JP2016020607A - Structure for reinforcing existing building - Google Patents

Structure for reinforcing existing building Download PDF

Info

Publication number
JP2016020607A
JP2016020607A JP2014145253A JP2014145253A JP2016020607A JP 2016020607 A JP2016020607 A JP 2016020607A JP 2014145253 A JP2014145253 A JP 2014145253A JP 2014145253 A JP2014145253 A JP 2014145253A JP 2016020607 A JP2016020607 A JP 2016020607A
Authority
JP
Japan
Prior art keywords
existing building
slab
steel frame
existing
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014145253A
Other languages
Japanese (ja)
Other versions
JP6368570B2 (en
Inventor
崇秀 吉田
Takahide Yoshida
崇秀 吉田
高橋 伸一
Shinichi Takahashi
伸一 高橋
千尋 安岡
Chihiro Yasuoka
千尋 安岡
麻紀 平岡
Maki Hiraoka
麻紀 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2014145253A priority Critical patent/JP6368570B2/en
Publication of JP2016020607A publication Critical patent/JP2016020607A/en
Application granted granted Critical
Publication of JP6368570B2 publication Critical patent/JP6368570B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Abstract

PROBLEM TO BE SOLVED: To transmit a seismic force of an existing building to a three-dimensional frame by integrating the existing building and the three-dimensional frame together.SOLUTION: A structure for reinforcing an existing building includes a three-dimensional frame 14 that is constructed adjacently to the existing building 12, and a new slab 16 that is provided in the three-dimensional frame 14 and joined to the existing building 12.SELECTED DRAWING: Figure 1

Description

本発明は、既存建物補強構造に関する。   The present invention relates to an existing building reinforcement structure.

既存建物を耐震補強する補強方法の一つとして、例えば特許文献1に示すように、既存建物に隣接して外付けの立体架構を構築し、既存建物と立体架構を連結する方法がある。   As one of reinforcement methods for seismic reinforcement of an existing building, for example, as shown in Patent Document 1, there is a method of constructing an external three-dimensional frame adjacent to the existing building and connecting the existing building and the three-dimensional frame.

特許文献1は、平面上、既存建物と干渉しない領域に、既存建物とは独立させた、床を伴わない立体架構を構築し、既存建物と立体架構を連結して立体架構に既存建物の水平力を分担させる耐震補強方法である。
特許文献1には、既存建物と立体架構の具体的な連結方法は記載されていないものの、一般的には、アンカーボルト等の連結金具で連結し、既存建物の地震力を立体架構へ伝達させている。このため、連結金具と、既存建物及び立体架構との接合部(連結金具接合部)が、地震力に耐える強度を備えている必要がある。
In Patent Document 1, a three-dimensional frame structure without a floor, which is independent of an existing building, is constructed in a region that does not interfere with the existing building on a plane, and the existing building and the three-dimensional frame structure are connected to each other. It is a seismic reinforcement method that shares power.
Although Patent Document 1 does not describe a specific connection method between an existing building and a three-dimensional frame, in general, it is connected with a connecting bracket such as an anchor bolt to transmit the seismic force of the existing building to the three-dimensional frame. ing. For this reason, it is necessary for the joint part (connecting metal part joining part) of a connection metal fitting, an existing building, and a three-dimensional frame to have the intensity | strength which bears an earthquake force.

特開平9−203220号公報JP-A-9-203220

しかし、既存建物の柱や梁の断面積が小さい場合や、既存建物のコンクリート強度が低強度の場合等には、既存建物の連結金具接合部の強度が不足して、既存建物の地震力を立体架構へ伝達することができない。   However, when the cross-sectional area of the pillars and beams of the existing building is small, or when the concrete strength of the existing building is low, the strength of the connecting bracket joint of the existing building is insufficient and the seismic force of the existing building is reduced. It cannot be transmitted to a three-dimensional frame.

本発明は、上記事実に鑑み、既存建物と立体架構を一体化させて、既存建物の地震力を立体架構へ伝達させることを目的とする。   In view of the above facts, an object of the present invention is to integrate an existing building and a three-dimensional frame so as to transmit the seismic force of the existing building to the three-dimensional frame.

請求項1に記載の発明に係る既存建物補強構造は、既存建物と隣接して構築された立体架構と、前記立体架構に設けられ前記既存建物と接合される新設スラブと、を有することを特徴としている。   The existing building reinforcing structure according to the invention of claim 1 has a three-dimensional frame constructed adjacent to the existing building, and a new slab provided in the three-dimensional frame and joined to the existing building. It is said.

請求項1に記載の発明によれば、立体架構に設けられた新設スラブにより、既存建物と立体架構が接合され、既存建物と立体架構が一体化される。
これにより、既存建物の柱や梁の断面積が小さい場合や、既存建物のコンクリート強度が低強度である場合にも、既存建物の地震力を立体架構へ伝達させることができる。
According to the first aspect of the present invention, the existing building and the three-dimensional frame are joined by the new slab provided in the three-dimensional frame, and the existing building and the three-dimensional frame are integrated.
Thereby, even when the cross-sectional area of the pillar or beam of the existing building is small, or when the concrete strength of the existing building is low, the seismic force of the existing building can be transmitted to the three-dimensional frame.

請求項2に記載の発明は、請求項1に記載の既存建物補強構造において、前記新設スラブは、前記既存建物の既存スラブと接合されていることを特徴としている。   The invention described in claim 2 is the existing building reinforcing structure according to claim 1, wherein the new slab is joined to the existing slab of the existing building.

請求項2に記載の発明によれば、既存スラブに新設スラブを接合することにより、これまでより接合面積が大きくなり、既存建物と立体架構の一体化が担保される。   According to the second aspect of the present invention, by joining the new slab to the existing slab, the joining area becomes larger than before, and the integration of the existing building and the three-dimensional frame is ensured.

