JP2016019176A - Signal transfer device - Google Patents

Signal transfer device Download PDF

Info

Publication number
JP2016019176A
JP2016019176A JP2014141452A JP2014141452A JP2016019176A JP 2016019176 A JP2016019176 A JP 2016019176A JP 2014141452 A JP2014141452 A JP 2014141452A JP 2014141452 A JP2014141452 A JP 2014141452A JP 2016019176 A JP2016019176 A JP 2016019176A
Authority
JP
Japan
Prior art keywords
signal
optical
transmission
communication
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014141452A
Other languages
Japanese (ja)
Inventor
寛之 森
Hiroyuki Mori
寛之 森
直毅 神川
Naoki Kamikawa
直毅 神川
充彦 水野
Michihiko Mizuno
充彦 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2014141452A priority Critical patent/JP2016019176A/en
Publication of JP2016019176A publication Critical patent/JP2016019176A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique for combining enhancement of noise resistance and CAN communication, without using an expensive optical coupler.SOLUTION: A signal transfer device includes a pair of photoelectric converters 30 connected, respectively, with two transmission lines constituting CAN(Controller Area Network), and performing optical communication mutually. In the photoelectric converter 30, receiving means 31 receives the signal of a transmission line 2. Optical transmission means 34 converts a CAN reception signal, i.e., an output signal from the receiving means 31, into an optical signal that is transmitted to the other side of optical communication. Optical reception means 33 converts an optical signal received from the other side into an electric signal. The transmission means 34 transmits the output signal from the reception means 33, as a CAN transmission signal, to the transmission line 2. When the signal level of the CAN transmission signal is dominant, arbitration control means 32 holds the signal level of the CAN reception signal recessively.SELECTED DRAWING: Figure 2

Description

本発明は、CSMA/CA方式の通信ネットワークにおける耐ノイズ性を向上させる技術に関する。   The present invention relates to a technique for improving noise resistance in a CSMA / CA communication network.

従来、CSMA/CA方式の通信ネットワークとして、車載ネットワークの一つであるCAN(Controller Area Network )が知られている。また、通信ネットワークにおいて、外乱ノイズの影響による通信障害の発生を防止する対策の一つとして、ノード間の通信を光信号で行うことが考えられている。そして、この技術をCANに適用した場合、光通信線上で通信調停を実現する必要がある。その手法として、入力された光を分配する光カプラを中心に、光通信線を介して複数の光通信装置をスター型に接続し、各光通信装置では、光送信部を介して光カプラへ光信号を入力し、光カプラから出力される光信号を光受信部にて受信する技術が提案されている(特許文献1参照)。   Conventionally, CAN (Controller Area Network) which is one of in-vehicle networks is known as a CSMA / CA communication network. Further, as one of measures for preventing the occurrence of communication failure due to the influence of disturbance noise in a communication network, it is considered that communication between nodes is performed with an optical signal. And when this technique is applied to CAN, it is necessary to implement | achieve communication arbitration on an optical communication line. As a technique, a plurality of optical communication devices are connected in a star shape via an optical communication line, centering on an optical coupler that distributes input light, and each optical communication device is connected to an optical coupler via an optical transmission unit. A technique has been proposed in which an optical signal is input and an optical signal output from an optical coupler is received by an optical receiver (see Patent Document 1).

特開2011−071638号公報JP 2011-071638 A

しかしながら、従来技術では、高価な光カプラを多数使用する必要があるだけでなく、バス形態がスター型であるため配線の自由度が低いという問題もあった。
本発明は、こうした問題に鑑みてなされたものであり、高価な光カプラを用いることなく、耐ノイズ性の向上とCAN通信を両立させる技術を提供することを目的とする。
However, the conventional technique not only requires the use of many expensive optical couplers, but also has a problem that the degree of freedom of wiring is low because the bus form is a star type.
The present invention has been made in view of these problems, and an object of the present invention is to provide a technology that achieves both improved noise resistance and CAN communication without using an expensive optical coupler.

