JP2016013501A - PD membrane separation device - Google Patents

PD membrane separation device Download PDF

Info

Publication number
JP2016013501A
JP2016013501A JP2014135480A JP2014135480A JP2016013501A JP 2016013501 A JP2016013501 A JP 2016013501A JP 2014135480 A JP2014135480 A JP 2014135480A JP 2014135480 A JP2014135480 A JP 2014135480A JP 2016013501 A JP2016013501 A JP 2016013501A
Authority
JP
Japan
Prior art keywords
membrane
membrane separation
particles
flow
primary side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014135480A
Other languages
Japanese (ja)
Other versions
JP6329826B2 (en
Inventor
尾池哲郎
Tetsuro Oike
聡 竹下
Satoshi Takeshita
聡 竹下
明進 金
Meishin Kin
明進 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014135480A priority Critical patent/JP6329826B2/en
Publication of JP2016013501A publication Critical patent/JP2016013501A/en
Application granted granted Critical
Publication of JP6329826B2 publication Critical patent/JP6329826B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a membrane separation method which prevents clog, and stably filters and separates for a long period of time in a crossflow membrane separation method using a flat membrane, and provide a membrane separation device using the same.SOLUTION: A membrane separation device for a liquid, including a porous flat membrane having an average pore size of 0.1-2 μm and provided with flow rate regulation mechanisms on a primary side and a secondary side, is used. A liquid on the primary side is flowed at a flow rate of 10 cm/s or higher on a membrane surface. L(a flow passage length)/D(a flow passage depth) of a primary side flow passage is 100 or more. A transmembrane pressure difference of the primary side and the secondary side is regulated at 0.01 MPa or less. Particles having a particle diameter 1/2 or more of an average pore size of the flat membrane are separated.

Description

本発明は平膜を用いたクロスフロー式膜分離法において、目詰まりを防止して安定的かつ長期的にろ過分離を行うことを目的に、溶液中の粒子に働く集軸効果と粒子の拡散力を併用するため、一次側流速、流路形状の条件を設定し、一次側と二次側に流量調整弁を設けて、膜間差圧を0.01MPa以下の低圧力条件下で膜分離を行うPD膜分離法とそれを用いたPD膜分離装置に関する。さらに同様の条件下で、粒子除去性を向上させ、平均孔径の1/2以上の粒子径の粒子を分離するPD膜分離法とそれを用いたPD膜分離装置に関する。詳しくは同様の条件下で、再生セルロース製多孔性平膜を用いて、目詰まりを防止して安定的かつ長期的にろ過分離を行うためのPD膜分離型物質分離方法とそれを用いた分離装置であり、特に化粧品および食品原料に含まれるたんぱく質やアミノ酸などの高分子化合物、生理活性物質、溶解成分の分離精製、あるいは/および有害性微粒子、感染性微生物、溶解物質等の高度な除去を実現する方法とそれを用いた装置に関する。 The present invention is a cross-flow membrane separation method using a flat membrane, and is intended for stable and long-term filtration separation by preventing clogging. In order to use the force together, the conditions of the primary flow velocity and flow path shape are set, and flow control valves are provided on the primary and secondary sides, and membrane separation is performed under low pressure conditions with a transmembrane pressure difference of 0.01 MPa or less. The present invention relates to a PD membrane separation method and a PD membrane separation apparatus using the same. Furthermore, the present invention relates to a PD membrane separation method that improves particle removability and separates particles having a particle diameter of ½ or more of the average pore diameter under the same conditions, and a PD membrane separation apparatus using the PD membrane separation method. Specifically, using a regenerated cellulose porous flat membrane under the same conditions, a PD membrane separation type material separation method for performing clogging prevention and stable and long-term filtration separation and separation using the same It is a device, especially for high-molecular compounds such as proteins and amino acids contained in cosmetics and food ingredients, bioactive substances, separation and purification of dissolved components, and / or advanced removal of harmful fine particles, infectious microorganisms, dissolved substances, etc. The present invention relates to a realizing method and an apparatus using the method.

平膜を用いた膜分離装置(特にデッドエンド式ろ過分離装置)で最も大きな課題である目詰まりを防止するために有効な手段としてクロスフロー式ろ過(タンジェンシャルフロー式ろ過と同じとする)がある。このクロスフロー式ろ過において目詰まりをさらに効果的に防止する工夫としては、目詰まり現象自体を抑制する技術と、目詰まり物質を除去する技術の二つがある。 Cross-flow filtration (same as tangential flow filtration) is an effective means to prevent clogging, which is the biggest problem in membrane separators using flat membranes (especially dead-end filtration separators). is there. There are two techniques for more effectively preventing clogging in this cross-flow filtration: a technique for suppressing the clogging phenomenon itself and a technique for removing clogging substances.

抑制する技術としては、例えば実開昭54-004257において一次側原液の膜表面における流速を速める技術がある。円筒型エレメントで充填物を用いて流路を狭くする技術であり、流路にはメッシュが挟まれ、流速が速くなり、その結果膜表面に生じるせん断力によって目詰まりの進行が抑制できる。曝気や振動を常時行う方法も、抑制する技術といえ、特開平05-285479などによって紹介されている。平膜エレメントの下方向や斜め下方向から様々な粒径の泡沫を発生させて、平膜表面にあてたり、目詰まり成分の粒子を大粒子化させたり、上方に浮かせたりするほうほうで目詰まりを抑制している。また、電気的反発力も目詰まり抑制技術として利用され、イオン交換膜などに適用されている。 As a technique for suppressing, for example, Japanese Utility Model Laid-Open No. 54-004257, there is a technique for increasing the flow rate of the primary side undiluted solution on the membrane surface. This is a technique of narrowing the flow path using a packing with a cylindrical element. A mesh is sandwiched between the flow paths, the flow velocity is increased, and as a result, the progress of clogging can be suppressed by the shearing force generated on the film surface. A method of performing aeration and vibration at all times is also a technique for suppressing, and is introduced by Japanese Patent Laid-Open No. 05-285479. Generate bubbles with various particle diameters from below or obliquely below the flat membrane element, hitting the flat membrane surface, making clogging component particles larger, or floating upwards Clogging is suppressed. In addition, the electric repulsive force is also used as a clogging suppression technique and applied to an ion exchange membrane or the like.

膜分離において目詰まりに対する一般的な対策は、目詰まり物質を除去する技術である。除去技術は、科学的手法と、物理的手法の二つに大別できる。化学的手法で最も一般的な方法として、洗浄液を用いる技術が、特開平05-269355や特表平07-507007などによって紹介されている。洗浄液を膜表面に流通させるか、あるいは膜エレメントを浸漬させ、一次側に堆積した目詰まり層を剥離する。物理的手法はもっとも多くの手法が開発されている。圧力を用いた逆洗、減圧、振動、循環、逆流、噴射などである。デッドエンド式ろ過で多用される逆洗法が、目詰まりを防ぐもっともポピュラーな方法として知られ、これは平膜の二次側から一次側へ逆方向にろ液を流すことで一次側に堆積している目詰まり成分であるケーク層をはぎ取る手法である。膜分離装置の運転方法による除去も工夫されている。たとえば、間欠運転によるケーク層の剥離(特開平06-106167)、二次側を閉じた状態での循環運転による剥離(特開平07-136468)、減圧下における振動の利用(特開平08-089768)、各膜エレメントを並列につないだ状態での逆洗(特開平09-085066)、振動バルブに利用(特開平11-128702)、速い流速での逆洗(特開平11-179163)、などがある。 A general countermeasure against clogging in membrane separation is a technique for removing clogged substances. Removal techniques can be broadly divided into two types: scientific methods and physical methods. As a most common chemical method, a technique using a cleaning solution is introduced in Japanese Patent Application Laid-Open No. 05-269355 and Japanese Patent Application Laid-Open No. 07-507007. The cleaning liquid is allowed to flow through the membrane surface, or the membrane element is immersed, and the clogged layer deposited on the primary side is peeled off. The most physical methods have been developed. These include backwashing using pressure, decompression, vibration, circulation, backflow, and jetting. The backwash method frequently used in dead-end filtration is known as the most popular method to prevent clogging, and this is deposited on the primary side by flowing the filtrate in the reverse direction from the secondary side of the flat membrane to the primary side. This is a technique for stripping the cake layer, which is a clogging component. Removal by the operation method of the membrane separator is also devised. For example, peeling of the cake layer by intermittent operation (Japanese Patent Laid-Open No. 06-106167), peeling by circulation operation with the secondary side closed (Japanese Patent Laid-Open No. 07-136468), use of vibration under reduced pressure (Japanese Patent Laid-Open No. 08-089768) ), Backwashing with membrane elements connected in parallel (JP 09-085066), use for vibration valve (JP 11-128702), backwashing at high flow rate (JP 11-179163), etc. There is.

