JP2016012613A - Thermoelectric conversion device - Google Patents

Thermoelectric conversion device Download PDF

Info

Publication number
JP2016012613A
JP2016012613A JP2014132533A JP2014132533A JP2016012613A JP 2016012613 A JP2016012613 A JP 2016012613A JP 2014132533 A JP2014132533 A JP 2014132533A JP 2014132533 A JP2014132533 A JP 2014132533A JP 2016012613 A JP2016012613 A JP 2016012613A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
temperature side
plate portion
side plate
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014132533A
Other languages
Japanese (ja)
Other versions
JP6376511B2 (en
Inventor
昌尚 冨永
Masanao Tominaga
昌尚 冨永
孝広 地主
Takahiro Jinushi
孝広 地主
征央 根岸
Motohiro Negishi
征央 根岸
石島 善三
Zenzo Ishijima
善三 石島
成俊 村杉
Narutoshi Murasugi
成俊 村杉
亮 大谷
Akira Otani
亮 大谷
森 正芳
Masayoshi Mori
正芳 森
松本 学
Manabu Matsumoto
学 松本
寛治 松本
Kanji Matsumoto
寛治 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Showa Denko Materials Co Ltd
Original Assignee
Honda Motor Co Ltd
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Hitachi Chemical Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2014132533A priority Critical patent/JP6376511B2/en
Publication of JP2016012613A publication Critical patent/JP2016012613A/en
Application granted granted Critical
Publication of JP6376511B2 publication Critical patent/JP6376511B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric conversion device capable of efficiently reducing cost by reducing the number of thermoelectric conversion elements without reducing the amount of power generation.SOLUTION: A thermoelectric conversion device includes: a high-temperature side plate 22 and a low-temperature side plate 12 which are disposed to face each other and have a respective heat exchange region; and a thermoelectric conversion module 40 which is disposed between these plates 12, 22 and to which a temperature difference is applied. The thermoelectric conversion module includes: high-temperature side and low-temperature side electrodes 45 which are disposed to face the plates 12, 22, respectively; and a thermoelectric conversion element 41 disposed between these electrodes 45. The occupied area ratio that is a ratio of the total cross sectional area in the thermoelectric conversion element 41 with respect to the heat exchange area is 60% or less.

Description

本発明は、例えば熱電変換モジュールに温度差を与えて熱エネルギーを電気エネルギーに変換する熱電変換式発電装置等の熱電変換装置に関する。   The present invention relates to a thermoelectric conversion device such as a thermoelectric conversion power generation device that converts a thermal energy into an electric energy by giving a temperature difference to a thermoelectric conversion module, for example.

上記熱電変換式発電装置は、離間した部位に温度差を与えることで高温部と低温部との間に電位差を生じさせるといったゼーベック効果を利用して、熱エネルギーを電気エネルギーに変換するもので、温度差が大きいほど発電量が大きくなることが知られている。このような熱電変換素子は、複数を電極によって接合した熱電変換素子モジュールという形態で用いられる。例えば、管体の外面に熱電変換モジュールと低温部とを積層して管体の内部に加熱流体を導入することで、加熱される管体(高温部)と低温部との間に挟んだ熱電変換モジュールに温度差を生じさせて電気を取り出す構成の熱電変換式発電装置が知られている(特許文献1)。   The thermoelectric conversion power generation device converts thermal energy into electrical energy using the Seebeck effect such as causing a potential difference between the high temperature part and the low temperature part by giving a temperature difference to the separated parts. It is known that the amount of power generation increases as the temperature difference increases. Such a thermoelectric conversion element is used in the form of a thermoelectric conversion element module in which a plurality are joined by electrodes. For example, a thermoelectric module and a low temperature part are laminated on the outer surface of the pipe body, and a heating fluid is introduced into the pipe body, so that a thermoelectric element sandwiched between the heated pipe body (high temperature part) and the low temperature part. There is known a thermoelectric conversion power generator configured to generate electricity by generating a temperature difference in a conversion module (Patent Document 1).

特開2006−217756号公報JP 2006-217756 A

ところで、この種の熱電変換式発電装置のコストを、発電量を低下させることなく低減するには、熱電変換素子の使用数を減らすことが1つの効果的な対策である。しかし、熱電変換素子の使用数を単純に減らすことは、発電量の低下を招くとされてきた。そこで、例えば熱電変換素子への高温部からの熱の伝達量を多くするとともに熱電変換素子を通過して低温部に至る貫通熱量を多くすることが考えられるが、加熱流体の温度や設置スペースが一定あるいは有限である場合には困難であり、また、貫通熱量を増加させる熱交換効率にも限度があった。   By the way, in order to reduce the cost of this type of thermoelectric conversion power generation device without reducing the amount of power generation, reducing the number of thermoelectric conversion elements used is one effective measure. However, simply reducing the number of thermoelectric conversion elements used has been considered to cause a reduction in power generation. Therefore, for example, increasing the amount of heat transferred from the high-temperature part to the thermoelectric conversion element and increasing the amount of heat passing through the thermoelectric conversion element to reach the low-temperature part can be considered. It is difficult if it is constant or finite, and there is a limit to the heat exchange efficiency that increases the amount of through heat.

本発明は上記事情に鑑みてなされたもので、その主たる課題は、発電量を低下させることなく熱電変換素子の数を減らして効果的にコストを低減することを可能とする熱電変換装置を提供することにある。   The present invention has been made in view of the above circumstances, and its main problem is to provide a thermoelectric conversion device that can effectively reduce costs by reducing the number of thermoelectric conversion elements without reducing the amount of power generation. There is to do.

本発明の熱電変換装置は、互いに対向配置され、熱交換領域を有する高温側の板部および低温側の板部と、前記高温側の板部および前記低温側の板部の間に配置され、該高温側の板部および該低温側の板部によって温度差が付与される熱電変換モジュールと、を備えた熱電変換装置であって、前記熱電変換モジュールは、前記高温側の板部および前記低温側の板部のそれぞれに対向して配置される電極と、これら電極間に配置される熱電変換素子と、を有し、前記熱電変換素子における総断面積の、前記熱交換領域に対し占める割合である占有面積率が、60%以下であることを特徴とする(請求項1)。   The thermoelectric conversion device of the present invention is arranged between a high temperature side plate portion and a low temperature side plate portion, which are arranged to face each other and have a heat exchange region, and between the high temperature side plate portion and the low temperature side plate portion, A thermoelectric conversion device comprising a thermoelectric conversion module to which a temperature difference is imparted by the high temperature side plate portion and the low temperature side plate portion, wherein the thermoelectric conversion module includes the high temperature side plate portion and the low temperature side And a thermoelectric conversion element arranged between these electrodes, and a ratio of the total cross-sectional area of the thermoelectric conversion element to the heat exchange region The occupied area ratio is 60% or less (claim 1).

