JP2015138793A - Thermoelectric conversion power generator - Google Patents

Thermoelectric conversion power generator Download PDF

Info

Publication number
JP2015138793A
JP2015138793A JP2014007749A JP2014007749A JP2015138793A JP 2015138793 A JP2015138793 A JP 2015138793A JP 2014007749 A JP2014007749 A JP 2014007749A JP 2014007749 A JP2014007749 A JP 2014007749A JP 2015138793 A JP2015138793 A JP 2015138793A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
thermal expansion
high temperature
temperature side
conversion module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2014007749A
Other languages
Japanese (ja)
Inventor
昌尚 冨永
Masanao Tominaga
昌尚 冨永
孝広 地主
Takahiro Jinushi
孝広 地主
征央 根岸
Motohiro Negishi
征央 根岸
石島 善三
Zenzo Ishijima
善三 石島
森 正芳
Masayoshi Mori
正芳 森
山上 武
Takeshi Yamagami
武 山上
松田 洋
Hiroshi Matsuda
洋 松田
寛治 松本
Kanji Matsumoto
寛治 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Showa Denko Materials Co Ltd
Original Assignee
Honda Motor Co Ltd
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Hitachi Chemical Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2014007749A priority Critical patent/JP2015138793A/en
Publication of JP2015138793A publication Critical patent/JP2015138793A/en
Abandoned legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric conversion power generator in which damage on a thermoelectric conversion element can be suppressed, by reducing a stress applied to the thermoelectric conversion element by suppressing thermal expansion deformation of a tube body.SOLUTION: In a power generator generating power by providing a cooling jacket 3 on the outer surface side of a tube body 25, disposing a thermoelectric conversion module 4 while sandwiching between the main plate 251 of the tube body 25 and cooling jacket 3, and then giving a temperature difference to the thermoelectric conversion module 4 by means of the tube body 25 heated by heating fluid H and cooling jacket 3, thermal expansion of the tube body 25 is suppressed by bonding a low thermal expansion material 8, having a thermal expansion coefficient smaller than that of the tube body 25, closely to a high temperature side electrode 42b at least in a region corresponding to the upstream side of the heating fluid H, thereby reducing a stress related to a thermoelectric conversion element 41 and making the thermoelectric conversion element 41 less likely to be damaged.

Description

本発明は、熱電変換モジュールに温度差を与えて熱エネルギーを電気エネルギーに変換する熱電変換式発電装置に関する。   The present invention relates to a thermoelectric power generation apparatus that converts a thermal energy into an electrical energy by giving a temperature difference to a thermoelectric conversion module.

熱電変換素子を用いて熱エネルギーを電気エネルギーに変換する発電技術が知られている。熱電変換素子は、離間した部位に温度差を与えることで高温部と低温部との間に電位差を生じさせるといったゼーベック効果を利用したもので、温度差が大きいほど発電量が大きくなる。このような熱電変換素子は、複数を電極によって接合した熱電変換素子モジュールという形態で用いられる。例えば、管体の外面に熱電変換モジュールと冷却部とを積層して管体の内部に加熱流体を導入することで、加熱される管体(高温部)と冷却部(低温部)との間に挟んだ熱電変換モジュールに温度差を生じさせて電気を取り出す構成の熱電変換式発電装置が知られている(特許文献1)。   A power generation technique for converting thermal energy into electrical energy using a thermoelectric conversion element is known. The thermoelectric conversion element uses a Seebeck effect that causes a potential difference between a high temperature part and a low temperature part by giving a temperature difference to a separated part, and the power generation amount increases as the temperature difference increases. Such a thermoelectric conversion element is used in the form of a thermoelectric conversion element module in which a plurality are joined by electrodes. For example, by laminating a thermoelectric conversion module and a cooling part on the outer surface of the pipe body and introducing a heating fluid into the pipe body, the space between the heated pipe body (high temperature part) and the cooling part (low temperature part) 2. Description of the Related Art A thermoelectric conversion power generator having a configuration in which electricity is extracted by causing a temperature difference in a thermoelectric conversion module sandwiched between two is known (Patent Document 1).