実開昭54-00425754-004257 特開平05-285479JP 05-285479 A 特開平05-269355JP 05-269355 特表平07-507007Special table flat 07-507007 特開平06-106167JP 06-106167 特開平07-136468JP 07-136468 特開平08-089768JP 08-089768 特開平09-085066JP 09-085066 特開平11-128702JP-A-11-128702 特開平11-179163JP-A-11-179163 特開2010-029824JP2010-029824

流速を速めて目詰まりを抑制する技術は必要な基本構造として安定的に流通できる流路が必要であるが、実開昭54-004257では一次側に流路スペーサーとしてメッシュを内蔵するなど、流れを妨げる構造となっており、特に原液に繊維など夾雑物が混在する場合は一次側のメッシュに繊維が堆積する課題がある。結果として一次側に目詰まりが生じ、流速が落ちる。 The technology that suppresses clogging by increasing the flow velocity requires a flow path that can be stably distributed as a necessary basic structure. However, in Japanese Utility Model Publication 54-004257, a flow path spacer such as a built-in mesh as a flow path spacer is used. In particular, when impurities such as fibers are mixed in the undiluted solution, there is a problem that fibers accumulate on the primary mesh. As a result, clogging occurs on the primary side, and the flow velocity decreases.

曝気や振動を用いた装置は、そのランニングコストの大部分をエアレーションやバイブレーションへの動力が占めており、コスト高になることが課題である。 In a device using aeration and vibration, the power for aeration and vibration occupies most of the running cost, and the problem is that the cost is high.

電気的反発力を利用した手法はイオンなど超微粒子に対して効果的であるが、帯電した粒子にしか適用できない。 The method using the electric repulsive force is effective for ultrafine particles such as ions, but can be applied only to charged particles.

洗浄液を用いた手法の場合、洗浄液が膜端部(シール部位)に残留し、しかも残留した洗浄液は除去が困難で、残留した洗浄液が処理液に混入する恐れがある。 In the case of the method using the cleaning liquid, the cleaning liquid remains at the film end (seal site), and the remaining cleaning liquid is difficult to remove, and the remaining cleaning liquid may be mixed into the processing liquid.

逆洗は膜表面ケークの除去のみに有効であり、膜内部の目詰まりは徐々に堆積し、回復不可能な状態となる。 Backwashing is effective only for removing the film surface cake, and clogging inside the film gradually accumulates and becomes unrecoverable.

膜分離装置の運転方法による様々な工夫、いわゆる間欠運転によるケーク層の剥離(特開平06-106167)、二次側を閉じた状態での循環運転による剥離(特開平07-136468)、減圧下における振動の利用(特開平08-089768)、各膜エレメントを並列につないだ状態での逆洗(特開平09-085066)、振動バルブに利用(特開平11-128702)、速い流速での逆洗(特開平11-179163)、なども、目詰まりの急速な進行を防ぐ点で有効であるが、目詰まり機構を根本的に解決しているわけではなく、進行を遅らせる手法であり、長期的な観点では膜内部の目詰まりが徐々に進行してしまうことが課題である。 Various measures by the operation method of the membrane separator, so-called intermittent peeling of the cake layer (JP 06-106167), peeling by circulating operation with the secondary side closed (JP 07-136468), under reduced pressure Use of vibration (Japanese Unexamined Patent Publication No. 08-089768), backwashing with membrane elements connected in parallel (Japanese Unexamined Patent Publication No. 09-085066), use for vibration valve (Japanese Unexamined Patent Publication No. 11-128702), reverse at high flow rate Washing (Japanese Patent Laid-Open No. 11-179163) is also effective in preventing the rapid progress of clogging, but it does not fundamentally solve the clogging mechanism, and is a technique for delaying the progress. From a general viewpoint, clogging inside the film gradually progresses.

また以上の工夫はいずれも平膜の孔径のみに頼る膜分離方法に適用される方法であり、目詰まりを抑制すること以外の効果を期待するものではない。特に平膜の孔径のみに依存した膜分離方法における粒子除去性は、場合によっては平膜表面に堆積し、成長するケーク層に起因して生ずる粒子除去性を期待することもあり、この場合はケーク層の剥離に伴って粒子除去性も低下する。しかも平膜の孔径のみに依存した粒子除去性は、除去対象粒子の最大径に近づくほど、粒子除去性が著しく低下し、ケーク層の剥離によって除去性能が低下したり、あるいは処理量を確保するために孔径を大きくした場合に、除去対象粒子の最大径近傍の感染性粒子の漏えいの危険性が著しく増す結果にもつながる。 In addition, all of the above devices are methods applied to a membrane separation method that relies only on the pore size of a flat membrane, and do not expect any effect other than suppressing clogging. In particular, the particle removability in the membrane separation method depending only on the pore diameter of the flat membrane may be expected to be the particle removability caused by the growing cake layer deposited on the flat membrane surface in some cases. As the cake layer peels, the particle removability also decreases. Moreover, the particle removability depending only on the pore diameter of the flat membrane is such that the particle removability is significantly reduced as the maximum diameter of the particle to be removed is approached, and the removal performance is reduced due to peeling of the cake layer, or the processing amount is ensured. For this reason, when the pore size is increased, the risk of leakage of infectious particles near the maximum diameter of the particles to be removed is significantly increased.

できるだけ目詰まりを進行させずに、緩慢な速度でろ過分離する技術が特開2010-029824において紹介されているが、この技術も平膜の孔径だけに依存した技術であり、ろ過液中の粒子分布は大粒子側に偏るため、処理量を優先して孔径を大きくした場合、除去対象粒子の最大径付近あるいは以上の感染性粒子が流出する危険性が大きい点が課題である。 Japanese Patent Application Laid-Open No. 2010-029824 introduces a technique for filtering and separating at a slow speed while preventing clogging as much as possible. This technique also depends only on the pore diameter of the flat membrane, and the particles in the filtrate Since the distribution is biased toward the large particles, there is a problem in that when the pore size is increased by giving priority to the processing amount, there is a high risk that infectious particles near or above the maximum diameter of the particles to be removed will flow out.

発明者らは、従来のクロスフローろ過に比べ大幅に目詰まりを抑制する膜分離法を開発するにあたり、特に分離対象物質濃度が高いケースに絞り、目詰まり機構そのものを防ぐための多種多様な技術開発に取り組んだ。開発の中で一つの条件として取り組んだ親水性の高い再生セルロース製平膜を用いた実験において、一次側流速を速め、膜間差圧を小さくすることによって目詰まりが抑制されることについて、理論的および実験的両面から有効性に関する知見を得た。理論的には一次側流速を速めることで生じる集軸効果と、膜間差圧を小さくすることによって生じる拡散現象を併用することで、目詰まりを抑制できる可能性が高いことを予測した。しかもこれら二つの効果と現象は、平膜の孔径だけに依存しない膜分離機構を示唆し、目詰まりを起こす条件を緩和しつつ、すなわち目詰まりを根本的に解決しつつ、さらに粒子の除去性も向上させることが可能であることを推測し、多種多様な技術開発に取り組んだ。 Inventors developed a membrane separation method that significantly reduces clogging compared to conventional cross-flow filtration, focusing on cases where the concentration of substances to be separated is particularly high, and a wide variety of technologies to prevent the clogging mechanism itself Worked on development. The theory that clogging is suppressed by increasing the primary flow velocity and decreasing the transmembrane pressure in an experiment using a highly hydrophilic regenerated cellulose flat membrane that was tackled as a condition during development. The knowledge about effectiveness was obtained from both experimental and experimental aspects. Theoretically, it is predicted that clogging is highly likely to be suppressed by using the concentrating effect caused by increasing the primary flow velocity and the diffusion phenomenon caused by reducing the transmembrane pressure difference. In addition, these two effects and phenomena suggest a membrane separation mechanism that does not depend only on the pore size of the flat membrane, eases the clogging conditions, that is, eliminates clogging fundamentally, and further removes particles. I guessed that it could be improved, and worked on the development of a wide variety of technologies.