本発明は、熱電変換モジュールを構成する熱電変換素子間の間隔を従来と比較して大きく取った構成をポイントとしている。すなわち、熱交換領域に複数の熱電変換素子を配列する場合、比較的粗の状態で配列する。これにより、1つ当たりの熱電変換素子に対する周囲の熱交換領域の面積が大きくなり、その熱交換領域の熱が熱電変換素子に伝達される。熱電変換素子が存在しない熱交換領域の面積の増大によって、その熱交換領域から熱電変換素子への熱の伝達効率が向上し、熱交換領域の熱交換量が増大する。このため、1つ当たりの熱電変換素子の貫通熱量が増大し、これによって発電量も増大する。したがって熱電変換素子の使用数を少なくしても全体の発電量は低減せず、熱電変換モジュールとして一定の発電量を確保することができる。その結果、熱電変換モジュールに搭載する熱電変換素子の使用量を低減してコストの低減を効果的に図ることができる。   The point of the present invention is a configuration in which the interval between thermoelectric conversion elements constituting the thermoelectric conversion module is made larger than that of the conventional one. That is, when arranging a plurality of thermoelectric conversion elements in the heat exchange region, they are arranged in a relatively coarse state. Thereby, the area of the surrounding heat exchange area | region with respect to the thermoelectric conversion element per one becomes large, and the heat of the heat exchange area | region is transmitted to the thermoelectric conversion element. By increasing the area of the heat exchange region where there is no thermoelectric conversion element, heat transfer efficiency from the heat exchange region to the thermoelectric conversion element is improved, and the amount of heat exchange in the heat exchange region is increased. For this reason, the amount of through heat of each thermoelectric conversion element increases, and the amount of power generation also increases. Therefore, even if the number of thermoelectric conversion elements used is reduced, the total power generation amount is not reduced, and a certain amount of power generation can be ensured as the thermoelectric conversion module. As a result, it is possible to effectively reduce the cost by reducing the amount of the thermoelectric conversion element mounted on the thermoelectric conversion module.

本発明では、複数の前記熱電変換素子を有し、1つの該熱電変換素子の断面積が、
(A)1mm以下では前記占有面積率が25%以下、
(B)1〜2.25mmでは前記占有面積率が30%以下、
(C)2.25mm超〜16mmでは前記占有面積率が50%以下、
(D)16mm超では前記占有面積率が60%以下、
であることを特徴とする(請求項2)。
In the present invention, it has a plurality of the thermoelectric conversion elements, and the cross-sectional area of one thermoelectric conversion element is:
(A) If the area is 1 mm 2 or less, the occupied area ratio is 25% or less,
(B) 1~2.25mm 2 In the occupied area ratio of 30% or less,
(C) In 2.25 mm 2 to 16 mm 2 , the occupied area ratio is 50% or less,
(D) the occupation area ratio is 16 mm 2 than 60% or less,
(Claim 2).

上記(A)の場合、前記該占有面積率は、20%以下、15%以下、10%以下、5%以下、3%以下、1%以下のいずれかが選択される場合を含む。また、上記(B)の場合、前記該占有面積率は、25%以下、20%以下、15%以下、10%以下、5%以下、2%以下のいずれかが選択される場合を含む。また、上記(C)の場合、前記該占有面積率は、45%以下、40%以下、35%以下、30%以下、25%以下、20%以下、15%以下、10%以下、5%以下のいずれかが選択される場合を含む。また、上記(D)の場合、前記該占有面積率は、55%以下、50%以下、45%以下、40%以下、35%以下、30%以下、25%以下、20%以下、15%以下のいずれかが選択される場合を含む。   In the case of (A), the occupation area ratio includes a case where any of 20% or less, 15% or less, 10% or less, 5% or less, 3% or less, or 1% or less is selected. In the case of (B), the occupation area ratio includes a case where any of 25% or less, 20% or less, 15% or less, 10% or less, 5% or less, or 2% or less is selected. In the case of (C), the occupied area ratio is 45% or less, 40% or less, 35% or less, 30% or less, 25% or less, 20% or less, 15% or less, 10% or less, 5% Including the case where any of the following is selected. In the case of (D), the occupied area ratio is 55% or less, 50% or less, 45% or less, 40% or less, 35% or less, 30% or less, 25% or less, 20% or less, 15% Including the case where any of the following is selected.

また、本発明では、請求項1または2に記載の発明において、前記高温側の板部および前記低温側の板部のうちの、少なくとも前記高温側の板部における前記熱電変換モジュール側の面と、前記電極との間に、熱伝導率が50W/m・k以上の材料からなる熱伝導部を設けたことを特徴とする(請求項3)。この形態では、比較的高い熱伝導率を有する熱伝導部により集熱効果が増大し、熱交換領域から熱伝導部を経て熱電変換素子に達する熱量が効果的に増大する。このため、1つ当たりの熱電変換素子の発電量をより増大させることができ、コストの低減を促進させることができる。   According to the present invention, in the invention according to claim 1 or 2, at least one of the high temperature side plate portion and the low temperature side plate portion on the thermoelectric conversion module side surface of the high temperature side plate portion; A heat conduction part made of a material having a thermal conductivity of 50 W / m · k or more is provided between the electrodes. In this form, the heat collection effect is increased by the heat conduction part having a relatively high heat conductivity, and the amount of heat reaching the thermoelectric conversion element from the heat exchange region through the heat conduction part is effectively increased. For this reason, the electric power generation amount of the thermoelectric conversion element per one can be increased more, and the reduction of cost can be promoted.

また、本発明では、請求項1または2に記載の発明において、前記高温側の板部および前記低温側の板部のうちの、少なくとも前記高温側の板部に対向して配置される前記電極が、熱伝導率が50W/m・k以上の材料で構成されていることを特徴とする(請求項4)。この形態においても、電極が比較的高い熱伝導率を有するため、熱交換領域から当該電極を経て熱電変換素子に達する熱量が効果的に増大し、1つ当たりの熱電変換素子の発電量をより増大させることができる。しかも、電極そのものを請求項3に記載の熱伝導部として構成させることができるため、構成が簡素化し、コストの低減をさらに促進させることができる。   Also, in the present invention, in the invention according to claim 1 or 2, the electrode disposed to face at least the high temperature side plate portion of the high temperature side plate portion and the low temperature side plate portion. Is made of a material having a thermal conductivity of 50 W / m · k or more (claim 4). Even in this form, since the electrode has a relatively high thermal conductivity, the amount of heat reaching the thermoelectric conversion element from the heat exchange region through the electrode is effectively increased, and the amount of power generation of one thermoelectric conversion element is further increased. Can be increased. In addition, since the electrode itself can be configured as the heat conducting unit according to the third aspect, the configuration can be simplified and cost reduction can be further promoted.

また、本発明では、請求項4に記載の発明において、前記電極には、一対の前記熱電変換素子が、該熱電変換素子の全周が該電極の表面に囲繞される状態に配置されていることを特徴とする(請求項5)。この形態によれば、熱電変換素子の全周が電極の表面に囲まれているため、熱電変換素子の全周から電極の熱が熱電変換素子に伝達される。この構成により、例えば熱電変換素子が電極の端部に設置されている場合と比べると電極から熱電変換素子に伝達される熱量は多く、したがって熱電変換素子に達する熱量の増大に伴う発電量の向上効果が一層促進される。   According to the present invention, in the invention described in claim 4, a pair of the thermoelectric conversion elements is arranged on the electrode in a state where the entire circumference of the thermoelectric conversion element is surrounded by the surface of the electrode. (Claim 5). According to this aspect, since the entire circumference of the thermoelectric conversion element is surrounded by the surface of the electrode, the heat of the electrode is transmitted from the entire circumference of the thermoelectric conversion element to the thermoelectric conversion element. With this configuration, for example, the amount of heat transferred from the electrode to the thermoelectric conversion element is larger than when the thermoelectric conversion element is installed at the end of the electrode, and thus the amount of power generation is increased with the increase in the amount of heat reaching the thermoelectric conversion element. The effect is further promoted.

