JP2013237016A - Hole diffusion type or f flow guide sorting type membrane separation apparatus and a method using the same - Google Patents

Hole diffusion type or f flow guide sorting type membrane separation apparatus and a method using the same Download PDF

Info

Publication number
JP2013237016A
JP2013237016A JP2012111775A JP2012111775A JP2013237016A JP 2013237016 A JP2013237016 A JP 2013237016A JP 2012111775 A JP2012111775 A JP 2012111775A JP 2012111775 A JP2012111775 A JP 2012111775A JP 2013237016 A JP2013237016 A JP 2013237016A
Authority
JP
Japan
Prior art keywords
membrane
separation
diffusion
flow
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012111775A
Other languages
Japanese (ja)
Inventor
Tetsuro Oike
尾池哲郎
Satoshi Takeshita
聡 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sepa Sigma Inc
Original Assignee
Sepa Sigma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sepa Sigma Inc filed Critical Sepa Sigma Inc
Priority to JP2012111775A priority Critical patent/JP2013237016A/en
Priority to KR1020130009111A priority patent/KR20130127909A/en
Publication of JP2013237016A publication Critical patent/JP2013237016A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/088Microfluidic devices comprising semi-permeable flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/082Flat membrane modules comprising a stack of flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/10Cellulose; Modified cellulose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/16Flow or flux control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/24Specific pressurizing or depressurizing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/44Cartridge types

Abstract

PROBLEM TO BE SOLVED: To provide a separation method and a separation apparatus capable of control ratio of a mass transfer rate by hole diffusion and membrane filtration by controlling a membrane transmission rate of liquid and thereby capable of periodic membrane cleaning in a method carrying out the membrane separation of the mass using the diffusion of molecules and particles under mild condition.SOLUTION: A hole diffusion method is utilized as a separation method of the mass mainly utilizing the difference of diffusion speed of molecules and particles. A device has pumps in an entrance side or an exit side or both the sides of a primary side flowing channel, the rate of mass transfer rate by hole diffusion and membrane filtration is controlled by adjusting the membrane transmitting rate of liquid by adjusting the opening of an opening/closing valve closed in one side and coupled to the other flowing channel in a secondary side flowing channel where liquid is present in a state where strain rate of the liquid in the primary side flowing channel in the membrane surface is 2/sec. Further, the membrane surface can be washed by switching fluid flowing to a primary side flowing channel to washing water by closing the opening/closing valve coupled to the secondary side flowing channel or by reversely flowing raw water.

Description


本発明は平膜を利用した膜間差圧が0.2気圧以下の低圧力条件下で、分子および粒子の拡散の速度差を主に利用した物質の孔拡散による分離法、および該分離法に膜間差圧と流速分布によって生じる揚力とを併用した流導分別効果による膜分離法および該分離法を実現した膜分離装置に関する。詳しくは多層構造を持つ多孔性平膜を用いた膜分離方法、あるいは多孔性平膜中の孔を介した物質の拡散現象あるいは流導分別効果を利用した物質分離精製方法であり、特定の粒径を持つ分子あるいは粒子、たとえば有用な高分子、生理活性物質、ガス成分の分離精製および、有害性微粒子、感染性微生物等の高度な除去を実現する方法、およびその分離装置に関する。ここで多孔性平膜とは、空孔率40%以上の平面状の膜を意味する。

The present invention relates to a separation method by pore diffusion of a substance mainly utilizing a difference in diffusion speed of molecules and particles under a low pressure condition of 0.2 atm or less using a flat membrane, and the separation method More particularly, the present invention relates to a membrane separation method based on a flow separation effect using a transmembrane pressure difference and a lift generated by a flow velocity distribution, and a membrane separation apparatus that realizes the separation method. Specifically, it is a membrane separation method using a porous flat membrane having a multi-layer structure, or a material separation and purification method using the diffusion phenomenon or flow separation effect of a substance through pores in the porous flat membrane. The present invention relates to a method for separating and purifying molecules or particles having a diameter, for example, useful polymers, physiologically active substances, gas components, and high-level removal of harmful fine particles, infectious microorganisms, and the separation apparatus. Here, the porous flat film means a flat film having a porosity of 40% or more.


平膜を利用した分離技術および分離装置としては主なものとして逆浸透膜を使用した膜分離技術および限外ろ過膜を使用したろ過膜モジュールがある。逆浸透膜として利用される膜の平均孔径は約0.5nmであり、膜間差圧は30気圧以上でろ過する。そのためたとえば平板型のろ過膜モジュールとしては膜を硬質の支持体に設置し、ろ過液を集水する流路を持った装置の例として特開平11-216341平板型膜モジュール、および特開平10-180052 膜分離装置がある。また、流路を支持体に組み合わせ、トンネル状に連結させたものとして、特開2007-268388 膜カートリッジおよび浸漬型膜分離装置、および特開平07-096148 分離膜装置がある。これらは流路を流れる溶液に圧力をかけてろ過する、いわゆる加圧式ろ過膜モジュールである。平膜を用いた加圧式ろ過膜モジュールに負荷される膜間差圧は2気圧以上である。ろ過であるため孔径より大きな系を持つ分子または粒子はすべて膜表面で捕捉され、これらは膜面上の孔の目詰まりの原因となる。

As a separation technique and separation apparatus using a flat membrane, there are mainly a membrane separation technique using a reverse osmosis membrane and a filtration membrane module using an ultrafiltration membrane. The membrane used as a reverse osmosis membrane has an average pore size of about 0.5 nm and is filtered with a transmembrane pressure difference of 30 atm or more. Therefore, for example, as a flat type membrane filter module, as an example of a device having a membrane installed on a hard support and having a flow path for collecting the filtrate, JP-A-11-216341 and JP-A-10- 180052 There is a membrane separator. Further, there are JP-A-2007-268388 membrane cartridge and submerged membrane separator, and JP-A-07-096148 separation membrane device as a combination of a flow path and a support connected in a tunnel shape. These are so-called pressurized filtration membrane modules that apply pressure to the solution flowing through the flow path to perform filtration. The transmembrane pressure difference applied to the pressure filtration membrane module using a flat membrane is 2 atmospheres or more. Because of filtration, all molecules or particles with a system larger than the pore size are trapped on the membrane surface, which causes clogging of the pores on the membrane surface.


上記のような、膜平面に対して垂直方向の流れ(結果的にろ液としての流れ)を大きくすることを目的としたろ過を行ういわゆるデッドエンド方式のろ過では、目詰まりが急速に進行してしまう。そうした目詰まりを防止するため、膜に対して平行に流体を流すタンジェンシャルフロー方式がある。たとえば、特開平5-309217や、あるいは特許第3828143号などである。膜表面へ濃縮される目詰まりの原因物質を流体の流れで膜表面からはぎとる効果を期待したり、あるいは膜表面で起こる小径の分子または粒子の濃度分極の寄与を極小化する効果を期待する。タンジェンシャルフローにより孔径より大きな粒子による目詰まりの原因となる膜表面での堆積物をはぎとり、また濃度分極の原因ともなる膜表面での境膜を薄くする効果があると考えられている。

In the so-called dead-end type filtration in which the purpose is to increase the flow perpendicular to the membrane plane (as a result, the flow as a filtrate), clogging rapidly proceeds. End up. In order to prevent such clogging, there is a tangential flow method in which a fluid flows in parallel to the membrane. For example, Japanese Patent Laid-Open No. 5-309217 or Japanese Patent No. 3828143. Expected to have an effect of stripping off clogging substances concentrated on the membrane surface from the membrane surface with a fluid flow, or to minimize the contribution of concentration polarization of small-sized molecules or particles occurring on the membrane surface. It is considered that the tangential flow has the effect of stripping off deposits on the film surface that cause clogging by particles larger than the pore diameter and thinning the film on the film surface that also causes concentration polarization.


平膜を用い、かつ分子および粒子の拡散の速度差を主に利用した物質の膜分離技術に関しては例えば、特開2008-260001大きさが15nm以下の微粒子の膜隔離膜除去および膜濃縮方法、および特開2005-349268多孔性平膜の拡散現象を利用した物質分離精製方法がある。拡散とは分子および粒子のブラウン運動の結果として濃度勾配を駆動力とした物質移動を意味し、特に多孔膜中の孔を介した拡散が主である拡散を孔拡散と呼ぶ。従来の膜中での物質の拡散は膜を構成する素材の基質部を介した拡散で、一般に溶解拡散と定義されている拡散である。孔拡散と溶解拡散との区別は拡散の見掛けの活性化エネルギーを測定すればよい。前者の拡散の場合、該エネルギーは0〜4kcal/mol、後者は8〜50kcal/molの値を示す。膜間差圧が零で、膜間の濃度勾配に時間変化が無い場合には定常的な孔拡散が実現し、この場合には膜を介した液体の体積輸送はない。体積輸送を起こさせるように膜間差圧を負荷しつつ、孔拡散の特性を維持させる方法として孔拡散ろ過法がある。この方法では膜間差圧は膜の平均孔径によって特定された圧力以下で実施される。また流導分別とは、孔拡散による分離行程において対象とする分子(または粒子)の拡散速度以下のろ過速度で、物質は膜を透過する膜間差圧下で一次流路側の膜表面の流体に特定値以上のひずみ速度で実現する分子の大きさによる分別である。一般的には、一次流路側で処理液体に2/秒以上のひずみ速度を与えるための層流を形成させ、わずかな(たとえば0.15気圧以下)の膜間差圧が生じるように溶液に静圧をかけ、大きな目詰まりが生じないようにろ過速度でのろ過と孔拡散による物質移動とを組み合わせた分離法である。孔拡散が実現するには孔の大きさが孔拡散対象とする分子の分子径の5倍以上であることが必要である。