集軸効果は血管内の血流においてみられる現象であり、高速で流れる血流内では、血管内の血液の流速が放物線状となり、回転して流れる赤血球に揚力が生じ、血管中心に集まる。その結果、血管内壁付近には血漿が集まり、血流の見かけの粘性が下がることが知られている。同様に、一次側膜表面流速を速めることで分離対象物質である大きな粒子には揚力が生じ、膜表面から離れる。その状態で緩やかな圧力を膜表面にかけると、膜表面付近の溶媒あるいは溶解物質あるいはたんぱく質などの小粒子がろ過分離される。ろ過速度が十分に小さければ、大粒子は膜表面から離れた状態を維持することができ、結果として目詰まりを防ぐことができる。 The concentrating effect is a phenomenon observed in the blood flow in the blood vessel. In the blood flow flowing at a high speed, the blood flow velocity in the blood vessel becomes a parabolic shape, the lifted red blood cells are generated and gather at the center of the blood vessel. As a result, it is known that plasma collects in the vicinity of the inner wall of the blood vessel, and the apparent viscosity of the blood flow decreases. Similarly, by increasing the primary membrane surface flow velocity, lift is generated in the large particles that are the separation target substances, and the particles are separated from the membrane surface. When a gentle pressure is applied to the membrane surface in this state, small particles such as a solvent or dissolved substance or protein near the membrane surface are separated by filtration. If the filtration rate is sufficiently small, the large particles can be kept away from the membrane surface, and as a result, clogging can be prevented.

また拡散現象は、PD膜分離の条件、すなわち、膜間差圧を小さくし、孔径を大きくし、かつ上記集軸効果を得られる条件下の場合に得られる。その結果、孔中での粒子の移動速度は、一次側流体速度に比べて小さくなり、各粒子は孔中において拡散力の影響を受けやすくなる。逆にたとえば従来法であるデッドエンド式ろ過法の場合、膜間差圧が大きく、かつ孔径が小さいため、孔中での流体速度が速くなり、粒子の拡散力よりも、ろ過流速が粒子に与える影響が大きくなり、結果として孔径のみに依存した分離機構となる。つまり、粒子の移動速度は、各粒子の拡散速度ではなく、孔中での流体速度が主体的になり、粒子間の移動速度に大きな差は生じない。したがって、孔径の差が主体的な分離機構となる。分離性能は粒子が大きいほど高くなるが、処理速度を得るためには孔径を大きくしなければならないジレンマが生じ、その結果、除去対象粒子の粒径ぎりぎりまで孔径を大きくし、除去対象粒子が二次側へ漏れる危険性を大きくしてしまう。PD膜分離法の条件下の場合、膜間差圧は小さく、孔径は大きくできるため、粒子の分離機構は粒径以外に、集軸効果、拡散速度の差に依存するため、そうした危険性が増大する課題を回避できる。 Further, the diffusion phenomenon is obtained under the conditions of PD membrane separation, that is, the conditions under which the transmembrane pressure difference is reduced, the pore diameter is increased, and the above-mentioned concentrating effect is obtained. As a result, the moving speed of the particles in the pores becomes smaller than the primary fluid velocity, and each particle is easily affected by the diffusion force in the pores. Conversely, in the case of the conventional dead-end filtration method, for example, since the transmembrane pressure difference is large and the pore diameter is small, the fluid velocity in the pores is increased, and the filtration flow rate is less than the particle diffusion force. As a result, the separation mechanism depends only on the pore diameter. That is, the moving speed of the particles is not the diffusion speed of each particle but the fluid speed in the pores, and there is no significant difference in the moving speed between the particles. Therefore, the difference in the hole diameter becomes the main separation mechanism. The separation performance increases as the particle size increases. However, in order to obtain a processing speed, a dilemma arises in which the pore size must be increased. This increases the risk of leakage to the next side. Under the conditions of the PD membrane separation method, the transmembrane pressure difference is small and the pore size can be large, so the particle separation mechanism depends on the concentrating effect and the difference in diffusion rate in addition to the particle size. Increased problems can be avoided.

具体的には膜間差圧が0.01MPa以下であり、孔径が0.1〜2μmである。ここで設定する孔径は孔内部で透過成分が十分に拡散できる条件であり、孔中における透過粒子がタンパク分子(10nm、拡散係数は)の場合、孔径0.1μmは10倍であり拡散を起こすに十分な大きさである。たとえばタンパク分子(直径10nm)とバクテリア(直径1μm)の水中における拡散係数はそれぞれ、5×10-11m2/秒と5×10-13m2/秒、であり、100倍の差がある。より集軸効果の影響を受けやすいバクテリア粒子は一次側に留まる傾向が大きくなり、逆に小さな粒子であるタンパク分子は比較的集軸効果の影響を受けにくく、自身の拡散力によって二次側へ透過する。 Specifically, the transmembrane pressure difference is 0.01 MPa or less, and the pore diameter is 0.1 to 2 μm. The pore size set here is a condition that allows the permeable component to diffuse sufficiently inside the pore. When the permeable particles in the pore are protein molecules (10 nm, diffusion coefficient), the pore size of 0.1 μm is 10 times and causes diffusion. It is big enough. For example, the diffusion coefficients of protein molecules (diameter 10 nm) and bacteria (diameter 1 μm) in water are 5 × 10 −11 m 2 / sec and 5 × 10 −13 m 2 / sec, respectively, which are 100 times different. Bacterial particles that are more susceptible to the concentrating effect tend to stay on the primary side, and conversely, protein molecules that are small particles are relatively less susceptible to the concentrating effect. To Penetrate.

こうした理論的推測をもとにした実験によって、経験的にも同様の結果につながるデータを得ることができた。すなわち、流路と流速、膜間差圧、平膜の孔径、平膜の表面粗さを調節できる実験装置を組み、様々な条件下で実験を試みた。設定した条件としては、集軸効果と粒子の拡散力を同時に得ることができる条件として苦心しつつ設定し、結果として流路の流通方向の長さ(L)と深さ(D)の比(L/D)を100〜300、平膜表面における流速を10〜100cm/s、膜間差圧を0.002〜0.01MPa、平膜の孔径を0.1〜2μ、表面粗さRa=10μm以下で条件を多数設定し実験を行った。その結果、目詰まりを抑制するためには適切な条件が必要であり、特にL/Dと流速、および膜間差圧の条件設定が重要であることを見出した。 Through experiments based on these theoretical assumptions, we have empirically obtained data that leads to similar results. In other words, experiments were attempted under various conditions by assembling an experimental device capable of adjusting the flow path, flow velocity, transmembrane pressure difference, flat membrane pore diameter, and flat membrane surface roughness. The set condition is set while struggling as a condition capable of simultaneously obtaining the concentrating effect and the diffusing force of particles, and as a result, the ratio of the length (L) to the depth (D) in the flow direction of the flow path ( L / D) is 100 to 300, the flow rate on the flat membrane surface is 10 to 100 cm / s, the transmembrane pressure difference is 0.002 to 0.01 MPa, the flat membrane has a pore diameter of 0.1 to 2 μ, and the surface roughness Ra = An experiment was conducted with many conditions set at 10 μm or less. As a result, it was found that appropriate conditions are necessary to suppress clogging, and in particular, setting of conditions for L / D, flow rate, and transmembrane pressure difference is important.