本発明によれば、発電量を低下させることなく熱電変換素子の数を減らして効果的にコストを低減することを可能とする熱電変換装置が提供されるといった効果を奏する。   According to the present invention, it is possible to provide a thermoelectric conversion device that can reduce the number of thermoelectric conversion elements and effectively reduce the cost without reducing the amount of power generation.

本発明の一実施形態に係る熱電変換式の発電装置の斜視図である。1 is a perspective view of a thermoelectric conversion power generation device according to an embodiment of the present invention. 同発電装置の正面図である。It is a front view of the power generator. 図2のIII−III断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 2. 1つ当たりの熱電変換素子の熱交換領域、素子間ギャップを示す図である。It is a figure which shows the heat exchange area | region of the thermoelectric conversion element per element, and the gap between elements. 一実施形態の熱電変換モジュールの電極(大型電極)および該電極に搭載される熱電変換素子を示す平面図である。It is a top view which shows the electrode (large sized electrode) of the thermoelectric conversion module of one Embodiment, and the thermoelectric conversion element mounted in this electrode. 他の実施形態の発電装置における高温側の板部を示す断面図である。It is sectional drawing which shows the high temperature side board part in the electric power generating apparatus of other embodiment. 実施例の発電装置の熱電変換モジュールを模式的に示す斜視図である。It is a perspective view which shows typically the thermoelectric conversion module of the electric power generating apparatus of an Example. 実施例の発電装置の、素子間ギャップと1つ当たりの熱電変換素子の貫通熱量増加率の関係を示すプロット図である。It is a plot figure which shows the relationship between the gap between elements, and the penetration heat amount increase rate of the thermoelectric conversion element per one of the electric power generating apparatus of an Example. 実施例の発電装置の、素子間ギャップと集熱効率の関係を示すプロット図である。It is a plot figure which shows the relationship between the gap between elements and heat collection efficiency of the electric power generating apparatus of an Example.

以下、図面を参照して本発明の一実施形態を説明する。
[1]熱電変換式発電装置の基本構成
図1〜図3は、本発明の熱電変換装置を適用した熱電変換式発電装置1を示している。この発電装置1は、全体が扁平な直方体状であって、図1および図2で上下方向(図1でZ方向)に離間して配設された低温室10と高温室20との間に、モジュール室3が形成された三層構造を有している。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[1] Basic Configuration of Thermoelectric Conversion Power Generation Device FIGS. 1 to 3 show a thermoelectric conversion power generation device 1 to which the thermoelectric conversion device of the present invention is applied. This power generation device 1 has a flat rectangular parallelepiped shape as a whole, and is interposed between a low temperature chamber 10 and a high temperature chamber 20 that are spaced apart in the vertical direction (Z direction in FIG. 1) in FIGS. The module chamber 3 is formed in a three-layer structure.

低温室10および高温室20は、それぞれ扁平な管体11,21から構成されており、これら管体11,21がモジュール室30を挟んで平行に配設されている。上下の管体11,21は、左右方向(図1でX方向)両端が連結板31で連結されている。低温室10、高温室20およびモジュール室30は、前後方向(図1でY方向)に貫通している。低温室10内には貫通方向に沿って冷却水等の冷却媒体が流され、高温室20内には貫通方向に沿って加熱ガス等の加熱流体が流される。管体11,21および連結板31は、例えばSUS444等の耐熱性、耐酸化性を有するステンレス等の金属で作製され、連結板31は管体11,21に例えばろう付け等の固着手段で固着される。   The low greenhouse 10 and the high temperature chamber 20 are each composed of flat tubular bodies 11 and 21, and these tubular bodies 11 and 21 are arranged in parallel with the module chamber 30 in between. The upper and lower pipe bodies 11 and 21 are connected by connecting plates 31 at both ends in the left-right direction (X direction in FIG. 1). The low greenhouse 10, the high temperature chamber 20, and the module chamber 30 penetrate in the front-rear direction (Y direction in FIG. 1). A cooling medium such as cooling water flows in the low greenhouse 10 along the penetration direction, and a heating fluid such as a heating gas flows in the high temperature chamber 20 along the penetration direction. The tubes 11 and 21 and the connecting plate 31 are made of a metal such as stainless steel having heat resistance and oxidation resistance such as SUS444, and the connecting plate 31 is fixed to the tubes 11 and 21 by fixing means such as brazing. Is done.

モジュール室30は、管体11,21の互いに対向する板部12,22と、左右の連結板31とによって形成される。低温室10側の板部12は低温室10内に流される冷却媒体によって冷却され、高温室20側の板部22は高温室20内に流される加熱流体で加熱される。以下、各板部12,22を、必要に応じて低温側の板部12、高温側の板部22と言う。低温室10内および高温室20内には、各板部12,22への熱伝導効率を向上させるフィンを設けることができる。   The module chamber 30 is formed by the plate portions 12 and 22 of the tubular bodies 11 and 21 facing each other and the left and right connecting plates 31. The plate portion 12 on the low greenhouse 10 side is cooled by a cooling medium that flows into the low temperature chamber 10, and the plate portion 22 on the high temperature chamber 20 side is heated with a heating fluid that flows into the high temperature chamber 20. Hereinafter, the plate portions 12 and 22 are referred to as a low temperature side plate portion 12 and a high temperature side plate portion 22 as necessary. In the low greenhouse 10 and the high temperature chamber 20, fins that improve the heat conduction efficiency to the plate portions 12 and 22 can be provided.

モジュール室30内には、熱電変換モジュール40が配設されている。熱電変換モジュール40は、図3に示すように、マトリックス状に配列された複数の直方体状の熱電変換素子41と、これら熱電変換素子41を直列に接続する複数の電極45とから構成される。熱電変換素子41には、耐熱温度が高い種類が用いられ、例えば、シリコン−ゲルマニウム系、マグネシウム−シリコン系、マンガン−シリコン系、珪化鉄系等が好適に用いられる。   A thermoelectric conversion module 40 is disposed in the module chamber 30. As shown in FIG. 3, the thermoelectric conversion module 40 includes a plurality of rectangular parallelepiped thermoelectric conversion elements 41 arranged in a matrix and a plurality of electrodes 45 that connect the thermoelectric conversion elements 41 in series. As the thermoelectric conversion element 41, a type having a high heat-resistant temperature is used. For example, a silicon-germanium system, a magnesium-silicon system, a manganese-silicon system, an iron silicide system, or the like is preferably used.

電極45は、低温側の板部12に対向して配置される低温側電極451と、高温側の板部22に対向して配置される高温側電極452に分けられ、低温側電極451と高温側電極452との間に、熱電変換素子41が配置されている。電極45は、隣接する熱電変換素子41間にまたがって1つの電極45が配設され、熱電変換素子41の上下の面にそれぞれ固着される。電極45は、各板部12,22に対し絶縁された状態で固定される。   The electrode 45 is divided into a low temperature side electrode 451 disposed opposite to the low temperature side plate portion 12 and a high temperature side electrode 452 disposed opposite to the high temperature side plate portion 22. A thermoelectric conversion element 41 is disposed between the side electrode 452. One electrode 45 is disposed between adjacent thermoelectric conversion elements 41 and is fixed to the upper and lower surfaces of the thermoelectric conversion elements 41. The electrode 45 is fixed in an insulated state with respect to the plate portions 12 and 22.