本発明の信号転送装置は、CANを構成する二つの伝送線路のそれぞれに接続され、且つ相互に光通信を行う一対の光電変換装置を備える。そして、光電変換装置は、受信手段と、光送信手段と、光受信手段と、送信手段と、調停制御手段とを備える。   The signal transfer device of the present invention includes a pair of photoelectric conversion devices that are connected to each of two transmission lines constituting the CAN and perform optical communication with each other. The photoelectric conversion apparatus includes a reception unit, an optical transmission unit, an optical reception unit, a transmission unit, and an arbitration control unit.

受信手段は、伝送線路上の信号を受信する。光送信手段は、受信手段からの出力信号であるCAN受信信号を光信号に変換して光通信の相手側に送信する。光受信手段は、光通信の相手側から受信する光信号を電気信号に変換する。送信手段は、光受信手段からの出力信号をCAN送信信号として伝送路上に送信する。調停制御手段は、CAN送信信号の信号レベルがドミナントである場合に、CAN受信信号の信号レベルをレセッシブに保持する。   The receiving means receives a signal on the transmission line. The optical transmission means converts a CAN reception signal, which is an output signal from the reception means, into an optical signal and transmits the optical signal to the other party of the optical communication. The optical receiving means converts an optical signal received from the other side of the optical communication into an electric signal. The transmission unit transmits the output signal from the optical reception unit as a CAN transmission signal on the transmission path. The arbitration control means holds the signal level of the CAN reception signal recessively when the signal level of the CAN transmission signal is dominant.

このような構成によれば、CANを構成する伝送線路の中でノイズの影響を受けやすい部分を、本発明の信号転送装置に置き換えるだけで、高価な光カプラを用いたり配線の自由度が制限されたりすることなく、耐ノイズ性を向上させることができる。   According to such a configuration, an expensive optical coupler can be used and the degree of freedom of wiring is limited simply by replacing a portion that is susceptible to noise in the transmission line constituting the CAN with the signal transfer device of the present invention. The noise resistance can be improved without being done.

また、本発明では、調整制御手段を備えることにより、CAN通信における調停制御を機能させることができるため、耐ノイズ性の向上とCAN通信とを両立させることができる。   Further, in the present invention, by providing the adjustment control means, the arbitration control in the CAN communication can be functioned, so that it is possible to achieve both improvement in noise resistance and CAN communication.

即ち、信号転送装置を設けると、信号転送装置を介してループ状の伝送経路が形成される。このため、調整制御手段が無い場合、一方の伝送線路上のノードからドミナントが送信されると、ループ状の伝送経路を経由して戻ってくる遅延したドミナントの影響によって、レセッシブに復帰することができなくなる。これに対して調整制御手段は、光受信手段からの出力信号(CAN送信信号)、即ち、相手側の光電変換装置が接続されている伝送線路上の信号レベルがドミナントである場合は、受信手段からの出力信号(CAN受信信号)をレセッシブに保持することで、送信元となった側に遅延したドミナントが戻ってくることを阻止している。これによって調停制御を有効に機能させることができる。   That is, when a signal transfer device is provided, a loop-shaped transmission path is formed through the signal transfer device. For this reason, when there is no adjustment control means, when a dominant is transmitted from a node on one transmission line, it may return to recessive due to the influence of the delayed dominant returning through the loop transmission path. become unable. On the other hand, the adjustment control means receives the output signal (CAN transmission signal) from the light receiving means, that is, if the signal level on the transmission line to which the counterpart photoelectric conversion device is connected is dominant. By holding the output signal (CAN reception signal) from the recessive, the delayed dominant is prevented from returning to the transmission source side. As a result, the arbitration control can function effectively.

なお、特許請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本発明の技術的範囲を限定するものではない。   In addition, the code | symbol in the parenthesis described in the claim shows the correspondence with the specific means as described in embodiment mentioned later as one aspect, Comprising: The technical scope of this invention is limited is not.

車載システムの全体構成図である。1 is an overall configuration diagram of an in-vehicle system. 信号転送装置の構成を示すブロック図である。It is a block diagram which shows the structure of a signal transfer apparatus. 動作例を示すタイミング図である。It is a timing diagram which shows an operation example. 動作例を示すタイミング図である。It is a timing diagram which shows an operation example. 信号転送装置の変形例の構成を示すブロック図である。It is a block diagram which shows the structure of the modification of a signal transfer apparatus.