Regarding the membrane separation technology of a substance using a flat membrane and mainly utilizing the difference in diffusion speed of molecules and particles, for example, JP 2008-260001 Membrane separation membrane removal and membrane concentration method for fine particles having a size of 15 nm or less, There is also a method for separating and purifying a substance using the diffusion phenomenon of a porous flat membrane. Diffusion means mass transfer with a concentration gradient as a driving force as a result of Brownian motion of molecules and particles. In particular, diffusion mainly through diffusion in a porous film is called pore diffusion. Conventional diffusion of a substance in a film is diffusion through a substrate portion of a material constituting the film, and is generally diffusion defined as dissolution diffusion. The distinction between pore diffusion and dissolution diffusion may be performed by measuring the apparent activation energy of diffusion. In the case of the former diffusion, the energy is 0 to 4 kcal / mol, and the latter is 8 to 50 kcal / mol. When the transmembrane pressure is zero and the concentration gradient between the membranes does not change with time, steady pore diffusion is realized, and in this case, there is no volumetric transport of liquid through the membrane. There is a pore diffusion filtration method as a method of maintaining pore diffusion characteristics while applying a transmembrane pressure difference so as to cause volume transport. In this method, the transmembrane pressure difference is carried out below the pressure specified by the average pore diameter of the membrane. In addition, flow separation is a filtration rate that is lower than the diffusion rate of the molecules (or particles) of interest in the separation process by pore diffusion, and the substance is converted to a fluid on the membrane surface on the primary flow path side under the transmembrane differential pressure that permeates the membrane. Sorting is based on the size of the molecule realized at a strain rate above a specific value. In general, a laminar flow for applying a strain rate of 2 / sec or more to the treatment liquid is formed on the primary flow path side, and a slight transmembrane pressure difference (for example, 0.15 atm or less) is generated in the solution. This is a separation method that combines filtration at a filtration rate and mass transfer by pore diffusion so that static pressure is applied and large clogging does not occur. In order to realize pore diffusion, it is necessary that the size of the pores is at least 5 times the molecular diameter of the molecules to be diffused.


従来から利用されている膜中の拡散は、膜の素材である高分子基質内に物質が溶解し、溶解後膜中を拡散するいわゆる溶解拡散機構での移動である。この機構での低分子の拡散係数は約10-10cm2/秒である。そのため産業的には利用しにくいほど遅い物質移動速度である。これに対して孔拡散では拡散係数は約10-6cm2/秒であり、膜間差圧が1気圧で、膜間の濃度差が10重量%であれば、拡散速度は濾過速度のほぼ1/10以上であり、産業的に利用可能な値となる。

Diffusion in a film that has been conventionally used is movement by a so-called dissolution and diffusion mechanism in which a substance dissolves in a polymer matrix that is a material of the film and diffuses in the film after dissolution. The diffusion coefficient of small molecules in this mechanism is about 10 −10 cm 2 / sec. Therefore, the mass transfer rate is so slow that it is difficult to use industrially. On the other hand, in the case of pore diffusion, if the diffusion coefficient is about 10 −6 cm 2 / sec, the differential pressure between the membranes is 1 atm, and the concentration difference between the membranes is 10% by weight, the diffusion rate is almost the filtration rate. It is 1/10 or more, and becomes a value that can be used industrially.


定常孔拡散法とは膜中の孔を介した拡散において、膜表面と膜裏面との物質の濃度の差が時間的にほぼ一定に保たれる拡散を意味する。従来より透析等で利用される拡散ではこの濃度差の時間変化が起こり拡散速度は経時的に減少し定常状態は達成できない。定常状態を保つためには、原液および拡散液を平膜平面に沿って平行に、かつ一定速度で流す必要がある。この際、濾過による物質移動を起こりにくくするために、流す方向は両者同一方向に設定することが望ましい。定常孔拡散は孔拡散法の典型的な特性を知るために不可欠な条件ではあるが、実用的な孔拡散法では必ずしも定常的である必要はない。定常孔拡散を現実的に実現させるには(1)ろ過を主体としての物質移動が起こらない工夫と、(2)原液と拡散液との両者が一定速度で流れ、かつ膜モジュールでの原液の入口側と出口側の濃度変化が10%以内であることが必要である。

The steady pore diffusion method means diffusion in which the difference in the concentration of substances between the membrane surface and the membrane back surface is kept substantially constant in diffusion through the pores in the membrane. In diffusion conventionally used in dialysis or the like, this concentration difference changes with time, the diffusion rate decreases with time, and a steady state cannot be achieved. In order to maintain a steady state, it is necessary to flow the undiluted solution and the diffusion solution in parallel along the flat membrane plane at a constant speed. At this time, in order to make it difficult for mass transfer due to filtration to occur, it is desirable to set the flow direction in the same direction. Although steady hole diffusion is an indispensable condition for knowing typical characteristics of the hole diffusion method, it does not necessarily have to be steady in a practical hole diffusion method. In order to realize steady pore diffusion in reality, (1) a device that does not cause mass transfer mainly in filtration, and (2) both the stock solution and the diffusion solution flow at a constant speed, and the stock solution in the membrane module It is necessary that the concentration change between the inlet side and the outlet side is within 10%.


被拡散液の膜表面におけるひずみ速度は2/秒以上であれば膜表面における20μm以上の物質の堆積を防止できることを発見し、本発明に至った。この発見により孔拡散法で用いる平膜の平均孔径を除去対象粒子の二倍以上で設定可能となった。ひずみ速度の極端な増加は被拡散液中の生理活性物質の不活化をもたらしたり、あるいは大粒子を小粒子に変形させる場合もあるのでひずみ速度は被拡散液の組成に依存した最適値が存在する。

It has been found that if the strain rate of the liquid to be diffused on the film surface is 2 / sec or more, deposition of a substance of 20 μm or more on the film surface can be prevented, and the present invention has been achieved. This discovery has made it possible to set the average pore size of the flat membrane used in the pore diffusion method to more than twice the particle to be removed. An extreme increase in strain rate may inactivate physiologically active substances in the diffusion solution, or large particles may be transformed into small particles, so the strain rate has an optimum value depending on the composition of the diffusion solution. To do.


平膜分離方法において一次側流体を吸引する手法は、いわゆる逆洗による膜の洗浄方法において多く見られる。たとえば特許第3426964号や、特開平06-226013などである。これは膜の一次側表面に堆積した成分を除去するために行う手法である。また、活性汚泥法に使用される膜分離モジュールにおいては、二次側に吸引ポンプを設置して処理水を得る方法がある。この吸引方法を界面活性を示す成分を溶解した水溶液に適用すると二次側に泡が発生し、吸引するための圧力負荷が非効率となる。ただし、本発明でいう一次側とは膜を介して二種の液体が存在し、本発明の分離方法が適用されていない液体側で、いわば原液側である。二次側とは膜を介して一次側とは反対側を意味し、原液が膜分離処置を受けた、いわば処理後の駅側を意味する。

In the flat membrane separation method, a method of sucking the primary side fluid is often seen in a membrane washing method by so-called back washing. Examples thereof include Japanese Patent No. 3426964 and Japanese Patent Laid-Open No. 06-226013. This is a technique for removing components deposited on the primary surface of the film. In the membrane separation module used in the activated sludge method, there is a method of obtaining treated water by installing a suction pump on the secondary side. When this suction method is applied to an aqueous solution in which a component exhibiting surface activity is dissolved, bubbles are generated on the secondary side, and the pressure load for suction becomes inefficient. However, the primary side in the present invention is a liquid side to which two kinds of liquids exist through a membrane and the separation method of the present invention is not applied, that is, the stock solution side. The secondary side means the side opposite to the primary side through the membrane, and the so-called station side after processing, in which the stock solution has undergone membrane separation treatment.


ろ過圧力や流速などろ過条件を制御しながらろ過を行う手法は前述のタンジェンシャルフローにおける特許第3828143号がある。また吸引ポンプによってろ過条件を制御する技術は、上記のような活性汚泥法に使用される膜分離モジュールにおいて見られる。たとえば特開2003-290766などである。各膜分離モジュール毎に圧力計や積算流量計を設置し、モジュールの汚染状況に応じて吸引ポンプの吸い込み流量を制御し、ろ過する処理水の水量を調整する方法である。ろ過による処理水の清浄度の増加度とろ過速度との間にはほぼ反比例的な関係が得られているが、膜の表面汚染、孔の目詰まりあるいは濃度分極によるろ過速度の減少に対してタンジェンシャルフローにおける改善効果として認められているが、高い膜間差圧を維持しつつ、この改善効果を高めるにはエネルギーの消費と膜の力学的破損の可能性が増大する。そのため処理水の膜面での流れ速度を変化させる範囲は非常に狭い。

Japanese Patent No. 3828143 in the above-mentioned tangential flow is a method for performing filtration while controlling filtration conditions such as filtration pressure and flow rate. Moreover, the technique which controls filtration conditions with a suction pump is seen in the membrane separation module used for the above activated sludge processes. For example, JP-A-2003-290766. In this method, a pressure gauge and an integrated flow meter are installed for each membrane separation module, the suction flow rate of the suction pump is controlled according to the contamination status of the module, and the amount of treated water to be filtered is adjusted. There is an almost inversely proportional relationship between the increase in the degree of cleanness of treated water by filtration and the filtration rate, but the decrease in filtration rate due to membrane surface contamination, pore clogging, or concentration polarization. Although recognized as an improvement effect in tangential flow, increasing the possibility of energy consumption and mechanical breakage of the membrane increases to increase this improvement effect while maintaining a high transmembrane pressure difference. Therefore, the range in which the flow speed on the membrane surface of the treated water is changed is very narrow.