上記構成からなる発電装置1では、高温室20の内部に高温の加熱流体を流して高温側の板部22を加熱する。また、低温室10の内部に冷却媒体を流して低温側の板部12を冷却する。高温室20に流される加熱流体の熱によって高温側の板部22が加熱され、加熱された高温側の板部22の熱は、熱電変換モジュール40の高温側電極452を介して熱電変換素子41に伝わる。一方、冷却媒体で冷却される低温側の板部12の熱は熱電変換モジュール40の低温側電極451を介して熱電変換素子41に伝わる。これにより、熱電変換素子41には、図2において下面側が高温、上面側が低温というように温度差が与えられる。これにより熱電変換素子41は発電し、電極45に接続された図示せぬ端子から電気が取り出される。   In the power generator 1 having the above-described configuration, a high-temperature heating fluid is flowed into the high-temperature chamber 20 to heat the high-temperature side plate portion 22. Further, the cooling medium is allowed to flow inside the low temperature chamber 10 to cool the plate portion 12 on the low temperature side. The plate 22 on the high temperature side is heated by the heat of the heating fluid flowing into the high temperature greenhouse 20, and the heat of the heated plate 22 on the high temperature side is transferred to the thermoelectric conversion element 41 via the high temperature side electrode 452 of the thermoelectric conversion module 40. It is transmitted to. On the other hand, the heat of the low temperature side plate portion 12 cooled by the cooling medium is transmitted to the thermoelectric conversion element 41 through the low temperature side electrode 451 of the thermoelectric conversion module 40. Thereby, a temperature difference is given to the thermoelectric conversion element 41 such that the lower surface side is high temperature and the upper surface side is low temperature in FIG. Thereby, the thermoelectric conversion element 41 generates electric power, and electricity is taken out from a terminal (not shown) connected to the electrode 45.

本実施形態の発電装置1では、例えば工場やゴミ焼却炉で発生する排熱ガスや、自動車の排気ガスなどを上記加熱流体として利用することができる。   In the power generation apparatus 1 of the present embodiment, for example, exhaust heat gas generated in a factory or a garbage incinerator, automobile exhaust gas, or the like can be used as the heating fluid.

[2]熱電変換モジュールの実施形態
以上が一実施形態に係る発電装置の基本構成であり、以下、本実施形態の熱電変換モジュール40を詳述する。
[2] Embodiment of Thermoelectric Conversion Module The above is the basic configuration of the power generation device according to one embodiment, and the thermoelectric conversion module 40 of this embodiment will be described in detail below.

[2−1]熱電変換素子の占有面積率
低温側の板部12および高温側の板部22においては、熱電変換モジュール40の熱電変換素子41が配列されている領域が熱交換領域とされる。この熱交換領域の面積は、各板部12,22で互いに等しく、上下対称の状態に位置している。
[2-1] Occupied Area Ratio of Thermoelectric Conversion Elements In the low temperature side plate portion 12 and the high temperature side plate portion 22, a region where the thermoelectric conversion elements 41 of the thermoelectric conversion module 40 are arranged is a heat exchange region. . The areas of the heat exchange regions are equal to each other in the plate portions 12 and 22, and are positioned in a vertically symmetrical state.

本発明においては、複数の熱電変換素子41の横断面の総断面積Bが、低温側および高温側の各板部12,22それぞれの熱交換領域の面積Aに対し占める割合である占有面積率「B/A」が、60%以下に設定されている。以下に記載する“熱電変換素子41の占有面積率”は、各板部12,22の熱交換領域の面積Aに占める熱電変換素子41の総断面積Bが占める割合を言う。   In the present invention, the total area B of the cross sections of the plurality of thermoelectric conversion elements 41 is the ratio occupied by the area A of the heat exchange region of each of the plate portions 12 and 22 on the low temperature side and the high temperature side. “B / A” is set to 60% or less. The “occupied area ratio of the thermoelectric conversion elements 41” described below refers to the ratio of the total cross-sectional area B of the thermoelectric conversion elements 41 to the area A of the heat exchange region of the plate portions 12 and 22.

熱電変換素子41は、上記熱交換領域に均等に分散した状態で配列される。したがって熱電変換素子41の占有面積率を60%以下とするには、1つ当たりの熱電変換素子41の断面積と、この断面積に応じた隣接する熱電変換素子41間の間隔(素子間ギャップ)を規定することで可能となる。図4は、熱電変換素子41の断面が正方形であった場合における素子間ギャップGと、1つ当たりの熱電変換素子41に応じた熱交換領域Sを示している。1つ当たりの熱電変換素子41に応じた熱交換領域Sに対して1つの熱電変換素子41が占める割合は、熱電変換モジュール40全体の熱電変換素子41の占有面積率に等しいと理解される。   The thermoelectric conversion elements 41 are arranged in a state of being evenly dispersed in the heat exchange region. Therefore, in order to reduce the occupation area ratio of the thermoelectric conversion elements 41 to 60% or less, the cross-sectional area of each thermoelectric conversion element 41 and the interval between adjacent thermoelectric conversion elements 41 corresponding to the cross-sectional area (interelement gap) ) Is possible. FIG. 4 shows an inter-element gap G and a heat exchange region S corresponding to one thermoelectric conversion element 41 when the cross section of the thermoelectric conversion element 41 is square. It is understood that the ratio of one thermoelectric conversion element 41 to the heat exchange region S corresponding to one thermoelectric conversion element 41 is equal to the occupation area ratio of the thermoelectric conversion elements 41 in the entire thermoelectric conversion module 40.

例えば熱電変換素子41として、一辺aが4mmの正方形断面のもの(断面積は16mm)を用い、素子間ギャップGを2mmに設定すると、1つ当たりの熱電変換素子41に応じた熱交換領域の面積Sは、6mm×6mm=36mmである。したがって熱電変換素子41の占有面積率は16mm/36mm=44.4%と導かれ、これは本発明を満足する。これに対し、一辺が4mmの熱電変換素子41を素子間ギャップGが1mmで配列すると、1つ当たりの熱電変換素子41に応じた熱交換領域Sの面積は5mm×5mm=25mmとなり、よって熱電変換素子41の占有面積率は16mm/25mm=64.0%となってこれは本発明を逸脱する。 For example, when a thermoelectric conversion element 41 having a square cross section with a side a of 4 mm (cross-sectional area of 16 mm 2 ) and an inter-element gap G set to 2 mm, a heat exchange region corresponding to one thermoelectric conversion element 41 is used. The area S is 6 mm × 6 mm = 36 mm 2 . Accordingly occupying area ratio of the thermoelectric conversion element 41 is guided 16mm 2 / 36mm 2 = 44.4% , which satisfies the present invention. On the other hand, when the thermoelectric conversion elements 41 each having a side of 4 mm are arranged with an element gap G of 1 mm, the area of the heat exchange region S corresponding to each thermoelectric conversion element 41 is 5 mm × 5 mm = 25 mm 2 . occupying area ratio of the thermoelectric conversion element 41 becomes 16mm 2 / 25mm 2 = 64.0% This departing from this invention.