以下に本発明が適用された実施形態について、図面を用いて説明する。
[全体構成]
図1に示す車載システムは、通信ネットワーク1と、信号転送装置3を備える。なお、通信ネットワーク1は、二つの部分ネットワーク1A,1Bからなり、信号転送装置3を介して相互に接続されている。
Embodiments to which the present invention is applied will be described below with reference to the drawings.
[overall structure]
The in-vehicle system shown in FIG. 1 includes a communication network 1 and a signal transfer device 3. The communication network 1 includes two partial networks 1A and 1B, which are connected to each other via a signal transfer device 3.

各部分ネットワーク1A,1Bは、それぞれバス2A,2Bを介して接続された複数の通信装置10により構成され、周知のCANプロトコルに従った通信を実行する。バス2(2A,2B)は、伝送線路として撚り対線用いられており、差動信号を伝送する。   Each of the partial networks 1A and 1B includes a plurality of communication devices 10 connected via buses 2A and 2B, respectively, and executes communication according to a well-known CAN protocol. The bus 2 (2A, 2B) is a twisted pair as a transmission line, and transmits a differential signal.

通信装置10は、CPU11、CANコントローラ12、CANトランシーバ13を備えた周知のものである。CPU10は、通信ネットワーク1を介して他の通信装置10との間で各種データを送受信し、自装置に割り当てられた機能を実現するための各種処理を実行する。CANコントローラ12は、CANプロトコルに従って通信制御を実現する周知のものである。CANトランシーバ13は、CANで規定された電気信号(差動信号)を送受信する周知のものである。   The communication device 10 is a known device including a CPU 11, a CAN controller 12, and a CAN transceiver 13. The CPU 10 transmits / receives various data to / from other communication apparatuses 10 via the communication network 1 and executes various processes for realizing functions assigned to the own apparatus. The CAN controller 12 is a well-known one that realizes communication control according to the CAN protocol. The CAN transceiver 13 is a known one that transmits and receives electrical signals (differential signals) defined by CAN.

[信号転送装置]
信号転送装置3は、一対の光電変換装置30と、光伝送路40とを備える。
光電変換装置30は、図2に示すように、CANトランシーバ31と、調停制御部32と、光受信部33と、光送信部34とを備える。CANトランシーバ31は通信装置10のCANトランシーバ13と同様に構成されたものである。光受信部33は、光伝送路40から受信した光信号を電気信号に変換する周知のものである。なお、光受信部33から出力される電気信号は、CAN送信信号TxとしてCANトランシーバ31に供給される。光送信部34は、CANトランシーバ31から供給される電気信号であるCAN受信信号Rxを光信号に変換する周知のものである。なお、光伝送路40は一対の光通信線(光ファイバ)で構成され、光信号の送信および受信はそれぞれ別の光通信線を介して実行される。また、CAN送信信号TxおよびCAN受信信号Rxは、レセッシブがハイレベル(電源電位)、ドミナントがロウレベル(接地電位)で表されるものとする。
[Signal transfer device]
The signal transfer device 3 includes a pair of photoelectric conversion devices 30 and an optical transmission path 40.
As illustrated in FIG. 2, the photoelectric conversion device 30 includes a CAN transceiver 31, an arbitration control unit 32, an optical reception unit 33, and an optical transmission unit 34. The CAN transceiver 31 is configured similarly to the CAN transceiver 13 of the communication device 10. The optical receiver 33 is a known unit that converts an optical signal received from the optical transmission path 40 into an electrical signal. The electrical signal output from the optical receiver 33 is supplied to the CAN transceiver 31 as a CAN transmission signal Tx. The optical transmitter 34 is a well-known device that converts the CAN reception signal Rx, which is an electrical signal supplied from the CAN transceiver 31, into an optical signal. The optical transmission line 40 is composed of a pair of optical communication lines (optical fibers), and transmission and reception of optical signals are performed via separate optical communication lines. The CAN transmission signal Tx and the CAN reception signal Rx are represented by recessive high level (power supply potential) and dominant low level (ground potential).