特開平11-216341JP-A-11-216341 特開平10-180052JP 10-180052 特開2007-268388JP2007-268388 特開平07-096148JP 07-096148 特開平5-309217JP 5-309217 特許第3828143号Patent No. 3828143 特開2008-260001JP2008-260001 特開2005-349268JP2005-349268 特許第3426964号Patent No. 3426964 特開平06-226013JP 06-226013 特開2003-290766JP2003-290766


ろ過速度は膜間差圧と正の相関性があるため膜間差圧を可能な限り大きくして膜分離が行われる。しかし膜間差圧を高めると膜表面および膜内部の孔に次第に分離対象物質が堆積し、目詰まりが起り、濾過速度の減少と回収率の低下が起きる。さらに分離すべき分子の大きさが小さくなると該分子の分離除去用の平膜の平均孔径は小さく設計せざるを得ない。平均孔径を小さくするとろ過速度、濾過量が平均孔径の2乗(空孔率が一定で平均孔径のみ変化させた場合)あるいは4乗(孔数を一定にして平均孔径を変化させた場合)に反比例して小さくなる課題があった。逆洗により堆積物を除去する方法もあるが、根本的な解決にならない。膜内部の孔の目詰まりはろ過では不可避と考えられるが、これを極小化する膜分離方式を選定する必要がある。

Since the filtration rate has a positive correlation with the transmembrane pressure difference, the membrane separation is performed by increasing the transmembrane pressure pressure as much as possible. However, when the transmembrane pressure difference is increased, substances to be separated are gradually deposited on the membrane surface and inside the membrane, resulting in clogging, resulting in a decrease in filtration rate and a decrease in recovery rate. If the size of the molecules to be separated is further reduced, the average pore size of the flat membrane for separating and removing the molecules must be designed to be small. When the average pore size is reduced, the filtration rate and the filtration amount are increased to the square of the average pore size (when the porosity is constant and only the average pore size is changed) or to the fourth power (when the average pore size is changed while keeping the number of pores constant). There was a problem of decreasing in inverse proportion. There is a method of removing deposits by backwashing, but this is not a fundamental solution. Although clogging of pores inside the membrane is considered unavoidable by filtration, it is necessary to select a membrane separation system that minimizes this.


上記のようなデッドエンド方式による目詰まりを防止するため、膜に対して流体を平行に流す平行ろ過、いわゆるタンジェンシャルフロー方式を採用する場合がある。しかし平膜モジュールにおいてでさえ一次側流路が狭い場合、安定した流速および均質な流速分布が得られず、その結果、膜表面に堆積した粒子を除去するだけの十分な膜表面でのひずみ速度が得られない。そのため流路厚を大きくし、一次側の流れに乱流を起こさせたり、あるいはスポンジ状の粒子で膜表面を磨くなどの試みがある。いずれも膜表面での堆積物の除去を目的とする方法であり該堆積物の生成を防止する方法としての一次側の流れの検討はなされていない。特に中空糸内部が一次側の場合、一次側流速を増加させると中空糸内部での流れによる圧力損失が生じ、その結果、中空糸の流れる入口部と出口部でのろ過速度の差が生じるのみでなく中空糸内での一定のひずみ速度が得られない。静水圧表示での膜間差圧を大きくすることで膜分離を行う場合は、漏れを防止するために一次側流路は小さくせざるを得ず、その結果、十分なかつ安定的な流速、すなわちひずみ速度が得られない。また、大きな膜間差圧に耐える膜構造とモジュール構造にしなければならないため、高コストとなりがちである。膜表面でのひずみ速度をすべての膜表面で均質化するモジュール設計が必要である。

In order to prevent clogging due to the dead end method as described above, a so-called tangential flow method, which is a parallel filtration in which a fluid flows parallel to the membrane, may be employed. However, even in the flat membrane module, when the primary flow path is narrow, a stable flow rate and a uniform flow rate distribution cannot be obtained, and as a result, the strain rate at the membrane surface is sufficient to remove particles deposited on the membrane surface. Cannot be obtained. For this reason, attempts have been made to increase the channel thickness to cause turbulent flow in the primary flow, or to polish the membrane surface with sponge-like particles. In any case, the method is intended to remove deposits on the film surface, and the flow on the primary side has not been studied as a method for preventing the formation of deposits. Especially when the hollow fiber interior is the primary side, increasing the primary flow velocity will cause pressure loss due to the flow inside the hollow fiber, resulting in only a difference in filtration rate between the inlet and outlet of the hollow fiber. In addition, a constant strain rate in the hollow fiber cannot be obtained. When membrane separation is performed by increasing the transmembrane pressure on the hydrostatic pressure display, the primary flow path must be reduced to prevent leakage, and as a result, a sufficient and stable flow rate, that is, Strain rate cannot be obtained. In addition, since a membrane structure and a module structure that can withstand a large transmembrane pressure difference are required, the cost tends to be high. A modular design is needed to homogenize the strain rate at the membrane surface across all membrane surfaces.


また従来のような一次側からの静水圧による加圧方式のみでは、膜間差圧と一次側の流速の制御が難しい。十分なかつ安定的なひずみ速度を保持しつつ、膜間差圧を制御するためには、一次側からの加圧方式のみでは、精密に調整できないため、分離条件の最適化が難しい。孔拡散による物質移動の寄与を大きく保ちながら水乃膜透過速度を一定にすることは従来の膜間差圧を制御する方式では困難である。

In addition, it is difficult to control the transmembrane pressure difference and the primary flow rate only by the conventional pressurization method using the hydrostatic pressure from the primary side. In order to control the transmembrane pressure difference while maintaining a sufficient and stable strain rate, it is difficult to precisely adjust the separation conditions only by the pressurization method from the primary side. It is difficult to keep the water membrane permeation rate constant while keeping the contribution of mass transfer due to pore diffusion large by the conventional method of controlling the transmembrane pressure difference.


大きな膜間差圧による目詰まりを防止するため、本発明では孔拡散ろ過方法あるいは流導分別ろ過方法を採用する。すなわち、本発明の最大の特徴は孔拡散あるいは流導分別ろ過方式による膜分離方法を採用した点にある。この孔拡散あるいは流導分別ろ過は次のような特徴を持つ。すなわち(1)平膜の目詰まりが起こりにくい,(2)拡散速度の差に基づき孔径より小さな物質の分離精製が可能,(3)孔内での体積流がないことによる分離処理中での力学的孔破壊がない,(4)ろ過で中心となる膜の孔と粒子径とで期待されるふるい効果がほぼそのまま起こる。(5)一次側流路でのひずみ速度に原因した分別効果が起こる。以上のような特徴を保持しつつ、拡散のもつ欠点すなわち物質移動速度が遅い、及び拡散液中の物質濃度が低い欠点も孔拡散ろ過方式では解消できる。従来から利用されている拡散は、膜の素材である高分子基質内に物質が溶解し、溶解後膜中を拡散するいわゆる溶解拡散機構での移動である。この機構での拡散係数は約10-10 cm2/秒である。そのため産業的には利用しにくいほど遅い速度である。これに対して孔拡散では拡散係数は約10-6 cm2/秒であり、濃度勾配が0.1重量%/ミクロンの条件下での拡散速度はろ過速度のほぼ1/10であり、産業的に利用可能な値となる。本発明で採用されるモジュールは孔拡散および流導分別ろ過のいずれでも適用できるモジュールである。すなわち分離対象分子または粒子の径の3倍以上の平均孔径を持つ平膜を用い、膜の表面には一定のひずみ速度を与える一次側流路を持ち、膜の裏面にも同様の回路を持つモジュールである。一次側流路における一定のひずみ速度によって生じる揚力によって分離対象粒子は流路中央付近に引き寄せられ、膜表面(血管内壁)のろ過現象は安定化される。

In order to prevent clogging due to a large transmembrane pressure difference, the present invention employs a pore diffusion filtration method or a flow separation filtration method. That is, the greatest feature of the present invention is that a membrane separation method by pore diffusion or flow separation and filtration is adopted. The pore diffusion or flow separation filtration has the following characteristics. In other words, (1) flat membranes are less likely to be clogged, (2) separation and purification of materials smaller than the pore diameter is possible based on the difference in diffusion rate, and (3) separation processing is not possible due to the absence of volume flow in the pores. There is no mechanical pore breakage. (4) The sieving effect expected with the pores of the membrane and the particle size at the center of filtration occurs almost as it is. (5) A sorting effect occurs due to the strain rate in the primary channel. The pore diffusion filtration method can also solve the disadvantages of diffusion, that is, the substance transfer rate is slow and the substance concentration in the diffusion liquid is low while maintaining the above characteristics. Diffusion conventionally used is movement by a so-called dissolution / diffusion mechanism in which a substance dissolves in a polymer matrix that is a material of a membrane and diffuses in the membrane after dissolution. The diffusion coefficient in this mechanism is about 10 −10 cm 2 / sec. Therefore, it is slow so that it is difficult to use industrially. On the other hand, in the pore diffusion, the diffusion coefficient is about 10 −6 cm 2 / sec, and the diffusion rate under the condition that the concentration gradient is 0.1 wt% / micron is almost 1/10 of the filtration rate. Value that can be used automatically. The module employed in the present invention is a module that can be applied to both hole diffusion and flow separation filtration. In other words, a flat membrane having an average pore diameter of 3 times or more the size of the molecule or particle to be separated is used, the membrane surface has a primary flow path that gives a constant strain rate, and the membrane has a similar circuit on the back surface. It is a module. The separation target particles are attracted to the vicinity of the center of the flow path by the lift generated by a constant strain rate in the primary flow path, and the filtration phenomenon on the membrane surface (inner wall of the blood vessel) is stabilized.