表1は、断面正方形状の熱電変換素子41の一辺の長さを1mmから10mmの範囲で複数設定して素子間ギャップを0.5mm〜6mmに振り分けた例を示し、それぞれの組み合わせにおける熱電変換素子41の占有面積率を記載している。表1の×で示す組み合わせが本発明外となり、それ以外の組み合わせが本発明の条件を満足している。   Table 1 shows an example in which the length of one side of the thermoelectric conversion element 41 having a square cross section is set in a range of 1 mm to 10 mm, and the gap between elements is divided into 0.5 mm to 6 mm, and the thermoelectric conversion in each combination The occupation area ratio of the element 41 is described. Combinations indicated by x in Table 1 are outside the present invention, and other combinations satisfy the conditions of the present invention.

Figure 2016012613
Figure 2016012613

また、次の(A)〜(D)のように、特に熱電変換素子41の断面積に応じた占有面積率を規定した場合も本発明としている。すなわち複数の熱電変換素子41を有した場合の1つの熱電変換素子41の断面積が、
(A)1mm以下では占有面積率が25%以下
(B)1〜2.25mmでは占有面積率が30%以下
(C)2.25mm超〜16mmでは占有面積率が50%以下
(D)16mm超では占有面積率が60%以下
これらの条件を満たす組み合わせは、表1の○で示すものが該当する。
In addition, as in the following (A) to (D), the present invention also includes the case where the occupation area ratio corresponding to the cross-sectional area of the thermoelectric conversion element 41 is specified. That is, the cross-sectional area of one thermoelectric conversion element 41 in the case of having a plurality of thermoelectric conversion elements 41 is
(A) 1 mm 2 occupying area ratio is 25% or less in the following (B) in 1~2.25Mm 2 occupying area ratio is less 30% (C) 2.25mm 2 Ultra ~16Mm 2 in occupying area ratio is 50% or less (D) If it exceeds 16 mm 2 , the occupied area ratio is 60% or less.

[2−2]電極の構成
隣接する熱電変換素子41を接続する電極45は、熱伝導率が50W/m・k以上の金属材料で形成されている。そのような金属材料としては、例えば銅、銅合金、アルミニウム、アルミニウム合金等が挙げられる。
[2-2] Electrode Configuration The electrode 45 connecting the adjacent thermoelectric conversion elements 41 is formed of a metal material having a thermal conductivity of 50 W / m · k or more. Examples of such a metal material include copper, a copper alloy, aluminum, an aluminum alloy, and the like.

電極45は、配列された状態で熱交換領域の全域をほぼカバーする大きさを有する大型のもので、電極45間のギャップはできるだけ小さく設定されている。電極45間のギャップは、例えば0.1〜5.0mmとされる。図5に示すように、電極45上に固定される熱電変換素子41は電極45の端部ではなく、電極45の表面における内側に配置され、その全周が電極45の表面に囲繞される状態に配置されている。この場合、各熱電変換素子41から電極45の端縁までの距離Dは、素子間ギャップGの1/2に設定されている。例えば熱電変換素子41の一辺が2mm、素子間ギャップGが5mmであった場合には、距離Dは2.5mmとなる。ちなみにこの場合の熱電変換素子41の占有面積率は、表1に示すように8.2%である。   The electrodes 45 are large in size so as to cover almost the entire heat exchange region in an arrayed state, and the gap between the electrodes 45 is set as small as possible. The gap between the electrodes 45 is, for example, 0.1 to 5.0 mm. As shown in FIG. 5, the thermoelectric conversion element 41 fixed on the electrode 45 is arranged not on the end of the electrode 45 but on the inner side of the surface of the electrode 45, and the entire circumference is surrounded by the surface of the electrode 45. Is arranged. In this case, the distance D from each thermoelectric conversion element 41 to the edge of the electrode 45 is set to ½ of the inter-element gap G. For example, when one side of the thermoelectric conversion element 41 is 2 mm and the gap G between the elements is 5 mm, the distance D is 2.5 mm. Incidentally, the occupation area ratio of the thermoelectric conversion element 41 in this case is 8.2% as shown in Table 1.

[2−3]熱電変換モジュールの作用効果
上記実施形態の熱電変換モジュール40では、熱電変換素子41間の間隔(素子間ギャップ)を従来と比較して大きく取った構成をポイントとしている。すなわち、熱交換領域に複数の熱電変換素子41を配列する場合、占有面積率を60%以下として比較的粗の状態で配列する。これにより、1つの熱電変換素子41に対する周囲の熱交換領域の面積が大きくなり、その熱交換領域の熱が熱電変換素子41に伝達される。熱電変換素子41が存在しない熱交換領域、すなわち素子間ギャップの面積の増大によって、熱交換領域から熱電変換素子41への熱の伝達効率が向上し、熱交換領域の熱交換量が増大する。
[2-3] Effect of Thermoelectric Conversion Module In the thermoelectric conversion module 40 of the above-described embodiment, the point is a configuration in which the interval between the thermoelectric conversion elements 41 (interelement gap) is larger than that of the conventional one. That is, when arranging a plurality of thermoelectric conversion elements 41 in the heat exchange region, the occupation area ratio is set to 60% or less, and they are arranged in a relatively coarse state. Thereby, the area of the surrounding heat exchange area | region with respect to the one thermoelectric conversion element 41 becomes large, and the heat of the heat exchange area | region is transmitted to the thermoelectric conversion element 41. FIG. By increasing the heat exchange area where the thermoelectric conversion element 41 does not exist, that is, the area of the gap between elements, the heat transfer efficiency from the heat exchange area to the thermoelectric conversion element 41 is improved, and the heat exchange amount in the heat exchange area is increased.

このため、1つ当たりの熱電変換素子41の貫通熱量が増大し、これによって発電量も増大する。したがって熱電変換素子41の使用数を少なくしても全体の発電量を低減させることなく、熱電変換モジュール40として一定の発電量を確保することができる。その結果、熱電変換モジュール40に搭載する熱電変換素子41の使用量を少なくしてコストの低減を効果的に図ることができる。   For this reason, the penetration heat quantity of the thermoelectric conversion element 41 per one increases, and, thereby, the electric power generation amount also increases. Therefore, even if the number of thermoelectric conversion elements 41 used is reduced, a constant power generation amount can be secured as the thermoelectric conversion module 40 without reducing the total power generation amount. As a result, the amount of the thermoelectric conversion element 41 mounted on the thermoelectric conversion module 40 can be reduced to effectively reduce the cost.

また、電極45は熱伝導率が50W/m・k以上と高い熱伝導率を有する材料で形成されるとともに、配列された状態で熱交換領域の全域をほぼカバーする大きさを有している。このため、熱交換領域から電極45を経て熱電変換素子41に達する熱量が効果的に増大し、1つ当たりの熱電変換素子41の発電量をより増大させることができる。このため、コストの低減を促進させることができる。   The electrode 45 is formed of a material having a high thermal conductivity of 50 W / m · k or more and has a size that covers almost the entire heat exchange region in an arrayed state. . For this reason, the amount of heat reaching the thermoelectric conversion element 41 from the heat exchange region via the electrode 45 is effectively increased, and the amount of power generated by one thermoelectric conversion element 41 can be further increased. For this reason, cost reduction can be promoted.

