the fundamental frequency on the horizontal axis (Δσ = -ΔT / (k m · T), ΔT: temperature change, k m: thermoelastic coefficient, T: absolute temperature), the longitudinal axis It is the figure which plotted the temperature amplitude which is a component of the 2nd harmonic of the fundamental frequency of excitation. In the case of a measurement object with a simple shape such as a test piece, the load applied from a shaker or the like is proportional to the stress generated in the measurement object, but the actual measurement object is complex, such as a joint or notch. Therefore, the load applied by the vibrator and the stress generated in the actual product are not always proportional. On the other hand, the temperature amplitude component of the fundamental frequency component where the temperature amplitude of the second harmonic component is obtained depends on the stress component generated in the measurement object. Therefore, it is desirable to use the temperature amplitude of the fundamental frequency component instead of the load on the horizontal axis.

疲労限度応力特定工程22では、自由度調整済み決定係数およびGauss - Newton法によって求められる2本の近似線の交点から疲労限度応力を特定する。
また、疲労限度応力特定工程22で用いられる近似線は、y=ax+bで表される多項式と直線であることを特徴とする。
In the fatigue limit stress specifying step 22, the fatigue limit stress is specified from the intersection of two approximate lines obtained by the determination coefficient adjusted for the degree of freedom and the Gauss-Newton method.
The approximate line used in the fatigue limit stress specifying step 22 is characterized by a polynomial and a straight line represented by y = ax n + b.

また、疲労限度応力特定工程22において、前記y=ax+bで表される多項式の次数nは2であることを特徴とする。
測定対象物に加えられる荷重が低い領域、すなわち疲労限度応力以下の領域において、内部摩擦によって生じるエネルギー散逸が熱として発生しているという仮定のもとに行ったシミュレーションの結果と赤外線カメラによって測定された実験結果とを比較検証するとともに、実験結果に対して関数の次数を変えてフィッティングすることで適切な次数を求めるために検証した。その結果、散逸されるエネルギーの荷重振幅に対する増加が次数n=2とする2次関数で表されることを導き出した。ここで前記y=ax+bで表される多項式の切片bは赤外線カメラで測定された散逸エネルギーのノイズに相当する。
In the fatigue limit stress specifying step 22, the degree n of the polynomial represented by y = ax n + b is 2.
In the region where the load applied to the object to be measured is low, that is, in the region below the fatigue limit stress, the result of the simulation conducted under the assumption that the energy dissipation caused by internal friction is generated as heat and measured by an infrared camera. The test results were compared and verified, and verification was performed in order to obtain an appropriate order by fitting the test results by changing the order of the function. As a result, it was derived that the increase of the energy dissipated with respect to the load amplitude is expressed by a quadratic function with the order n = 2. Here, the intercept b of the polynomial expressed by y = ax n + b corresponds to noise of dissipated energy measured by an infrared camera.

また、疲労限度応力特定工程22において、前記直線はy=cx+dで表されることを特徴とする。
測定対象物に加えられる荷重が高い領域、すなわち疲労限度応力以上の領域において、3次元の弾塑性解析を行うことで荷重振幅に比例して増加し、直線で近似できることを導き出した。また、その弾塑性解析で得られた結果は、赤外線カメラを用いた散逸エネルギー測定の結果と非常に良く一致する結果が得られることからもy=cx+dで表される直線で近似することが望ましい。
In the fatigue limit stress specifying step 22, the straight line is expressed by y = cx + d.
In the region where the load applied to the object to be measured is high, that is, in the region exceeding the fatigue limit stress, the three-dimensional elasto-plastic analysis increased in proportion to the load amplitude, and it was derived that it can be approximated by a straight line. In addition, the result obtained by the elasto-plastic analysis is preferably approximated by a straight line represented by y = cx + d because a result that matches the result of the dissipated energy measurement using an infrared camera very well is obtained. .

また、疲労限度応力特定工程22で用いられる自由度調整済み決定係数およびGauss - Newton法によって求められる2本の近似線は、2本の近似線とデータのフィッティングによって求められる残差の二乗和が最小になるように近似されることを特徴とする。   In addition, the degree-of-freedom-adjusted coefficient of determination used in the fatigue limit stress specifying step 22 and the two approximate lines obtained by the Gauss-Newton method are the sum of squares of the residuals obtained by fitting the two approximate lines and the data. It is characterized by being approximated to be minimized.

詳細には、荷重または主応力和の低い方から最低3点の実験データをy=ax+bの2次関数に対してGauss - Newton法で近似し、残りのデータを用いてy=cx+dでGauss - Newton法を用い近似し、2つの近似線の残差の二乗和を求める。次に2次関数y=ax+bで近似するデータを1つ増やして近似し、残りのデータを直線y=cx+dで近似し、2つの近似線の残渣の二乗和を求める。その作業を繰り返すことによって図5の荷重振幅の境界に対する残差の二乗和の値が得られる。この残差の二乗和が最小になる近似線の組み合わせが最も実験結果に対してフィッティングされた近似線となる。 Specifically, the experimental data of at least three points from the lower load or principal stress sum is approximated by a Gauss-Newton method for a quadratic function of y = ax 2 + b, and y = cx + d is used with the remaining data. Approximate using Gauss-Newton method and find the sum of squares of the residuals of two approximate lines. Next, the approximation is performed by increasing the data approximated by the quadratic function y = ax 2 + b, and the remaining data is approximated by a straight line y = cx + d to obtain the sum of squares of the residues of the two approximate lines. By repeating this operation, the value of the sum of squares of the residual with respect to the boundary of the load amplitude in FIG. 5 is obtained. The combination of approximate lines that minimizes the sum of squares of the residuals is the approximate line that is most fitted to the experimental results.

また、疲労限度応力特定工程22で用いられる前記2本の近似線は、2本の近似曲線の自由度調整済み決定係数Rの相乗平均が最大になる場合のデータ範囲を用いることによって求められることを特徴とする。 The two approximate lines used in the fatigue limit stress specifying step 22 are obtained by using a data range when the geometric mean of the degree-of-freedom adjusted determination coefficient R2 of the two approximate curves is maximized. It is characterized by that.

上記残差の二乗和が最小値となる2つの近似線を求め、その2つの近似線の交点から疲労限度応力を特定することは可能であるが、データの使用範囲によっては、異なる疲労限度応力が求まる場合がある。そこで、2つの近似線の残差の二乗和の最小を求め、同時に2つの近似線の自由度調整済み決定係数の相乗平均が最大となる近似線を求めることで適切な疲労限度応力を特定できる。   It is possible to obtain two approximate lines where the sum of squares of the residuals is the minimum value and specify the fatigue limit stress from the intersection of the two approximate lines, but depending on the range of use of the data, different fatigue limit stresses May be found. Therefore, it is possible to identify an appropriate fatigue limit stress by obtaining the minimum of the sum of squares of the residuals of the two approximate lines and simultaneously obtaining the approximate line that maximizes the geometric mean of the coefficients of determination adjusted for the degrees of freedom of the two approximate lines. .

自由度調整済み決定係数とは、多項式回帰モデルに対する決定係数(寄与率)の自由度を調整して、多項式回帰モデルを安定させる手法である。例えば、多項式の次数を大きくすると、自由度は増えるがモデルが不安定になる。一方、次数を減らせば自由度は減るが、モデルは安定する。   The degree-of-freedom-adjusted determination coefficient is a method of stabilizing the polynomial regression model by adjusting the degree of freedom of the determination coefficient (contribution rate) to the polynomial regression model. For example, if the degree of the polynomial is increased, the degree of freedom increases but the model becomes unstable. On the other hand, decreasing the order reduces the degree of freedom but stabilizes the model.

多項式回帰モデルに対する決定係数Rは回帰曲線を The coefficient of determination R 2 for the polynomial regression model is a regression curve

とし、そのx部分にx,x,・・・,xを代入した時の予測値をそれぞれ、 And the predicted values when substituting x 1 , x 2 ,..., X n for the x part,

とすると If

となる。この時、決定係数Rは以下の式で定義できる。 It becomes. At this time, the coefficient of determination R 2 may be defined by the following equation.

自由度調整済み決定係数は以下の形で与えられる。 The degree of freedom adjusted coefficient of determination is given in the following form.

この値が1に近づくほど、モデルが安定し、フィッティングが良好という結果となる。通常、自由度調整済み決定係数は、近似線を表す関数の次数を求めることも可能であるが、2つの近似線を求め、その交点から得られる疲労限度応力を特定するためのデータ範囲も限定することも可能であり、疲労限度応力の特定精度を向上することができる。 The closer this value is to 1, the more stable the model and the better the fitting. In general, the degree of freedom adjusted coefficient of determination can be used to determine the order of a function that represents an approximate line, but the data range for determining the fatigue limit stress obtained from the intersection of two approximate lines is also limited. It is also possible to improve the accuracy of specifying the fatigue limit stress.