L/Dはある程度大きくしなければ分離性能が安定しないという実験結果をもとに、このことは流路内の液体の流れの状態が大きく乱れていることが原因であり、L/Dを大きくすることで流路内の液体の流れの状態が層流に近づき、集軸効果が得られるとともに分離性能が安定させることができるもの推測し、一方大きすぎる場合は流路での圧力損失が大きくなり、膜間差圧を均一に保つことが難しくなる。流速は少なくとも10cm/s以上、望ましくは20cm/s以上にしなければ充分な効果が得られないことが判明したが、L/Dを大きくするためにDを小さくすると、圧力損失が生じ、膜間差圧を低く均一に保つことが困難となる。そうした相互の関係性を確認しつつ、適切な条件を見出すため、多くの条件設定による実験を繰り返した結果、流速を10〜100cm/sの範囲で保ちつつ、膜間差圧を0.002〜0.01MPaの範囲で均一に維持するには、L/Dを100〜300、特に200付近においてもっとも安定的にろ液を得られることが判明した。これは例えばD=1.5mmの場合で、流速を10cm/s以上とする場合、L/Dは200程度が最も効果が得られる条件であり、膜間差圧は0.005MPaであった。 Based on the experimental result that separation performance is not stable unless L / D is increased to some extent, this is because the state of the liquid flow in the flow path is greatly disturbed. As a result, the liquid flow state in the flow channel approaches a laminar flow, and a concentrating effect can be obtained and the separation performance can be stabilized. On the other hand, if it is too large, the pressure loss in the flow channel is large. Therefore, it becomes difficult to keep the transmembrane pressure difference uniform. It has been found that a sufficient effect cannot be obtained unless the flow velocity is at least 10 cm / s or more, preferably 20 cm / s or more. However, if D is decreased in order to increase L / D, pressure loss occurs, and It becomes difficult to keep the differential pressure low and uniform. In order to find appropriate conditions while confirming such mutual relations, as a result of repeating experiments by setting many conditions, the transmembrane pressure difference was set to 0.002 while maintaining the flow rate in the range of 10 to 100 cm / s. In order to maintain it uniformly in the range of 0.01 MPa, it has been found that the filtrate can be obtained most stably at L / D of 100 to 300, particularly around 200. This is, for example, when D = 1.5 mm, and when the flow rate is 10 cm / s or more, L / D is about 200, which is the most effective condition, and the transmembrane pressure difference is 0.005 MPa.

発明者らは、この発見、すなわち集軸効果と粒子の拡散力の二つの効果と現象を併用し、かつ併用できる条件を備えた装置を用いて行う膜分離によって、長期的かつ安定的に膜分離が可能になること、さらに当該条件によって平膜の粒子除去性が向上することの発見に際し、当該条件の下で行う膜分離のことを特に「PD膜分離法」と呼ぶこととした。PD膜分離法の条件は、集軸効果と粒子の拡散力の二つの効果と現象を併用できる諸条件を備えた装置によって行う膜分離法のことであって、詳しくは、集軸効果を得るために流路内において層流と十分な流速が得られる条件、すなわち平膜表面が平滑であり、流路の深さ(D)に対して、流路の流通方向の長さ(L)が十分に大きいことであり、流路における流速が10〜100cm/s以上であること、さらには粒子の拡散力が十分に働く条件、すなわち膜間差圧が0.01MPa以下であり、孔径が0.1〜2μmであり、孔内部が親水性であり、孔内部で透過成分が十分に拡散できることが必要である。 The inventors have made long-term and stable membranes through this discovery, that is, membrane separation performed using an apparatus that combines the two effects and phenomenon of the concentrating effect and the diffusing power of the particles, and has conditions that allow the combined use. When discovering that separation is possible and that the particle removal property of the flat membrane is improved by the conditions, the membrane separation performed under the conditions was particularly called “PD membrane separation method”. The condition of the PD membrane separation method is a membrane separation method performed by an apparatus equipped with various conditions capable of using both the concentrating effect and the particle diffusive effect and the phenomenon. Specifically, the concentrating effect is obtained. Therefore, the condition that a laminar flow and a sufficient flow velocity can be obtained in the flow path, that is, the flat membrane surface is smooth, and the length (L) in the flow direction of the flow path with respect to the depth (D) of the flow path is It is sufficiently large, the flow rate in the flow path is 10 to 100 cm / s or more, and further, the conditions under which the diffusive power of the particles sufficiently works, that is, the transmembrane pressure difference is 0.01 MPa or less, and the pore diameter is 0. It is necessary that the inside of the hole is hydrophilic and the permeable component can sufficiently diffuse inside the hole.

PD膜分離法における高い除菌性能、あるいは粒子除去性の向上は、集軸効果と粒子の拡散力を併用できていることの裏付けでもある。集軸効果と粒子の拡散力を利用する場合、動植物の組織内における粒子の分離現象に近似した分離現象と推論することができる。すなわち様々な自然現象を経て形成された溶液中の粒子は正規分布を取るが、自然現象の一部である定常的な流体中で起きる集軸効果と粒子の拡散力の影響を受けた膜分離現象後の粒子分布もやはり正規分布に近くなる。人為的な膜分離においても、原液中に存在する除去対象粒子が正規分布を取るとした場合、デッドエンド式MF膜では、孔径だけに依存しているため、例えば孔径0.5μmの場合は0.5μm以上の粒子に対しては大きな除去性能を有するが、それ以下の粒子に対しては除去性能はほぼ持たない。MF膜分離特有の目詰まりによるケーク層が生じた場合には、0.5μm以下の粒子に対しても除去性能を有することもあるが、それについてもケーク層の孔径に依存するため粒子が小さいほど、除去性能は急激に低下する。 The high sterilization performance or the improvement of the particle removability in the PD membrane separation method supports the fact that the concentrating effect and the particle diffusing power can be used in combination. When the concentrating effect and the diffusing power of particles are used, it can be inferred that the separation phenomenon approximates the separation phenomenon of particles in the tissues of animals and plants. That is, particles in a solution formed through various natural phenomena have a normal distribution, but membrane separation is affected by the concentrating effect that occurs in a stationary fluid that is part of the natural phenomenon and the diffusion force of the particles. The particle distribution after the phenomenon is also close to the normal distribution. Even in artificial membrane separation, if the particles to be removed present in the stock solution have a normal distribution, the dead-end type MF membrane depends only on the pore size, and for example, 0 when the pore size is 0.5 μm. It has a large removal performance for particles of .5 μm or more, but almost no removal performance for particles of less than 5 μm. When a cake layer due to clogging peculiar to MF membrane separation occurs, it may have removal performance even for particles of 0.5 μm or less, but this also depends on the pore size of the cake layer, so the particles are small As a result, the removal performance decreases rapidly.

これに対してPD膜分離法は、その除去性能が集軸効果と孔径の二つの効果に依存するため、原液中の粒子も、自身の一次側における膜表面からの距離と、拡散速度の二つの影響を受けつつ、二次側に流出していくため、二次側の粒子も正規分布に近い粒径分布を有することになる。この点に着目した多くの条件設定による実験が本発明の起点となっている。正規分布を取っている原液側粒子のうち、大きな粒子ほど、集軸効果によって膜表面からの距離が大きくなり、一次側に滞留しつつ循環する。小さな粒子ほど膜表面に近づき、自身の拡散力によって二次側へ流出するが、流出する粒子の中でも大きな粒子は拡散力が小さいうえに、一次側において発生する揚力を受けて流出しにくくなる。その結果、流出する粒子も粒径分布をある程度保ったまま二次側へ流出するため、平均孔径0.5μmを使用したPD膜分離において、0.5μm以下の粒子についても一定の除去性を有する。実際に、PD膜分離法では最高値で9桁の除菌性能を確認しており、一般的に除菌用途として使用されるデッドエンド式MF膜の平均孔径が0.2μm程度であることから、細菌の粒子の大きさは小さいもので0.2μm程度であると断定でき、PD膜分離法では、平膜の平均孔径の1/2以上の粒子径の粒子に対し除去性を有することが確認できた。なおかつ平膜が有する欠点(ピンホールなど)の影響もデッドエンドろ過に比較して小さい。逆に表現をすれば正規分布に近い原液中の粒子分布を、処理液中にも保つような膜分離法は結果的に平膜の孔径近傍の粒子の除去性能が高くなり、動植物にとっては感染性粒子から自己を防衛するには合理的な膜分離法といえる。 On the other hand, since the removal performance of the PD membrane separation method depends on two effects of the concentrating effect and the pore diameter, the particles in the stock solution also have a distance from the membrane surface on the primary side of itself and a diffusion rate. The particles on the secondary side also have a particle size distribution close to the normal distribution because they flow out to the secondary side while being influenced by the two effects. Experiments by setting many conditions focusing on this point are the starting point of the present invention. Of the stock solution side particles having a normal distribution, the larger the particles, the larger the distance from the film surface due to the concentrating effect, and the more the particles circulate while staying on the primary side. Smaller particles get closer to the membrane surface and flow out to the secondary side by their own diffusive force. Among the particles that flow out, large particles have a low diffusive force and are difficult to flow out due to lift generated on the primary side. As a result, the outflowing particles also flow out to the secondary side while maintaining the particle size distribution to some extent, and therefore, in PD membrane separation using an average pore diameter of 0.5 μm, particles with a size of 0.5 μm or less have a certain removability. . In fact, the PD membrane separation method has confirmed the sterilization performance of 9 digits at the maximum value, and the average pore diameter of the dead end type MF membrane generally used for sterilization is about 0.2 μm. The size of the bacterial particles is small and can be determined to be about 0.2 μm, and the PD membrane separation method has removability for particles having a particle size of 1/2 or more of the average pore size of the flat membrane. It could be confirmed. In addition, the influence of defects (pinholes, etc.) of the flat membrane is also small compared to dead-end filtration. In other words, a membrane separation method that keeps the particle distribution in the stock solution close to the normal distribution in the processing solution results in higher removal of particles near the pore size of the flat membrane, which infects animals and plants. It can be said that it is a rational membrane separation method to protect self from sex particles.