本発明の第二の特徴は二次側の流路の一方が閉じられたデッドエンドであり、他方には開閉弁が連結されており、デッドエンドと開閉弁との間には膜を通過した水で満たされている点である。該開閉弁の開度によって孔拡散とろ過とによる物質の膜透過の比が定まる。開度が小さい程孔拡散による物質ンお膜透過の寄与が台となる。この開閉によって孔拡散の寄与が決定できるので、膜間差圧の制御が不要となる。孔拡散法あるいは流導分別ろ過法を採用することで、膜への大きな加圧が不要となり、減圧下、あるいは低圧下で分離を行うことができる。低圧力帯で分離を行う結果、急速な目詰まりが生じず、膜表面あるいは膜内部の孔で物質の濃度がろ過によって高まる現象が起こっても、拡散の作用で濃度低下が急速に進む。低圧領域における圧力制御は二次側流路に連結された開閉弁の開度を調節することで行うことができる。これによっても膜表面あるいは膜内部の孔における濃度上昇を抑制することができる。

The second feature of the present invention is a dead end in which one of the flow paths on the secondary side is closed, and an open / close valve is connected to the other, and the membrane passes between the dead end and the open / close valve. It is a point filled with water. The ratio of the permeation of the substance by pore diffusion and filtration is determined by the opening of the on-off valve. The smaller the opening, the greater the contribution of the permeation of the material through the pore diffusion. Since the contribution of hole diffusion can be determined by this opening and closing, control of the transmembrane pressure difference becomes unnecessary. By adopting the pore diffusion method or the flow separation filtration method, it is not necessary to apply large pressure to the membrane, and separation can be performed under reduced pressure or low pressure. As a result of separation in a low pressure zone, rapid clogging does not occur, and even if a phenomenon occurs in which the concentration of the substance increases by filtration on the membrane surface or inside the membrane, the concentration decreases rapidly due to diffusion. The pressure control in the low pressure region can be performed by adjusting the opening degree of the on-off valve connected to the secondary side flow path. This also can suppress an increase in concentration at the pores in the membrane surface or inside the membrane.


また、本発明のように低圧下の分離であれば、膜構造やモジュール構造を頑強にする必要がなくなり、一次側流路を大きくすることができる。その結果、一次側の流れに伴う大きな圧力損失を生じさせずに、十分な流速で流体を流すことが可能になる。また、モジュールとしては直列に、かつ膜をその表面に沿った形式で直列に長くつなぐことも可能になり、一つの膜ユニット内に大きな膜面積を確保することができる。膜構造設計とモジュールの組み合わせが簡素化され、コスト低減にもつながる。

Moreover, if the separation is performed under a low pressure as in the present invention, it is not necessary to make the membrane structure or the module structure robust, and the primary flow path can be enlarged. As a result, the fluid can flow at a sufficient flow rate without causing a large pressure loss due to the flow on the primary side. In addition, the modules can be connected in series and long in series in a form along the surface thereof, and a large membrane area can be secured in one membrane unit. The combination of membrane structure design and modules is simplified, leading to cost reduction.


孔拡散法あるいは流導分別ろ過法は膜の平均孔径と膜間差圧と一次側流速との組み合わせの特定範囲で実現される。平均孔径より大きな流体中の成分の内、その存在量が最も大きい成分が明らかであれば、該成分のブラウン運動の速度が膜間差圧で生じる流体の流れ速度よりも大きくなるように膜間差圧を定める。該成分が特定できない場合、膜の平均孔径が20nm〜80nmの際には膜間差圧を0.15気圧以下に設定する。平均孔径が80nmを超える場合、膜間差圧を0.10気圧以下に設定する。平均孔径が20nm未満であれば、膜間差圧を0.20気圧以下に設定する。このように膜間差圧が重要であったが、二次側の流路に本発明のような工夫をすることにより、膜間差圧の制御が必要でなくなる。

The pore diffusion method or flow separation filtration method is realized in a specific range of combinations of the average pore diameter of the membrane, the transmembrane differential pressure, and the primary flow velocity. If the component having the largest abundance among the components in the fluid larger than the average pore diameter is clear, the velocity of the Brownian motion of the component becomes larger than the fluid flow velocity generated by the transmembrane pressure difference. Determine the differential pressure. When this component cannot be specified, the transmembrane differential pressure is set to 0.15 atm or less when the average pore diameter of the membrane is 20 nm to 80 nm. When the average pore diameter exceeds 80 nm, the transmembrane pressure difference is set to 0.10 atm or less. If the average pore diameter is less than 20 nm, the transmembrane pressure difference is set to 0.20 atm or less. As described above, the transmembrane pressure difference is important. However, when the secondary channel is devised as in the present invention, it is not necessary to control the transmembrane pressure.


本発明方法および装置において多孔性膜の形状が平膜である点に特徴がある。平膜にすることにより膜間距離の設定が膜特性と無関係に設計でき、さらに一次側の流体の流れによって生じる入口部と出口部での圧力損失を極小化することができ、孔拡散法あるいは流導分別ろ過法での物質移動が実現される。さらに平膜を種々の形のモジュールに成形可能であり、平膜を複数枚重ねることによりろ過で輸送される成分に関して多段ろ過の特性を付与させることができる。平膜の素材としては水中での吸着性が小さい特性を示す素材が良い。具体的には親水性の多孔性膜または親水性の長繊維不織布である。特に好ましいのは再生セルロース製の素材である。多孔性膜あるいは不織布単独あるいは両社を複合化した膜で平均孔径として5nm以上200μm以下にする。水中より除去すべき対象物が50μm以下の微粒子、特に細菌、ウイルス、プリオン等の場合には除去率を高くしなくてはならないので、この場合には平膜が多層構造を持つ膜が良い。

The method and apparatus according to the present invention is characterized in that the shape of the porous membrane is a flat membrane. By using a flat membrane, the setting of the distance between membranes can be designed regardless of membrane characteristics, and pressure loss at the inlet and outlet caused by the flow of fluid on the primary side can be minimized. Mass transfer in the flow-through fractional filtration method is realized. Further, the flat membrane can be formed into various types of modules, and the properties of multi-stage filtration can be imparted to the components transported by filtration by stacking a plurality of flat membranes. As the material of the flat membrane, a material having a characteristic of low adsorptivity in water is good. Specifically, it is a hydrophilic porous membrane or a hydrophilic long fiber nonwoven fabric. Particularly preferred are regenerated cellulose materials. The average pore size is 5 nm or more and 200 μm or less with a porous membrane or a nonwoven fabric alone or a composite of both companies. If the object to be removed from water is fine particles of 50 μm or less, particularly bacteria, viruses, prions, etc., the removal rate must be increased. In this case, a flat film having a multilayer structure is preferable.


本発明の分離技術は、流体を一定速度以上の流速(ひずみ速度で20/秒以上)で流す場合においてもっとも分離効果を発揮できる。20/秒以上のひずみ速度を得るためには流路を相応に大きくする必要がある。中空糸の場合は、大きな流路が確保できないため、平膜の積層構造が望ましい。平膜を積層する際に一次側流路を大きくすることで、流体をスムーズに流すことができる。

The separation technique of the present invention can exhibit the separation effect most when the fluid is flowed at a flow rate of a constant speed or higher (a strain rate of 20 / second or higher). In order to obtain a strain rate of 20 / second or more, it is necessary to enlarge the flow path accordingly. In the case of a hollow fiber, a large flow path cannot be secured, so a flat membrane laminated structure is desirable. By laminating the primary side flow path when laminating the flat membrane, the fluid can flow smoothly.


一次側の流体のひずみ速度が2/秒以上になると流体中の粒子(分子を含めて)は膜表面より離れる現象を発見し本発明に至った。すなわち本発明の第三の特徴は、膜表面における分離対象溶液のひずみ速度が2/秒以上で200/秒未満に維持することである。200/秒以上になると該溶液中の粒子の変形が大きくなり、一部の分散粒子が微小化する傾向が現れる。

When the strain rate of the fluid on the primary side becomes 2 / sec or more, the phenomenon that particles (including molecules) in the fluid are separated from the film surface has been found and the present invention has been achieved. That is, the third feature of the present invention is that the strain rate of the separation target solution on the membrane surface is maintained at 2 / second or more and less than 200 / second. If it is 200 / sec or more, the deformation of the particles in the solution becomes large, and some dispersed particles tend to be micronized.