請求項3に記載の発明は、請求項2に記載の既存建物補強構造において、前記既存スラブの上面と前記新設スラブの上面に跨って、繊維製のシートが貼り付けられていることを特徴としている。   The invention according to claim 3 is characterized in that, in the existing building reinforcement structure according to claim 2, a fiber sheet is pasted across the upper surface of the existing slab and the upper surface of the newly-installed slab. Yes.

請求項3に記載の発明によれば、繊維製のシートにより、既存建物の既存スラブと立体架構の新設スラブが接合される。このとき、繊維製のシートは、既存スラブの上面と新設スラブの上面に跨って貼り付けられる。これにより、既存スラブと新設スラブの一体性を、より高めることができる。   According to the invention described in claim 3, the existing slab of the existing building and the new slab of the three-dimensional frame are joined by the fiber sheet. At this time, the fiber sheet is pasted across the upper surface of the existing slab and the upper surface of the new slab. Thereby, the integrity of the existing slab and the new slab can be further enhanced.

本発明は、上記構成としてあるので、既存建物と立体架構を一体化させて、既存建物の地震力を立体架構へ伝達させる既存建物補強構造を提供することができる。   Since this invention is set as the said structure, the existing building and a three-dimensional frame can be integrated, and the existing building reinforcement structure which transmits the seismic force of an existing building to a three-dimensional frame can be provided.

本発明の第1実施形態に係る既存建物補強構造の基本構成を示す斜視図である。It is a perspective view showing the basic composition of the existing building reinforcement structure concerning a 1st embodiment of the present invention. (A)は本発明の第1実施形態に係る既存建物補強構造を示す図1(A)のY1−Y1線位置における鉛直断面図であり、(B)はその接合部の部分断面図である。(A) is the vertical sectional view in the Y1-Y1 line position of Drawing 1 (A) which shows the existing building reinforcement structure concerning a 1st embodiment of the present invention, and (B) is the fragmentary sectional view of the junction. . (A)、(B)は、いずれも本発明の第1実施形態に係る既存建物補強構造の接合部の展開例を示す部分断面図である。(A), (B) is a fragmentary sectional view which shows the example of expansion | deployment of the junction part of the existing building reinforcement structure which concerns on 1st Embodiment of this invention. (A)、(B)は、いずれも本発明の第2実施形態に係る既存建物補強構造の基本構成を示す接合部の部分断面図である。(A), (B) is a fragmentary sectional view of the junction which shows the basic composition of the existing building reinforcement structure which concerns on 2nd Embodiment of this invention. (A)は本発明の第3実施形態に係る既存建物補強構造の基本構成を示す鉛直断面図であり、(B)は、(A)のZ1−Z1線位置における断面図である。(A) is a vertical sectional view showing a basic configuration of an existing building reinforcing structure according to the third embodiment of the present invention, and (B) is a sectional view taken along the line Z1-Z1 in (A). (A)は本発明の第4実施形態に係る既存建物補強構造の基本構成を示す鉛直断面図であり、(B)は、(A)のZ1−Z1線位置における断面図である。(A) is a vertical sectional view showing a basic configuration of an existing building reinforcement structure according to the fourth embodiment of the present invention, and (B) is a sectional view taken along the line Z1-Z1 in (A). (A)は本発明の第5実施形態に係る既存建物補強構造の基本構成を示す鉛直断面図であり、(B)は、(A)のZ1−Z1線位置における断面図である。(A) is a vertical sectional view showing a basic configuration of an existing building reinforcing structure according to the fifth embodiment of the present invention, and (B) is a sectional view taken along the line Z1-Z1 in (A).

(第1実施形態)
図1〜図3(A)、(B)を用いて、第1実施形態に係る既存建物補強構造について説明する。
ここに、図1は、既存建物12と、既存建物12を補強する鉄骨フレーム14を示す斜視図であり、図2(A)は、図1のY1−Y1線断面図であり、図2(B)は既存建物12と鉄骨フレーム14の接合部10の部分断面図である。図3(A)、(B)は、いずれも、接合部10の展開例である。
(First embodiment)
The existing building reinforcement structure which concerns on 1st Embodiment is demonstrated using FIGS. 1-3 (A) and (B).
FIG. 1 is a perspective view showing the existing building 12 and the steel frame 14 that reinforces the existing building 12, and FIG. 2A is a cross-sectional view taken along line Y1-Y1 of FIG. B) is a partial cross-sectional view of the joint 10 between the existing building 12 and the steel frame 14. 3A and 3B are examples of development of the joint portion 10.

図1、図2(A)に示すように、耐震補強される既存建物12は、複数階を備えた鉄筋コンクリート造の建物である。既存建物12は、補強構造の説明のために壁の記載は省略し、柱74、梁24、及びスラブ18のみを記載している。既存建物12は、躯体の加工を必要最小限に抑制して耐震補強されている。   As shown in FIGS. 1 and 2A, the existing building 12 to be seismically reinforced is a reinforced concrete building having a plurality of floors. In the existing building 12, the description of the wall is omitted for explanation of the reinforcing structure, and only the pillar 74, the beam 24, and the slab 18 are described. The existing building 12 is seismically reinforced by suppressing the processing of the frame to the minimum necessary.

既存建物12の一方の側壁には、既存建物12と隣接して鉄骨フレーム(立体架構)14が構築されている。鉄骨フレーム14は、既存建物12を補強する外付けの補強部材であり、下記の構成とされ、既存建物12と鉄骨フレーム14は、後述する接合部10で接合(連結)されている。   A steel frame (three-dimensional frame) 14 is constructed on one side wall of the existing building 12 adjacent to the existing building 12. The steel frame 14 is an external reinforcing member that reinforces the existing building 12 and has the following configuration, and the existing building 12 and the steel frame 14 are joined (connected) at a joint 10 described later.