また再生セルロース製平膜を使用し、表面粗さを規定することで、これまで必要以上に大きなひずみ速度や物理的力をかけていた目詰まり成分の除去が、10cm/s以上の流速を保つだけで定常的に目詰まりを抑制できることが分かった。再生セルロース製平膜は、セルロースが持つ水酸基によって生じる水素結合によって常に膜表面に水の層を形成し、一定以上の流速によって目詰まりが定常的に進みにくくなることを見出した。これは再生セルロース製多層構造膜と再生セルロース製不織布の両方について言えることであり、不織布の場合は、表面粗さを10μm以下に規定する必要がある。しかも再生セルロース製平膜は膜内部においても水の層を形成するため親水性の高い成分の回収率が非常に高い特徴を持つ。 In addition, by using a regenerated cellulose flat membrane and defining the surface roughness, removal of clogging components that have applied strain rate and physical force larger than necessary so far maintains a flow rate of 10 cm / s or more. It has been found that clogging can be constantly suppressed only by this. It has been found that a regenerated cellulose flat membrane always forms a water layer on the surface of the membrane by hydrogen bonds generated by the hydroxyl groups of cellulose, and clogging is difficult to proceed steadily at a flow rate above a certain level. This can be said for both the multilayer structure film made of regenerated cellulose and the non-woven fabric made of regenerated cellulose. In the case of a non-woven cloth, the surface roughness needs to be regulated to 10 μm or less. Moreover, the regenerated cellulose flat membrane forms a water layer even inside the membrane, and thus has a feature that the recovery rate of highly hydrophilic components is very high.

たとえば細胞や繊維を多く含む胎盤抽出液50Lを、タンパク分子の採取と胎盤抽出液中の細菌除去を目的に当該条件にてPD膜分離したところ、孔径0.5μm、処理速度1L/時間/平米において2日間に渡りろ過を持続し、約45Lの処理液を得、原液は10倍に濃縮された。デッドエンド式MF膜分離(孔径0.4μm)の場合は処理後数分後に目詰まりし、ろ液は全くでなくなった。実験の結果、PD膜分離法においては菌数検査において6桁以上の除菌性能が確認された。これはデッドエンド式MF膜分離(孔径0.4μm)に比べはるかに高い除菌率である。 For example, when a placenta extract 50L containing a large amount of cells and fibers was subjected to PD membrane separation under the above conditions for the purpose of collecting protein molecules and removing bacteria in the placenta extract, the pore diameter was 0.5 μm, the processing rate was 1 L / hour / square meter. Filtration was continued for 2 days to obtain about 45 L of the treatment solution, and the stock solution was concentrated 10 times. In the case of dead-end type MF membrane separation (pore diameter 0.4 μm), clogging occurred several minutes after the treatment, and the filtrate was completely removed. As a result of the experiment, in the PD membrane separation method, sterilization performance of 6 digits or more was confirmed in the bacterial count test. This is a much higher sterilization rate than dead-end type MF membrane separation (pore size 0.4 μm).

本発明を採用することにより、クロスフローろ過において目詰まりを抑制し、安定的に長期的に膜分離を行うことができる。また、平膜の孔径の1/2以上の粒子径の粒子に対しても除去性を発揮できる。その結果、化粧品および食品原料に含まれるたんぱく質やアミノ酸などの高分子化合物、生理活性物質、溶解成分の分離精製、あるいは/および有害性微粒子、感染性微生物、溶解物質等の高度な除去を実現できる。特に繊維など夾雑物を多く含む化粧品および食品原料を安定的に長期的に膜分離することができ、たんぱく質やアミノ酸などの高分子化合物、生理活性物質などを温和な雰囲気で成分の変性を生じさせることなく、分離、抽出することができる。感染性微生物の除去性能は同程度の平均孔径の平膜を用いた膜分離(たとえばMF膜分離)に比較して2桁以上高くすることができる。また0.01MPa以下の低圧力での膜分離操作であり、かつ装置を単純化することができ、使用後には平膜を再生して使用することも可能であるため、膜分離操作の簡略化、低コスト化、低価格化の効果もある。様々な成分が混ざり合った液体、生活排水や工業排水、塩水に対して本発明方法を適用することにより有用な水質に変換させることが可能になる。 By adopting the present invention, clogging can be suppressed in cross flow filtration, and membrane separation can be performed stably over a long period of time. In addition, the removability can be exerted on particles having a particle size of 1/2 or more of the pore size of the flat membrane. As a result, high molecular compounds such as proteins and amino acids contained in cosmetics and food materials, bioactive substances, separation and purification of dissolved components, and / or advanced removal of harmful fine particles, infectious microorganisms, dissolved substances, etc. can be realized. . In particular, it can stably separate membranes of cosmetics and food ingredients that contain a large amount of impurities such as fibers, and cause high-molecular compounds such as proteins and amino acids, bioactive substances, etc., to be denatured in a mild atmosphere. Without separation. The removal performance of infectious microorganisms can be improved by two orders of magnitude or more compared to membrane separation using a flat membrane having a similar average pore size (for example, MF membrane separation). In addition, it is a membrane separation operation at a low pressure of 0.01 MPa or less, and the apparatus can be simplified, and it is possible to regenerate and use a flat membrane after use, thus simplifying the membrane separation operation. There is also an effect of cost reduction and price reduction. By applying the method of the present invention to a liquid in which various components are mixed, domestic wastewater, industrial wastewater, or salt water, it can be converted into useful water quality.

一次側支持体平面図Primary support plan view 二次側支持体平面図Secondary support plan view ハウジング平面図Housing plan PD膜分離モジュール(積層時)側面図PD membrane separation module (when stacked) side view PD膜分離モジュール(積層時)立体図PD membrane separation module (when stacked) PD膜分離装置図PD membrane separator

本発明では、長期的かつ安定的に目詰まりを抑制しつつ高度な粒子除去性を達成できるPD膜分離法を実現するために、集軸効果と粒子の拡散力の二つの効果と現象を併用し、かつ併用できる条件を備えた装置を用いて分離操作を行わなくてはならない。まず集軸効果を得るためには、流路内において層流あるいは層流に近いと十分な流速が得られる条件が不可欠であり、すなわち平膜表面が平滑であり、流路の深さ(D)に対して、流路の流通方向の長さ(L)が十分に大きくなければならない。流路の流通方向の長さ(L)と深さ(D)の比(L/D)を100以上で、望ましくは100〜300の範囲内にし、200付近においてもっとも安定的にろ液を得られる。これは例えばD=1.5mmの場合で、流速を10cm/s以上とする場合、L/Dは200程度が最も効果が得られる条件である。 In the present invention, in order to realize a PD membrane separation method capable of achieving high particle removal performance while suppressing clogging in a long-term and stable manner, the two effects and phenomenon of the concentrating effect and the particle diffusion force are used in combination. However, the separation operation must be performed using an apparatus having conditions that can be used together. First, in order to obtain the concentrating effect, it is indispensable to obtain a sufficient flow velocity when the flow path is laminar or close to the laminar flow, that is, the flat membrane surface is smooth and the flow path depth (D ) In the flow direction of the flow path (L) must be sufficiently large. The ratio (L / D) of the length (L) to the depth (D) in the flow direction of the flow path is 100 or more, preferably within the range of 100 to 300, and the filtrate is obtained most stably in the vicinity of 200. It is done. This is, for example, the case where D = 1.5 mm, and when the flow rate is 10 cm / s or more, L / D is about 200, which is the most effective condition.