膜間差圧と流速を同時にかつ精密に制御するためには、加圧制御機能と、それに対応する流速制御機能を有する必要がある。加圧源としては、ポンプ吐出圧、気体圧、水頭圧などがある。流速制御機能としてはポンプが想定され、一次側流路の入口側あるいは出口側に設置できる。いずれかの加圧制御機能、流速制御機能を単一あるいは複数組み合わせることによって、一次側流路にかかる膜間差圧と流速を同時にかつ精密に制御することができる。ここで膜間差圧の値として静圧を意味する。膜間差圧は0.5気圧以下でなくてはならない。0.5気圧を超えると膜中の孔を通過する物質はろ過による寄与が大部分となり拡散の寄与が小さくなる。膜の平均孔径が小さくなると膜間差圧は大きくすることは可能であるが、10nmの場合でも0.5気圧以下でなければならない。二次側流路に連結された開閉弁の開度を調節すると一次側の流速を同時にかつ精密に制御することで孔拡散が支配的な物質の膜透過が実現する。

In order to control the transmembrane pressure difference and the flow rate simultaneously and precisely, it is necessary to have a pressurization control function and a corresponding flow rate control function. Examples of the pressurizing source include pump discharge pressure, gas pressure, and water head pressure. A pump is assumed as the flow rate control function and can be installed on the inlet side or the outlet side of the primary flow path. By combining any one of the pressurization control function and the flow rate control function singly or in combination, it is possible to simultaneously and precisely control the transmembrane pressure difference and the flow rate applied to the primary channel. Here, the value of the transmembrane pressure difference means the static pressure. The transmembrane pressure must be below 0.5 atm. When the pressure exceeds 0.5 atm, the substance that passes through the pores in the membrane largely contributes to filtration and the contribution of diffusion becomes small. When the average pore diameter of the membrane is reduced, the intermembrane differential pressure can be increased, but even at 10 nm, it must be 0.5 atm or less. By adjusting the opening degree of the on-off valve connected to the secondary channel, the permeation of the substance in which pore diffusion is dominant is realized by simultaneously and precisely controlling the flow rate on the primary side.


一次側流路の入口側あるいは出口側に一つのポンプを設置する場合、流速をポンプの吐出圧によって制御し、膜間差圧は、例えば一次側流路に接続された流体用タンク内にかかる気体圧か、あるいは水頭圧を調整して制御する。すなわち本発明方法の特徴は一次側流路において流速と膜間差圧とを膜の平均孔径に対応して設定する点にある。また一次側流路の入口側および出口側に二つのポンプを設置する場合、二つのポンプの流速および吐出圧を制御することで、その間にある一次側流路にかかる流速と膜間差圧を制御することができる。のぞましくは一次側流路の出口側に一つのポンプを設置し、流速を制御すると共に、一次側流路の入口側に接続された流体用タンク内の気体圧を制御することで、膜間差圧を制御する。この状態でさらに二次側の開閉弁で二次側より回収する液体の速度を制御すると孔拡散の寄与を長時間にわたって大きく維持できる。

When one pump is installed on the inlet side or the outlet side of the primary flow path, the flow rate is controlled by the pump discharge pressure, and the transmembrane pressure is applied, for example, in a fluid tank connected to the primary flow path. Control by adjusting the gas pressure or water head pressure. That is, the method of the present invention is characterized in that the flow velocity and the transmembrane pressure are set in the primary channel in accordance with the average pore diameter of the membrane. In addition, when two pumps are installed on the inlet side and outlet side of the primary flow path, the flow speed and transmembrane differential pressure applied to the primary flow path between them are controlled by controlling the flow speed and discharge pressure of the two pumps. Can be controlled. Preferably, by installing one pump on the outlet side of the primary side flow path and controlling the flow rate, the gas pressure in the fluid tank connected to the inlet side of the primary side flow path is controlled, Control transmembrane pressure. In this state, if the speed of the liquid recovered from the secondary side is further controlled by the on-off valve on the secondary side, the contribution of hole diffusion can be largely maintained for a long time.


一次側流路の入口側あるいは出口側にポンプを設置した場合、膜表面を洗浄することを目的として、一次側流路に洗浄水を流すか、あるいは原水の流れを逆流させることができ、従来の膜の孔径に負荷をかける逆洗を行う必要がなくなる。一次側流路に洗浄水を流す場合は、二次側流路に連結された開閉弁と、原水タンクに連結された配管を一定時間閉じ、洗浄水タンクに連結された配管を開けることによって一次側に洗浄水を一定時間流すことができる。また原水の流れを逆流させる場合は、一次側流路の入口側あるいは出口側に設置したポンプを逆流させることによって膜表面を洗浄することができる。

When a pump is installed on the inlet side or outlet side of the primary channel, the washing water can be flowed to the primary channel or the flow of raw water can be reversed for the purpose of cleaning the membrane surface. This eliminates the need for backwashing that places a load on the pore size of the membrane. When flush water is allowed to flow into the primary flow path, the on-off valve connected to the secondary flow path and the pipe connected to the raw water tank are closed for a certain period of time, and the primary water is opened by opening the pipe connected to the wash water tank. The washing water can flow to the side for a certain time. Moreover, when the flow of raw water is made to flow backward, the membrane surface can be washed by making the pump installed on the inlet side or the outlet side of the primary channel flow backward.


本発明を採用することにより、有用な高分子、生理活性物質、有害性微粒子、感染性微生物等を分離、除去あるいは精製することが可能となる。熱的、力学的、化学的に不安定な物質の分離精製には膜分離が最適であると考えられていたが、工業的には膜分離には前述のような多くの障害がある。本発明では拡散の持つ最大の欠点であった分離速度の小さい点と処理容量を大きくする点を改善し、孔拡散を利用することにより、広い分子量範囲(粒子径範囲)での分離回収が可能となる。かつ、複雑になりがちであった分離装置も、孔拡散法あるいは流導分別ろ過法に適した、かつ単純で操作が簡便な装置を発明することで、膜の目詰まりの進行が遅く、かつ再生が容易であり、繰り返し使用できるようになる。さらに装置が簡素化されることで低コスト化、低価格化の効果もある。生活排水や工業排水に対して本発明方法を適用することにより安全な水に変換させることが可能になり水のリサイクルが実現する。

By adopting the present invention, it becomes possible to separate, remove or purify useful polymers, physiologically active substances, harmful fine particles, infectious microorganisms and the like. Membrane separation has been thought to be optimal for separation and purification of thermally, mechanically and chemically unstable substances, but industrially, membrane separation has many obstacles as described above. In the present invention, the point of low separation speed and the point of increasing processing capacity, which were the biggest disadvantages of diffusion, were improved, and separation and recovery in a wide molecular weight range (particle size range) were possible by utilizing pore diffusion. It becomes. In addition, the separation device which tends to be complicated is also invented a simple and easy-to-operate device suitable for the pore diffusion method or the flow separation fractionation method, so that the progress of clogging of the membrane is slow, and It is easy to reproduce and can be used repeatedly. Furthermore, the simplification of the apparatus has the effect of reducing the cost and price. By applying the method of the present invention to domestic wastewater and industrial wastewater, it is possible to convert the water into safe water, thereby realizing water recycling.


膜セット概略図Membrane set schematic 膜カートリッジ概略図Membrane cartridge schematic 分離装置の例Example of separation device 分離装置の例Example of separation device 分離装置の例Example of separation device


本発明で使用する多孔性平膜1は、孔拡散あるいは流導分別膜分離が可能な孔特性を持つ分離膜が一般的で、平均孔径5nm以上100μm以下、望ましくは平均孔径10nm〜10μmで、空孔率40%以上90%以下、膜厚1μm以上3mm未満の親水性高分子であるセルロース膜で、膜の再生の容易さと、目詰まりの起こりにくさが特徴である。平均孔径が1μmを超える場合にはセルロース製のろ紙状物や再生セルロース製の不織布を用いる場合もある。平均孔径が2nm未満であれば溶解・拡散機構による寄与が大きく、拡散係数が小さくなりすぎる。空孔率の上限は90%以下であり、これを超えると膜の力学的性質の低下が著しく、ピンホールなど欠陥の発生確率も高くなる。膜厚は望ましくは30μm以上で、膜厚を厚くすることで膜の強度、取り扱いやすさが増し、ピンホールの発生が減少する点から微生物除去にも効果的である。

The porous flat membrane 1 used in the present invention is generally a separation membrane having pore characteristics capable of pore diffusion or flow separation membrane separation, and has an average pore diameter of 5 nm to 100 μm, preferably an average pore diameter of 10 nm to 10 μm. A cellulose membrane that is a hydrophilic polymer having a porosity of 40% or more and 90% or less and a film thickness of 1 μm or more and less than 3 mm, and is characterized by ease of membrane regeneration and less clogging. When the average pore diameter exceeds 1 μm, a cellulose filter paper-like material or a regenerated cellulose nonwoven fabric may be used. If the average pore diameter is less than 2 nm, the contribution by the dissolution / diffusion mechanism is large, and the diffusion coefficient becomes too small. The upper limit of the porosity is 90% or less. When the upper limit is exceeded, the mechanical properties of the film are significantly deteriorated, and the probability of occurrence of defects such as pinholes is increased. The film thickness is desirably 30 μm or more. Increasing the film thickness increases the film strength and ease of handling, and is effective in removing microorganisms from the viewpoint of reducing the occurrence of pinholes.