鉄骨フレーム14は、鉄骨製の縦部材、横部材及び斜め部材を組み合わせて直方体形状に構築されている。鉄骨フレーム14は、既存建物12に沿って、既存建物12と並んで配置されている。
鉄骨フレーム14の既存建物12に近い側には、H形鋼製の柱を既存建物12に沿って複数配置した柱列34が設けられ、既存建物12から遠い側には、H形鋼製の柱を既存建物12に沿って複数配置した柱列36が設けられている。鉄骨フレーム14は、柱列34及び柱列36で自立する構成とされ、柱列34及び柱列36の下端部は、地盤37に、例えばアースアンカー等で固定されている。なお、柱列34、36を構成する柱は、H形鋼で以下説明するが、丸型鋼や角型鋼等、他の断面形状であってもよい。
The steel frame 14 is constructed in a rectangular parallelepiped shape by combining a vertical member, a horizontal member, and an oblique member made of steel. The steel frame 14 is arranged alongside the existing building 12 along with the existing building 12.
A column row 34 in which a plurality of H-shaped steel columns are arranged along the existing building 12 is provided on the side close to the existing building 12 of the steel frame 14, and an H-shaped steel-made column is provided on the side far from the existing building 12. A column array 36 in which a plurality of columns are arranged along the existing building 12 is provided. The steel frame 14 is configured to be self-supporting with a column array 34 and a column array 36, and the lower ends of the column array 34 and the column array 36 are fixed to the ground 37 with, for example, an earth anchor. In addition, although the column which comprises the column rows 34 and 36 is demonstrated below with H-section steel, other cross-sectional shapes, such as round steel and square steel, may be sufficient.

また、鉄骨フレーム14は、横方向に複数配置されたH形鋼製の梁38を有している。梁38は、柱列34、36の間に、X軸方向及びY軸方向に渡され、柱列34、36を構成する柱と接合され、立体架構を構築している。
また、鉄骨フレーム14は、斜め部材であるブレース39を有し、柱列34、36と梁38の交点を斜めに繋いでいる。
The steel frame 14 has a plurality of H-shaped steel beams 38 arranged in the lateral direction. The beam 38 is passed between the column rows 34 and 36 in the X-axis direction and the Y-axis direction, and is joined to the columns constituting the column rows 34 and 36 to construct a three-dimensional frame.
The steel frame 14 has a brace 39 that is an oblique member, and connects the intersections of the column rows 34 and 36 and the beam 38 obliquely.

鉄骨フレーム14は、柱列34を既存建物12と隣接させて配置され、梁38は、既存建物12の梁24と対応する高さに配置されている。また、梁38は、高さ(Z軸)方向には、複数階を有する既存建物12の、各階の梁24とそれぞれ対応させて、各階の梁24の位置に取付けられている。
なお、各図における既存建物12と鉄骨フレーム14の境界は、鉛直線Pで示している。鉛直線Pより矢印X1側が既存建物12であり、鉛直線Pより矢印X2側が鉄骨フレーム14である。
The steel frame 14 is arranged with the column 34 adjacent to the existing building 12, and the beam 38 is arranged at a height corresponding to the beam 24 of the existing building 12. Further, the beam 38 is attached at the position of the beam 24 on each floor in the height (Z-axis) direction so as to correspond to the beam 24 on each floor of the existing building 12 having a plurality of floors.
In addition, the boundary of the existing building 12 and the steel frame 14 in each figure is shown by the vertical line P. The arrow X 1 side from the vertical line P is the existing building 12, and the arrow X 2 side from the vertical line P is the steel frame 14.

また、鉄骨フレーム14には、鉄筋コンクリート造の新設のスラブ16が構築されている。スラブ16は、梁38に支持され、図1のドットで示す範囲に構築されている。スラブ16は、既存建物12の既存の鉄筋コンクリート造のスラブ18と、端面同士を当接させて接合されている。   In addition, a new slab 16 made of reinforced concrete is constructed on the steel frame 14. The slab 16 is supported by the beam 38 and constructed in a range indicated by a dot in FIG. The slab 16 is joined to the existing reinforced concrete slab 18 of the existing building 12 with the end surfaces in contact with each other.

スラブ16の幅は、X軸方向には、鉄骨フレーム14のX軸方向の幅に収まる寸法に構築され、Y軸方向には、スラブ18の全幅を覆う寸法で構築されている。
具体的には、X軸方向のスラブ16の幅WSは1m程度が望ましく、詳細寸法は、既存建物12に要求される耐震強度により決定される。スラブ16の幅WSが、鉄骨フレーム14の幅WTより小さい場合には、Y軸方向へ小梁62を渡してスラブ16の端部を支持すればよい(図3(B)参照)。
The width of the slab 16 is constructed so as to fit within the width of the steel frame 14 in the X-axis direction in the X-axis direction, and constructed to cover the entire width of the slab 18 in the Y-axis direction.
Specifically, the width WS of the slab 16 in the X-axis direction is desirably about 1 m, and the detailed dimensions are determined by the seismic strength required for the existing building 12. When the width WS of the slab 16 is smaller than the width WT of the steel frame 14, the end of the slab 16 may be supported by passing the small beam 62 in the Y-axis direction (see FIG. 3B).

続いて、第1実施形態に係る既存建物補強構造の接合部10について説明する。
図2(B)に示すように、接合部10は、鉄骨フレーム14のスラブ16と、既存建物12の梁24を、アンカーボルト(いわゆるあと施工アンカー)32で接合した構成である。
Then, the junction part 10 of the existing building reinforcement structure which concerns on 1st Embodiment is demonstrated.
As shown in FIG. 2B, the joint portion 10 has a configuration in which the slab 16 of the steel frame 14 and the beam 24 of the existing building 12 are joined with anchor bolts (so-called post-construction anchors) 32.