本発明によれば、測定対象物に対して加振機によって荷重を繰り返し加え、そのときの測定対象物を赤外線カメラで撮影し、これを散逸エネルギー測定工程と、疲労限度応力特定工程によって処理して疲労限度応力を特定するので、疲労限度応力特定プロセスを標準化し、応力集中を有する材料や部品の疲労限度応力を、主観的な判断に頼ることなく客観的に疲労限度応力を正確に求めることができる。   According to the present invention, a load is repeatedly applied to an object to be measured by a shaker, and the object to be measured at that time is photographed with an infrared camera, and this is processed by a dissipative energy measurement process and a fatigue limit stress identification process. Since the fatigue limit stress is specified, the fatigue limit stress identification process should be standardized to accurately determine the fatigue limit stress objectively without relying on subjective judgment of the fatigue limit stress of stress-concentrated materials and parts. Can do.

(a)本発明の実施の形態1における試験片を加振機に固定した状態を示す正面図と、(b)その側面図と試験片を撮影する赤外線カメラの情報処理装置の構成図(A) Front view showing a state in which the test piece in Embodiment 1 of the present invention is fixed to a vibration exciter, (b) A side view thereof and a configuration diagram of an information processing apparatus of an infrared camera for photographing the test piece 本発明の実施の形態1における散逸エネルギー測定工程のフローチャート図The flowchart figure of the dissipated energy measurement process in Embodiment 1 of this invention. (a)本発明の第2高調波の成分の温度振幅画像分布を示す図と、(b)本発明における荷重振幅に対する基本周波数の温度振幅を示す図(A) The figure which shows the temperature amplitude image distribution of the component of the 2nd harmonic of this invention, (b) The figure which shows the temperature amplitude of the fundamental frequency with respect to the load amplitude in this invention 本発明の横軸に基本周波数の成分の温度振幅の主応力和、縦軸に第2高調波の成分である温度振幅をプロットした図The horizontal axis of the present invention plots the principal stress sum of the temperature amplitude of the fundamental frequency component and the vertical axis plots the temperature amplitude of the second harmonic component 本発明の荷重振幅の境界に対する残差の二乗和の値を示す図The figure which shows the value of the square sum of the residual with respect to the boundary of the load amplitude of this invention 本発明の実施の形態1における曲率半径rhを有する測定対象物である試験片1bの形状及び寸法を示す図View showing the shape and dimensions of the test piece 1b is a measurement object having a radius of curvature rh 0 in the first embodiment of the present invention 本発明の実施の形態1における散逸エネルギー測定の原理を説明する図The figure explaining the principle of the dissipation energy measurement in Embodiment 1 of this invention (a)疲労試験前の試験片と(b)疲労試験後の試験片の破断箇所を示す写真(A) A photograph showing a fracture portion of a specimen before a fatigue test and (b) a specimen after a fatigue test (a)本発明の実施の形態1における切欠き部の曲率半径がrh=2mmの試験片における散逸エネルギー測定の結果を示す図と、(b)ノッチ部の曲率半径がrh=1mmの試験片の散逸エネルギー測定の結果を示す図And shows the results of dissipated energy measurement radius of curvature of the notch in the first embodiment of the present invention (a) is in the rh 0 = 2 mm of the test piece, (b) the radius of curvature of the notch is rh 0 = 1 mm of Diagram showing the results of dissipated energy measurement of the test piece (a)本発明の実施の形態1における切欠き部の曲率半径がrh=2mmの試験片の疲労SN曲線を示す図と、(b)ノッチ部の曲率半径がrh=1mmの試験片の疲労SN曲線を示す図(A) a diagram showing the fatigue SN curve radius of curvature rh 0 = 2 mm specimens cut portion in the first embodiment of the present invention, (b) the radius of curvature of the notch is rh 0 = 1 mm specimens Of fatigue SN curve (a)本発明の実施の形態2における荷重振幅に対する第2高調波の成分である温度振幅をプロットした図、(b)本発明の実施の形態2における加振の基本周波数の成分の主応力和に対する第2高調波の成分である温度振幅をプロットした図(A) The figure which plotted the temperature amplitude which is a component of the 2nd harmonic with respect to the load amplitude in Embodiment 2 of this invention, (b) The main stress of the component of the fundamental frequency of excitation in Embodiment 2 of this invention A plot of temperature amplitude, which is the component of the second harmonic relative to the sum (a)本発明の実施の形態7における全てのデータ範囲で残差の二乗和が最小になる近似線を引いた図と、(b)不自然な第2高調波の温度振幅の上昇を除去した状態で残差の二乗和が最小になる近似線を引いた図(A) The drawing which drawn the approximate line from which the sum of squares of a residual becomes the minimum in all the data ranges in Embodiment 7 of this invention, (b) Eliminating the rise in the temperature amplitude of an unnatural 2nd harmonic. Drawing an approximate line that minimizes the sum of squared residuals 従来の疲労箇所の特定方法に用いられるスチール試験片の荷重に対する温度上昇量を示す図The figure which shows the temperature rise amount with respect to the load of the steel test piece used for the identification method of the conventional fatigue location

以下に、本発明の各実施の形態について、図面を参照しながら説明する。
(実施の形態1)
図1〜図10は本発明の実施の形態1を示す。
Embodiments of the present invention will be described below with reference to the drawings.
(Embodiment 1)
1 to 10 show Embodiment 1 of the present invention.

図1(a)(b)は、本発明の実施の形態1における疲労限度応力特定システムを示す。疲労限度応力特定システムは、加振機1aに固定した測定対象物としての試験片1bの温度を、高精度赤外線カメラ(以下、単に赤外線カメラと記す)1cによって測定する。   1 (a) and 1 (b) show a fatigue limit stress identification system according to Embodiment 1 of the present invention. The fatigue limit stress identification system measures the temperature of a test piece 1b as an object to be measured fixed to a vibrator 1a by a high-precision infrared camera (hereinafter simply referred to as an infrared camera) 1c.

試験片1bは、図6に示すように幅Bで厚みtの短冊状で、長さ方向の中央には両側から中心に向かって深くなるノッチ25が形成されている。ノッチ25は曲率半径rhで、ノッチ25の深さがd、bは、応力集中部の最小断面の幅の半分である。 As shown in FIG. 6, the test piece 1b has a strip shape with a width B and a thickness t, and a notch 25 is formed at the center in the length direction so as to deepen from both sides toward the center. The notch 25 has a radius of curvature rh 0 and the depth of the notch 25 is d and b are half the width of the minimum cross section of the stress concentration portion.

加振機1aとしては、油圧サーボ疲労試験機(島津製作所,サーボパルサ,最大試験能力:10kN)を用いた。加振機1aの荷重振幅は、荷重制御により0kN〜8.5kNまで0.1kN毎に引張荷重を変えて測定した。加振による基本周波数fは25Hz一定とした。   As the vibrator 1a, a hydraulic servo fatigue tester (Shimadzu Corporation, servo pulser, maximum test capacity: 10 kN) was used. The load amplitude of the vibrator 1a was measured by changing the tensile load every 0.1 kN from 0 kN to 8.5 kN by load control. The fundamental frequency f due to vibration was constant at 25 Hz.

赤外線カメラ1cとしては、Cedip社のSilver480Mを用いた。赤外線カメラ1cで測定した温度画像は、フーリエ変換手段を有する情報処理装置1dでデータ処理する。情報処理装置1dには、モニタ1eが接続されている。   As the infrared camera 1c, Silver480M manufactured by Cedip was used. The temperature image measured by the infrared camera 1c is processed by the information processing apparatus 1d having Fourier transform means. A monitor 1e is connected to the information processing apparatus 1d.

情報処理装置1dには、後述するピクセル選択法のフローチャートが構築されている。
散逸エネルギー測定の原理について図7を用いて説明する。
繰り返し負荷を受けた試験片1bは、熱弾性効果によって、加振機1aによる加振周波数と同一周波数の繰り返し温度変化2aを生じるが、それに加えて材料内部のエネルギー散逸によって平均温度上昇2cを生じる。ただし、熱弾性効果による温度変化2aおよび散逸エネルギーによる平均温度上昇2cは、外乱の温度変化2bに比べて小さい。このため試験片1bの温度変化量ΔTを表すと下記(式1)のようになる。
In the information processing apparatus 1d, a flowchart of a pixel selection method described later is constructed.
The principle of dissipated energy measurement will be described with reference to FIG.
The test piece 1b that has been subjected to repeated loads generates a repeated temperature change 2a having the same frequency as the excitation frequency by the vibration exciter 1a due to the thermoelastic effect, but in addition, an average temperature rise 2c is generated due to energy dissipation inside the material. . However, the temperature change 2a due to the thermoelastic effect and the average temperature rise 2c due to the dissipative energy are smaller than the temperature change 2b due to disturbance. For this reason, when the temperature variation ΔT of the test piece 1b is expressed, the following (formula 1) is obtained.