調停制御部32は、PMOS型のトランジスタTrを備える。トランジスタTrはソースが電源に、ゲートがCAN送信信号Txの信号線に、ドレインがCAN受信信号Rxの信号線に接続されている。つまり、CAN送信信号Txがレセッシブの場合、トランジスタTrがオフすることにより、バス2の信号レベルに応じたCAN受信信号Rxがそのまま光送信部34に供給される。一方、CAN送信信号Txがドミナントの場合、トランジスタTrがオンすることにより、バス2の信号レベルによらずCAN受信信号Rxはレセッシブに保持される。   The arbitration control unit 32 includes a PMOS transistor Tr. The transistor Tr has a source connected to a power supply, a gate connected to a signal line for a CAN transmission signal Tx, and a drain connected to a signal line for a CAN reception signal Rx. That is, when the CAN transmission signal Tx is recessive, the transistor Tr is turned off, so that the CAN reception signal Rx corresponding to the signal level of the bus 2 is supplied to the optical transmission unit 34 as it is. On the other hand, when the CAN transmission signal Tx is dominant, by turning on the transistor Tr, the CAN reception signal Rx is held recessively regardless of the signal level of the bus 2.

[動作]
ここで、信号転送装置3による具体的な動作例を説明する。以下では、バス2の一方をバスA、他方をバスBと称し、バスAに接続された光電変換装置30をA側装置、バスBに接続された光電変換装置30をB側装置と称する。
[Operation]
Here, a specific operation example by the signal transfer device 3 will be described. Hereinafter, one of the buses 2 is referred to as a bus A and the other is referred to as a bus B, the photoelectric conversion device 30 connected to the bus A is referred to as an A side device, and the photoelectric conversion device 30 connected to the bus B is referred to as a B side device.

まず、バスAに接続された通信装置10の一つがドミナントを出力した場合について説明する。
この場合、図3に示すように、A側装置のCAN受信信号Rxがレセッシブからドミナントに変化する。すると、光送信部および光通信部での遅延分だけ遅れたタイミングで、B側装置のCAN送信信号Txがレセッシブからドミナントに変化し、これに従って、バスBもレセッシブからドミナントに変化する。このバスBの状態はB側装置のCANトランシーバ31で受信される。但し、CAN送信信号Txがドミナントである間、調停制御部32のトランジスタTrがオンとなるため、この間に、バスBがドミナントに変化しても、B側装置のCAN受信信号Rxはレセッシブに保持される。これにより、バスA側で生じたドミナントが、バスB側に伝達されるが、その後、遅延した状態でバスA側に戻ってくることが阻止されることになる。
First, a case where one of the communication devices 10 connected to the bus A outputs a dominant will be described.
In this case, as shown in FIG. 3, the CAN reception signal Rx of the A side apparatus changes from recessive to dominant. Then, the CAN transmission signal Tx of the B-side device changes from recessive to dominant at a timing delayed by the delay in the optical transmission unit and optical communication unit, and accordingly, the bus B also changes from recessive to dominant. The state of the bus B is received by the CAN transceiver 31 of the B side device. However, since the transistor Tr of the arbitration control unit 32 is on while the CAN transmission signal Tx is dominant, even if the bus B changes to dominant during this period, the CAN reception signal Rx of the B side apparatus is held recessively. Is done. As a result, the dominant generated on the bus A side is transmitted to the bus B side, but thereafter it is prevented from returning to the bus A side in a delayed state.