ここに、スラブ16の端面16Sは、梁24の端面24Sと、平面同士を当接させて接合されている。これにより、既存建物12と鉄骨フレーム14が一体化される。この結果、既存建物12の地震力を鉄骨フレーム14へ伝達させることができる。
なお、既存建物12の外周部に設けられている、外壁又は手すり等の壁体は、記載を省略している。
Here, the end surface 16S of the slab 16 is joined to the end surface 24S of the beam 24 with the flat surfaces in contact with each other. Thereby, the existing building 12 and the steel frame 14 are integrated. As a result, the seismic force of the existing building 12 can be transmitted to the steel frame 14.
In addition, wall bodies, such as an outer wall or a handrail provided in the outer peripheral part of the existing building 12, are abbreviate | omitting description.

上述したように、本実施形態の既存建物補強構造は、既存建物12と隣接して構築された鉄骨フレーム14と、鉄骨フレーム14に設けられ既存建物12と接合される新設のスラブ16と、を有している。そして、新設のスラブ16は、既存建物12と接合されている。
即ち、鉄骨フレーム14に設けられた新設スラブ16により、既存建物12と鉄骨フレーム14が接合され、既存建物12と鉄骨フレーム14が一体化される。
As described above, the existing building reinforcement structure of the present embodiment includes the steel frame 14 constructed adjacent to the existing building 12 and the new slab 16 provided on the steel frame 14 and joined to the existing building 12. Have. The new slab 16 is joined to the existing building 12.
That is, the existing building 12 and the steel frame 14 are joined by the new slab 16 provided in the steel frame 14, and the existing building 12 and the steel frame 14 are integrated.

これに対し、従来の鉄骨フレームによる補強方法では、鉄骨フレーム14の梁38と既存建物12の梁24を、アンカーボルト等で接合していた。このため、既存建物の梁成が小さい場合、既存建物のコンクリート強度が低強度の場合、更には補強架構が立体となる場合等には、従来の補強方法では、地震時の水平力を鉄骨フレームに十分伝えることができなかった。   On the other hand, in the conventional reinforcing method using the steel frame, the beam 38 of the steel frame 14 and the beam 24 of the existing building 12 are joined with an anchor bolt or the like. For this reason, when the existing building is small in beam, when the concrete strength of the existing building is low, or when the reinforcement frame is three-dimensional, the conventional reinforcement method uses the horizontal force during an earthquake as a steel frame. Couldn't tell enough.

接合部10によれば、スラブ16がスラブ18と同レベルで接合され、地震時の水平力がスラブの面内力として、既存建物12から新設スラブ16へ連続的に伝達される。
これにより、地震力が分散されて応力集中が緩和され、アンカーボルト32の取付け部の補強が軽減される。
According to the joint 10, the slab 16 is joined at the same level as the slab 18, and the horizontal force at the time of the earthquake is continuously transmitted from the existing building 12 to the new slab 16 as an in-plane force of the slab.
Thereby, the seismic force is dispersed, the stress concentration is relaxed, and the reinforcement of the attachment portion of the anchor bolt 32 is reduced.

既存のスラブ18と新設のスラブ16が、既存建物12に沿って連続して面で当接されることにより、鉄骨フレーム14に的確に地震力が伝達される。
この結果、既存建物12の柱74や梁24の断面積が小さい場合や、既存建物12のコンクリート強度が低強度である場合にも、既存建物12の地震力を鉄骨フレーム14へ伝達させることができる。
The existing slab 18 and the newly installed slab 16 are continuously brought into contact with each other along the existing building 12 so that the seismic force is accurately transmitted to the steel frame 14.
As a result, the seismic force of the existing building 12 can be transmitted to the steel frame 14 even when the cross-sectional areas of the columns 74 and the beams 24 of the existing building 12 are small or when the concrete strength of the existing building 12 is low. it can.

なお、本実施形態においては、鉄骨フレーム14に構築されたスラブ16を、既存建物12の既存の梁24と接合する構成について説明した。しかし、これに限定されることはなく、例えば、図3(A)に示す接合部20のように、スラブ16を、既存建物12の既存のスラブ78の側面78Sと接合する構成でもよい。   In addition, in this embodiment, the structure which joins the slab 16 constructed | assembled to the steel frame 14 with the existing beam 24 of the existing building 12 was demonstrated. However, it is not limited to this, For example, the structure which joins the slab 16 with the side surface 78S of the existing slab 78 of the existing building 12 like the junction part 20 shown to FIG. 3 (A) may be sufficient.

これにより、スラブ16とスラブ78を一体化し、既存建物12の既存のスラブ78から、鉄骨フレーム14のスラブ16へ、連続して地震力を伝達させることで、既存建物12の地震力を鉄骨フレーム14へ伝達させることができる。   As a result, the slab 16 and the slab 78 are integrated, and the seismic force of the existing building 12 is continuously transmitted from the existing slab 78 of the existing building 12 to the slab 16 of the steel frame 14, so that the seismic force of the existing building 12 is transferred to the steel frame. 14 can be transmitted.

また、図3(B)に示す接合部30のように、鉄骨フレーム88にはスラブ16が設けられ、スラブ16を支持する梁38を、鉄骨鉄筋コンクリート梁(いわゆるSRC梁)46とすることもできる。
ここに、鉄骨鉄筋コンクリート梁46は、H形鋼製の梁38の周囲を、鉄筋コンクリートで囲んだ梁である。
3B, the steel frame 88 is provided with the slab 16, and the beam 38 supporting the slab 16 can be a steel reinforced concrete beam (so-called SRC beam) 46. As shown in FIG. .
Here, the steel-framed reinforced concrete beam 46 is a beam in which the periphery of the H-shaped steel beam 38 is surrounded by reinforced concrete.

この場合には、鉄骨鉄筋コンクリート梁46の側面46Sと、既存の梁24の側面24Sを当接させて、アンカーボルト32で接合すればよい。
これにより、既存建物12と鉄骨フレーム88の一体化が担保される。
In this case, the side face 46S of the steel reinforced concrete beam 46 and the side face 24S of the existing beam 24 may be brought into contact with each other and joined by the anchor bolt 32.
Thereby, integration of the existing building 12 and the steel frame 88 is ensured.