平均孔径は「粘度・膜厚・濾過速度/膜間差圧・空孔率」の平方根で与えられる。ここで濾過速度は一平方メートル当りの純水の濾過速度でml/minの単位で測定され、膜厚はミクロン単位、粘度はセンチポイズ、膜間差圧はmmHg単位で、空孔率は無次元単位である。この際の平均孔径はnm単位となる。空孔率は「1−膜の密度/素材高分子の密度」で与えられる。膜の密度は「膜の重量/膜の面積*膜の厚さ」で算出される。素材高分子の密度は空孔率0%の時の膜の密度で、これはすでに文献で与えられている。多層構造膜とは膜の断面方向から電子顕微鏡で観察すると10〜1000nmの厚さの層が認められ、膜の表面からの観察では網目状または粒子間の隙間が孔として、また粒子相互は融着した様子が観察される膜である

The average pore diameter is given by the square root of “viscosity, film thickness, filtration rate / transmembrane differential pressure, porosity”. Here, the filtration rate is the filtration rate of pure water per square meter, measured in units of ml / min, the film thickness is in microns, the viscosity is in centipoise, the transmembrane pressure is in mmHg, and the porosity is a dimensionless unit. It is. The average pore diameter at this time is in nm units. The porosity is given by “1-membrane density / material polymer density”. The density of the film is calculated by “the weight of the film / the area of the film * the thickness of the film”. The density of the material polymer is the density of the membrane when the porosity is 0%, which has already been given in the literature. A multilayer structure film is a layer having a thickness of 10 to 1000 nm when observed with an electron microscope from the cross-sectional direction of the film. In the observation from the surface of the film, a mesh or a gap between particles is a hole, and particles are fused. It is a film that can be seen wearing


多層構造を持つ多孔性平膜とは、フィールドエミッション型走査型電子顕微鏡によって膜中に孔の存在が認められる膜で平均孔径2nm以上、空孔率が40%以上で、厚さ約0.2μmの層が10層以上に積層された膜を意味する。

A porous flat membrane having a multilayer structure is a membrane in which the presence of pores is recognized by a field emission type scanning electron microscope, an average pore diameter of 2 nm or more, a porosity of 40% or more, and a thickness of about 0.2 μm. Means a film in which 10 layers or more are laminated.


原液とは分離対象分子あるいは粒子を含む溶液であり、拡散液とは、該分離対象分子あるいは粒子を拡散させる溶液のことであり、流導分別ろ過の場合には二次流路に満たされる液体が拡散液の役割を果たす場合もある。

The stock solution is a solution containing molecules or particles to be separated, and the diffusion liquid is a solution that diffuses the molecules or particles to be separated. In the case of flow separation filtration, the liquid that fills the secondary flow path. May also act as a diffusion liquid.


本発明で使用する多孔性平膜1は親水性素材である再生セルロース製の膜あるいはろ紙状物あるいは不織布であり、製膜法として湿式または乾式のミクロ相分離法で作製される。例えば銅安法再生セルロース平膜は親水性素材として最適であるが膜厚を100μm以上にまた平均孔径を100nm以上にするのが難しい。該膜の製法は特公昭62−044019号及び特公昭62−044017号と特公昭62−044018号に与えられている。広い範囲の平均孔径を持つ再生セルロース製の平膜の製法として多孔性アセテート膜を作成しこれを0.1規定の苛性ソーダでケン化処理することによって作製できる。アセテート膜の製法は上出健二,真鍋征一,松井敏彦,坂本富男,梶田修司,高分子論文集,34巻3号205頁〜216頁(1977年)に与えられている。この方法により0.01〜数ミクロンの平均孔径を持つ多孔性膜が得られ、膜厚は20μm〜数mmまで可能である。

The porous flat membrane 1 used in the present invention is a regenerated cellulose membrane, a filter paper-like material or a non-woven fabric, which is a hydrophilic material, and is produced by a wet or dry microphase separation method as a membrane formation method. For example, a copper anodized regenerated cellulose flat membrane is optimal as a hydrophilic material, but it is difficult to make the film thickness 100 μm or more and the average pore diameter 100 nm or more. The production method of the membrane is given in JP-B-62-044019, JP-B-62-044017 and JP-B-62-044018. As a method for producing a regenerated cellulose flat membrane having a wide range of average pore diameters, a porous acetate membrane can be prepared and saponified with 0.1 N caustic soda. The method for producing the acetate membrane is given by Kenji Kamide, Seiichi Manabe, Toshihiko Matsui, Tomio Sakamoto, Shuji Hamada, Kogaku Seishu, Vol. 34, No. 3, pages 205-216 (1977). By this method, a porous film having an average pore diameter of 0.01 to several microns can be obtained, and the film thickness can be from 20 μm to several mm.


得られた多孔性平膜1を図1に示すような支持体2に固定する。平膜を固定する際に、厚さ0.1mm〜1mm程度の薄いプラスチック板の額縁を用いてあらかじめ固定しておいてもよい。ピンホール発生を防止するためには該平膜を複数枚を重ね合わせた方が望ましい。二枚の多孔性平膜を両側に固定した支持体を膜セット5と呼ぶ。

The obtained porous flat membrane 1 is fixed to a support 2 as shown in FIG. When the flat membrane is fixed, it may be fixed in advance using a thin plastic plate frame having a thickness of about 0.1 mm to 1 mm. In order to prevent the occurrence of pinholes, it is desirable to superimpose a plurality of flat films. A support in which two porous flat membranes are fixed on both sides is called a membrane set 5.


膜セット5をベース4上にて並べ連ねることで膜カートリッジ6が作製できる。この膜カートリッジ6の側面全体がそれぞれ一次側流路3となり、原水が一次側流体流れ8のように流れる。膜カートリッジ6の側面のうち、ベース4に連結される面が二次側流路7につながり、ろ液10は二次側流体流れ9のように流れる。二次側流路7には開閉弁11が設置され、ろ液10の排出速度が調整される。この膜カートリッジ6が分離装置12のポンプ1手前、原水流れ8の途中にセットされる。

The membrane cartridge 6 can be manufactured by arranging the membrane set 5 on the base 4 and connecting them. The entire side surface of the membrane cartridge 6 becomes the primary side flow path 3, and the raw water flows like a primary side fluid flow 8. Of the side surfaces of the membrane cartridge 6, the surface connected to the base 4 is connected to the secondary channel 7, and the filtrate 10 flows like a secondary fluid flow 9. An open / close valve 11 is installed in the secondary channel 7 to adjust the discharge speed of the filtrate 10. This membrane cartridge 6 is set in the middle of the raw water flow 8 in front of the pump of the separation device 12.


支持体2は、ポリエチレンやポリプロピレン等のポリオレフィン類、ポリカーボネートやポリエチレンテレフタラートやナイロン等の高分子縮合重合体、さらにフッ素系樹脂やポリ塩化ビニルなどの側鎖として極性基を持つ樹脂製か、あるいは金属製の織物、編物あるいは不織布などが使用される。

The support 2 is made of polyolefins such as polyethylene and polypropylene, polymer condensation polymers such as polycarbonate, polyethylene terephthalate and nylon, and a resin having a polar group as a side chain such as fluorine resin or polyvinyl chloride, or Metal woven fabric, knitted fabric or non-woven fabric is used.


膜セット5は望ましくは接着せずに積層し、面に対して垂直方向に面圧をかけて膜カートリッジ5とする。あるいは少量の接着剤、たとえばシリコンやポリウレタン樹脂や溶剤などを用いて積層し、膜カートリッジ6とする。

The membrane set 5 is desirably laminated without bonding, and a membrane pressure is applied in a direction perpendicular to the surface to form the membrane cartridge 5. Alternatively, a film cartridge 6 is formed by laminating using a small amount of adhesive, for example, silicon, polyurethane resin, or a solvent.


以上の手順で組み立てた分離装置12に、原液と拡散液との静圧の差が該平膜の平均孔径によって指定される圧力以下となるように流体(液体)を供給する。該静圧の差△Pは次式で与えられる。「 △P≦kdDη/r 2 」ここでdは膜厚、Dは微粒子の拡散係数、ηは分離対象とする液体の粘度rは平均孔径、kは膜の孔構造を反映した定数で非多層構造膜では4000、多層構造膜では2×10である。この式を満足する△Pでの孔拡散分離法あるいは流導分別ろ過法では目詰まりがほぼ完全に防止できる。

A fluid (liquid) is supplied to the separation device 12 assembled in the above procedure so that the difference in static pressure between the stock solution and the diffusion solution is not more than the pressure specified by the average pore diameter of the flat membrane. The static pressure difference ΔP is given by the following equation. “ΔP ≦ kdDη / r f 2 ” where d is the film thickness, D is the diffusion coefficient of the fine particles, η is the viscosity of the liquid to be separated r f is the average pore diameter, and k is a constant reflecting the pore structure of the membrane. The non-multilayer structure film is 4000, and the multilayer structure film is 2 × 10 5 . Clogging can be almost completely prevented by the pore diffusion separation method or the flow separation filtration method at ΔP that satisfies this equation.