次に、バスA側の通信装置10によるドミナントの出力に続けて、バスB側の通信装置10がドミナントを出力した場合について説明する。
この場合、図4に示すように、B側装置のCAN送信信号Txがレセッシブからドミナントに変化し、バスB上でも同様に変化した後、ドミナントからレセッシブに戻るタイミングでバスB上の通信装置10がドミナントを出力したとする。この時点では、B側装置のCAN送信信号Txがレセッシブであるため、調停制御部32のトランジスタTrがオフとなり、バスBの信号レベルに従ってB側装置のCAN受信信号Rxがレセッシブからドミナントに変化する。これに伴い、A側装置のCAN送信信号Txがレセッシブからドミナントに変化し、バスAの信号レベルも同様に変化する。但し、A側装置のCAN送信信号Txがドミナントである間、トランジスタTrがオンするため、バスAの信号レベルに関わらず、A側装置のCAN受信信号Rxはレセッシブに保持される。これにより、バスB側で出力されたドミナントが、バスAに伝達されるが、その後、遅延した状態でバスB側に戻ってくることが阻止されることになる。
Next, a case where the communication device 10 on the bus B side outputs a dominant following the output of the dominant by the communication device 10 on the bus A side will be described.
In this case, as shown in FIG. 4, the CAN transmission signal Tx of the B-side device changes from recessive to dominant, changes similarly on the bus B, and then returns to the recessive from dominant to the communication device 10 on the bus B. Suppose that it outputs a dominant. At this time, since the CAN transmission signal Tx of the B side device is recessive, the transistor Tr of the arbitration control unit 32 is turned off, and the CAN reception signal Rx of the B side device changes from recessive to dominant according to the signal level of the bus B. . Along with this, the CAN transmission signal Tx of the A side apparatus changes from recessive to dominant, and the signal level of the bus A also changes. However, since the transistor Tr is turned on while the CAN transmission signal Tx of the A side apparatus is dominant, the CAN reception signal Rx of the A side apparatus is held recessively regardless of the signal level of the bus A. As a result, the dominant output on the bus B side is transmitted to the bus A, but thereafter it is prevented from returning to the bus B side in a delayed state.

なお、参考までに、調停制御部32が存在しない場合、図3中点線で示すように、B装置から遅延して戻ってきたドミナントにより、バスA上のレセッシブがドミナントに書き換えられてしまい、バスAの信号レベルはドミナントに保持され続けることになる。   For reference, when the arbitration control unit 32 does not exist, as shown by a dotted line in FIG. 3, the recessive on the bus A is rewritten to dominant by the dominant returned from the device B, and the bus The signal level of A will continue to be held dominant.

[効果]
以上説明したように、部分ネットワーク1A,1B間を接続する信号転送装置3を構成する光電変換装置30が調停制御部32を備え、この調停制御部32が、相手側バスに伝達されたドミナントが遅延して戻ってくることを阻止するため、CAN通信における調停制御を機能させることができる。
[effect]
As described above, the photoelectric conversion device 30 that constitutes the signal transfer device 3 connecting the partial networks 1A and 1B includes the arbitration control unit 32, and the arbitration control unit 32 is configured to receive the dominant signal transmitted to the partner bus. In order to prevent returning with a delay, arbitration control in CAN communication can be functioned.

また、通信ネットワーク1を構成するバス2の中でノイズの影響を受けやすい部位を、信号転送装置3に置き換えることにより、高価な光カプラを用いたり配線の自由度が制限されたりすることなく、耐ノイズ性を向上させることができる。   In addition, by replacing a portion that is susceptible to noise in the bus 2 constituting the communication network 1 with the signal transfer device 3, without using an expensive optical coupler or restricting the freedom of wiring, Noise resistance can be improved.

つまり、信号転送装置3を適用した通信ネットワーク1によれば、耐ノイズ性の向上とCAN通信とを両立させることができる。
[他の実施形態]
以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限定されることなく、種々の形態を採り得る。
That is, according to the communication network 1 to which the signal transfer device 3 is applied, it is possible to achieve both improvement in noise resistance and CAN communication.
[Other Embodiments]
As mentioned above, although embodiment of this invention was described, this invention can take a various form, without being limited to the said embodiment.

(1)上記実施形態では、光伝送路40を一対の光通信線により構成し、通信方向毎に異なる光通信線を使用して光信号を伝送しているが、これに限定されるものではない。例えば、光通信の通信方向毎に異なる波長の光信号を使用し、図5に示すように、信号転送装置3に、光信号の波長多重,波長分割を行う多重分割部35を設けることによって、光伝送路40を単一の光通信線によって構成してもよい。   (1) In the above embodiment, the optical transmission line 40 is configured by a pair of optical communication lines, and optical signals are transmitted using different optical communication lines for each communication direction. However, the present invention is not limited to this. Absent. For example, by using optical signals having different wavelengths for each communication direction of optical communication, as shown in FIG. 5, by providing the signal transfer device 3 with a multiplexing / dividing unit 35 that performs wavelength multiplexing and wavelength division of the optical signal, The optical transmission line 40 may be configured by a single optical communication line.