特開2006−217756号公報JP 2006-217756 A

上記構成の熱電変換式発電装置にあっては、高温部で加熱される管体は熱膨張によって変形が生じる。このため管体に接合されている熱電変換モジュールの熱電変換素子は変形する管体から応力を受け、その結果、熱電変換素子に割れや破損が生じるおそれがあった。   In the thermoelectric conversion power generation device having the above configuration, the tubular body heated in the high temperature portion is deformed by thermal expansion. For this reason, the thermoelectric conversion element of the thermoelectric conversion module joined to the tubular body receives stress from the deforming tubular body, and as a result, the thermoelectric conversion element may be cracked or broken.

本発明は上記事情に鑑みてなされたもので、その主たる課題は、管体の熱膨張変形を抑制して熱電変換素子にかかる応力を減少させ、結果として熱電変換素子の破損を抑えることができる熱電変換式発電装置を提供することにある。   The present invention has been made in view of the above circumstances, and its main problem is that the thermal expansion deformation of the tube body is suppressed to reduce the stress applied to the thermoelectric conversion element, and as a result, damage to the thermoelectric conversion element can be suppressed. The object is to provide a thermoelectric conversion generator.

本発明の熱電変換式発電装置は、内部に加熱流体が流される管路が形成された管体と、
前記管体の外面側に配設される冷却部と、前記管体の表面に配設される複数の高温側電極と、前記冷却部に配設される複数の低温側電極と、これら高温側電極と低温側電極とを直列に接続する熱電変換素子とを有する熱電変換モジュールと、を備え、前記管体と前記冷却部とによって前記熱電変換モジュールに温度差が与えられることで発電する熱電変換式発電装置において、前記管体の表面の、少なくとも前記加熱流体の上流側に対応する領域に、該管体よりも熱膨張係数の小さい低熱膨張材が前記高温側電極に近接して接合されていることを特徴とする。
The thermoelectric conversion power generation device of the present invention includes a tube body in which a pipe line through which a heating fluid is flowed is formed,
A cooling unit disposed on an outer surface side of the tubular body, a plurality of high temperature side electrodes disposed on a surface of the tubular body, a plurality of low temperature side electrodes disposed on the cooling unit, and the high temperature side A thermoelectric conversion module having a thermoelectric conversion element that connects an electrode and a low-temperature side electrode in series, and thermoelectric conversion that generates electricity when a temperature difference is given to the thermoelectric conversion module by the tubular body and the cooling unit In the electric power generating apparatus, a low thermal expansion material having a thermal expansion coefficient smaller than that of the tubular body is joined to the region corresponding to at least the upstream side of the heated fluid on the surface of the tubular body, in proximity to the high temperature side electrode. It is characterized by being.

本発明では、管体内の管路に流される加熱流体によって管体が加熱され、その熱が熱電変換モジュールの内面側(管体側)に伝わって加熱される。一方、冷却部によって熱電変換モジュールの外面側が冷却され、これにより熱電変換モジュールに温度差が生じ、発電する。加熱流体は管体の管路を流れるにしたがって温度が低下していくため、管体は加熱流体の上流側の方が下流側よりも高熱であり、熱膨張による変形が生じやすい。本発明によれば、少なくとも上流側に対応する管体の表面に接合された低熱膨張材によって管体の熱膨張は効果的に抑制される。したがって管体から熱電変換素子にかかる応力が減少し、結果として熱電変換素子の破損が抑えられる。   In the present invention, the tubular body is heated by the heating fluid that flows through the conduit in the tubular body, and the heat is transferred to the inner surface side (the tubular body side) of the thermoelectric conversion module to be heated. On the other hand, the outer surface side of the thermoelectric conversion module is cooled by the cooling unit, thereby generating a temperature difference in the thermoelectric conversion module and generating power. Since the temperature of the heated fluid decreases as it flows through the pipe line of the tubular body, the upstream side of the heated fluid has higher heat than the downstream side, and deformation due to thermal expansion is likely to occur. According to the present invention, the thermal expansion of the tubular body is effectively suppressed by the low thermal expansion material joined to the surface of the tubular body corresponding to at least the upstream side. Therefore, the stress applied to the thermoelectric conversion element from the tube body is reduced, and as a result, breakage of the thermoelectric conversion element is suppressed.