ΔT=r−T+D+T・・・・・・ (式1)
ΔT:温度変化量
:外的要因(風や周囲の温度変化)
:熱の伝導(温度の高い箇所と低い箇所が均一化を図る働き)
:散逸エネルギー(繰り返しサイクルにおける温度上昇量)
:熱弾性効果
実際の散逸エネルギーの測定では、赤外線カメラで試験片1bの温度測定を行うと同時に、疲労試験機1aからの制御信号である同期入力信号を取り込み、同期入力信号に基づく特定の周波数成分についてフーリエ変換による赤外線応力画像処理を行うことで外乱の影響を除外して、試験片1bの熱弾性効果による温度変化だけを測定する。
ΔT = r e −T c + D + T e (Equation 1)
ΔT: Temperature change
r e : External factor (wind and ambient temperature change)
Tc : heat conduction (high temperature and low temperature work to make uniform)
D : Dissipated energy (temperature rise in repeated cycles)
T e : Thermoelastic effect In the actual measurement of dissipated energy, the temperature of the test piece 1b is measured with an infrared camera, and at the same time, a synchronous input signal that is a control signal from the fatigue testing machine 1a is taken in and specified based on the synchronous input signal The influence of the disturbance is excluded by performing infrared stress image processing by Fourier transform for the frequency component of, and only the temperature change due to the thermoelastic effect of the test piece 1b is measured.

熱弾性効果による温度上昇・下降から、更に小さな繰り返しサイクル毎の機械的現象に基づく材料内部の散逸エネルギーによる温度上昇量を分離して測定すると、繰り返しサイクルにおける温度上昇量の散逸エネルギーDの測定画像が描かれる。   When the temperature rise amount due to the dissipated energy inside the material is separated from the temperature rise / fall due to the thermoelastic effect and measured based on the mechanical phenomenon for each smaller repetitive cycle, the dissipated energy D of the temperature rise amount in the repetitive cycle is measured. Is drawn.

赤外線カメラ1cを用いて、試験片1bの散逸エネルギーを測定した結果を図3(a)に示す。
図3(a)を見て分かるように、試験片1bのノッチ25の付近に非常に温度が高くなっている部分が見られる。この温度振幅が高く示される部分を含む領域23に着目し、領域23内の各ピクセルにおいて図3(b)に示すような荷重振幅に対する加振による基本周波数の温度振幅グラフを作成し、傾きを求める。
The result of measuring the dissipated energy of the test piece 1b using the infrared camera 1c is shown in FIG.
As can be seen from FIG. 3A, a portion where the temperature is very high is seen in the vicinity of the notch 25 of the test piece 1b. Focusing on the region 23 including the portion where the temperature amplitude is shown high, create a temperature amplitude graph of the fundamental frequency by excitation with respect to the load amplitude as shown in FIG. Ask.

この傾きが最大のピクセルは主応力和の大きさが最大であり、最大応力集中部のピクセルである。よって、加振の基本周波数fの2倍の周波数2f(第2高調波と称す)の成分の温度振幅が大きく、かつ荷重振幅と加振による基本周波数の温度振幅のグラフの傾きが最大のピクセルを選択することにより、疲労損傷と応力集中の両方が発生しているピクセルを選択できる。   The pixel having the largest inclination has the largest principal stress sum and is the pixel of the maximum stress concentration portion. Accordingly, a pixel having a large temperature amplitude of a component of a frequency 2f (referred to as a second harmonic) that is twice the fundamental frequency f of the excitation, and a maximum slope of the graph of the load amplitude and the temperature amplitude of the fundamental frequency due to the excitation. By selecting, it is possible to select a pixel in which both fatigue damage and stress concentration occur.

この処理は情報処理装置1dの散逸エネルギー測定工程21において図2のように演算処理されている。
ステップS1では、各荷重振幅における第2高調波の成分の温度振幅の分布画像を作成する。
This process is performed as shown in FIG. 2 in the dissipated energy measurement step 21 of the information processing apparatus 1d.
In step S1, a distribution image of the temperature amplitude of the second harmonic component at each load amplitude is created.

ステップS2では、加振の基本周波数の第2高調波の成分の温度振幅が大きい領域である領域23に注目する。
ステップS3では、着目した領域内のすべてのピクセルにおいて加振振幅に対する加振周波数の温度振幅のグラフを作成する。
In step S2, attention is paid to a region 23 in which the temperature amplitude of the second harmonic component of the fundamental frequency of excitation is large.
In step S3, a graph of the temperature amplitude of the excitation frequency with respect to the excitation amplitude is created for all pixels in the focused region.

ステップS4では、ステップS3で求めたグラフの傾きが最大のものを疲労限度推定に用いるピクセルに決定する。
図8(a)(b)は確認のため行った疲労試験の前後の試験片を示す。図8(b)に示される疲労試験後の試験片の破断箇所も、図3(a)に示された散逸エネルギーにより温度振幅が大きくかつ荷重振幅と加振周波数の温度振幅のグラフの傾きが最大である部分である。
In step S4, the pixel having the maximum slope obtained in step S3 is determined as a pixel used for fatigue limit estimation.
FIGS. 8A and 8B show test pieces before and after the fatigue test performed for confirmation. The fracture location of the specimen after the fatigue test shown in FIG. 8B also has a large temperature amplitude due to the dissipative energy shown in FIG. This is the largest part.

図6に示されるような切欠き形状を有する試験片の切欠き部の曲率半径rhを1mmと2mmの2種類の試験片を用いた。なお、試験片の幅B、切欠き深さ(ノッチ)d、応力集中部の最小断面の幅の半分b、厚みtはそれぞれ3mm一定とした。 Two types of test pieces having a radius of curvature rh 0 of 1 mm and 2 mm at the notch of the test piece having a notch shape as shown in FIG. 6 were used. Note that the width B, the notch depth (notch) d, the half width b of the minimum cross section of the stress concentration portion, and the thickness t were fixed to 3 mm, respectively.

それらの試験片に対して、荷重振幅を変化させて測定を行った散逸エネルギーの測定結果から求めた変曲点と、同様の試験片を用いて機械的疲労試験から求めた疲労限度荷重を比較した結果の一例を図9及び図10に示す。   Compare the inflection point obtained from the measurement result of the dissipated energy measured by changing the load amplitude for those specimens and the fatigue limit load obtained from the mechanical fatigue test using the same specimen. An example of the results is shown in FIGS.

図9(a)(b)は、切欠き部の曲率半径がrh=2mm、1mmの試験片を疲労試験機1aに取付け、荷重を徐々に上げながら散逸エネルギー測定を行った結果を示す。図10(a)(b)は、切欠き部の曲率半径がrh=2mm、1mmの試験片を加振機1aに取付け、求めた疲労SN曲線である。 9 (a) and 9 (b) show the results of dissipating energy measurement while attaching a test piece having a notch radius of curvature of rh 0 = 2 mm and 1 mm to the fatigue testing machine 1a and gradually increasing the load. FIGS. 10A and 10B are fatigue SN curves obtained by attaching a test piece having a radius of curvature of a notch portion of rh 0 = 2 mm and 1 mm to the vibrator 1a.

散逸エネルギー測定の結果および疲労試験による疲労SN曲線から求めた疲労限界荷重振幅の結果を表1に示す。   Table 1 shows the results of the measurement of dissipated energy and the results of the fatigue limit load amplitude obtained from the fatigue SN curve by the fatigue test.

表1に示されるように、散逸エネルギー測定から求めた変曲点にあたる荷重振幅値と疲労SN曲線から求めた疲労限界荷重振幅値とが一致することは明らかである。 As shown in Table 1, it is clear that the load amplitude value corresponding to the inflection point obtained from the measurement of dissipated energy matches the fatigue limit load amplitude value obtained from the fatigue SN curve.

(実施の形態2)
本発明の実施の形態2では、横軸に加振の基本周波数の成分である温度振幅、縦軸に第2高調波の成分である温度振幅をプロットする散逸エネルギー曲線を用いる疲労限度応力特定システムおよび疲労限度応力特定方法について説明する。実施の形態1の図1に示した装置を使用して、加振機1aの荷重振幅は、荷重制御により0kN〜9.0kNまで0.1kN毎に引張荷重を変えて測定した。加振による基本周波数は25Hz一定とした。
(Embodiment 2)
In Embodiment 2 of the present invention, a fatigue limit stress identification system using a dissipative energy curve in which the horizontal axis represents the temperature amplitude that is a component of the fundamental frequency of vibration and the vertical axis represents the temperature amplitude that is the second harmonic component. The fatigue limit stress identification method will be described. Using the apparatus shown in FIG. 1 according to the first embodiment, the load amplitude of the vibrator 1a was measured by changing the tensile load every 0.1 kN from 0 kN to 9.0 kN by load control. The fundamental frequency by excitation was constant at 25 Hz.