また、電極45に固定される一対の熱電変換素子41は、その全周が電極45の表面に囲繞される状態に配置されている。このように熱電変換素子41の全周が電極45の表面に囲まれているため、熱電変換素子41の全周から電極45の熱が熱電変換素子41に伝達される。この構成により、例えば熱電変換素子41が電極45の端部に設置されている場合と比べると電極45から熱電変換素子41に伝達される熱量は多く、したがって熱電変換素子41に達する熱量の増大に伴う1つ当たりの熱電変換素子41の発電量の向上効果が一層促進される。   In addition, the pair of thermoelectric conversion elements 41 fixed to the electrode 45 is disposed in a state where the entire circumference is surrounded by the surface of the electrode 45. Thus, since the entire circumference of the thermoelectric conversion element 41 is surrounded by the surface of the electrode 45, the heat of the electrode 45 is transmitted to the thermoelectric conversion element 41 from the entire circumference of the thermoelectric conversion element 41. With this configuration, for example, the amount of heat transferred from the electrode 45 to the thermoelectric conversion element 41 is larger than when the thermoelectric conversion element 41 is installed at the end of the electrode 45, and thus the amount of heat reaching the thermoelectric conversion element 41 is increased. The effect of improving the power generation amount of the thermoelectric conversion element 41 per unit is further promoted.

[3]他の実施形態
図6は、高温側の板部22の構成を変更した他の実施形態を示している。この場合、高温側の板部22の熱電変換モジュール40が配置される外面側に、熱伝導部50を形成している。熱伝導部50は、上記電極45と同様に、銅、銅合金、アルミニウム、アルミニウム合金等の、熱伝導率が50W/m・k以上の金属材料で形成されている。熱伝導部50は、熱伝導率が高いものほど好ましいが、コスト等の他の要素を鑑みて適宜に選択される。熱伝導部50は、例えばそのような金属からなる薄板を高温側の板部22に張って固着することで形成されるが、形成の手段としてはこれに限定されない。高温側電極452は、熱伝導部50に対し絶縁された状態で固定される。
[3] Other Embodiments FIG. 6 shows another embodiment in which the configuration of the plate portion 22 on the high temperature side is changed. In this case, the heat conduction unit 50 is formed on the outer surface side of the high temperature side plate portion 22 where the thermoelectric conversion module 40 is disposed. Similar to the electrode 45, the heat conducting unit 50 is made of a metal material having a thermal conductivity of 50 W / m · k or more, such as copper, a copper alloy, aluminum, or an aluminum alloy. The heat conduction unit 50 is preferably as long as the heat conductivity is high, but is appropriately selected in view of other factors such as cost. The heat conducting unit 50 is formed by, for example, stretching and fixing a thin plate made of such a metal to the plate unit 22 on the high temperature side, but the forming means is not limited to this. The high temperature side electrode 452 is fixed in an insulated state with respect to the heat conducting unit 50.

この形態では、比較的高い熱伝導率を有する熱伝導部50により集熱効果が増大し、高温側の板部22の熱交換領域から熱伝導部50を経て熱電変換素子41に達する熱量が効果的に増大する。このため、1つ当たりの熱電変換素子41の発電量をより増大させることができる。   In this embodiment, the heat collection effect is increased by the heat conduction part 50 having a relatively high thermal conductivity, and the amount of heat reaching the thermoelectric conversion element 41 through the heat conduction part 50 from the heat exchange region of the plate part 22 on the high temperature side is effective. Increase. For this reason, the power generation amount of one thermoelectric conversion element 41 can be further increased.

なお、熱伝導部50を形成した場合には、熱伝導率の高い電極45を小型化し、熱伝導の効率向上を主に熱伝導部50によってなすようにすることができる。上記一実施形態のように熱伝導部50を形成せず、電極45を大型化することは、その大型の電極45を熱伝導部50として構成させることになり、その場合には構成が簡素化し、コストの低減をさらに促進させることができるという利点がある。熱伝導部50は、少なくとも高温側の板部22に設けることを必須とするが、合わせて低温側の板部11に設けて冷却効率を向上させてもよい。   When the heat conduction unit 50 is formed, the electrode 45 having high heat conductivity can be downsized and the heat conduction efficiency can be improved mainly by the heat conduction unit 50. Enlarging the electrode 45 without forming the heat conducting part 50 as in the above-described embodiment causes the large electrode 45 to be configured as the heat conducting part 50. In that case, the configuration is simplified. There is an advantage that cost reduction can be further promoted. Although it is essential to provide the heat conduction unit 50 at least on the plate portion 22 on the high temperature side, it may be provided on the plate portion 11 on the low temperature side to improve the cooling efficiency.

[1]コストの検証
図1〜図3で示した構成の発電装置として、正方形状の断面積の一辺が2mm(2mmサイズと言う)の熱電変換素子を、素子間ギャップを4mmとした場合(実施例a)と、1mmとした場合(実施例b)に分け、熱交換領域の面積が13500mmの管体の間に熱電変換素子を配列して熱電変換モジュールを搭載した。熱電変換素子の占有面積率および個数は、以下の通りである。
実施例a:「素子間ギャップが4mm」 占有面積率11.1%、 375個
実施例b:「素子間ギャップが1mm」 占有面積率44.4%、1500個
図7(a)、(b)は、それぞれ実施例a、bの発電装置において高温側の管体上に配列される熱電変換素子の粗密の状態を比較して示している。
[1] Verification of cost When the thermoelectric conversion element having one side of a square cross-sectional area of 2 mm (referred to as 2 mm size) is used as the power generation device having the configuration shown in FIGS. In the case of Example a) and 1 mm (Example b), a thermoelectric conversion module was mounted by arranging thermoelectric conversion elements between tubes having a heat exchange area of 13500 mm 2 . The occupation area ratio and the number of thermoelectric conversion elements are as follows.
Example a: “element gap is 4 mm” Occupied area ratio 11.1%, 375 examples b: “element gap is 1 mm” Occupied area ratio 44.4%, 1500 pieces FIG. ) Shows a comparison of the density of the thermoelectric conversion elements arranged on the high temperature side tubular bodies in the power generators of Examples a and b, respectively.

作製した上記2つの発電装置を、高温室および低温室に加熱流体および冷却媒体をそれぞれ供給して発電させたところ、両者の発電量は同等であった。実施例aは実施例bよりも素子間ギャップが4倍と大きいものの発電量が同等であり、熱電変換素子の個数は1/4と大幅に少ない。すなわち、素子間ギャップを大きくしても同じ発電量を得られながら、熱電変換素子の個数を大幅に少なくすることができ、コスト低減を顕著に得られることが実証された。   When the produced two power generating devices were supplied with heating fluid and a cooling medium to the high temperature chamber and the low temperature chamber, respectively, and the power generation amount was the same. In Example a, the gap between the elements is four times larger than that in Example b, but the amount of power generation is the same, and the number of thermoelectric conversion elements is ¼, which is significantly smaller. That is, it was proved that the number of thermoelectric conversion elements can be greatly reduced and the cost can be significantly reduced while obtaining the same power generation amount even when the gap between elements is increased.