本発明の低熱膨張材は、上記のように少なくとも加熱流体の上流側に対応する領域に配設されることを必須とするが、これに加えて、各前記高温側電極を囲繞する状態に低熱膨張材が配設されている形態を含む。これは低熱膨張材が1つ1つの高温側電極の周囲に接合された形態であり、管体における高温側電極の周囲部分の変形が抑えられるため、熱電変換素子への応力伝達を全周にわたって減少させることができる。このため、管体からの応力が熱電変換素子に対し偏ってかかることがなく、破損防止効果が向上する。   The low thermal expansion material of the present invention is required to be disposed at least in the region corresponding to the upstream side of the heating fluid as described above, but in addition to this, the low thermal expansion material is in a state of surrounding each of the high temperature electrodes. It includes a form in which an expansion material is disposed. This is a form in which a low thermal expansion material is bonded around each high temperature side electrode, and deformation of the peripheral portion of the high temperature side electrode in the tube is suppressed, so that stress transmission to the thermoelectric conversion element is performed over the entire circumference. Can be reduced. For this reason, the stress from a tubular body is not biased with respect to the thermoelectric conversion element, and the damage prevention effect improves.

また、本発明は、前記低熱膨張材は、複数の前記高温側電極の全てを囲繞する最外周部に配設されている形態を含む。この形態は複数の高温側電極の全体を囲繞して低熱膨張材が管体に接合された形態であり、全ての高温側電極への応力伝達が低熱膨張材で減少させることができる。なお、本発明では、管体に接合された全ての高温側電極を1つ1つ囲繞する状態に低熱膨張材が配設された形態をもっとも好ましい形態とする。   Moreover, this invention includes the form by which the said low thermal expansion material is arrange | positioned in the outermost periphery part which surrounds all the some said high temperature side electrodes. This form is a form in which the plurality of high temperature side electrodes are surrounded and the low thermal expansion material is joined to the tube, and the stress transmission to all the high temperature side electrodes can be reduced by the low thermal expansion material. In the present invention, a form in which the low thermal expansion material is disposed so as to surround all the high temperature side electrodes joined to the tubular body one by one is the most preferable form.

本発明によれば、低熱膨張材によって管体の熱膨張変形を抑制して熱電変換素子にかかる応力を減少させ、これにより熱電変換素子の破損を抑えることができるといった効果を奏する。   According to the present invention, it is possible to reduce the stress applied to the thermoelectric conversion element by suppressing the thermal expansion deformation of the tubular body with the low thermal expansion material, and thereby it is possible to suppress the breakage of the thermoelectric conversion element.

本発明の一実施形態に係る熱電変換式発電装置の全体斜視図である。1 is an overall perspective view of a thermoelectric conversion power generator according to an embodiment of the present invention. 図1のII方向矢視図である。It is an II directional arrow line view of FIG. 図2のIII−III断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 2. 図2のIV−IV断面図である。It is IV-IV sectional drawing of FIG. 同発電装置が備える密閉容器の筐体の構成を示す斜視図である。It is a perspective view which shows the structure of the housing | casing of the airtight container with which the same electric power generating apparatus is provided. 同発電装置が備える熱電変換モジュールを示す正面図である。It is a front view which shows the thermoelectric conversion module with which the same electric power generating apparatus is provided. 熱電変換モジュールの斜視図である。It is a perspective view of a thermoelectric conversion module. 熱電変換モジュールの分解斜視図である。It is a disassembled perspective view of a thermoelectric conversion module. 熱電変換モジュールの高温側電極の配列および一実施形態に係る低熱膨張材を示す平面図である。It is a top view which shows the arrangement | sequence of the high temperature side electrode of a thermoelectric conversion module, and the low thermal expansion material which concerns on one Embodiment. 高温側電極に対する低熱膨張材の配置パターンの他の実施形態を示す平面図である。It is a top view which shows other embodiment of the arrangement pattern of the low thermal expansion material with respect to a high temperature side electrode. 低熱膨張材の配置パターンのさらに他の実施形態を示す平面図である。It is a top view which shows other embodiment of the arrangement pattern of a low thermal expansion material.