疲労限度応力特定方法に用いられる散逸エネルギー曲線は、横軸が荷重振幅、縦軸が平均温度上昇量もしくは加振の基本周波数の第2高調波の成分の温度振幅のグラフから疲労限度応力特定を行うことが一般的である。しかし、実製品のような複雑な形状をしている場合、試験機により負荷された荷重に対応した応力が生じているとは限らない。また、切欠き試験片のように応力集中部がある場合、塑性変形が起きると応力の再分配が起き応力分布が荷重ごとに変化する可能性があるため、横軸を荷重振幅にすると実際に生じている応力や応力分布の変化の影響を無視した第2高調波の成分である温度振幅のグラフから疲労限度応力特定を行うことになる。そこで横軸に加振の基本周波数の成分の温度振幅をとることにより、第2高調波の成分である温度振幅の挙動を忠実に表すことが可能になる。   The dissipation energy curve used in the fatigue limit stress identification method is to specify the fatigue limit stress from the graph of the load amplitude on the horizontal axis and the temperature amplitude of the second harmonic component of the average temperature rise or the fundamental frequency of vibration on the vertical axis. It is common to do. However, in the case of a complicated shape such as an actual product, a stress corresponding to the load applied by the testing machine is not always generated. In addition, when there is a stress concentration part like a notched specimen, stress redistribution occurs when plastic deformation occurs, and the stress distribution may change for each load. The fatigue limit stress is specified from the graph of the temperature amplitude which is the second harmonic component ignoring the influence of the generated stress and the change of the stress distribution. Therefore, by taking the temperature amplitude of the component of the fundamental frequency of vibration on the horizontal axis, it becomes possible to faithfully represent the behavior of the temperature amplitude that is the second harmonic component.

図11(a)は、荷重振幅に対する第2高調波の成分である温度振幅をプロットした図である。図11(b)は、加振の基本周波数の成分の主応力和に対する第2高調波の成分である温度振幅をプロットした図を示す。図11(a)は、応力集中部16aと16aから1mm離れた部分16bの散逸エネルギー曲線を示し、測定から得られるデータは殆ど重なっていて差が見られない。一方、図11(b)では、基本周波数の成分の主応力和に対する第2高調波の成分である温度振幅が応力集中部16aと1mm離れた16bの部分では傾きが顕著に異なり、想定される応力集中部16aの傾きがのほうが大きい傾向が見られる。また、図11(a)(b)で求めた疲労限度応力の特定値を比べると、図11(b)の16aで求めた疲労限度応力が疲労試験により求めた疲労限度応力に近い値が得られた。   FIG. 11A is a diagram in which the temperature amplitude that is a component of the second harmonic with respect to the load amplitude is plotted. FIG. 11B shows a diagram in which the temperature amplitude, which is the second harmonic component, is plotted against the principal stress sum of the fundamental frequency component of excitation. FIG. 11A shows the dissipated energy curves of the stress concentrated portions 16a and the portion 16b 1 mm away from the 16a, and the data obtained from the measurements are almost overlapped and no difference is seen. On the other hand, in FIG. 11B, the slope of the temperature amplitude, which is the second harmonic component with respect to the principal stress sum of the fundamental frequency component, is remarkably different in the portion 16b that is 1 mm away from the stress concentration portion 16a. There is a tendency that the inclination of the stress concentration portion 16a is larger. 11A and 11B, the fatigue limit stress obtained in 16a of FIG. 11B is close to the fatigue limit stress obtained by the fatigue test. It was.

以上の結果から、横軸に加振の基本周波数の成分の主応力和、縦軸に第2高調波の成分である温度振幅をプロットする散逸エネルギー曲線を用いることで、疲労限度応力を正確に求めることが可能なのは明らかである。   From the above results, the fatigue limit stress can be accurately determined by using the dissipative energy curve in which the horizontal axis represents the principal stress sum of the fundamental frequency components and the vertical axis represents the temperature amplitude, which is the second harmonic component. It is clear that it can be sought.

(実施の形態3)
本発明の実施の形態3では、自由度調整済み決定係数もしくはGauss - Newton法によって求められる2本の近似線の交点から疲労限度応力を特定する疲労限度応力特定方法および疲労限度応力特定システムについて説明する。実施の形態1の図1に示した装置を使用して、加振機1aの荷重振幅は、荷重制御により0kN〜9.0kNまで0.1kN毎に引張荷重を変えて測定した。加振による基本周波数は25Hz一定とした。
(Embodiment 3)
In the third embodiment of the present invention, a fatigue limit stress specifying method and a fatigue limit stress specifying system for specifying a fatigue limit stress from the intersection of two approximate lines obtained by a coefficient of freedom adjusted for the degree of freedom or the Gauss-Newton method will be described. To do. Using the apparatus shown in FIG. 1 according to the first embodiment, the load amplitude of the vibrator 1a was measured by changing the tensile load every 0.1 kN from 0 kN to 9.0 kN by load control. The fundamental frequency by excitation was constant at 25 Hz.

横軸が加振による基本周波数の温度振幅、縦軸が加振の第2高調波の成分の温度振幅のグラフから屈曲点決定をするための関数として、疲労限度応力以下の荷重振幅の値が低い領域について、適切な関数の次数を検討した。検討した関数は、1次関数y=ax+b、2次関数y=ax+b、3次関数y=ax+b、4次関数y=ax+bとした。適切な関数の次数を選択するための方法として、自由度調整済み決定係数とGauss - Newton法を用いて検討を行った。使用した試験片はノッチ半径2mmを3本用いて荷重4kNまで散逸エネルギーを測定し、その時の自由度調整済み決定係数の値を求めた。その結果を表2に示す。 The horizontal axis is the temperature amplitude of the fundamental frequency due to vibration, and the vertical axis is the function for determining the bending point from the graph of the temperature amplitude of the second harmonic component of the vibration. Appropriate function orders were examined for the low region. The function examined was a linear function y = ax + b, a quadratic function y = ax 2 + b, a cubic function y = ax 3 + b, and a quartic function y = ax 4 + b. As a method for selecting an appropriate function order, the coefficient of freedom adjusted for the degree of freedom and the Gauss-Newton method were used. The test piece used was measured for dissipated energy up to a load of 4 kN using three notch radii of 2 mm, and the value of the coefficient of determination after adjusting the degree of freedom was obtained. The results are shown in Table 2.

表2の結果から自由度調整済み決定係数の相乗平均が最も高い値を示したのは、2次関数であった。次に、非線形近似法であるGauss - Newton法を用いてフィッティングを行った。なお、近似する関数の形はyを第2高調波の成分の温度振幅、xを荷重振幅とするy=C+Cである。その結果を表3に示す。 From the results shown in Table 2, it was a quadratic function that showed the highest geometric mean of the coefficient of determination adjusted for the degree of freedom. Next, fitting was performed using the Gauss-Newton method which is a nonlinear approximation method. The form of the function to be approximated is y = C 1 x n + C 2 where y is the temperature amplitude of the second harmonic component and x is the load amplitude. The results are shown in Table 3.

表3の結果からGauss - Newton法を用いたフィッティングで次数nは2に近い値が得られ、また、係数Cは10-5代、係数Cも0.001〜0.002の非常に小さな範囲内であることから、次数nは2が最適と判断される。 From the results of Table 3, fitting using the Gauss-Newton method gives a value of order n close to 2, the coefficient C 1 is in the 10-5th range , and the coefficient C 2 is also very high from 0.001 to 0.002. Since it is within a small range, the order n is determined to be optimal.

以上の結果から、加振の荷重振幅が低い弾性領域の近似線は、次数n=2とする2次関数が最適であり、その関数の形はyを第2高調波の成分の温度振幅、xを荷重振幅とするy=ax+bが最適なのは明らかである。 From the above results, the approximate line of the elastic region where the load amplitude of excitation is low is optimally a quadratic function with the order n = 2, and the form of the function is that y is the temperature amplitude of the second harmonic component, Clearly, y = ax 2 + b, where x is the load amplitude, is optimal.