[2]素子間ギャップと1つ当たりの熱電変換素子の貫通熱量増加率の関係
熱電変換素子の搭載状態が図5に示した状態となる銅で形成した大型電極を用いて、素子間ギャップを1mm〜5mmの間で1mmおきに設定して熱電変換モジュールを構成した発電装置(実施例c)と、同じ素子間ギャップで、搭載する一対の熱電変換素子が端部に搭載される小型電極を用いて熱電変換モジュールを構成した発電装置(実施例d)を作製した。そして、これら発電装置の1つ当たりの熱電変換素子を貫通する熱量を調べた。図8は、実施例cの発電装置であって素子間ギャップが1mmの場合を1とした場合の、各実施例c、dの1つ当たりの熱電変換素子を貫通する熱量の増加率を示している。
[2] Relationship between the gap between elements and the rate of increase in the amount of through heat of each thermoelectric conversion element Using a large electrode formed of copper in which the mounting state of the thermoelectric conversion element is in the state shown in FIG. A power generation device (Example c) configured with a thermoelectric conversion module set every 1 mm between 1 mm and 5 mm, and a small electrode on which the pair of thermoelectric conversion elements to be mounted is mounted at the end with the same inter-element gap A power generator (Example d) was prepared using the thermoelectric conversion module. And the amount of heat which penetrates the thermoelectric conversion element per one of these power generators was investigated. FIG. 8 shows the rate of increase in the amount of heat penetrating the thermoelectric conversion element per one of each of Examples c and d when the power generation device of Example c is 1 when the gap between the elements is 1 mm. ing.

図8によれば、素子間ギャップが同じであっても、図5に示したような熱電変換素子の全周が電極表面で囲まれるように配置できる大型電極を用いた実施例cの方が熱電変換素子を貫通する熱量は増加している。また、素子間ギャップが大きくなり、それに伴って電極が大型になるにつれ、貫通熱量が増加している。これは大型電極の集熱による熱伝導効果が高いことを示している。   According to FIG. 8, even when the gap between the elements is the same, Example c using a large electrode that can be arranged so that the entire circumference of the thermoelectric conversion element as shown in FIG. The amount of heat passing through the thermoelectric conversion element is increasing. Further, as the gap between the elements becomes larger and the electrode becomes larger with the gap, the amount of through heat increases. This indicates that the heat conduction effect due to the heat collection of the large electrode is high.

[3]素子間ギャップと集熱効率
上記実施例cおよび実施例dの発電装置について、熱交換領域の単位面積当たりの集熱効率を調べた。図9は、実施例cおよびdの発電装置の、素子間ギャップが1mmの場合を1とした場合の、熱交換領域の単位面積当たりの集熱効率を示している。
[3] Gap between elements and heat collection efficiency The heat collection efficiency per unit area of the heat exchange region was examined for the power generators of Examples c and d. FIG. 9 shows the heat collection efficiency per unit area of the heat exchange region when the case where the gap between the elements is 1 mm is set to 1 in the power generation devices of Examples c and d.

図9によれば、図5に示したような熱電変換素子の全周が電極表面で囲まれるように配置できる大型電極を用いた場合(実施例c)には、大型電極を用いない場合よりも、素子間ギャップが拡大しても集熱効率が低下することが抑えられて一定以上の発電量が確保されることを示している。   According to FIG. 9, when a large electrode that can be arranged so that the entire circumference of the thermoelectric conversion element as shown in FIG. 5 is surrounded by the electrode surface (Example c) is used, compared to the case where no large electrode is used. In other words, even when the gap between the elements is enlarged, the heat collection efficiency is prevented from decreasing, and a power generation amount of a certain level or more is secured.

1…発電装置(熱電変換装置)
12…低温側の板部
22…高温側の板部
40…熱電変換モジュール
45…電極
41…熱電変換素子
50…熱伝導部
1. Power generation device (thermoelectric conversion device)
DESCRIPTION OF SYMBOLS 12 ... Low temperature side board part 22 ... High temperature side board part 40 ... Thermoelectric conversion module 45 ... Electrode 41 ... Thermoelectric conversion element 50 ... Thermal conduction part

Claims (5)

互いに対向配置され、熱交換領域を有する高温側の板部および低温側の板部と、
前記高温側の板部および前記低温側の板部の間に配置され、該高温側の板部および該低温側の板部によって温度差が付与される熱電変換モジュールと、を備えた熱電変換装置であって、
前記熱電変換モジュールは、前記高温側の板部および前記低温側の板部のそれぞれに対向して配置される電極と、これら電極間に配置される熱電変換素子と、を有し、
前記熱電変換素子における総断面積の、前記熱交換領域に対し占める割合である占有面積率が、60%以下であることを特徴とする熱電変換装置。
A high-temperature side plate portion and a low-temperature side plate portion that are arranged opposite to each other and have a heat exchange region;
A thermoelectric conversion device comprising: a thermoelectric conversion module disposed between the high temperature side plate portion and the low temperature side plate portion, and provided with a temperature difference by the high temperature side plate portion and the low temperature side plate portion. Because
The thermoelectric conversion module includes an electrode disposed to face each of the high temperature side plate portion and the low temperature side plate portion, and a thermoelectric conversion element disposed between these electrodes,
The occupation area ratio which is the ratio which occupies with respect to the said heat exchange area | region for the total cross-sectional area in the said thermoelectric conversion element is 60% or less, The thermoelectric conversion apparatus characterized by the above-mentioned.
複数の前記熱電変換素子を有し、1つの該熱電変換素子の断面積が
1mm以下では前記占有面積率が25%以下、
1〜2.25mmでは前記占有面積率が30%以下、
2.25mm超〜16mmでは前記占有面積率が50%以下、
16mm超では前記占有面積率が60%以下、
であることを特徴とする請求項1に記載の熱電変換装置。
When the cross-sectional area of one thermoelectric conversion element is 1 mm 2 or less, the occupation area ratio is 25% or less.
In 1-2.25 mm 2 , the occupied area ratio is 30% or less,
In the range of more than 2.25 mm 2 to 16 mm 2 , the occupied area ratio is 50% or less,
If it exceeds 16 mm 2 , the occupied area ratio is 60% or less,
The thermoelectric conversion device according to claim 1, wherein:
前記高温側の板部および前記低温側の板部のうちの、少なくとも前記高温側の板部における前記熱電変換モジュール側の面と、前記電極との間に、熱伝導率が50W/m・k以上の材料からなる熱伝導部を設けたことを特徴とする請求項1または2に記載の熱電変換装置。   Among the high temperature side plate portion and the low temperature side plate portion, at least a thermal conductivity of 50 W / m · k between the surface on the thermoelectric conversion module side of the high temperature side plate portion and the electrode. The thermoelectric conversion device according to claim 1, further comprising a heat conducting portion made of the above material. 前記高温側の板部および前記低温側の板部のうちの、少なくとも前記高温側の板部に対向して配置される前記電極が、熱伝導率が50W/m・k以上の材料で構成されていることを特徴とする請求項1〜3のいずれかに記載の熱電変換装置。   Of the high temperature side plate portion and the low temperature side plate portion, at least the electrode arranged to face the high temperature side plate portion is made of a material having a thermal conductivity of 50 W / m · k or more. The thermoelectric conversion device according to claim 1, wherein the thermoelectric conversion device is provided. 前記電極には、一対の前記熱電変換素子が、該熱電変換素子の全周が該電極の表面に囲繞される状態に配置されていることを特徴とする請求項4に記載の熱電変換装置。   5. The thermoelectric conversion device according to claim 4, wherein a pair of the thermoelectric conversion elements are arranged on the electrode in a state where the entire circumference of the thermoelectric conversion element is surrounded by the surface of the electrode.
JP2014132533A 2014-06-27 2014-06-27 Thermoelectric converter Expired - Fee Related JP6376511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014132533A JP6376511B2 (en) 2014-06-27 2014-06-27 Thermoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014132533A JP6376511B2 (en) 2014-06-27 2014-06-27 Thermoelectric converter