以下、図面を参照して本発明の一実施形態を説明する。
[1]熱電変換式発電装置の構成
図1〜図4は、一実施形態の熱電変換式発電装置(以下、発電装置)1を示しており、図1は全体斜視図、図2は図1のII方向矢視図、図3、図4はそれぞれ図2のIII−III断面図、IV−IV断面図である。この発電装置1は全体が扁平な直方体状(図1、図3、図4でX方向が長手方向)に形成されており、水冷ジャケット(冷却部)3と、水冷ジャケット3内に収納された密閉容器2を備えている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[1] Configuration of Thermoelectric Conversion Power Generation Device FIGS. 1 to 4 show a thermoelectric conversion power generation device (hereinafter referred to as a power generation device) 1 according to an embodiment. FIG. 1 is an overall perspective view, and FIG. II direction view, FIG. 3 and FIG. 4 are a III-III sectional view and an IV-IV sectional view of FIG. 2, respectively. This power generator 1 is formed in a flat rectangular parallelepiped shape (the X direction is the longitudinal direction in FIGS. 1, 3, and 4), and is housed in a water cooling jacket (cooling portion) 3 and the water cooling jacket 3. A sealed container 2 is provided.

密閉容器2は、扁平管状の筐体20内の中央部に同じく扁平管状の管体25が収納された二重管構造を呈しており、筐体20と管体25との間の空間は減圧空間29とされ、この減圧空間29のX方向両端の開口が封止カバー26で気密的に閉塞されている。水冷ジャケット3は密閉容器2の外形にほぼ沿った扁平管状に形成されたもので、その内部に収納された密閉容器2は、開口側の両端部が水冷ジャケット3の両端開口から突出している。   The sealed container 2 has a double tube structure in which a flat tubular tube 25 is housed in the center of the flat tubular housing 20, and the space between the housing 20 and the tubular body 25 is decompressed. The opening at both ends in the X direction of the decompression space 29 is hermetically closed by the sealing cover 26. The water-cooling jacket 3 is formed in a flat tubular shape substantially along the outer shape of the sealed container 2, and the sealed container 2 housed therein has both end portions on the opening side projecting from both end openings of the water-cooled jacket 3.

筐体20は、図5に示すように、主体となる剛性部21と、剛性部21に接合される長方形状の薄板22とから構成されている。剛性部21は、長方形状の外枠板部211と外枠板部211内を長手方向(X方向)に分かれた長方形状の2つの孔213に仕切る内枠板部212とを有する一対の枠板210が、上下方向(Z方向)に間隔を空けて互いに平行に対面し、外枠板部211の長手方向に沿った端縁どうしが側板部215で連結され、長手方向の両端部に開口218を形成する開口管部217を有するものである。   As shown in FIG. 5, the housing 20 is composed of a rigid portion 21 as a main body and a rectangular thin plate 22 joined to the rigid portion 21. The rigid portion 21 includes a pair of frames having a rectangular outer frame plate portion 211 and an inner frame plate portion 212 that partitions the inside of the outer frame plate portion 211 into two rectangular holes 213 divided in the longitudinal direction (X direction). The plates 210 face each other in parallel in the vertical direction (Z direction), the edges along the longitudinal direction of the outer frame plate portion 211 are connected by the side plate portions 215, and open at both ends in the longitudinal direction. It has the opening pipe part 217 which forms 218. FIG.