(実施の形態4)
本発明の実施の形態4では、散逸エネルギーを測定工程21で抽出された結果から疲労限度応力を特定する疲労限度応力特定工程22で用いられる近似線は、y=ax+bで表される多項式と直線の交点から疲労限度応力を特定する疲労限度応力特定方法および疲労限度応力特定システムについて説明する。実施の形態1の図1に示した装置を使用して、加振機1aの荷重振幅は、荷重制御により0kN〜9.0kNまで0.1kN毎に引張荷重を変えて測定した。ここで加振による基本周波数は25Hz一定とした。多項式y=ax+bは、実施の形態3において、次数n=2が最適であることが求められたので、ここでは疲労限度応力以上の荷重振幅における近似線について1次関数、2次関数、3次関数、4次関数での近似を行い、どの次数の関数で近似した場合が、フィッティングが最適か検証した。そして、荷重振幅が増加すると、エネルギーの散逸も増加し、測定される第2高調波の成分の温度振幅も増加すると考えられるので、近似する関数はyを第2高調波の成分の温度振幅、xを荷重振幅とすると、1次関数はy=ax+b、2次関数はy=ax+b、3次関数はy=ax+b、4次関数はy=ax+bとした。試験片はノッチ半径5mmを3本用いて散逸エネルギーを測定した。なお、使用したデータ範囲は6.4kN〜9.0kNである。またそれぞれの近似関数のデータに対する自由度調整済み決定係数もしくはGauss - Newton法により、最適な関数の次数および多項式を求めた。表4に近似関数のデータに対する自由度調整済み決定係数の相乗平均を示す。
(Embodiment 4)
In the fourth embodiment of the present invention, the approximate line used in the fatigue limit stress specifying step 22 for specifying the fatigue limit stress from the result of extracting the dissipated energy in the measurement step 21 is a polynomial represented by y = ax n + b. A fatigue limit stress specifying method and a fatigue limit stress specifying system for specifying the fatigue limit stress from the intersection of the line and the straight line will be described. Using the apparatus shown in FIG. 1 according to the first embodiment, the load amplitude of the vibrator 1a was measured by changing the tensile load every 0.1 kN from 0 kN to 9.0 kN by load control. Here, the fundamental frequency by excitation was constant at 25 Hz. Since the polynomial y = ax n + b has been determined that the order n = 2 is optimal in the third embodiment, a linear function, a quadratic function, and an approximate line at a load amplitude equal to or greater than the fatigue limit stress are used here. Approximation with a cubic function and a quartic function was performed, and it was verified with which order of function the fitting was optimal. As the load amplitude increases, the energy dissipation increases, and the temperature amplitude of the measured second harmonic component also increases. Therefore, the function to be approximated expresses y as the temperature amplitude of the second harmonic component, When x is a load amplitude, the linear function is y = ax + b, the quadratic function is y = ax 2 + b, the cubic function is y = ax 3 + b, and the quartic function is y = ax 4 + b. The test piece was measured for dissipated energy using three notch radii of 5 mm. The data range used is 6.4 kN to 9.0 kN. In addition, the optimum function order and polynomial were obtained by the coefficient of freedom adjusted for each approximate function data or the Gauss-Newton method. Table 4 shows the geometric mean of the coefficient of determination adjusted for the degree of freedom for the data of the approximate function.

表4の結果から、1次関数近似による多項式回帰が最も良いモデルとなった。次に非線形関数のフィッティングとして用いられる、Gauss - Newton法を用いてフィッティングを行った。近似する関数の形はyを第2高調波の成分の温度振幅、xを荷重振幅とすると、y=c+cである。Gauss - Newton法を用いてフィッティングを行った結果を表5に示す。 From the results in Table 4, polynomial regression by linear function approximation was the best model. Next, fitting was performed using the Gauss-Newton method, which is used for fitting a nonlinear function. The form of the function to be approximated is y = c 1 x n + c 2 where y is the temperature amplitude of the second harmonic component and x is the load amplitude. Table 5 shows the results of fitting using the Gauss-Newton method.

表5の結果から、次数n=1に最も近い値が得られた。以上の結果から、疲労限度応力以上の荷重振幅においては、1次関数、すなわち直線で近似することが最適であり、y=ax+bで表される多項式と直線によって近似されることは明らかである。 From the results in Table 5, a value closest to the order n = 1 was obtained. From the above results, it is clear that the load amplitude above the fatigue limit stress is best approximated by a linear function, that is, a straight line, and approximated by a polynomial and a straight line represented by y = ax n + b. is there.

(実施の形態5)
本発明の実施の形態5では、2本の近似線は、2本の近似線とデータのフィッティングによって求められる残渣の二乗和が最小になるように近似される疲労限度応力特定方法および疲労限度応力特定システムについて説明する。実施の形態1の図1に示した装置を使用して、加振機1aの荷重振幅は、荷重制御により0kN〜9.0kNまで0.1kN毎に引張荷重を変えて測定した。加振による基本周波数は25Hz一定とした。試験片1bはノッチ半径5.0mm、2.0mm、1.0mmを用いて検証した。疲労限度応力特定に用いた近似線は、実施の形態3および実施の形態4で最適な関数の形態として求めたy=ax+bで表されるn=2の多項式と直線はy=cx+dである。2つの近似線は荷重振幅の低い方から最低3つのデータとその他のデータに対してフィッティングされ残差の二乗和を求める。次に荷重振幅の低い方から一つデータを加えた4つのデータとその他のデータに対してフィッティングされ残差の二乗和を求める。このようにデータを一つずつ増やしながら残差の二乗和を求めた。残差の二乗和が最小となる近似線の組み合わせが取得データに対して最適な近似線の組み合わせであり、この手法によって求められた2つの近似線の交点から求められた疲労限度応力の特定値と疲労試験によって求められた疲労限度応力を表6に示す。また参考までに従来方法である2本の直線による近似線の交点によって求められた疲労限度応力とCuraらによる多項式と直線の近似線の交点によって求められた疲労限度応力を示す。
(Embodiment 5)
In the fifth embodiment of the present invention, the two approximate lines are the fatigue limit stress specifying method and the fatigue limit stress approximated so that the sum of squares of the residue obtained by fitting the data to the two approximate lines is minimized. A specific system will be described. Using the apparatus shown in FIG. 1 according to the first embodiment, the load amplitude of the vibrator 1a was measured by changing the tensile load every 0.1 kN from 0 kN to 9.0 kN by load control. The fundamental frequency by excitation was constant at 25 Hz. The test piece 1b was verified using notch radii of 5.0 mm, 2.0 mm, and 1.0 mm. The approximate line used for specifying the fatigue limit stress is the polynomial of n = 2 and y = cx + d represented by y = ax 2 + b obtained as the optimum function form in the third and fourth embodiments. is there. The two approximate lines are fitted to at least three data and other data from the lower load amplitude to obtain the sum of squares of the residuals. Next, four data obtained by adding one data from the lower load amplitude and other data are fitted to obtain the square sum of the residuals. Thus, the residual sum of squares was obtained while increasing the data one by one. The combination of the approximate lines that minimizes the sum of squares of the residuals is the optimal approximate line combination for the acquired data, and the specific value of the fatigue limit stress obtained from the intersection of the two approximate lines obtained by this method Table 6 shows the fatigue limit stress obtained by the fatigue test. For reference, the fatigue limit stress obtained by the intersection of the approximate lines of the two straight lines and the fatigue limit stress obtained by the intersection of the polynomial and the approximate line of the straight line by Cura et al. Are shown for reference.

表6の結果から、2本のy=ax+bで表されるn=2の多項式と直線はy=cx+dである近似線は、2本の近似線とデータのフィッティングによって求められる残渣の二乗和が最小になるように近似される2本の近似線の交点から求めることで疲労限度応力を精度よく求められることは明らかである。 From the results of Table 6, two polynomials of n = 2 represented by y = ax 2 + b and an approximate line of y = cx + d are squares of the residue obtained by fitting the two approximate lines and data. It is clear that the fatigue limit stress can be accurately obtained by obtaining from the intersection of two approximate lines approximated so that the sum is minimized.

(実施の形態6)
本発明の実施の形態6では、横軸に前記加振の基本周波数の成分である温度振幅、縦軸に前記第2高調波の成分である温度振幅をプロットすることによって求められる疲労限度応力特定方法および疲労限度応力特定システムについて説明する。赤外線カメラ1cは、Cedip社のSilver480Mを用いた。また、加振機1aとしては、油圧サーボ疲労試験機(島津製作所,サーボパルサ,最大試験能力:10kN)を用い、加振機1aの荷重振幅は、荷重制御により0kN〜9.0kNまで0.1kN毎に引張荷重を変えて測定した。加振による基本周波数は25Hz一定とした。試験片1bはノッチ半径5.0mm、2.0mm、1.0mmを用いて検証した。表7に、疲労試験から求めた疲労限度応力と横軸に加振荷重、縦軸に第2高調波の温度振幅成分でプロットしたグラフから求めた疲労限度応力と、横軸に基本周波数の温度振幅成分、縦軸に第2高調波の温度振幅成分をプロットしたグラフから求めた疲労限度応力を比較した結果を示す。なお、近似線はy=ax+bで表されるn=2の多項式と直線はy=cx+dである2本の近似線を用いてフィッティングし、2本の近似線の最小二乗和が最小となる組み合わせの近似線の交点から疲労限度応力は求めた。
(Embodiment 6)
In Embodiment 6 of the present invention, the fatigue limit stress specified by plotting the temperature amplitude which is a component of the fundamental frequency of excitation on the horizontal axis and the temperature amplitude which is the component of the second harmonic on the vertical axis is plotted. The method and fatigue limit stress identification system are described. As the infrared camera 1c, Silver480M manufactured by Cedip was used. Further, as the shaker 1a, a hydraulic servo fatigue tester (Shimadzu Corporation, servo pulser, maximum test capacity: 10 kN) is used, and the load amplitude of the shaker 1a is 0.1 kN from 0 kN to 9.0 kN by load control. Measurement was performed by changing the tensile load every time. The fundamental frequency by excitation was constant at 25 Hz. The test piece 1b was verified using notch radii of 5.0 mm, 2.0 mm, and 1.0 mm. Table 7 shows the fatigue limit stress obtained from the fatigue test, the horizontal axis represents the excitation load, the vertical axis represents the temperature amplitude component of the second harmonic, and the horizontal axis represents the temperature of the fundamental frequency. The result of comparing the fatigue limit stress obtained from the graph plotting the amplitude component and the temperature amplitude component of the second harmonic on the vertical axis is shown. The approximate line is fitted using a polynomial of n = 2 represented by y = ax 2 + b and the straight line is fitted using two approximate lines y = cx + d, and the least square sum of the two approximate lines is the minimum. The fatigue limit stress was obtained from the intersection of the approximate lines of the combination.