Publications (2)

Publication Number Publication Date
JP2016012613A true JP2016012613A (en) 2016-01-21
JP6376511B2 JP6376511B2 (en) 2018-08-22

Family

ID=55229153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014132533A Expired - Fee Related JP6376511B2 (en) 2014-06-27 2014-06-27 Thermoelectric converter

Country Status (1)

Country Link
JP (1) JP6376511B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017165484A1 (en) * 2016-03-22 2017-09-28 Gentherm Inc. Distributed thermoelectrics and climate components using same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125963A (en) * 1996-10-16 1998-05-15 Chichibu Onoda Cement Corp Thermoelectric converter
JPH11261119A (en) * 1998-03-13 1999-09-24 Komatsu Ltd Manufacture of thermoelectric semiconductor material
JPH11261117A (en) * 1998-03-12 1999-09-24 Nissan Motor Co Ltd Thermoelectric conversion module and waste heat power generating device
JPH11257789A (en) * 1998-03-10 1999-09-24 Hitachi Ltd Thermoelectric cooler and structure using it
JP2001060726A (en) * 1999-06-15 2001-03-06 Yamaha Corp Theromoelectric module
JP2003174203A (en) * 2001-12-07 2003-06-20 Sony Corp Thermoelectric conversion device
JP2005277222A (en) * 2004-03-25 2005-10-06 Yamaha Corp Method for manufacturing thermoelectric module
WO2006019059A1 (en) * 2004-08-17 2006-02-23 The Furukawa Electric Co., Ltd. Thermo-electric cooling device
JP2006294935A (en) * 2005-04-12 2006-10-26 Kiyoshi Inaizumi High efficiency and low loss thermoelectric module
WO2007063755A1 (en) * 2005-11-29 2007-06-07 Kabushiki Kaisha Toshiba Thermoelectric conversion module and heat exchanger and thermoelectric power generator using it
JP2009231655A (en) * 2008-03-25 2009-10-08 Yamaha Corp Thermoelectric conversion module
JP2010027895A (en) * 2008-07-22 2010-02-04 Konica Minolta Holdings Inc Thermoelectric conversion element
JP2011064513A (en) * 2009-09-16 2011-03-31 Canon Anelva Corp Element and apparatus for measuring temperature, substrate processing apparatus, and method for manufacturing electronic device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125963A (en) * 1996-10-16 1998-05-15 Chichibu Onoda Cement Corp Thermoelectric converter
JPH11257789A (en) * 1998-03-10 1999-09-24 Hitachi Ltd Thermoelectric cooler and structure using it
JPH11261117A (en) * 1998-03-12 1999-09-24 Nissan Motor Co Ltd Thermoelectric conversion module and waste heat power generating device
JPH11261119A (en) * 1998-03-13 1999-09-24 Komatsu Ltd Manufacture of thermoelectric semiconductor material
JP2001060726A (en) * 1999-06-15 2001-03-06 Yamaha Corp Theromoelectric module
JP2003174203A (en) * 2001-12-07 2003-06-20 Sony Corp Thermoelectric conversion device
JP2005277222A (en) * 2004-03-25 2005-10-06 Yamaha Corp Method for manufacturing thermoelectric module
WO2006019059A1 (en) * 2004-08-17 2006-02-23 The Furukawa Electric Co., Ltd. Thermo-electric cooling device
JP2006294935A (en) * 2005-04-12 2006-10-26 Kiyoshi Inaizumi High efficiency and low loss thermoelectric module
WO2007063755A1 (en) * 2005-11-29 2007-06-07 Kabushiki Kaisha Toshiba Thermoelectric conversion module and heat exchanger and thermoelectric power generator using it
JP2009231655A (en) * 2008-03-25 2009-10-08 Yamaha Corp Thermoelectric conversion module
JP2010027895A (en) * 2008-07-22 2010-02-04 Konica Minolta Holdings Inc Thermoelectric conversion element
JP2011064513A (en) * 2009-09-16 2011-03-31 Canon Anelva Corp Element and apparatus for measuring temperature, substrate processing apparatus, and method for manufacturing electronic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017165484A1 (en) * 2016-03-22 2017-09-28 Gentherm Inc. Distributed thermoelectrics and climate components using same
US20190081225A1 (en) * 2016-03-22 2019-03-14 Gentherm Incorporated Distributed thermoelectrics and climate components using same
US10727390B2 (en) * 2016-03-22 2020-07-28 Gentherm Incorporated Distributed thermoelectrics and climate components using same

Also Published As

Publication number Publication date
JP6376511B2 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
US20070095379A1 (en) Thermoelectric generator
JP5832698B2 (en) Thermoelectric power generation apparatus and thermoelectric power generation method
KR20150106328A (en) Thermoelectric power generation system using gradient heat exchanger
JP2014212590A (en) Thermoelectric conversion power generator
CN102738378A (en) Thermoelectric cluster, method for operating same, device for connecting an active element in said cluster to a thermoelectric drive, generator (variants) and heat pump (variants) based thereon
KR20100081674A (en) Battery pack
JP2016025271A (en) Thermoelectric conversion device
JP5444787B2 (en) Thermoelectric generator
KR20110077486A (en) Thermoelectric power generation using exhaustion heat recovery for vehicle
JP6376511B2 (en) Thermoelectric converter
JP2010219255A (en) Thermoelectric power generation device
JP6350297B2 (en) Thermoelectric generator
JP2018074873A (en) Thermoelectric generation exchanger
US20190339013A1 (en) Heat transfer apparatus
JP2006527905A (en) Electricity cogeneration using the Seebeck effect inside a fuel cell
JP6002623B2 (en) Thermoelectric conversion module
JPH11340522A (en) Heat exchanger using thermoelectric module
JP2009272327A (en) Thermoelectric conversion system
KR101724847B1 (en) Thermoelectric Generation Device for vehicle
KR101295907B1 (en) Thermoelectric generator using exhaust heat and manufacturing method thereof
JP2013042113A5 (en) Thermoelectric conversion element, thermoelectric conversion power generator and power generation method
WO2016093239A1 (en) Thermoelectric conversion device
JP2015138793A (en) Thermoelectric conversion power generator
JP2013048229A (en) Thermoelectric generator and thermoelectric power generation method
JP6858379B2 (en) Calibration thermoelectric power generation module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170828

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180607

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180702

R151 Written notification of patent or utility model registration

Ref document number: 6376511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180715

LAPS Cancellation because of no payment of annual fees