薄板22は、可撓性を有する弾性変形可能な板材によって剛性部21の2つの孔213を覆う大きさの長方形状に形成されたものである。薄板22は、各枠板210の外面の孔213の周囲にろう付け等の接合手段で接合され、これにより2つの孔213は1枚の薄板22で塞がれている。薄板22の材料としては、SUS444等のステンレスあるいはアルミニウム等の耐熱性、耐酸化性を有する金属板が好ましく、その板厚は、例えば0.1mm程度のものが用いられる。   The thin plate 22 is formed in a rectangular shape having a size that covers the two holes 213 of the rigid portion 21 with a flexible elastically deformable plate material. The thin plate 22 is joined to the periphery of the hole 213 on the outer surface of each frame plate 210 by a joining means such as brazing, whereby the two holes 213 are closed by the single thin plate 22. The material of the thin plate 22 is preferably a metal plate having heat resistance and oxidation resistance, such as stainless steel or aluminum such as SUS444, and the thickness thereof is, for example, about 0.1 mm.

筐体20の内部に収納された管体25は、図3および図4に示すように、筐体20の上下の枠板210と平行な上下一対の平板な長方形状の主板部251の長手方向に沿った端縁どうしが筐体20の側板部215と平行な側板部252で連結されたもので、両端開口縁の外面が、筐体20の剛性部21の開口管部217の内面に、断面が内側にへこんだ断面U字状で全体としては長円状の封止カバー26を介して接合されている。   As shown in FIGS. 3 and 4, the tubular body 25 accommodated in the housing 20 is formed in a longitudinal direction of a pair of upper and lower flat rectangular main plate portions 251 parallel to the upper and lower frame plates 210 of the housing 20. Are connected by a side plate portion 252 parallel to the side plate portion 215 of the housing 20, and the outer surfaces of both end opening edges are on the inner surface of the opening tube portion 217 of the rigid portion 21 of the housing 20. The cross section is U-shaped with a concave inward, and is joined through an oval sealing cover 26 as a whole.

管体25の内部は、加熱流体H(図3および図4参照)が一方の開口から他方の開口へ向かって流される管路253として形成されており、この管路253には、加熱流体Hの熱を集熱して管体25に伝えるフィン7が配設されている。フィン7は、例えば板材を折り曲げ加工して波板状に形成したものなどが用いられる。フィン7および封止カバー26は、それぞれろう付け等の接合手段で剛性部21および流通管25に接合されている。   The inside of the pipe body 25 is formed as a pipe line 253 through which the heating fluid H (see FIGS. 3 and 4) flows from one opening toward the other opening. The fins 7 that collect and transfer the heat to the tube body 25 are disposed. For example, the fin 7 is formed by corrugating a plate material into a corrugated plate shape. The fins 7 and the sealing cover 26 are joined to the rigid portion 21 and the flow pipe 25 by joining means such as brazing, respectively.

密閉容器2を構成する筐体20の剛性部21、管体25、封止カバー26は、薄板22と同様の材料(SUS444等のステンレス、アルミニウム等の耐熱性、耐酸化性を有する金属)が用いられる。密閉容器2の、筐体20の薄板22と管体25の主板部251との間には、複数の熱電変換モジュール4がそれぞれ配設されている。   The rigid portion 21, the tube body 25, and the sealing cover 26 of the casing 20 constituting the sealed container 2 are made of the same material as the thin plate 22 (a metal having heat resistance and oxidation resistance such as stainless steel such as SUS444 and aluminum). Used. A plurality of thermoelectric conversion modules 4 are respectively disposed between the thin plate 22 of the casing 20 and the main plate portion 251 of the tubular body 25 of the sealed container 2.