(2)上記実施形態では、光電変換装置30間の光通信の伝送媒体として光伝送路40を用いているが、これを省略し、光信号を直接(空間を伝送媒体として)送受信するように構成してもよい。   (2) In the above embodiment, the optical transmission path 40 is used as a transmission medium for optical communication between the photoelectric conversion devices 30, but this is omitted, and optical signals are directly transmitted and received (using space as a transmission medium). It may be configured.

(3)上記実施形態では、二つの部分ネットワーク1A,1Bは、いずれも複数の通信装置10で構成されているが、いずれか一方または両方が単一の通信装置10で構成されていてもよい。   (3) In the above embodiment, each of the two partial networks 1A and 1B is configured by a plurality of communication devices 10, but either one or both may be configured by a single communication device 10. .

(4)上記実施形態では、一つの通信ネットワーク1中に信号転送装置3が一つだけ挿入された構造を有しているが、複数の信号転送装置3が挿入されていてもよい。この場合、通信ネットワーク1は三つ以上の部分ネットワークで構成されることになる。   (4) Although the above embodiment has a structure in which only one signal transfer device 3 is inserted into one communication network 1, a plurality of signal transfer devices 3 may be inserted. In this case, the communication network 1 is composed of three or more partial networks.

(5)上記実施形態における一つの構成要素が有する機能を複数の構成要素に分散させたり、複数の構成要素が有する機能を一つの構成要素に統合させたりしてもよい。また、上記実施形態の構成の少なくとも一部を、同様の機能を有する公知の構成に置き換えてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加または置換等してもよい。なお、特許請求の範囲に記載した文言のみによって特定される技術思想に含まれるあらゆる態様が本発明の実施形態である。   (5) The functions of one component in the above embodiment may be distributed to a plurality of components, or the functions of a plurality of components may be integrated into one component. Further, at least a part of the configuration of the above embodiment may be replaced with a known configuration having the same function. Moreover, you may abbreviate | omit a part of structure of the said embodiment. Further, at least a part of the configuration of the above embodiment may be added to or replaced with the configuration of the other embodiment. In addition, all the aspects included in the technical idea specified only by the wording described in the claim are embodiment of this invention.

(6)本発明は、信号転送装置に限らず、当該信号転送装置を構成要素とする通信システムとして実現してもよい。   (6) The present invention is not limited to a signal transfer device, and may be realized as a communication system including the signal transfer device as a component.

1…通信ネットワーク 1A,1B…部分ネットワーク 2(2A,2B)…バス 3…信号転送装置 10…通信装置 11…CPU 12…CANコントローラ 13,31…CANトランシーバ 30…光電変換装置 32…調停制御部 33…光受信部 34…光送信部 35…多重分割部 40…光伝送路、 DESCRIPTION OF SYMBOLS 1 ... Communication network 1A, 1B ... Partial network 2 (2A, 2B) ... Bus 3 ... Signal transfer apparatus 10 ... Communication apparatus 11 ... CPU 12 ... CAN controller 13, 31 ... CAN transceiver 30 ... Photoelectric conversion device 32 ... Arbitration control part 33 ... Optical receiver 34 ... Optical transmitter 35 ... Multiplexing unit 40 ... Optical transmission line,

Claims (3)