分離装置12には、流体を循環させるためのポンプ13と循環流路14、流体用タンク15があり、場合によってポンプ16、あるいは気体圧源17を有する。流体用タンク15に導入された流体は、ポンプ16、あるいはポンプ13によって一定のひずみ速度以上で膜カートリッジ5と分離装置内を一次側流体流れ8、循環流路14の方向に循環する。ひずみ速度τは次式で与えられる。「τ=V/T (秒-1)」ここでVは流速(mm/秒)、Tは流路幅(mm)である。ひずみ速度の条件は除去対象粒子によるが、たとえば除去対象粒子が0.数μmである場合、ひずみ速度を20秒-1以上、およびろ過圧力を0.2気圧に設定することによって目詰まりをほぼ起こさずにろ過を行うことができる。膜セット間の流路幅と、分離装置内の流路とポンプは、一定のひずみ速度で流体が流すことができるように、流体の粘度、流路の圧力損失から決定される。

The separation device 12 includes a pump 13 for circulating a fluid, a circulation flow path 14, and a fluid tank 15, and optionally includes a pump 16 or a gas pressure source 17. The fluid introduced into the fluid tank 15 circulates in the direction of the primary fluid flow 8 and the circulation flow path 14 through the membrane cartridge 5 and the separation device at a constant strain rate or higher by the pump 16 or the pump 13. The strain rate τ is given by the following equation. “Τ = V / T (second −1 )” where V is a flow velocity (mm / second), and T is a channel width (mm). The strain rate conditions depend on the particles to be removed. In the case of several μm, by setting the strain rate to 20 seconds −1 or more and the filtration pressure to 0.2 atm, filtration can be performed with almost no clogging. The flow path width between the membrane sets and the flow path and pump in the separation device are determined from the viscosity of the fluid and the pressure loss of the flow path so that the fluid can flow at a constant strain rate.


ポンプ13およびポンプ16を同時に用いる場合は、二つのポンプの吐出力と流速、および開閉弁11を調整することで、膜カートリッジ5の一次側流路における流速と膜間差圧を制御する。その結果、十分なひずみ速度で流れる流体によって分離対象粒子は膜表面に堆積せずに一定のろ過速度を得ることができる。

When the pump 13 and the pump 16 are used simultaneously, the flow rate and the transmembrane pressure difference in the primary flow path of the membrane cartridge 5 are controlled by adjusting the discharge force and flow rate of the two pumps and the on-off valve 11. As a result, the separation target particles are not deposited on the membrane surface by the fluid flowing at a sufficient strain rate, and a constant filtration rate can be obtained.


ポンプ13のみを用いる場合は、開閉弁11の調整と、一次側流路に接続された流体用タンク15に気体圧源19から気体圧をかけることによって、膜間差圧を制御する。あるいは、流体用タンク15に貯められた流体の水頭圧20を調節することによって膜間差圧を制御する。

When only the pump 13 is used, the transmembrane pressure difference is controlled by adjusting the on-off valve 11 and applying a gas pressure from the gas pressure source 19 to the fluid tank 15 connected to the primary flow path. Alternatively, the transmembrane pressure difference is controlled by adjusting the hydraulic head pressure 20 of the fluid stored in the fluid tank 15.


膜表面に徐々に堆積する粒子を洗浄する場合には、一次側流路に洗浄水を流すか、あるいは原水の流れを逆流させることができ、従来の膜の孔径に負荷をかける逆洗を行う必要がなくなる。一次側流路に洗浄水を流す場合は、二次側流路に連結された開閉弁と、原水タンクに連結された配管を一定時間閉じ、洗浄水タンク19に連結された配管を開けることによって一次側に洗浄水を一定時間流すことができる。また原水の流れを逆流させる場合は、一次側流路の入口側あるいは出口側に設置したポンプを逆流させることによって膜表面を洗浄することができる。

When washing particles that gradually accumulate on the membrane surface, washing water can be flowed through the primary channel, or the flow of raw water can be reversed, and conventional washing is performed to impose a load on the pore size of the membrane. There is no need. When flush water is allowed to flow into the primary channel, the on-off valve connected to the secondary channel and the pipe connected to the raw water tank are closed for a certain period of time, and the pipe connected to the flush water tank 19 is opened. Wash water can be allowed to flow to the primary side for a certain period of time. Moreover, when the flow of raw water is made to flow backward, the membrane surface can be washed by making the pump installed on the inlet side or the outlet side of the primary channel flow backward.


膜分離処理を行った後は、装置をオートクレーブ処理などで滅菌処理したり、装置内に蒸気を通して滅菌したり、あるいは乾燥空気を通し、膜を乾燥させることができる。

After performing the membrane separation treatment, the device can be sterilized by autoclaving, etc., sterilized by passing steam through the device, or dried air can be passed to dry the membrane.


膜カートリッジ6は個別に膜分離装置から取り外し、洗浄、膜セット交換などを行うことができる。膜セット5は分解後、平膜を挟んだまま個別に乾燥させることができる。

The membrane cartridge 6 can be individually removed from the membrane separation apparatus, and washing, membrane set exchange, etc. can be performed. After disassembly, the membrane set 5 can be individually dried with the flat membrane sandwiched therebetween.


セルロース誘導体の銅安法で作製された再生セルロース長繊維不織布(旭化成繊維製ベンリーゼNE107)目付が100g/平米で、厚さが390μmをプレス加工し、厚さ101μm、空孔率0.39、透水速度214286L/(平米・hr)、平均孔径7.0μmの加工済み不織布を得た。当該不織布を多孔性平膜1とした。

Recycled cellulose long-fiber nonwoven fabric (Benryse NE107 manufactured by Asahi Kasei Fiber) produced by the copper-ammonium method of cellulose derivative is 100 g / sq.m. Pressed to a thickness of 390 μm, thickness 101 μm, porosity 0.39, water permeability A processed nonwoven fabric having a speed of 214286 L / (square meter · hr) and an average pore diameter of 7.0 μm was obtained. The nonwoven fabric was designated as a porous flat membrane 1.


この多孔性平膜1を、200mm角に切り取り、塩化ビニル製支持体2にセットし、10層に積層して膜カートリッジを作製した。

This porous flat membrane 1 was cut into a 200 mm square, set on a vinyl chloride support 2 and laminated into 10 layers to produce a membrane cartridge.


処理用原水として下水系排水を凝集剤で処理をしたものを使用した。排水に含まれる粒子の粒径をダイナミック光散乱粒径アナライザー(大塚電子)にて測定したところ、約13.8μmにピークを有し、標準偏差約±1.27μmの粒径分布であった。50L/分の送液ポンプをポンプ13およびポンプ16として使用し、二つのポンプの吐出圧および流速を調整することにより、一次側流路における膜間差圧を0.1気圧に設定した。流体の循環開始後、二次側流路7からろ液10が排出され、ろ液の目視外観は透明であった。ろ液の排出速度は時間当たり約80L/平米であり、12時間にわたり一定の流速であった。

As the raw water for treatment, sewage wastewater treated with a flocculant was used. When the particle size of the particles contained in the wastewater was measured with a dynamic light scattering particle size analyzer (Otsuka Electronics), the particle size distribution had a peak at about 13.8 μm and a standard deviation of about ± 1.27 μm. A liquid feed pump of 50 L / min was used as the pump 13 and the pump 16, and the transmembrane differential pressure in the primary channel was set to 0.1 atm by adjusting the discharge pressure and flow rate of the two pumps. After the fluid circulation was started, the filtrate 10 was discharged from the secondary side flow path 7, and the visual appearance of the filtrate was transparent. The filtrate discharge rate was about 80 L / sq.m. Per hour, with a constant flow rate over 12 hours.


3日間にわたり処理を継続し、膜表面にやや着色が見られた後、二次側流路に連結された開閉弁と、原水タンクに連結された配管を一定時間閉じ、洗浄水タンク19に連結された配管を開け、一次側流路に10分間洗浄水を流したところ、着色の低減が見られた。またポンプ13およびポンプ16の送水方向を逆転させ、原水の流れを逆流させた場合にも、同様に着色の低減が見られ、かつろ過速度の回復が見られた。

After the treatment was continued for 3 days and the membrane surface was slightly colored, the on-off valve connected to the secondary channel and the pipe connected to the raw water tank were closed for a certain period of time and connected to the washing water tank 19 When the pipes were opened and washing water was allowed to flow through the primary flow path for 10 minutes, a reduction in coloring was observed. Further, when the water feeding directions of the pump 13 and the pump 16 were reversed to reverse the flow of the raw water, the color reduction was similarly observed and the filtration speed was recovered.