熱電変換モジュール4は、図6および図7に示すように、平面状に並べられた複数の熱電変換素子41の、一方側の面および他方側の面を、長方形状の銅板等の金属薄板からなる電極42によりジグザグ状に直列に連結して構成されたもので、一方の面側の電極42が管体25の主板部251の外面にろう付け等の接合手段で接合されている。また、他方の面側の電極42は筐体20の薄板22の内面に対向し、薄板22と電極42との間には緩衝材5が挟まれて保持されている。薄板22と緩衝材5、および緩衝材5と電極42はいずれも接合されてはおらず、摺動可能に当接している。この場合、熱電変換モジュール4は、筐体20の1つの孔213を塞ぐ薄板22に対して1つが並列して組み込まれ、合計4つが装備されている。   As shown in FIGS. 6 and 7, the thermoelectric conversion module 4 has one surface and the other surface of a plurality of thermoelectric conversion elements 41 arranged in a plane formed from a thin metal plate such as a rectangular copper plate. The electrode 42 on one side is joined to the outer surface of the main plate portion 251 of the tubular body 25 by a joining means such as brazing. The electrode 42 on the other side faces the inner surface of the thin plate 22 of the housing 20, and the buffer material 5 is held between the thin plate 22 and the electrode 42. The thin plate 22 and the buffer material 5 and the buffer material 5 and the electrode 42 are not joined, but are in contact with each other so as to be slidable. In this case, one thermoelectric conversion module 4 is incorporated in parallel with the thin plate 22 that closes one hole 213 of the housing 20, and a total of four thermoelectric conversion modules 4 are equipped.

緩衝材5は可撓性を有するシート状のものが好適であり、例えば薄いカーボンシート等が用いられる。なお、本実施形態では薄板22と熱電変換モジュール4との間に緩衝材5を挟み込んでいるが、緩衝材5は必要に応じて用いられ、薄板22が熱電変換モジュール4に直接当接する形態も選択され得る。   The buffer material 5 is preferably a flexible sheet-like material such as a thin carbon sheet. In the present embodiment, the buffer material 5 is sandwiched between the thin plate 22 and the thermoelectric conversion module 4. However, the buffer material 5 is used as necessary, and the thin plate 22 directly contacts the thermoelectric conversion module 4. Can be selected.

熱電変換モジュール4を構成する熱電変換素子41は、耐熱温度が高い種類が用いられ、例えば、シリコン−ゲルマニウム系、マグネシウム−シリコン系、マンガン−シリコン系、珪化鉄系等が好適に用いられる。熱電変換モジュール4が収納された密閉容器2の減圧空間29は、剛性部21と薄板22とからなる筐体20、管体25および封止カバー26によって気密的に封止される。上記フィン7は、図4に示すように、熱電変換モジュール4に対応する領域の大きさを有し、フィン7の両側に熱電変換モジュール4が配設された状態となっている。   As the thermoelectric conversion element 41 constituting the thermoelectric conversion module 4, a type having a high heat-resistant temperature is used. For example, a silicon-germanium system, a magnesium-silicon system, a manganese-silicon system, an iron silicide system, or the like is preferably used. The decompression space 29 of the sealed container 2 in which the thermoelectric conversion module 4 is housed is hermetically sealed by a casing 20, a tubular body 25, and a sealing cover 26 that are formed of the rigid portion 21 and the thin plate 22. As shown in FIG. 4, the fin 7 has a size corresponding to the thermoelectric conversion module 4, and the thermoelectric conversion module 4 is disposed on both sides of the fin 7.

上記密閉容器2は、水冷ジャケット3内に収納されている。図3および図4に示すように、水冷ジャケット3は、両端の開口縁に形成された内側に屈曲する封止枠部31が、密閉容器2における剛性部21の外枠板部211の外面に、ろう付け等の手段で気密的に接合されている。水冷ジャケット3内の空間、すなわち剛性部21と水冷ジャケット3との間に形成される空間が、冷却水が供給されて薄板22を冷却するための冷却空間32となっている。水冷ジャケット3における筐体20の各側板部215に対応する箇所の中央部には、冷却水の導入出口33が設けられている。   The sealed container 2 is stored in a water-cooled jacket 3. As shown in FIGS. 3 and 4, the water-cooling jacket 3 has a sealing frame portion 31 that is bent inward and formed on the opening edges at both ends, on the outer surface of the outer frame plate portion 211 of the rigid portion 21 in the sealed container 2. And airtightly joined by means such as brazing. A space in the water cooling jacket 3, that is, a space formed between the rigid portion 21 and the water cooling jacket 3 is a cooling space 32 for cooling the thin plate 22 by supplying cooling water. A cooling water inlet / outlet 33 is provided at a central portion of the water cooling jacket 3 corresponding to each side plate portion 215 of the housing 20.