(第2実施形態)
図4(A)、(B)を用いて、第2実施形態に係る既存建物補強構造について説明する。第2実施形態に係る既存建物補強構造は、既存のスラブ18の上面と、新設のスラブ16の上面に跨って、シート26が貼り付けられている点において、第1実施形態と相違する。相違点を中心に説明する。
ここに、図4(A)は既存建物12と鉄骨フレーム88の接合部80の施工段階を示し、図4(B)は完成状態を示す部分断面図である。
(Second Embodiment)
The existing building reinforcement structure which concerns on 2nd Embodiment is demonstrated using FIG. 4 (A) and (B). The existing building reinforcement structure according to the second embodiment is different from the first embodiment in that the sheet 26 is pasted over the upper surface of the existing slab 18 and the upper surface of the newly installed slab 16. The difference will be mainly described.
4A shows a construction stage of the joint 80 between the existing building 12 and the steel frame 88, and FIG. 4B is a partial cross-sectional view showing a completed state.

図4(A)に示す接合部80のように、シート26は、同一高さに構築された既存のスラブ18の上面と、新設のスラブ16の上面に跨って、接着剤で貼り付けられている。
シート26は、例えば炭素繊維系の炭素繊維シートであり、連続した1枚のシートで構成され、スラブ18の上面とスラブ16の上面を、同時に一体的に覆う構成である。
これにより、既存スラブ18と新設スラブ16の接合強度をより高めることができる。
4A, the sheet 26 is pasted with an adhesive across the upper surface of the existing slab 18 constructed at the same height and the upper surface of the new slab 16. Yes.
The sheet 26 is, for example, a carbon fiber-based carbon fiber sheet, and is configured by a single continuous sheet, and is configured to integrally and integrally cover the upper surface of the slab 18 and the upper surface of the slab 16.
Thereby, the joining strength of the existing slab 18 and the new slab 16 can be further increased.

なお、本実施形態では、既存建物12の外周部に設けられている、外壁又は手すり等の壁体28は、シート26の貼り付け前に、それらを一旦取り外す。取り外した壁体28は、補強工程の終了後に、シート26の上に再度構築すればよい。このとき、新たな壁体28は、乾式壁(いわゆるALC等)とするのが望ましい。   In the present embodiment, the wall body 28 such as an outer wall or a handrail provided on the outer periphery of the existing building 12 is temporarily removed before the sheet 26 is attached. What is necessary is just to build again the removed wall 28 on the sheet | seat 26 after completion | finish of a reinforcement process. At this time, the new wall body 28 is preferably a dry wall (so-called ALC or the like).

図4(B)に接合部80の仕上げ状態を示す。既存建物12のスラブ18は、シート26の上にモルタル84を打設して仕上げる。また、鉄骨フレーム88のスラブ16は、シート26の上、及び壁体28の下部に防水シート86を貼り、防水処理を行う。   FIG. 4B shows the finished state of the joint 80. The slab 18 of the existing building 12 is finished by placing a mortar 84 on the sheet 26. The slab 16 of the steel frame 88 is waterproofed by attaching a waterproof sheet 86 on the sheet 26 and on the lower part of the wall body 28.

なお、本実施形態では、第1実施形態の図3(B)に示す接合部30を例に説明した。しかし、これに限定されることはなく、第1実施形態の図2(B)に示す接合部10、及び図3(A)に示す接合部20に適用してもよい。また、本実施形態は、後述する第3実施形態〜第5実施形態にも適用される。また、本実施形態は、鉄骨フレーム88の柱列34と、既存建物12の柱74をアンカーボルト32等で連結する構成も含む。
他の構成は、第1実施形態と同じであり説明は省略する。
In addition, in this embodiment, the junction part 30 shown to FIG. 3 (B) of 1st Embodiment was demonstrated to the example. However, the present invention is not limited to this, and the present invention may be applied to the joint 10 shown in FIG. 2B and the joint 20 shown in FIG. 3A of the first embodiment. Moreover, this embodiment is applied also to 3rd Embodiment-5th Embodiment mentioned later. The present embodiment also includes a configuration in which the column 34 of the steel frame 88 and the column 74 of the existing building 12 are connected by the anchor bolt 32 or the like.
Other configurations are the same as those of the first embodiment, and a description thereof will be omitted.

(第3実施形態)
図5(A)、(B)を用いて、第3実施形態に係る既存建物補強構造について説明する。第3実施形態に係る既存建物補強構造は、鉄骨フレーム44に設けられた新設のスラブ48が跳ね出しスラブである点において、第1実施形態と相違する。相違点を中心に説明する。
ここに、図5(A)は既存建物12と鉄骨フレーム44の接合部40の断面図((B)のY1−Y1線断面図)であり、図5(B)は(A)のZ1−Z1線断面図である。
(Third embodiment)
The existing building reinforcement structure which concerns on 3rd Embodiment is demonstrated using FIG. 5 (A), (B). The existing building reinforcement structure according to the third embodiment is different from the first embodiment in that the newly installed slab 48 provided on the steel frame 44 is a spring-out slab. The difference will be mainly described.
Here, FIG. 5A is a cross-sectional view (cross-sectional view taken along line Y1-Y1 in FIG. 5B) of the joint 40 between the existing building 12 and the steel frame 44, and FIG. 5B is Z1- in FIG. It is a Z1 line sectional view.

図5(A)に示す接合部40のように、既存建物12は、外周部に既存の鉄筋コンクリート造の梁24に支持された既存のスラブ18を有している。
鉄骨フレーム44は、既存建物12と所定の距離W1を開けて構築され、既存建物12と、既存建物12側の柱列34との間には、鉄筋コンクリート造のスラブ48が設けられている。
Like the joint 40 shown in FIG. 5 (A), the existing building 12 has an existing slab 18 supported by an existing reinforced concrete beam 24 on the outer periphery.
The steel frame 44 is constructed with a predetermined distance W1 from the existing building 12, and a reinforced concrete slab 48 is provided between the existing building 12 and the column 34 on the existing building 12 side.