表7の結果から、横軸に加振の基本周波数の成分である温度振幅、縦軸に前記第2高調波の成分である温度振幅をプロットすることによって疲労限度応力の特定精度が向上することは明らかである。 From the results in Table 7, the accuracy of fatigue limit stress is improved by plotting the temperature amplitude, which is a component of the fundamental frequency of vibration, on the horizontal axis, and the temperature amplitude, which is the component of the second harmonic, on the vertical axis. Is clear.

(実施の形態7)
本発明の実施の形態7では、疲労限度応力を特定する疲労限度応力特定工程22で用いられる前記2本の近似線は、2本の近似曲線の自由度調整済み決定係数Rの相乗平均が最大になる場合のデータ範囲を用いることによって求められる疲労限度応力特定方法および疲労限度応力特定システムについて説明する。実施の形態1の図1に示した装置を使用して、加振機1aの荷重振幅は、荷重制御により0kN〜9.0kNまで0.1kN毎に引張荷重を変えて測定した。加振による基本周波数は25Hz一定とした。試験片1bはノッチ半径5.0mmを用いて検証した。疲労限度応力特定に用いた近似線は、実施の形態3および実施の形態4で最適な関数の形態として求めたy=ax+bで表されるn=2の多項式と直線はy=cx+dである。実施の形態5で用いた2本の近似線とデータのフィッティングによって求められる残渣の二乗和が最小になるように近似すると同時にデータの使用上限を1つずつ減らし、そのたび二本の直線の決定係数を求めていき、二本の近似線の自由度調整済み決定係数の相乗平均が最大の場合のデータの使用上限を求めることによって最適なデータ範囲を求めることが可能である。表8に二本の近似線の自由度調整済み決定係数の相乗平均と疲労試験で求めた疲労限度応力との差を示す。
(Embodiment 7)
In the seventh embodiment of the present invention, the two approximate lines used in the fatigue limit stress specifying step 22 for specifying the fatigue limit stress are the geometric mean of the coefficient of determination R 2 after adjusting the degrees of freedom of the two approximate curves. The fatigue limit stress specifying method and the fatigue limit stress specifying system required by using the data range when maximizing will be described. Using the apparatus shown in FIG. 1 according to the first embodiment, the load amplitude of the vibrator 1a was measured by changing the tensile load every 0.1 kN from 0 kN to 9.0 kN by load control. The fundamental frequency by excitation was constant at 25 Hz. The test piece 1b was verified using a notch radius of 5.0 mm. The approximate line used for specifying the fatigue limit stress is the polynomial of n = 2 and y = cx + d represented by y = ax 2 + b obtained as the optimum function form in the third and fourth embodiments. is there. The approximation is performed so that the sum of squares of the residue obtained by fitting the two approximate lines used in the fifth embodiment and the data is minimized, and at the same time, the upper limit of data use is reduced by one, and two straight lines are determined each time. It is possible to obtain the optimum data range by obtaining the coefficients and obtaining the upper limit of use of the data when the geometric mean of the determination coefficients adjusted for the degrees of freedom of the two approximate lines is maximum. Table 8 shows the difference between the geometric mean of the coefficient of determination after adjusting the degrees of freedom of the two approximate lines and the fatigue limit stress obtained by the fatigue test.

表8から、最大荷重値から3つのデータを除去した場合が最も二本の直線の自由度調整済み決定係数の相乗平均が最大の1に近くなり、過大な荷重振幅での微小き裂など不自然な第2高調波の成分の温度振幅の上昇が本手法によって除去できていることがわかる。 From Table 8, when the three data are removed from the maximum load value, the geometric mean of the coefficient of determination adjusted for the degree of freedom of the two straight lines is close to the maximum of 1, and there is no possibility of a microcrack with an excessive load amplitude. It can be seen that the increase in temperature amplitude of the natural second harmonic component can be eliminated by this method.

図12(a)に過大な荷重振幅での微小き裂など不自然な第2高調波の成分の温度振幅の上昇を含んだ状態で残差の二乗和が最小になる近似線を引いた図を示す。また図12(b)に表8の結果を反映させて不自然な第2高調波の成分の温度振幅の上昇を除去した状態で残差の二乗和が最小になる近似線を引いた図を示す。この結果から、残差の二乗和が最小かつ自由度調整済み決定係数の相乗平均が最大になるような二本の近似線をフィッティングし、更に自由度調整済み決定係数の相乗平均が最大になるようなデータ範囲を用いることによって最適な近似線を引くことが可能であり、その2本の近似線の交点から疲労限度応力を特定可能であることは明らかである。   FIG. 12A is a drawing obtained by drawing an approximate line that minimizes the residual sum of squares in a state including an increase in the temperature amplitude of an unnatural second harmonic component such as a microcrack with an excessive load amplitude. Indicates. FIG. 12B is a diagram in which the result of Table 8 is reflected to draw an approximate line that minimizes the residual sum of squares in a state where the temperature amplitude increase of the unnatural second harmonic component is removed. Show. From this result, fitting two approximate lines that minimize the residual sum of squares and maximize the geometric mean of the coefficient of determination adjusted for the degree of freedom, and further maximize the geometric mean of the coefficient of determination adjusted for the degree of freedom. By using such a data range, it is possible to draw an optimal approximate line, and it is clear that the fatigue limit stress can be specified from the intersection of the two approximate lines.

(実施の形態8)
本発明の実施の形態8では、実施の形態1〜7まで説明した疲労限度応力特定方法をシステムとして構築した疲労限度応力特定システムを用いて疲労限度応力を特定した。実施の形態1の図1に示した装置を使用して、加振機1aの荷重振幅は、荷重制御により0kN〜9.0kNまで0.1kN毎に引張荷重を変えて測定した。加振による基本周波数は25Hz一定とした。試験片1bはノッチ半径5.0mm、2.0mm、1.0mmを用いて検証した。加振機1aを用いて荷重を段階的に増加させ、荷重毎に発生する温度振幅を赤外線カメラ1cで取得し、取得した画像をフーリエ変換して、加振の基本周波数と第2高調波の温度振幅成分を抽出し、2次元画像としてデータ化した。次に第2高調波の成分の画像から温度振幅の高い領域について横軸に荷重、縦軸に基本周波数の温度振幅成分のグラフを作成し、その傾きが大きなピクセルを選び出す。選び出したピクセルについて、横軸に基本周波数である主応力和、縦軸に第2高調波の成分を荷重の低い順番にプロットする。プロットされたデータについて、荷重の低い領域は、y=ax+bで表されるn=2の多項式と直線y=cx+dでデータに対しGauss - Newton法を用いてフィッティングを行い、2つの近似線の残差の二乗和が最小でかつ自由度調整済み決定係数の相乗平均が最大になる条件を満たす近似線を求めた。その2つの近似線の交点から疲労限度応力を求めた。このような手法で求めた疲労限度応力を疲労試験の結果の比較を表9に示す。
(Embodiment 8)
In the eighth embodiment of the present invention, the fatigue limit stress is specified using the fatigue limit stress specifying system in which the fatigue limit stress specifying method described in the first to seventh embodiments is constructed as a system. Using the apparatus shown in FIG. 1 according to the first embodiment, the load amplitude of the vibrator 1a was measured by changing the tensile load every 0.1 kN from 0 kN to 9.0 kN by load control. The fundamental frequency by excitation was constant at 25 Hz. The test piece 1b was verified using notch radii of 5.0 mm, 2.0 mm, and 1.0 mm. The load is increased step by step using the vibrator 1a, the temperature amplitude generated for each load is acquired by the infrared camera 1c, the acquired image is Fourier transformed, and the fundamental frequency of the excitation and the second harmonic are The temperature amplitude component was extracted and converted into data as a two-dimensional image. Next, a graph of the temperature amplitude component of the fundamental frequency is created on the horizontal axis with the load on the horizontal axis and the vertical axis on the region of high temperature amplitude from the image of the second harmonic component, and a pixel having a large inclination is selected. For the selected pixels, the principal stress sum, which is the fundamental frequency, is plotted on the horizontal axis, and the second harmonic component is plotted on the vertical axis in order of increasing load. In the plotted data, the low-load region is obtained by fitting the data with a polynomial of n = 2 represented by y = ax 2 + b and a straight line y = cx + d using the Gauss-Newton method, and using two approximate lines. The approximate line that satisfies the condition that the sum of the squares of the residuals of the two is the smallest and the geometric mean of the coefficient of determination adjusted for the degrees of freedom is maximized was obtained. The fatigue limit stress was determined from the intersection of the two approximate lines. Table 9 shows a comparison of the fatigue limit stress obtained by such a method with the results of the fatigue test.