密閉容器2内には、合計4つの熱電変換モジュール4が収納されているが、これら熱電変換モジュール4は直列に接続されている。そして、図1〜図3で示す+・−の2本のリード線49から外部に電気が取り出される。リード線49は、密閉容器2の側板部215および水冷ジャケット3を貫通して外部に引き出され、側板部215および水冷ジャケット3のリード線貫通孔は気密的に塞ぐ処理がなされている。   A total of four thermoelectric conversion modules 4 are accommodated in the sealed container 2, and these thermoelectric conversion modules 4 are connected in series. Then, electricity is taken out from the two lead wires 49 of + • − shown in FIGS. The lead wire 49 passes through the side plate portion 215 and the water cooling jacket 3 of the sealed container 2 and is drawn to the outside, and the lead wire through hole of the side plate portion 215 and the water cooling jacket 3 is hermetically closed.

冷却空間32の熱電変換モジュール4に対応する箇所には、熱交換手段6が薄板22に接合されている。熱交換手段6は、冷却空間32に供給されて流れる冷却水が接触することで薄板22を放熱させて冷却を促進させるもので、薄板22の可撓性を妨げない状態で設けられている。   The heat exchange means 6 is joined to the thin plate 22 at a location corresponding to the thermoelectric conversion module 4 in the cooling space 32. The heat exchange means 6 is provided in a state in which the cooling of the thin plate 22 is not hindered by the cooling water supplied to the cooling space 32 being brought into contact to dissipate the thin plate 22 to promote cooling.

熱交換手段6は、薄板22の可撓性を妨げない柔軟性を有するフィン等の熱交換部材からなるものが挙げられる。また、硬いフィン等の熱交換部材であっても、複数の独立した熱交換部材が薄板22に対し点在的に接触して設けられて薄板22の可撓性を妨げないようになされていてもよい。   Examples of the heat exchanging means 6 include a heat exchanging member such as a fin having flexibility that does not hinder the flexibility of the thin plate 22. Moreover, even if it is a heat exchange member such as a hard fin, a plurality of independent heat exchange members are provided in contact with the thin plate 22 in a scattered manner so as not to hinder the flexibility of the thin plate 22. Also good.

上記密閉容器2は、所定箇所に形成された図示せぬ減圧封止口から減圧空間29の空気を吸引して減圧空間29を所定圧力(例えば1〜100Pa程度)に減圧し、減圧封止口を溶接するなどして気密的に封止した状態とされる。これにより密閉容器2においては、減圧空間29の圧力が外部の大気よりも低くなるという圧力差が生じ、この圧力差によって、筐体20の薄板22が熱電変換モジュール4側に加圧される力を受ける。   The sealed container 2 sucks air in the decompression space 29 from a decompression sealing port (not shown) formed at a predetermined location to decompress the decompression space 29 to a predetermined pressure (for example, about 1 to 100 Pa). Are hermetically sealed by welding or the like. As a result, in the sealed container 2, a pressure difference is generated in which the pressure in the decompression space 29 is lower than that in the outside atmosphere, and the force that pressurizes the thin plate 22 of the housing 20 toward the thermoelectric conversion module 4 due to the pressure difference. Receive.