また、柱列34の柱間に設けられたH形鋼製の梁38は、梁38の周囲がコンクリートで覆われた鉄骨鉄筋コンクリート梁46とされている。
スラブ48は、鉄骨フレーム44側の端部が鉄骨鉄筋コンクリート梁46に支持されている。また、既存建物12側の端面48Sは既存のスラブ18と当接されている。スラブ48の端面48Sとスラブ18の端面18Sは、アンカーボルト32で接合されている。
The H-shaped steel beam 38 provided between the columns of the column 34 is a steel reinforced concrete beam 46 in which the periphery of the beam 38 is covered with concrete.
The end of the slab 48 on the steel frame 44 side is supported by a steel reinforced concrete beam 46. The end face 48S on the existing building 12 side is in contact with the existing slab 18. The end surface 48S of the slab 48 and the end surface 18S of the slab 18 are joined by the anchor bolt 32.

また、図5(B)に示すように、スラブ48の上面48Uとスラブ18の上面18Uには、炭素繊維系のシート26が貼り付けられている。図5(B)のドットで示す範囲が、シート26が貼り付けられた範囲である。   Further, as shown in FIG. 5B, a carbon fiber sheet 26 is attached to the upper surface 48U of the slab 48 and the upper surface 18U of the slab 18. A range indicated by dots in FIG. 5B is a range where the sheet 26 is pasted.

これにより、スラブ18とスラブ48の接合強度が高められ、既存建物12と鉄骨フレーム44を一体化することができる。なお、スラブ18とスラブ48の接合強度を、アンカーボルト32のみで確保できる場合には、シート26は設けなくてもよい。
他の構成は、第1実施形態と同じであり説明は省略する。
Thereby, the joint strength of the slab 18 and the slab 48 is increased, and the existing building 12 and the steel frame 44 can be integrated. In addition, when the joint strength between the slab 18 and the slab 48 can be secured only by the anchor bolt 32, the sheet 26 may not be provided.
Other configurations are the same as those of the first embodiment, and a description thereof will be omitted.

(第4実施形態)
図6(A)、(B)を用いて、第4実施形態に係る既存建物補強構造について説明する。第4実施形態に係る既存建物補強構造は、既存建物52が跳ね出しスラブ54を有し、跳ね出しスラブ54が鉄骨フレーム56と接合される点において、第1実施形態と相違する。相違点を中心に説明する。
ここに、図6(A)は既存建物52と鉄骨フレーム56の接合部50の断面図((B)のY1−Y1線断面図)であり、図6(B)は(A)のZ1−Z1線断面図である。
(Fourth embodiment)
The existing building reinforcement structure which concerns on 4th Embodiment is demonstrated using FIG. 6 (A), (B). The existing building reinforcement structure according to the fourth embodiment is different from the first embodiment in that the existing building 52 has a spring slab 54 and the spring slab 54 is joined to the steel frame 56. The difference will be mainly described.
6A is a cross-sectional view (a cross-sectional view taken along line Y1-Y1 in FIG. 6B) of the joint portion 50 between the existing building 52 and the steel frame 56, and FIG. 6B is a cross-sectional view taken along Z1- in FIG. It is a Z1 line sectional view.

図6(A)に示す接合部50のように、既存建物52は、鉄骨フレーム56と接する側面に、鉄筋コンクリート造の跳ね出しスラブ54が設けられている。
一方、鉄骨フレーム56の柱列34の間のH形鋼製の梁38は、梁38の周囲がコンクリートで覆われた、鉄骨鉄筋コンクリート梁46とされている。また、鉄骨フレーム56には、新設のスラブ58が設けられている。スラブ58は、鉄筋コンクリート造とされ、鉄骨鉄筋コンクリート梁46及び小梁62で支持されている。スラブ58の端面58Sと、跳ね出しスラブ54の端面54Sは、アンカーボルト32で接合されている。
As in the joint portion 50 shown in FIG. 6A, the existing building 52 is provided with a reinforced concrete spring slab 54 on the side surface in contact with the steel frame 56.
On the other hand, the H-shaped steel beam 38 between the column rows 34 of the steel frame 56 is a steel reinforced concrete beam 46 in which the periphery of the beam 38 is covered with concrete. The steel frame 56 is provided with a new slab 58. The slab 58 is made of reinforced concrete and is supported by a steel reinforced concrete beam 46 and a small beam 62. The end surface 58S of the slab 58 and the end surface 54S of the protruding slab 54 are joined by the anchor bolt 32.

また、図6(B)に示すように、スラブ58の上面58Uとスラブ54の上面54Uには、炭素繊維系のシート26が貼り付けられている。図5(B)のドットで示す範囲が、シート26が貼り付けられた範囲である。   As shown in FIG. 6B, a carbon fiber sheet 26 is attached to the upper surface 58U of the slab 58 and the upper surface 54U of the slab 54. A range indicated by dots in FIG. 5B is a range where the sheet 26 is pasted.

これにより、スラブ54とスラブ58の接合強度が高められ、既存建物52と鉄骨フレーム56を一体化することができる。なお、スラブ54とスラブ58の接合強度を、アンカーボルト32のみで確保できる場合には、シート26は設けなくてもよい。
他の構成は、第1実施形態と同じであり説明は省略する。
Thereby, the joining strength of the slab 54 and the slab 58 is increased, and the existing building 52 and the steel frame 56 can be integrated. In addition, when the joint strength of the slab 54 and the slab 58 can be secured only by the anchor bolt 32, the sheet 26 may not be provided.
Other configurations are the same as those of the first embodiment, and a description thereof will be omitted.