温和な条件下で分離、精製が求められる産業(例、製薬産業、食品産業)、特にタンパク質などの生理活性を持つ物質の分離、精製に本発明は利用できる。また、下水処理、排水処理などの水処理に利用することができる。特に高い粒子除去性と、目詰まりが起こりにくい特徴を持つ安価な分離用不織布膜として、従来の高価な膜分離技術の適用が不可能と考えられていた水処理用として利用される。また、コロイド系を取り扱う工業においてコロイド粒子を含めて特定の微粒子を精製、分離する方法として工業的プロセスに組み込むことが出来る。また、医療用、環境用、特に水処理用として、ウイルスや細菌、重金属類、COD原因物質、染料などの汚染物質、有害性微粒子の除去に用いられる。

The present invention can be used in industries that require separation and purification under mild conditions (eg, pharmaceutical industry, food industry), particularly separation and purification of substances having physiological activity such as proteins. Further, it can be used for water treatment such as sewage treatment and drainage treatment. In particular, it is used as an inexpensive non-woven fabric for separation having a high particle removability and a feature that clogging is unlikely to occur, and is used for water treatment where it has been considered impossible to apply a conventional expensive membrane separation technique. Further, in the industry handling colloidal systems, it can be incorporated into an industrial process as a method for purifying and separating specific fine particles including colloidal particles. In addition, it is used for the removal of viruses, bacteria, heavy metals, COD causative substances, contaminants such as dyes, and harmful fine particles for medical use, environmental use, particularly water treatment.


1,多孔性平膜あるいは不織布
2,二次側支持体
3,一次側流路
4,ベース
5,膜セット
6,膜カートリッジ
7,二次側ろ液出口
8,一次側流体流れ
9,二次側流体流れ
10,ろ液
11,開閉弁
12,膜分離装置
13,ポンプ1
14,循環流路
15,タンク
16,ポンプ2
17,気体圧源
18,水頭圧
19,洗浄水タンク

1, porous flat membrane or nonwoven fabric 2, secondary side support 3, primary side flow path 4, base 5, membrane set 6, membrane cartridge 7, secondary side filtrate outlet 8, primary side fluid flow 9, secondary Side fluid flow 10, filtrate 11, on-off valve 12, membrane separation device 13, pump 1
14, circulation flow path 15, tank 16, pump 2
17, gas pressure source 18, water head pressure 19, wash water tank

Claims (5)

孔拡散型あるいは流導分別型の平膜カートリッジを用いた分離方法において、一次側の流路内の液体の膜表面でのひずみ速度が2/秒以上の状態で膜を透過する液体の速度を、二次側の流路内に液体が存在する状態で、一方が閉じられた二次側流路の他方に連結された開閉弁の開度で調節することを特徴とする分離方法。
In a separation method using a hole diffusion type or flow separation type flat membrane cartridge, the liquid speed permeating through the membrane in a state where the strain rate on the membrane surface of the liquid in the flow path on the primary side is 2 / sec or more is set. The separation method is characterized in that, in a state where the liquid is present in the secondary side flow path, the opening / closing valve connected to the other of the closed secondary side flow paths is adjusted.
請求項1において、膜表面を洗浄することを目的として、二次側流路に連結された開閉弁を閉じ、一次側流路に洗浄水を流すか、あるいは一次側の流れを逆流させることを特徴とする分離方法。
In claim 1, for the purpose of cleaning the membrane surface, the on-off valve connected to the secondary side flow path is closed and the cleaning water is allowed to flow through the primary side flow path or the primary side flow is reversed. Separation method characterized.
請求項1の分離方法において、一次側流路の流れによる膜表面のひずみ速度が10/秒以上でかつ100/秒未満となるように調節することを特徴とする分離方法。
2. The separation method according to claim 1, wherein the strain rate of the membrane surface due to the flow in the primary channel is adjusted to be 10 / second or more and less than 100 / second.
請求項1あるいは3の分離方法において、平膜が多層構造を持つ再生セルロース製の多孔質平膜あるいは平膜が長繊維で構成された再生セルロースの不織布の形状を持ち該平膜の平均孔径が5nm以上200μm以下であることを特徴とする分離方法。
4. The separation method according to claim 1 or 3, wherein the flat membrane is a regenerated cellulose porous flat membrane having a multilayer structure or a regenerated cellulose nonwoven fabric in which the flat membrane is composed of long fibers, and the average pore diameter of the flat membrane is A separation method, wherein the separation method is 5 nm or more and 200 μm or less.
請求項1あるいは3の分離方法において、平膜をセットした膜セットを複数セットでき、それぞれの膜セットの二次側流路を一つの開閉弁と連結できる平板マニホールド状のベース板を用いることを特徴とする分離装置。
The separation method according to claim 1 or 3, wherein a plurality of membrane sets each having a flat membrane set therein can be set, and a base plate in the form of a flat plate manifold that can connect the secondary side flow path of each membrane set to one on-off valve. Separation device characterized.
JP2012111775A 2012-05-15 2012-05-15 Hole diffusion type or f flow guide sorting type membrane separation apparatus and a method using the same Pending JP2013237016A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012111775A JP2013237016A (en) 2012-05-15 2012-05-15 Hole diffusion type or f flow guide sorting type membrane separation apparatus and a method using the same
KR1020130009111A KR20130127909A (en) 2012-05-15 2013-01-28 Pore diffusion-type or flow fractionation-type separation divice and separation method using this same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012111775A JP2013237016A (en) 2012-05-15 2012-05-15 Hole diffusion type or f flow guide sorting type membrane separation apparatus and a method using the same

Publications (1)

Publication Number Publication Date
JP2013237016A true JP2013237016A (en) 2013-11-28

Family

ID=49762552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012111775A Pending JP2013237016A (en) 2012-05-15 2012-05-15 Hole diffusion type or f flow guide sorting type membrane separation apparatus and a method using the same

Country Status (2)

Country Link
JP (1) JP2013237016A (en)
KR (1) KR20130127909A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015100774A (en) * 2013-11-27 2015-06-04 株式会社セパシグマ Hole diffusion type membrane separation method
JP2016013501A (en) * 2014-07-01 2016-01-28 聡 竹下 PD membrane separation device
JP2017000922A (en) * 2015-06-05 2017-01-05 日本特殊膜開発株式会社 Fluid sorting type pore diffusion membrane separation module
JP2017087097A (en) * 2015-11-04 2017-05-25 日本特殊膜開発株式会社 Flow fractionation type pore diffusion membrane separation module for concentration
JP2017209635A (en) * 2016-05-26 2017-11-30 日本特殊膜開発株式会社 Module for fluidizing fractionation type pore diffusion membrane separation constituted by flow passage with circular cross section
JP2020151689A (en) * 2019-03-22 2020-09-24 旭化成株式会社 Pore diffusion membrane separation module using nonwoven fabric

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015100774A (en) * 2013-11-27 2015-06-04 株式会社セパシグマ Hole diffusion type membrane separation method
JP2016013501A (en) * 2014-07-01 2016-01-28 聡 竹下 PD membrane separation device
JP2017000922A (en) * 2015-06-05 2017-01-05 日本特殊膜開発株式会社 Fluid sorting type pore diffusion membrane separation module
JP2017087097A (en) * 2015-11-04 2017-05-25 日本特殊膜開発株式会社 Flow fractionation type pore diffusion membrane separation module for concentration
JP2017209635A (en) * 2016-05-26 2017-11-30 日本特殊膜開発株式会社 Module for fluidizing fractionation type pore diffusion membrane separation constituted by flow passage with circular cross section
JP2020151689A (en) * 2019-03-22 2020-09-24 旭化成株式会社 Pore diffusion membrane separation module using nonwoven fabric
JP7184687B2 (en) 2019-03-22 2022-12-06 旭化成株式会社 Pore diffusion membrane separation module using non-woven fabric

Also Published As

Publication number Publication date
KR20130127909A (en) 2013-11-25

Similar Documents

Publication Publication Date Title
JP2013237016A (en) Hole diffusion type or f flow guide sorting type membrane separation apparatus and a method using the same
JP3924926B2 (en) Hollow fiber membrane filtration membrane module
Aptel et al. Categories of membrane operations
WO2011016410A1 (en) Water treatment device and water treatment method
KR20080091519A (en) Separating film, separating film element, separating film module, sewage and waste water treatment device, and separating film manufacturing method
US20160346739A1 (en) Filtration apparatus
JP5652901B2 (en) Separation membrane module for filtration and filtration apparatus using the separation membrane module
JP2012148240A (en) Membrane separator and method of separation utilizing flat membrane
JP6343589B2 (en) Flow separation type pore diffusion membrane separation module
JP6422032B2 (en) Flow separation type pore diffusion membrane separation module for concentration
JP2012223704A (en) Membrane separation device installed with hole diffusion type or hole diffusion filtering type membrane cartridge, and membrane separation method
JP6277346B2 (en) Hole diffusion membrane separation method
JP2010269258A (en) Separation method by flat membrane pore diffusion and apparatus therefor
JP6329826B2 (en) PD membrane separator
JP4803341B2 (en) Flat membrane pore diffusion separator
Tishchenko et al. Ultrafiltration and microfiltration membranes in latex purification by diafiltration with suction
KR100954427B1 (en) Advanced membrane filtration device for combining treated water by using a plurality of filteration membranes and the method thereof
JP2005349268A (en) Substance separation and purification process utilizing diffusion through porous film
JP2014193423A (en) Hole diffusion film separation method using affinity difference
JP2020028819A (en) Pore diffusion flat membrane separation module using fluidizing fractionation and membrane separation device applied with the same
JP2009095701A (en) Multistage multilayer flat membrane
JP6534068B2 (en) Module for pore diffusion membrane separation to fractionate component molecules in polymer solution
US11577973B2 (en) Fluid treatment apparatus
JP2013252478A (en) Treatment method and treatment device of oil component-containing drainage
JPH05329339A (en) Filtering apparatus