流路における流速は10cm/秒以上とし、望ましくは20〜100cm/sの範囲内とする。流速を生じさせる手段はポンプの吐出力を利用する。膜間差圧は0.01MPa以下であり、望ましくは0.002〜0.01MPaの範囲に設定する。 The flow rate in the flow path is 10 cm / second or more, and desirably in the range of 20 to 100 cm / s. The means for generating the flow rate uses the discharge force of the pump. The transmembrane pressure difference is 0.01 MPa or less, and is desirably set in the range of 0.002 to 0.01 MPa.

使用する平膜は孔内部を親水性に保つ必要があるため、親水性の素材を選択し、望ましくは再生セルロース製平膜を用いる。流路内における流れを層流に近づけるために平膜の表面は、平滑でなければならず、平滑度は表面粗さにおいてRa=10μm以下とする。孔径は、孔中で透過粒子が拡散できる大きさとし、0.1〜2μmの範囲で、かつ孔径を通過する粒子径の5倍以上、望ましくは2倍以上とする。膜内の構造は多層構造が望ましく、多層構造を持つ多孔性平膜とは、平膜の平面に対して垂直方向の断面に、平膜の構成最小単位である再生セルロース粒子あるいは再生セルロース繊維が、層状に重なって構成される平膜を指す。層状とは、再生セルロース粒子あるいは再生セルロース繊維が、平膜の水平方向に連結あるいは連続して連なり、1層をなし、当該1層の水平方向に粒子間の空孔あるいは繊維間の空隙が細孔の分布を形成し、当該層が複数重なっている様を指す。 Since the flat membrane to be used needs to keep the inside of the pores hydrophilic, a hydrophilic material is selected, and preferably a flat membrane made of regenerated cellulose is used. In order to make the flow in the flow channel approach a laminar flow, the surface of the flat membrane must be smooth, and the smoothness should be Ra = 10 μm or less in surface roughness. The pore size is such that the permeable particles can diffuse in the pores, and is in the range of 0.1 to 2 μm and 5 times or more, preferably 2 or more times the particle size passing through the pore size. The structure in the membrane is preferably a multilayer structure, and a porous flat membrane having a multilayer structure has a regenerated cellulose particle or regenerated cellulose fiber, which is the minimum unit of the flat membrane, in a cross section perpendicular to the plane of the flat membrane. , Refers to a flat membrane composed of layers. In the layered form, regenerated cellulose particles or regenerated cellulose fibers are connected or continuously connected in the horizontal direction of the flat membrane to form one layer, and the voids between the particles or the spaces between the fibers are narrow in the horizontal direction of the one layer. A distribution of holes is formed, and a plurality of such layers are overlapped.

表面粗さRaは、粗さ曲線を中心線から折り返し、その粗さ曲線と中心線によって得られた面積を長さで割った値(中心線平均粗さ)をマイクロメートル(μm)で表わす。また孔径(平均孔径)は「粘度・膜厚・濾過速度/膜間差圧・空孔率」の平方根で与えられる。ここで濾過速度は一平方メートル当りの純水の濾過速度でml/minの単位で測定され、膜厚はミクロン単位、粘度はセンチポイズ、膜間差圧はmmHg単位で、空孔率は無次元単位である。この際の平均孔径はnm単位となる。空孔率は「1−膜の密度/素材高分子の密度」で与えられる。膜の密度は「膜の重量/膜の面積*膜の厚さ」で算出される。 The surface roughness Ra represents a value (centerline average roughness) in micrometer (μm) obtained by folding a roughness curve from the centerline and dividing the area obtained by the roughness curve and the centerline by the length. The pore diameter (average pore diameter) is given by the square root of “viscosity, film thickness, filtration rate / intermembrane differential pressure, porosity”. Here, the filtration rate is the filtration rate of pure water per square meter, measured in units of ml / min, the film thickness is in microns, the viscosity is in centipoise, the transmembrane pressure is in mmHg, and the porosity is a dimensionless unit. It is. The average pore diameter at this time is in nm units. The porosity is given by “1-membrane density / material polymer density”. The density of the film is calculated by “the weight of the film / the area of the film * the thickness of the film”.

本発明で使用する平膜は親水性素材で製膜法として湿式または乾式のミクロ相分離法で作製される。例えば銅安法再生セルロース平膜は親水性素材として最適であるが膜厚を100μm以上にまた平均孔径を100nm以上にするのが難しい。該膜の製法は特公昭62−044019号及び特公昭62−044017号と特公昭62−044018号に与えられている。再生セルロース製の平膜の製法として多孔性アセテート膜を作成しこれを0.1規定の苛性ソーダでケン化処理することによって作製できる。アセテート膜の製法は上出健二,真鍋征一,松井敏彦,坂本富男,梶田修司,高分子論文集,34巻3号205頁〜216頁(1977年)に与えられている。この方法により0.01〜数ミクロンの平均孔径を持つ多層構造多孔性平膜が得られ、膜厚は20〜数mmまで可能である。 The flat membrane used in the present invention is a hydrophilic material and is produced by a wet or dry microphase separation method as a membrane formation method. For example, a copper anodized regenerated cellulose flat membrane is optimal as a hydrophilic material, but it is difficult to make the film thickness 100 μm or more and the average pore diameter 100 nm or more. The production method of the membrane is given in JP-B-62-044019, JP-B-62-044017 and JP-B-62-044018. As a method for producing a regenerated cellulose flat membrane, a porous acetate membrane can be prepared and saponified with 0.1 normal caustic soda. The method for producing the acetate membrane is given by Kenji Kamide, Seiichi Manabe, Toshihiko Matsui, Tomio Sakamoto, Shuji Hamada, Kogaku Seishu, Vol. 34, No. 3, pages 205-216 (1977). By this method, a multi-layered porous flat membrane having an average pore diameter of 0.01 to several microns can be obtained, and the film thickness can be from 20 to several mm.

得られた多孔性平膜をパッキンで挟み、さらに図に示すような平板支持体で挟み、 固定する。平板支持体は両面をパッキンを介して平膜と挟まれてパッキンの厚みの流路が形成される。この流路に液体が流入出するように一次側および二次側の平板支持体に開口を設けており、このうち一次側の平板支持体の開口すなわち一次側流入出口の断面積がS2であり、液体の流通方向の長さがL、パッキンの厚みすなわち流路の深さがDであり、Dと平膜上の流路の幅すなわち液体の流通方向の断面積がS1である。流路の深さDは0.5〜4mmであり、望ましくは1〜2mmとし、一次側の平膜表面における適切な流速を確保するためのS2/S1を0.5以上とする。 The obtained porous flat membrane is sandwiched between packings, and is further sandwiched and fixed with a flat plate support as shown in the figure. The flat plate support is sandwiched on both sides by a flat membrane via a packing to form a flow path having the thickness of the packing. Openings are provided in the primary and secondary flat plate supports so that liquid flows in and out of the flow path, and of these, the opening of the primary flat plate support, that is, the cross-sectional area of the primary inlet / outlet is S2. The length of the liquid in the flow direction is L, the thickness of the packing, that is, the depth of the flow path is D, and the width of the flow path on D and the flat film, that is, the cross-sectional area in the flow direction of the liquid is S1. The depth D of the flow path is 0.5 to 4 mm, preferably 1 to 2 mm, and S2 / S1 for ensuring an appropriate flow velocity on the primary flat membrane surface is 0.5 or more.

以上の条件を備え、PD膜分離を達成することができるPD膜分離装置は、設定された条件を満足する一次側支持体1と、パッキン11・パッキン12、および一次側支持体1と平膜13とパッキン11・パッキン12を積層した状態で挟んで固定するハウジング8・10および固定器具9(たとえばネジ、バンドなどの器具、あるいは躯体)および原液と処理液の配管を接続するための接続器具7(へルール、タケノコ、カプラーなど)からなる。一次側支持体1と二次側支持体6はそれぞれ両端に4つの孔を持ち、そのうち二つずつが原液および処理液の出入り口となる。出入り口となる孔は、流路につながるトンネル孔を有した一次側スペーサー3および二次側スペーサー5を設けることで、平板支持体とパッキンを積層した場合に、平板支持体の液体流入出口部のシール性を確保している。この液体流入出口がそれぞれ原液の循環用一次側連結流路2および処理液の排出用二次側連結流路4となる。 The PD membrane separation apparatus having the above conditions and capable of achieving PD membrane separation includes a primary side support 1, a packing 11 and a packing 12, and a primary side support 1 and a flat membrane that satisfy the set conditions. 13 and packing 11 and packing 12 are sandwiched and fixed in a stacked state, and a fixing device 9 (for example, a device such as a screw or a band, or a housing) and a connection device for connecting piping of a raw solution and a processing solution. 7 (ferrule, bamboo shoot, coupler, etc.). The primary side support body 1 and the secondary side support body 6 each have four holes at both ends, and two of them serve as the inlet / outlet of the stock solution and the processing solution. When the flat plate support and the packing are stacked, the hole serving as the entrance / exit is provided with the primary side spacer 3 and the secondary side spacer 5 having tunnel holes connected to the flow path. Sealing performance is secured. The liquid inlet / outlet is a primary side connection channel 2 for circulating the stock solution and a secondary side connection channel 4 for discharging the processing liquid.