CAN(Controller Area Network )を構成する二つの伝送線路(2A,2B)のそれぞれに接続され、且つ相互に光通信を行う一対の光電変換装置(30)を備えた信号転送装置(3)であって、
前記光電変換装置は、
前記伝送線路上の信号を受信する受信手段(31)と、
前記受信手段からの出力信号であるCAN受信信号を光信号に変換して前記光通信の相手側に送信する光送信手段(34)と、
前記光通信の相手側から受信する光信号を電気信号に変換する光受信手段(33)と、
前記光受信手段からの出力信号をCAN送信信号として前記伝送路上に送信する送信手段(31)と、
前記CAN送信信号の信号レベルがドミナントである場合に、前記CAN受信信号の信号レベルをレセッシブに保持する調停制御手段(32)と
を備えることを特徴とする信号転送装置。
A signal transfer device (3) including a pair of photoelectric conversion devices (30) connected to each of two transmission lines (2A, 2B) constituting a CAN (Controller Area Network) and performing optical communication with each other. And
The photoelectric conversion device
Receiving means (31) for receiving a signal on the transmission line;
An optical transmission means (34) for converting a CAN reception signal, which is an output signal from the reception means, into an optical signal and transmitting the optical signal to the other side of the optical communication;
Optical receiving means (33) for converting an optical signal received from the other side of the optical communication into an electrical signal;
Transmitting means (31) for transmitting an output signal from the optical receiving means as a CAN transmission signal on the transmission line;
Arrangement control means (32) for holding the signal level of the CAN reception signal recessively when the signal level of the CAN transmission signal is dominant.
前記光信号の伝送に、前記一対の光電変換装置を相互に接続する一対の光通信線を用いることを特徴とする請求項1に記載の信号転送装置。   The signal transfer device according to claim 1, wherein a pair of optical communication lines connecting the pair of photoelectric conversion devices to each other are used for transmission of the optical signal. 前記光信号の伝送に、前記一対の光電変換装置を相互に接続する単一の光通信線を用い、
前記光通信では、伝送方向によって異なる波長の光信号を使用し、
前記光電変換装置は、光信号の波長多重および波長分割を行う多重分割手段(35)を備え、該多重分割手段により、前記光送信手段が出力する光信号を、前記光通信線上の光信号に多重化すると共に、前記光受信手段に入力する光信号を、前記光通信線上の光信号から分離することを特徴とする請求項1に記載の信号転送装置。
For the transmission of the optical signal, using a single optical communication line connecting the pair of photoelectric conversion devices to each other,
The optical communication uses optical signals having different wavelengths depending on the transmission direction,
The photoelectric conversion device includes a multiplexing / dividing unit (35) that performs wavelength multiplexing and wavelength division of an optical signal, and the optical signal output from the optical transmitting unit is converted into an optical signal on the optical communication line by the multiplexing / dividing unit. 2. The signal transfer apparatus according to claim 1, wherein the signal transfer apparatus multiplexes and separates an optical signal input to the optical receiving means from an optical signal on the optical communication line.
JP2014141452A 2014-07-09 2014-07-09 Signal transfer device Pending JP2016019176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014141452A JP2016019176A (en) 2014-07-09 2014-07-09 Signal transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014141452A JP2016019176A (en) 2014-07-09 2014-07-09 Signal transfer device

Publications (1)

Publication Number Publication Date
JP2016019176A true JP2016019176A (en) 2016-02-01

Family

ID=55234088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014141452A Pending JP2016019176A (en) 2014-07-09 2014-07-09 Signal transfer device

Country Status (1)

Country Link
JP (1) JP2016019176A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017222066A1 (en) * 2016-06-24 2017-12-28 矢崎総業株式会社 Vehicle circuit structure
JP2019041146A (en) * 2017-08-22 2019-03-14 株式会社豊田自動織機 Signal transfer device
WO2020031477A1 (en) * 2018-08-09 2020-02-13 国立研究開発法人情報通信研究機構 In-vehicle optical network
US10780847B2 (en) 2016-06-24 2020-09-22 Yazaki Corporation Vehicular circuit body
US10807546B2 (en) 2016-06-24 2020-10-20 Yazaki Corporation Vehicular circuit body
US10882476B2 (en) 2016-06-24 2021-01-05 Yazaki Corporation Vehicular circuit body
US10967814B2 (en) 2016-06-24 2021-04-06 Yazaki Corporation Vehicular circuit body