以上の結果から、疲労限度応力を精度よく特定可能なのは明らかである。
なお、上記の各実施の形態では、加振の基本周波数の成分およびその第2高調波の成分の温度振幅を取得し、前記第2高調波の成分の温度振幅画像の最大を示す領域内において、加振の基本周波数の成分の温度振幅画像に対する荷重特性の傾きが最大であるピクセル領域の散逸エネルギーを抽出したが、測定対象物の形状や材質、測定対象物の実際の使用条件などによっては、第3高調波あるいはそれよりも高次の高調波の成分の温度振幅画像に基づいて散逸エネルギーを抽出することも有効である。
From the above results, it is clear that the fatigue limit stress can be accurately identified.
In each of the above embodiments, the temperature amplitude of the fundamental frequency component of the excitation and the second harmonic component thereof are acquired, and the maximum amplitude of the temperature amplitude image of the second harmonic component is obtained. Extracted the energy dissipated in the pixel area where the gradient of the load characteristic with respect to the temperature amplitude image of the component of the fundamental frequency of excitation is the maximum, but depending on the shape and material of the measurement object, the actual use conditions of the measurement object, etc. It is also effective to extract the dissipated energy based on the temperature amplitude image of the third harmonic or higher-order harmonic components.

本発明にかかる疲労限度応力特定システムおよび疲労限度応力特定方法は、基本的な散逸エネルギーによる疲労限度応力特定プロセスを標準化し、システム化することで誰にでも高精度に散逸エネルギー測定が可能になり、従来の疲労試験と同等な精度かつ短時間で正確な疲労限度応力を求められるため、製品の強度における信頼性を効率よく向上させる上で有用である。   The fatigue limit stress identification system and the fatigue limit stress identification method according to the present invention standardize the fatigue limit stress identification process based on the basic dissipative energy and make it possible for anyone to measure the dissipated energy with high accuracy. Since an accurate fatigue limit stress can be obtained in a short time in the same accuracy as the conventional fatigue test, it is useful for efficiently improving the reliability of the product strength.

1a 加振機
1b 試験片
1c 赤外線カメラ
1d 情報処理装置
1e モニタ
2a 加振周波数と同一周波数の繰り返し温度変化
2b 外乱の温度変化
2c エネルギー散逸によって生じる平均温度上昇
21 散逸エネルギー測定工程
22 疲労限度応力特定工程
DESCRIPTION OF SYMBOLS 1a Exciter 1b Test piece 1c Infrared camera 1d Information processing apparatus 1e Monitor 2a Repeated temperature change of the same frequency as the excitation frequency 2b Temperature change of disturbance 2c Average temperature rise caused by energy dissipation 21 Dissipated energy measurement process 22 Fatigue limit stress identification Process

Claims (9)

測定対象物に作用させる荷重を段階的に増加させ、前記荷重毎に発生する前記測定対象物の温度振幅を測定する疲労限度応力特定システムであって、
測定対象物に対して荷重を繰り返し加える加振機と、
前記測定対象物の温度画像を得る赤外線カメラと、
前記赤外線カメラから得た前記測定対象物の温度画像を処理するフーリエ変換手段を有する情報処理装置とを備え、
前記情報処理装置は、
散逸エネルギーを測定する散逸エネルギー測定工程と、
前記散逸エネルギー測定工程から得られた測定結果から疲労限度応力を特定する疲労限度応力特定工程を有し、
前記散逸エネルギー測定工程は、
前記赤外線カメラが撮影した温度画像より、加振の基本周波数の成分および第2高調波成分の温度振幅画像を取得し、
前記第2高調波の成分の温度振幅画像の最大を示す領域内において、前記基本周波数の成分の温度振幅画像に対する荷重特性の傾きが最大であるピクセル領域の散逸エネルギーを抽出する、
疲労限度応力特定システム。
A fatigue limit stress identification system that gradually increases a load applied to a measurement object and measures a temperature amplitude of the measurement object generated for each load,
A vibrator that repeatedly applies a load to the measurement object;
An infrared camera for obtaining a temperature image of the measurement object;
An information processing apparatus having Fourier transform means for processing a temperature image of the measurement object obtained from the infrared camera;
The information processing apparatus includes:
Dissipated energy measuring process for measuring dissipated energy;
A fatigue limit stress specifying step for specifying a fatigue limit stress from the measurement result obtained from the dissipative energy measurement step;
The dissipated energy measuring step includes
From the temperature image taken by the infrared camera, obtain the temperature amplitude image of the fundamental frequency component and the second harmonic component of excitation,
Extracting the dissipated energy of the pixel region where the gradient of the load characteristic with respect to the temperature amplitude image of the fundamental frequency component is maximum within the region indicating the maximum of the temperature amplitude image of the second harmonic component;
Fatigue limit stress identification system.
前記疲労限度応力特定工程は、
横軸に前記加振の基本周波数の成分である温度振幅、縦軸に前記第2高調波の成分である温度振幅をプロットすることを特徴とする、
請求項1記載の疲労限度応力特定システム。
The fatigue limit stress specifying step includes:
The horizontal axis is a temperature amplitude that is a component of the fundamental frequency of the excitation, and the vertical axis is a temperature amplitude that is a component of the second harmonic,
The fatigue limit stress identification system according to claim 1.
前記疲労限度応力特定工程は、
自由度調整済み決定係数もしくはGauss - Newton法によって求められる2本の近似線の交点から疲労限度応力を特定することを特徴とする、
請求項2記載の疲労限度応力特定システム。
The fatigue limit stress specifying step includes:
Fatigue limit stress is specified from the intersection of two approximate lines obtained by the coefficient of determination adjusted for degrees of freedom or Gauss-Newton method.
The fatigue limit stress identification system according to claim 2.
前記疲労限度応力特定工程で用いられる近似線は、y=ax+bで表される多項式と直線であることを特徴とする、
請求項3記載の疲労限度応力特定システム。
The approximate line used in the fatigue limit stress identification step is a polynomial represented by y = ax n + b and a straight line,
The fatigue limit stress identification system according to claim 3.
前記y=ax+bで表される多項式の次数nは2であることを特徴とする、
請求項4記載の疲労限度応力特定システム。
The degree n of the polynomial represented by y = ax n + b is 2,
The fatigue limit stress identification system according to claim 4.
前記疲労限度応力特定工程において、前記直線はy=cx+dで表されることを特徴とする、
請求項4記載の疲労限度応力特定システム。
In the fatigue limit stress identification step, the straight line is represented by y = cx + d,
The fatigue limit stress identification system according to claim 4.
前記2本の近似線は、2本の近似線とデータのフィッティングによって求められる残渣の二乗和が最小になるように近似されることを特徴とする、
請求項3〜6の何れかに記載の疲労限度応力特定システム。
The two approximate lines are approximated so that the sum of squares of the residue obtained by fitting the data with the two approximate lines is minimized.
The fatigue limit stress identification system according to any one of claims 3 to 6.
前記2本の近似線は、2本の近似曲線の自由度調整済み決定係数Rの相乗平均が最大になる場合のデータ範囲を用いることによって求められることを特徴とする、
請求項3〜7の何れかに記載の疲労限度応力特定システム。
The two approximate lines is characterized in that the geometric mean of freedom adjusted coefficient of determination R 2 of the two approximate curve is determined by using the data range when maximized,
The fatigue limit stress identification system according to any one of claims 3 to 7.
測定対象物に作用させる荷重を段階的に増加させ、前記荷重毎に発生する前記測定対象物の温度振幅を測定する疲労限度応力特定方法であって、
測定対象物に対して加振機によって荷重を繰り返し加え、そのときの前記測定対象物の温度画像を赤外線カメラで撮影し、
前記赤外線カメラから得た前記測定対象物の温度画像をフーリエ変換処理して、前記赤外線カメラが撮影した温度画像より加振の基本周波数の成分および第2高調波の成分の温度振幅画像を取得し、前記第2高調波の成分の温度振幅画像の最大を示す領域内において、前記基本周波数の成分の温度振幅画像に対する荷重特性の傾きが最大であるピクセル領域の散逸エネルギーを抽出する散逸エネルギー測定工程を実行し、
前記散逸エネルギー測定工程の測定結果から疲労限度応力を特定する疲労限度応力特定工程を実行する、
疲労限度応力特定方法。
A fatigue limit stress specifying method for gradually increasing a load applied to a measurement object and measuring a temperature amplitude of the measurement object generated for each load,
A load is repeatedly applied to the object to be measured by a vibrator, and a temperature image of the object to be measured at that time is taken with an infrared camera,
The temperature image of the measurement object obtained from the infrared camera is subjected to Fourier transform processing, and the temperature amplitude image of the fundamental frequency component and the second harmonic component is obtained from the temperature image captured by the infrared camera. A dissipated energy measuring step of extracting dissipated energy in a pixel region having a maximum inclination of a load characteristic with respect to the temperature amplitude image of the fundamental frequency component in a region indicating the maximum temperature amplitude image of the second harmonic component Run
Performing a fatigue limit stress specifying step of specifying a fatigue limit stress from the measurement result of the dissipative energy measurement step;
Fatigue limit stress identification method.
JP2014148402A 2014-07-22 2014-07-22 Fatigue limit stress identification system and fatigue limit stress identification method Active JP6397678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014148402A JP6397678B2 (en) 2014-07-22 2014-07-22 Fatigue limit stress identification system and fatigue limit stress identification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014148402A JP6397678B2 (en) 2014-07-22 2014-07-22 Fatigue limit stress identification system and fatigue limit stress identification method