(第5実施形態)
図7(A)、(B)を用いて、第5実施形態に係る既存建物補強構造について説明する。第5実施形態に係る既存建物補強構造は、既存建物52が跳ね出しスラブ54を有し、鉄骨フレーム90も跳ね出しスラブ68を有している点において、第1実施形態と相違する。相違点を中心に説明する。
ここに、図7(A)は既存建物52と鉄骨フレーム90の接合部60の側面図((B)のY1−Y1線断面図)であり、図7(B)は(A)のZ1−Z1線断面図である。
(Fifth embodiment)
The existing building reinforcement structure which concerns on 5th Embodiment is demonstrated using FIG. 7 (A), (B). The existing building reinforcement structure according to the fifth embodiment is different from the first embodiment in that the existing building 52 has a spring-out slab 54 and the steel frame 90 also has a spring-out slab 68. The difference will be mainly described.
FIG. 7A is a side view (a cross-sectional view taken along line Y1-Y1 in FIG. 7B) of the joint portion 60 between the existing building 52 and the steel frame 90, and FIG. It is a Z1 line sectional view.

図7(A)に示す接合部60のように、既存建物52は、鉄筋コンクリート造の跳ね出しスラブ54を有し、鉄骨フレーム90も鉄筋コンクリート造の跳ね出しスラブ68を有し、跳ね出しスラブ68の端面68Sと、跳ね出しスラブ54の端面54Sがアンカーボルト32で接合されている。   Like the joint 60 shown in FIG. 7A, the existing building 52 has a reinforced concrete spring slab 54, and the steel frame 90 also has a reinforced concrete spring slab 68. The end face 68 </ b> S and the end face 54 </ b> S of the spring-out slab 54 are joined by the anchor bolt 32.

鉄骨フレーム90は、既存建物12の跳ね出しスラブ54の端面54Sから、梁46の側面46Sまで所定の距離W2を開けて構築され、既存建物52との間は、新設のスラブ68で接合されている。
鉄骨フレーム90において、柱列34の柱の間のH形鋼製の梁38は、梁38の周囲が鉄筋コンクリートで覆われた、鉄骨鉄筋コンクリート梁46とされている。
スラブ68は、鉄骨フレーム90側の端部が、鉄骨鉄筋コンクリート梁46に支持され、既存建物52側の端部は、スラブ68の端面68Sと、スラブ54の端面54Sを当接させて、アンカーボルト32で接合されている。
The steel frame 90 is constructed with a predetermined distance W2 from the end face 54S of the jumping slab 54 of the existing building 12 to the side face 46S of the beam 46, and is joined to the existing building 52 by a new slab 68. Yes.
In the steel frame 90, the H-shaped steel beam 38 between the columns of the column 34 is a steel-framed reinforced concrete beam 46 in which the periphery of the beam 38 is covered with reinforced concrete.
The end of the slab 68 on the steel frame 90 side is supported by the steel frame reinforced concrete beam 46, and the end of the existing building 52 side is brought into contact with the end surface 68S of the slab 68 and the end surface 54S of the slab 54, thereby anchor bolts. 32 is joined.

また、図7(B)に示すように、スラブ68の上面68Uと、スラブ54の上面54Uには、炭素繊維系のシート26が貼り付けられている。図7(B)のドットで示す範囲が、シート26が貼り付けられた範囲である。   Further, as shown in FIG. 7B, a carbon fiber sheet 26 is attached to the upper surface 68U of the slab 68 and the upper surface 54U of the slab 54. A range indicated by dots in FIG. 7B is a range where the sheet 26 is pasted.

これにより、スラブ54とスラブ68の接合強度が高められ、既存建物52と鉄骨フレーム90を一体化することができる。なお、スラブ54とスラブ68の接合強度を、アンカーボルト32のみで確保できる場合には、シート26は設けなくてもよい。
他の構成は、第1実施形態と同じであり説明は省略する。
Thereby, the joint strength of the slab 54 and the slab 68 is increased, and the existing building 52 and the steel frame 90 can be integrated. In addition, when the joint strength between the slab 54 and the slab 68 can be secured only by the anchor bolt 32, the sheet 26 may not be provided.
Other configurations are the same as those of the first embodiment, and a description thereof will be omitted.

10、20、30、40、50、60、70 接合部
12、52 既存建物
14、44、56、88、90 鉄骨フレーム(立体架構)
16、48、58、68 スラブ(新設スラブ)
16U、48U、58U、68U スラブの上面
16S、48S、58S、68S スラブの端面
18、54、78 スラブ(既存スラブ)
18U、54U、78U スラブの上面
18S、54S、78S スラブの端面
26 シート(繊維製のシート、炭素繊維シート)
10, 20, 30, 40, 50, 60, 70 Joint 12, 52 Existing building 14, 44, 56, 88, 90 Steel frame (three-dimensional frame)
16, 48, 58, 68 Slab (new slab)
16U, 48U, 58U, 68U Slab upper surface 16S, 48S, 58S, 68S Slab end face 18, 54, 78 Slab (existing slab)
18U, 54U, 78U Slab top surface 18S, 54S, 78S Slab end face 26 sheet (fiber sheet, carbon fiber sheet)

Claims (3)

既存建物と隣接して構築された立体架構と、
前記立体架構に設けられ前記既存建物と接合される新設スラブと、
を有する既存建物補強構造。
A three-dimensional frame constructed adjacent to an existing building;
A new slab provided in the three-dimensional frame and joined to the existing building;
Existing building reinforcement structure.
前記新設スラブは、前記既存建物の既存スラブと接合されている請求項1に記載の既存建物補強構造。   The existing building reinforcement structure according to claim 1, wherein the new slab is joined to an existing slab of the existing building. 前記既存スラブの上面と前記新設スラブの上面に跨って、繊維製のシートが貼り付けられている請求項2に記載の既存建物補強構造。   The existing building reinforcement structure according to claim 2, wherein a fiber sheet is affixed across the upper surface of the existing slab and the upper surface of the new slab.
JP2014145253A 2014-07-15 2014-07-15 Existing building reinforcement structure Active JP6368570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014145253A JP6368570B2 (en) 2014-07-15 2014-07-15 Existing building reinforcement structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014145253A JP6368570B2 (en) 2014-07-15 2014-07-15 Existing building reinforcement structure