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10850688B2 (en) 2016-06-24 2020-12-01 Yazaki Corporation Vehicular circuit body
US10974671B2 (en) 2016-06-24 2021-04-13 Yazaki Corporation Vehicular circuit body
WO2017222066A1 (en) * 2016-06-24 2017-12-28 矢崎総業株式会社 Vehicle circuit structure
US10882476B2 (en) 2016-06-24 2021-01-05 Yazaki Corporation Vehicular circuit body
US10875479B2 (en) 2016-06-24 2020-12-29 Yazaki Corporation Vehicular circuit body
US10576916B2 (en) 2016-06-24 2020-03-03 Yazaki Corporation Vehicular circuit body
US10647274B2 (en) 2016-06-24 2020-05-12 Yazaki Corporation Vehicular circuit body
US10759363B2 (en) 2016-06-24 2020-09-01 Yazaki Corporation Vehicular circuit body
US10780847B2 (en) 2016-06-24 2020-09-22 Yazaki Corporation Vehicular circuit body
US10807546B2 (en) 2016-06-24 2020-10-20 Yazaki Corporation Vehicular circuit body
JPWO2017222066A1 (en) * 2016-06-24 2019-05-23 矢崎総業株式会社 Vehicle circuit
US11407371B2 (en) 2016-06-24 2022-08-09 Yazaki Corporation Vehicular circuit body
US10988092B2 (en) 2016-06-24 2021-04-27 Yazaki Corporation Vehicular circuit body
US10919465B2 (en) 2016-06-24 2021-02-16 Yazaki Corporation Vehicular circuit body
US10946818B2 (en) 2016-06-24 2021-03-16 Yazaki Corporation Vehicular circuit body
US10967814B2 (en) 2016-06-24 2021-04-06 Yazaki Corporation Vehicular circuit body
JP2019041146A (en) * 2017-08-22 2019-03-14 株式会社豊田自動織機 Signal transfer device
WO2020031477A1 (en) * 2018-08-09 2020-02-13 国立研究開発法人情報通信研究機構 In-vehicle optical network
US11271653B2 (en) 2018-08-09 2022-03-08 National Institute Of Information And Communications Technology In-vehicle optical network
JP7053028B2 (en) 2018-08-09 2022-04-12 国立研究開発法人情報通信研究機構 In-vehicle optical network
JP2020027990A (en) * 2018-08-09 2020-02-20 国立研究開発法人情報通信研究機構 On-vehicle optical network

Similar Documents

Publication Publication Date Title
JP2016019176A (en) Signal transfer device
US20120290753A1 (en) Connection method for bus controllers and communication system
US10146722B1 (en) Method and apparatus for operating of a PCIe retimer over optical cable
US10257595B2 (en) PTP transparent clock system upgrade solution
JP2009188775A (en) Pon station side apparatus, pon up line communication method, pon up line communication program and program recording medium
CN104967600A (en) System and method for multi-lane auto-negotiation over reduced lane media
CN102904786B (en) A kind of optical fiber CAN bus node unit and CAN topology thereof
JP2009253498A (en) Communication apparatus
WO2016106714A1 (en) Data transmission method, apparatus and system
CN110663193B (en) Method for communicating between a microcontroller and a transceiver assembly
US8576849B2 (en) Method and system for realizing transmission of message between an extended processor and switch chip
JP5532910B2 (en) Optical communication device, communication harness, and communication system
CN104272662A (en) Full-duplex ethernet communications over coaxial links using time-division duplexing
US10181920B2 (en) Ethernet-based communication system
JP2014524698A (en) Circuit apparatus and method for transmitting signals
WO2014133864A3 (en) A machine communication system and a communication unit
WO2017163948A1 (en) In-vehicle processing device and in-vehicle system
US7899071B2 (en) Serial bus structure
JP5677396B2 (en) Communication apparatus and communication method
WO2014011092A1 (en) Method and arrangement for providing data plane redundancy
JP2017120960A (en) Communication path abnormality monitoring device
JP6912727B2 (en) Transmission device and transmission method
JP2019041146A (en) Signal transfer device
AU2018431102B2 (en) A system for unidirectional data transfer
WO2012095890A1 (en) Subscriber-side device