以上の部材でPD膜分離モジュールを形成する場合は、パッキン11・12で多孔性平膜13を挟み、支持体に固定する。これを一つの構成要素として繰り返し積層することで処理量を増やすことができる。積層する際には、パッキンのみによるシールでもよいし、接着してもよい。望ましくは接着せずに、すべてパッキンで挟み、積層した支持体を両側からハウジング8・10および固定器具9で挟み、固定する。接着しない方が分解、洗浄、平膜の交換などが簡便に行うことができる。支持体はパッキンと密着性のよい平滑なものがよく、ポリプロピレン、塩化ビニル、ポリエチレンテレフタラート、ポリカーボネート、ナイロン、フッ素系樹脂などの樹脂製か、あるいは金属製などが使用され、パッキンにはシール性のある弾性のあるゴムシートがよく、シリコーン、ウレタンなどを主成分とするゴムシートを使用する。 When the PD membrane separation module is formed with the above members, the porous flat membrane 13 is sandwiched between the packings 11 and 12 and fixed to the support. By repeatedly laminating this as one component, the processing amount can be increased. When laminating, a seal with only packing may be used, or adhesion may be performed. Desirably, they are not bonded, but are sandwiched between packings, and the laminated support is sandwiched between the housings 8 and 10 and the fixing device 9 from both sides and fixed. Disassembly, cleaning, flat membrane replacement, etc. can be easily carried out without bonding. The support should be smooth with good adhesion to the packing, and it can be made of polypropylene, vinyl chloride, polyethylene terephthalate, polycarbonate, nylon, fluororesin, or metal. An elastic rubber sheet with good elasticity is preferable, and a rubber sheet mainly composed of silicone, urethane or the like is used.

以上のような特徴を有する部材で、多孔性平膜を挟み、それぞれの流路に液体を供給、排出するためのホース、ポンプ15、流量調整弁18・19を図6のようにつなぎ、液体を流通させる。膜間差圧はポンプ15の吐出圧と、原液タンク16と膜分離モジュール14の位置によって生じる水頭圧および流量調整弁18・19によって調整する。以上の条件を備えた部材によって形成されるPD膜分離装置によってPD膜分離を行うことができる。 With the members having the above-described features, a porous flat membrane is sandwiched, and a hose, a pump 15 and flow rate adjusting valves 18 and 19 for supplying and discharging liquid to and from each flow path are connected as shown in FIG. Circulate. The transmembrane pressure difference is adjusted by the discharge pressure of the pump 15, the water head pressure generated by the positions of the stock solution tank 16 and the membrane separation module 14, and the flow rate adjusting valves 18 and 19. PD membrane separation can be performed by a PD membrane separation apparatus formed by a member having the above conditions.

ミクロ相分離法によってアセテート膜を作製し、これを25℃の0.1N苛性ソーダ水溶液に48時間浸漬して再生セルロース多孔性膜(平均孔径500nm、膜厚160ミクロン)を得た。この多孔性平膜を、ポリプロピレン製支持体とシリコーン製パッキンで挟み、6層の積層型PD膜分離装置を作製した。 An acetate membrane was prepared by a microphase separation method and immersed in a 0.1N sodium hydroxide aqueous solution at 25 ° C. for 48 hours to obtain a regenerated cellulose porous membrane (average pore diameter 500 nm, film thickness 160 μm). This porous flat membrane was sandwiched between a polypropylene support and a silicone packing to produce a 6-layer laminated PD membrane separator.

原液としてプラセンタ溶液(一般生菌数>1000万個/g)を使用し、該分離装置の透過性能試験を行った。分離装置内に1時間原液を循環させ、PD膜分離を行い、1時間後にろ液出口から排出されたろ液を採取した。この際の処理速度は約1L/時間/平米であった。処理後、ろ液中の菌数を測定した。測定の結果菌数は検出限界以下(<10個/g)であり、除菌率は6桁であった。 A placenta solution (general viable count> 10 million cells / g) was used as a stock solution, and the permeation performance test of the separation apparatus was performed. The stock solution was circulated in the separator for 1 hour to perform PD membrane separation, and the filtrate discharged from the filtrate outlet after 1 hour was collected. The processing speed at this time was about 1 L / hour / square meter. After the treatment, the number of bacteria in the filtrate was measured. As a result of the measurement, the number of bacteria was below the detection limit (<10 / g), and the sterilization rate was 6 digits.

たんぱく質や生理活性物質や溶解物質など、何らかの有効性、性質を有する成分を、変性を生じることなく温和な条件下で分離、精製することが求められる産業(例えば化粧品産業、食品産業など)に本発明は利用できる。特に高い粒子除去性と長期安定性(目詰まりが起こりにくい特徴)を持つ低コストな膜分離装置として、従来の高価な膜分離技術の適用が不可能と考えられていた液体処理用として利用される。また、下水処理、排水処理などの水処理に利用することができる。また、コロイド系を取り扱う工業においてコロイド粒子を含めて特定の微粒子を精製、分離する方法として工業的プロセスに組み込むことが出来る。また、医療用、環境用、特に水処理用として、ウイルスや細菌、重金属類、COD原因物質、染料などの汚染物質、有害性微粒子の除去に用いられる。 Used in industries (such as the cosmetics and food industries) where it is necessary to separate and purify components that have some effectiveness and properties, such as proteins, physiologically active substances, and dissolved substances, under mild conditions without causing denaturation. The invention is available. As a low-cost membrane separator with particularly high particle removal and long-term stability (features that prevent clogging), it is used for liquid processing where it was considered impossible to apply conventional expensive membrane separation technology. The Further, it can be used for water treatment such as sewage treatment and drainage treatment. Further, in the industry handling colloidal systems, it can be incorporated into an industrial process as a method for purifying and separating specific fine particles including colloidal particles. In addition, it is used for the removal of viruses, bacteria, heavy metals, COD causative substances, contaminants such as dyes, and harmful fine particles for medical use, environmental use, particularly water treatment.

1,一次側支持体
2,一次側連結流路
3,一次側スペーサー
4,二次側連結流路
5,二次側スペーサー
6,二次側支持体
7,接続器具
8,ハウジング
9,固定器具
10,ハウジング
11,パッキン
12,パッキン
13,平膜
14,PD膜分離モジュール
15,ポンプ
16,原液タンク
17,処理液タンク
18,一次側流量調整弁
19,二次側流量調整弁
DESCRIPTION OF SYMBOLS 1, Primary side support body 2, Primary side connection flow path 3, Primary side spacer 4, Secondary side connection flow path 5, Secondary side spacer 6, Secondary side support body 7, Connection device 8, Housing 9, Fixing device 10, housing 11, packing 12, packing 13, flat membrane 14, PD membrane separation module 15, pump 16, stock solution tank 17, processing solution tank 18, primary side flow rate adjustment valve 19, secondary side flow rate adjustment valve

Claims (4)