Publications (2)

Publication Number Publication Date
JP2016020607A true JP2016020607A (en) 2016-02-04
JP6368570B2 JP6368570B2 (en) 2018-08-01

Family

ID=55265596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014145253A Active JP6368570B2 (en) 2014-07-15 2014-07-15 Existing building reinforcement structure

Country Status (1)

Country Link
JP (1) JP6368570B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6304914B1 (en) * 2017-10-27 2018-04-04 槇谷 榮次 Seismic reinforcement structure for existing or new steel structures
JP2022059666A (en) * 2020-10-02 2022-04-14 大成建設株式会社 Earthquake reinforcement structure of existing building using clt

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5174085A (en) * 1988-12-13 1992-12-29 Chinese Building Technology Services Corp. Ltd. Method of adding additional stories to an existing storied building
JPH09203220A (en) * 1996-01-26 1997-08-05 Kajima Corp Earthquake-resistant reinforcing method for existing building
JPH11256837A (en) * 1998-03-12 1999-09-21 Taisei Corp Reinforcement method for flexural strength of existing building frame body
JP2000145162A (en) * 1998-11-06 2000-05-26 Tatsuji Ishimaru Earthquake-resistant reinforcing structure
JP2000309907A (en) * 1999-04-26 2000-11-07 Sho Bond Constr Co Ltd Continuous integration method of concrete precast floor slab
JP2005155139A (en) * 2003-11-25 2005-06-16 Oriental Construction Co Ltd Seismic reinforcing external frame construction method of existing building
JP2009068182A (en) * 2007-09-11 2009-04-02 Takenaka Komuten Co Ltd Aseismatic reinforcing structure and method for existing building
JP2009209589A (en) * 2008-03-05 2009-09-17 Nippon Kyoryo Kensetsu Kyokai Joint structure provided with covering material
JP2009209585A (en) * 2008-03-05 2009-09-17 Takenaka Komuten Co Ltd Seismic strengthening method and seismic strengthening structure of existing building
JP2013060763A (en) * 2011-09-14 2013-04-04 Takenaka Komuten Co Ltd Earthquake strengthening structure

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5174085A (en) * 1988-12-13 1992-12-29 Chinese Building Technology Services Corp. Ltd. Method of adding additional stories to an existing storied building
JPH09203220A (en) * 1996-01-26 1997-08-05 Kajima Corp Earthquake-resistant reinforcing method for existing building
JPH11256837A (en) * 1998-03-12 1999-09-21 Taisei Corp Reinforcement method for flexural strength of existing building frame body
JP2000145162A (en) * 1998-11-06 2000-05-26 Tatsuji Ishimaru Earthquake-resistant reinforcing structure
JP2000309907A (en) * 1999-04-26 2000-11-07 Sho Bond Constr Co Ltd Continuous integration method of concrete precast floor slab
JP2005155139A (en) * 2003-11-25 2005-06-16 Oriental Construction Co Ltd Seismic reinforcing external frame construction method of existing building
JP2009068182A (en) * 2007-09-11 2009-04-02 Takenaka Komuten Co Ltd Aseismatic reinforcing structure and method for existing building
JP2009209589A (en) * 2008-03-05 2009-09-17 Nippon Kyoryo Kensetsu Kyokai Joint structure provided with covering material
JP2009209585A (en) * 2008-03-05 2009-09-17 Takenaka Komuten Co Ltd Seismic strengthening method and seismic strengthening structure of existing building
JP2013060763A (en) * 2011-09-14 2013-04-04 Takenaka Komuten Co Ltd Earthquake strengthening structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6304914B1 (en) * 2017-10-27 2018-04-04 槇谷 榮次 Seismic reinforcement structure for existing or new steel structures
JP2019078134A (en) * 2017-10-27 2019-05-23 槇谷 榮次 Seismic reinforcement structure of existing or new steel frame structure
JP2022059666A (en) * 2020-10-02 2022-04-14 大成建設株式会社 Earthquake reinforcement structure of existing building using clt
JP7435979B2 (en) 2020-10-02 2024-02-21 大成建設株式会社 Earthquake reinforcement structure for existing buildings using CLT

Also Published As

Publication number Publication date
JP6368570B2 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP6368570B2 (en) Existing building reinforcement structure
JP2010084465A (en) Connecting structure, unit building, and method for constructing the unit building
JP2010007235A (en) Corrugated steel plate mounting structure, and building with the same
JP6393588B2 (en) Existing building reinforcement method
JP6855365B2 (en) Underground structure of new building
JP6265735B2 (en) Consolidated building
JP2009007865A (en) Building structure
JP2017128916A (en) Column-to-beam joint structure
JP2018150722A (en) Column and beam joint structure and forming method of column and beam joint structure
JP6427315B2 (en) Column reinforcement structure
JP5953218B2 (en) Base-isolated building structure
JP6985037B2 (en) Pier foundation structure
JP2017082548A (en) Concrete foundation joint member and pile structure
JP6886811B2 (en) Foundation structure and method of constructing foundation structure
JP2008274622A (en) Intermediate-story base-isolating mechanism of building
JP6679277B2 (en) Steel foundation beam structure
JP6529241B2 (en) Building foundation structure and construction method of building foundation structure
JP2020169514A (en) Joint structure
KR101574628B1 (en) Reinforcement structure of the steel beam
JP6342743B2 (en) Existing building reinforcement structure
JP2007303196A (en) Aseismatic reinforcing structure and aseismatic reinforcing method for existing pile
JP6331089B2 (en) Extension structure and construction method of extension building
JP2017040122A (en) Reinforced concrete column-beam joint precast member
KR102349442B1 (en) Coupling structure of column and girder having single girder in lateral direction, double girder in backward direction and concrete part around the column
JP2006257744A (en) Soil cement column wall, and foundation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180709

R150 Certificate of patent or registration of utility model

Ref document number: 6368570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150