Publications (2)

Publication Number Publication Date
JP2016024056A true JP2016024056A (en) 2016-02-08
JP6397678B2 JP6397678B2 (en) 2018-09-26

Family

ID=55270923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014148402A Active JP6397678B2 (en) 2014-07-22 2014-07-22 Fatigue limit stress identification system and fatigue limit stress identification method

Country Status (1)

Country Link
JP (1) JP6397678B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123129A1 (en) 2016-12-26 2018-07-05 パナソニックIpマネジメント株式会社 Fatigue limit stress specification system, fatigue limit stress specification device, and fatigue limit stress specification method
KR20190025517A (en) * 2017-09-01 2019-03-11 (주) 파루 Method and apparatus for testing mechanical and thermal performance of heating film
JP2019148507A (en) * 2018-02-27 2019-09-05 パナソニックIpマネジメント株式会社 Fatigue limit stress specification system, fatigue limit stress specification device and fatigue limit stress specification method
CN111198140A (en) * 2020-02-10 2020-05-26 大连交通大学 Method for rapidly predicting fatigue limit of welding joint based on fatigue damage entropy production rate
JP2020085496A (en) * 2018-11-16 2020-06-04 株式会社豊田中央研究所 Fatigue limit estimating device, fatigue limit estimating method, and fatigue limit estimating program
CN111504818A (en) * 2020-04-22 2020-08-07 南京蜂动检测科技有限公司 Method for detecting fatigue life of aluminum alloy for rail transit
JP2021193341A (en) * 2020-06-08 2021-12-23 株式会社豊田中央研究所 Fatigue limit identification device and fatigue limit identification method
US11435305B2 (en) * 2018-12-19 2022-09-06 General Electric Company Thermographic inspection system mounted on motorized apparatus and methods of using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416738A (en) * 1990-05-11 1992-01-21 Fujitsu Ltd Apparatus for measuring reaction force
JPH07190909A (en) * 1993-12-24 1995-07-28 Jeol Ltd Infrared stress image system
JP2006029963A (en) * 2004-07-15 2006-02-02 Takahide Sakagami Method and device for measuring degree of thermal influence by plastic deformation
JP2006250683A (en) * 2005-03-10 2006-09-21 Toyota Motor Corp Fatigue destruction specifying system and fatigue destruction specifying method
US20090048788A1 (en) * 2007-08-16 2009-02-19 Mehdi Amiri Darehbidi Rapid determination of fatigue failure based on temperature evolution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416738A (en) * 1990-05-11 1992-01-21 Fujitsu Ltd Apparatus for measuring reaction force
JPH07190909A (en) * 1993-12-24 1995-07-28 Jeol Ltd Infrared stress image system
JP2006029963A (en) * 2004-07-15 2006-02-02 Takahide Sakagami Method and device for measuring degree of thermal influence by plastic deformation
JP2006250683A (en) * 2005-03-10 2006-09-21 Toyota Motor Corp Fatigue destruction specifying system and fatigue destruction specifying method
US20090048788A1 (en) * 2007-08-16 2009-02-19 Mehdi Amiri Darehbidi Rapid determination of fatigue failure based on temperature evolution

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018105709A (en) * 2016-12-26 2018-07-05 パナソニックIpマネジメント株式会社 System and method for specifying fatigue limit stress
CN110100164A (en) * 2016-12-26 2019-08-06 松下知识产权经营株式会社 Endurance limit stress determines that system, endurance limit stress determining device and endurance limit stress determine method
EP3546919A4 (en) * 2016-12-26 2020-01-15 Panasonic Intellectual Property Management Co., Ltd. Fatigue limit stress specification system, fatigue limit stress specification device, and fatigue limit stress specification method
WO2018123129A1 (en) 2016-12-26 2018-07-05 パナソニックIpマネジメント株式会社 Fatigue limit stress specification system, fatigue limit stress specification device, and fatigue limit stress specification method
US11275005B2 (en) 2016-12-26 2022-03-15 Panasonic Intellectual Property Management Co., Ltd. Fatigue limit stress specification system, fatigue limit stress specification device, and fatigue limit stress specification method
KR20190025517A (en) * 2017-09-01 2019-03-11 (주) 파루 Method and apparatus for testing mechanical and thermal performance of heating film
KR102504778B1 (en) * 2017-09-01 2023-02-28 주식회사 파루인쇄전자 Method and apparatus for testing mechanical and thermal performance of heating film
JP7122670B2 (en) 2018-02-27 2022-08-22 パナソニックIpマネジメント株式会社 Fatigue limit stress identification system, fatigue limit stress identification device, and fatigue limit stress identification method
JP2019148507A (en) * 2018-02-27 2019-09-05 パナソニックIpマネジメント株式会社 Fatigue limit stress specification system, fatigue limit stress specification device and fatigue limit stress specification method
JP7229731B2 (en) 2018-11-16 2023-02-28 株式会社豊田中央研究所 Fatigue limit estimation device, fatigue limit estimation method and fatigue limit estimation program
JP2020085496A (en) * 2018-11-16 2020-06-04 株式会社豊田中央研究所 Fatigue limit estimating device, fatigue limit estimating method, and fatigue limit estimating program
US11435305B2 (en) * 2018-12-19 2022-09-06 General Electric Company Thermographic inspection system mounted on motorized apparatus and methods of using same
CN111198140A (en) * 2020-02-10 2020-05-26 大连交通大学 Method for rapidly predicting fatigue limit of welding joint based on fatigue damage entropy production rate
CN111504818A (en) * 2020-04-22 2020-08-07 南京蜂动检测科技有限公司 Method for detecting fatigue life of aluminum alloy for rail transit
JP2021193341A (en) * 2020-06-08 2021-12-23 株式会社豊田中央研究所 Fatigue limit identification device and fatigue limit identification method
JP7395426B2 (en) 2020-06-08 2023-12-11 株式会社豊田中央研究所 Fatigue limit identification device and fatigue limit identification method

Also Published As

Publication number Publication date
JP6397678B2 (en) 2018-09-26

Similar Documents

Publication Publication Date Title
JP6397678B2 (en) Fatigue limit stress identification system and fatigue limit stress identification method
Tong Full‐field characterisation of crack tip deformation and fatigue crack growth using digital image correlation—a review
Blanche et al. Dissipation assessments during dynamic very high cycle fatigue tests
Abushawashi et al. A novel approach for determining material constitutive parameters for a wide range of triaxiality under plane strain loading conditions
JP5411020B2 (en) Fatigue limit identification system, fatigue fracture location identification method, and fatigue limit identification method
Nowell et al. Application of digital image correlation to the investigation of crack closure following overloads
De Finis et al. A multianalysis thermography‐based approach for fatigue and damage investigations of ASTM A182 F6NM steel at two stress ratios
JP5710997B2 (en) Fatigue limit identification system and fatigue limit identification method
Khan et al. Low cycle lifetime assessment of Al2024 alloy
Tong et al. Full‐field characterization of a fatigue crack: crack closure revisited
Justusson et al. Use of a shock tube to determine the bi-axial yield of an aluminum alloy under high rates
Simunek et al. In-situ crack propagation measurement of high-strength steels including overload effects
Lorenzino et al. The variation of resonance frequency in fatigue tests as a tool for in-situ identification of crack initiation and propagation, and for the determination of cracked areas
Rigon et al. Analysis of dissipated energy and temperature fields at severe notches of AISI 304L stainless steel specimens
Nowell et al. Investigation of fatigue crack models by micro-scale measurement of crack tip deformation
Farahani et al. A GTN failure analysis of an AA6061-T6 bi-failure specimen
Kasvayee et al. Micro-crack initiation in high-silicon cast iron during tension loading
Kumar et al. Analysis and modeling of thermal signatures for fatigue damage characterization in Ti–6Al–4V titanium alloy
Chen et al. A non-contact approach to measure JR curve for side-grooved specimens using digital image correlation
Abbassi et al. FE simulation and full-field strain measurements to evaluate the necking phenomena
Chabouk et al. Fatigue assessment of 2024-T351 aluminum alloy under uniaxial cyclic loading
Khayatzadeh et al. Characterisation and modelling of in-plane springback in a commercially pure titanium (CP-Ti)
Fuštar et al. Fatigue tests of as-welded and HFMI treated S355 details with longitudinal and transverse attachments
Lai et al. Quantify resonance inspection with finite element-based modal analyses
Szymczak Investigations of material behaviour under monotonic tension using a digital image correlation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180903

R151 Written notification of patent or utility model registration

Ref document number: 6397678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151