0.1〜2μmの平均孔径をもつ多孔性平膜を備えた液体用の膜分離装置を使用するにあたり、一次側および二次側に流量調整機構を設け、一次側の液体は膜表面で10cm/秒以上の流速で流し、且つ一次側の流路がL(流路長さ)/D(流路深さ)が100以上で、一次側と二次側の膜間差圧を0.01MPa以下に調整し、該平膜の平均孔径の1/2以上の粒子径の粒子を分離することを特徴とする、化粧品および食品原料となる液体を加工するための膜分離装置。 In using a liquid membrane separation apparatus having a porous flat membrane having an average pore diameter of 0.1 to 2 μm, a flow rate adjusting mechanism is provided on the primary side and the secondary side, and the primary side liquid is 10 cm on the membrane surface. The flow rate on the primary side is L (flow channel length) / D (flow channel depth) is 100 or more, and the transmembrane pressure difference between the primary side and the secondary side is 0.01 MPa. A membrane separation apparatus for processing a liquid as a cosmetic or food raw material, characterized in that the particles having a particle diameter of 1/2 or more of the average pore diameter of the flat membrane are separated as follows. 請求項1の膜分離装置において、S2(流路入口断面積)/S1(流路断面積)が0.5以上で、表面粗さが10μm以下の再生セルロース製平膜を用いることを特徴とする膜分離モジュールを備えた膜分離装置。 2. The membrane separation apparatus according to claim 1, wherein a regenerated cellulose flat membrane having S2 (channel inlet cross-sectional area) / S1 (channel cross-sectional area) of 0.5 or more and a surface roughness of 10 μm or less is used. A membrane separation device comprising a membrane separation module. 請求項1の膜分離装置において、0.2〜0.5μmの平均孔径をもつ多孔性平膜を備え、動物性タンパク質を含む液体の膜除菌を目的とし、99.99%以上の除菌率を有する膜分離モジュールを備えた膜分離装置。 The membrane separation apparatus according to claim 1, comprising a porous flat membrane having an average pore size of 0.2 to 0.5 µm, and is intended for sterilization of a liquid membrane containing animal protein, and is sterilized by 99.99% or more. A membrane separation apparatus comprising a membrane separation module having a rate. 請求項1の膜分離装置において、複数枚の多孔性平膜とパッキン材および流路版で構成され、平膜、パッキン材、流路版を重ね合わせ、並行して複数枚の多孔性平膜で同時に膜処理を行うことを特徴とする膜分離モジュールを備えた膜分離装置。 2. The membrane separation apparatus according to claim 1, comprising a plurality of porous flat membranes, a packing material, and a flow path plate, wherein the flat membrane, the packing material, and the flow path plate are overlapped, and the plurality of porous flat membranes are arranged in parallel. A membrane separation apparatus equipped with a membrane separation module, wherein the membrane treatment is performed simultaneously.
JP2014135480A 2014-07-01 2014-07-01 PD membrane separator Active JP6329826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014135480A JP6329826B2 (en) 2014-07-01 2014-07-01 PD membrane separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014135480A JP6329826B2 (en) 2014-07-01 2014-07-01 PD membrane separator

Publications (2)

Publication Number Publication Date
JP2016013501A true JP2016013501A (en) 2016-01-28
JP6329826B2 JP6329826B2 (en) 2018-05-23

Family

ID=55230163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014135480A Active JP6329826B2 (en) 2014-07-01 2014-07-01 PD membrane separator

Country Status (1)

Country Link
JP (1) JP6329826B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017189753A (en) * 2016-04-15 2017-10-19 日本特殊膜開発株式会社 Method for producing clean water by making use of snow and clean water made by said method
JP2018020286A (en) * 2016-08-03 2018-02-08 日本特殊膜開発株式会社 Pore diffusion membrane separation module for fractionation of component molecules in high molecule solution

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213817A (en) * 1986-03-13 1987-09-19 Ngk Insulators Ltd Cross flow filtering method
JPH10118461A (en) * 1996-10-16 1998-05-12 Kao Corp Recovery of fermentation product
JP2001104761A (en) * 1999-10-05 2001-04-17 Shinko Pantec Co Ltd Operation method for membrane separation apparatus
WO2007102427A1 (en) * 2006-03-02 2007-09-13 Sei-Ichi Manabe Porous diffusion type flat-film separating device, flat-film condensing device, regenerated cellulose porous film for porous diffusion, and non-destructive type flat-film inspecting method
JP2012148240A (en) * 2011-01-19 2012-08-09 Sepa Sigma Inc Membrane separator and method of separation utilizing flat membrane
JP2012179019A (en) * 2011-03-02 2012-09-20 Toray Ind Inc Method for producing chemical by continuous fermentation
JP2013017958A (en) * 2011-07-12 2013-01-31 Sepa Sigma Inc Regenerated cellulose filament nonwoven fabric with improved particle removability, and method for producing the same
JP2013237016A (en) * 2012-05-15 2013-11-28 Sepa Sigma Inc Hole diffusion type or f flow guide sorting type membrane separation apparatus and a method using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213817A (en) * 1986-03-13 1987-09-19 Ngk Insulators Ltd Cross flow filtering method
JPH10118461A (en) * 1996-10-16 1998-05-12 Kao Corp Recovery of fermentation product
JP2001104761A (en) * 1999-10-05 2001-04-17 Shinko Pantec Co Ltd Operation method for membrane separation apparatus
WO2007102427A1 (en) * 2006-03-02 2007-09-13 Sei-Ichi Manabe Porous diffusion type flat-film separating device, flat-film condensing device, regenerated cellulose porous film for porous diffusion, and non-destructive type flat-film inspecting method
US20090145831A1 (en) * 2006-03-02 2009-06-11 Sei-Ichi Manabe Pore Diffusion Type Flat Membrane Separating Apparatus, Flat Membrane Concentrating Apparatus, Regenerated Cellulose Porous Membrane for Pore Diffusion, and Method of Non-Destructive Inspection of Flat Membrane
JP2012148240A (en) * 2011-01-19 2012-08-09 Sepa Sigma Inc Membrane separator and method of separation utilizing flat membrane
JP2012179019A (en) * 2011-03-02 2012-09-20 Toray Ind Inc Method for producing chemical by continuous fermentation
JP2013017958A (en) * 2011-07-12 2013-01-31 Sepa Sigma Inc Regenerated cellulose filament nonwoven fabric with improved particle removability, and method for producing the same
JP2013237016A (en) * 2012-05-15 2013-11-28 Sepa Sigma Inc Hole diffusion type or f flow guide sorting type membrane separation apparatus and a method using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017189753A (en) * 2016-04-15 2017-10-19 日本特殊膜開発株式会社 Method for producing clean water by making use of snow and clean water made by said method
JP2018020286A (en) * 2016-08-03 2018-02-08 日本特殊膜開発株式会社 Pore diffusion membrane separation module for fractionation of component molecules in high molecule solution

Also Published As

Publication number Publication date
JP6329826B2 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
Singh et al. Introduction to membrane processes for water treatment
JP4445862B2 (en) Hollow fiber membrane module, hollow fiber membrane module unit, membrane filtration device using the same, and operating method thereof
US20160346739A1 (en) Filtration apparatus
JP2012148240A (en) Membrane separator and method of separation utilizing flat membrane
JP2013237016A (en) Hole diffusion type or f flow guide sorting type membrane separation apparatus and a method using the same
JP6329826B2 (en) PD membrane separator
JP6374291B2 (en) Hollow fiber membrane module
Hwang et al. Effects of membrane compositions and operating conditions on the filtration and backwashing performance of the activated carbon polymer composite membranes
WO2016027302A1 (en) Reverse osmosis membrane device and method for operating same
EP3107643A1 (en) Filtration element
JP6164366B2 (en) Adsorption member
JP2010269258A (en) Separation method by flat membrane pore diffusion and apparatus therefor
JP2003181248A (en) Separating membrane module and module assembly
JP2016215089A (en) Operation method of hollow fiber membrane module and filtration apparatus
JP2012223704A (en) Membrane separation device installed with hole diffusion type or hole diffusion filtering type membrane cartridge, and membrane separation method
JP3838689B2 (en) Water treatment system
KR20180114820A (en) Antifouling Hollow fiber membrane module, Method for preparing the same and Uses thereof
JP2004344851A (en) Membrane filtration module
JP2006255672A (en) Separation membrane
JP2012030194A (en) Hollow yarn membrane module, hollow yarn membrane module filter, and seawater desalting pretreatment filter
WO2015163429A1 (en) Method for operating clarifying-film module
JP2017217580A (en) Hollow fiber membrane module, and cleaning method therefor
JPH0679147A (en) Filtration method
JP2017217581A (en) Hollow fiber membrane filter device and cleaning method of the same
JPH04317729A (en) Composite filtration membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180423

R150 Certificate of patent or registration of utility model

Ref document number: 6329826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350