[2]熱電変換モジュール
次に、熱電変換モジュール4を詳述する。
図8に示すように、熱電変換素子41は立方体状であり、等間隔をおいて格子状に配列されている。本実施形態では、縦列および横列が同数の正方形状に配列されている。これに対し電極42は、隣接する熱電変換素子41間に架け渡されて熱電変換素子41を接続すべく長方形状に形成されている。熱電変換素子41の外面側の電極42は、緩衝材5および薄板22を介して冷却空間32を流れる冷却水により冷却される。また、熱電変換素子41の内面側の電極42は流通管25内の加熱流路253を流れる加熱流体Hによって加熱される。以下、冷却される外面側の電極42を低温側電極42a、加熱される内面側の電極42を高温側電極42bとする。
[2] Thermoelectric Conversion Module Next, the thermoelectric conversion module 4 will be described in detail.
As shown in FIG. 8, the thermoelectric conversion elements 41 have a cubic shape and are arranged in a lattice at equal intervals. In the present embodiment, the columns and the rows are arranged in the same number of squares. On the other hand, the electrode 42 is formed in a rectangular shape so as to be bridged between adjacent thermoelectric conversion elements 41 and to connect the thermoelectric conversion elements 41. The electrode 42 on the outer surface side of the thermoelectric conversion element 41 is cooled by cooling water flowing through the cooling space 32 via the buffer material 5 and the thin plate 22. Further, the electrode 42 on the inner surface side of the thermoelectric conversion element 41 is heated by the heating fluid H flowing through the heating flow path 253 in the flow pipe 25. Hereinafter, the outer electrode 42 to be cooled is referred to as a low temperature electrode 42a, and the inner electrode 42 to be heated is referred to as a high temperature electrode 42b.

低温側電極42aおよび高温側電極42bは、いずれも加熱流体Hの流れ方向に沿った縦列および縦列に直交する横列を形成し、等間隔をおいて配列されている。低温側電極42aおよび高温側電極42bは、それぞれ熱電変換素子41の外面側および内面側に電気的に直列に接続されている。   The low temperature side electrode 42a and the high temperature side electrode 42b both form a column along the flow direction of the heating fluid H and a row orthogonal to the column, and are arranged at equal intervals. The low temperature side electrode 42a and the high temperature side electrode 42b are electrically connected in series to the outer surface side and the inner surface side of the thermoelectric conversion element 41, respectively.

本実施形態では、図8(c)に示すように、高温側電極42bは、全てが、その長手方向を加熱流体Hの流れ方向と平行な状態に配列されて主板部251に接合されている。そして、図9に示すように、加熱流体Hのもっとも上流側に並ぶ横1列の各高温側電極42bの周囲の主板部251の表面には、管体25よりも熱膨張係数の小さい低熱膨張材8が、ろう付け等の接合手段によって接合されている。管体25が上記SUS444ステンレス(熱膨張係数:約10.6×10−6/℃)やアルミニウム(熱膨張係数:約23×10−6/℃)であれば、低熱膨張材8は、例えばインバー(熱膨張係数:約1.2×10−6/℃)、モリブデン(熱膨張係数:約5.1×10−6/℃)、タングステン(熱膨張係数:約4.5×10−6/℃)といった金属が好適に用いられる。また、金属の他には、アルミナ等のセラミックを用いることができる。 In the present embodiment, as shown in FIG. 8C, all of the high temperature side electrodes 42b are arranged in a state in which the longitudinal direction thereof is parallel to the flow direction of the heating fluid H and joined to the main plate portion 251. . Then, as shown in FIG. 9, the surface of the main plate portion 251 around each of the high temperature side electrodes 42 b arranged in the horizontal line on the most upstream side of the heating fluid H has a low thermal expansion with a smaller thermal expansion coefficient than that of the tube body 25. The material 8 is joined by joining means such as brazing. If the pipe body 25 is the SUS444 stainless steel (thermal expansion coefficient: about 10.6 × 10 −6 / ° C.) or aluminum (thermal expansion coefficient: about 23 × 10 −6 / ° C.), the low thermal expansion material 8 is, for example, Invar (thermal expansion coefficient: about 1.2 × 10 −6 / ° C.), molybdenum (thermal expansion coefficient: about 5.1 × 10 −6 / ° C.), tungsten (thermal expansion coefficient: about 4.5 × 10 −6) A metal such as / ° C) is preferably used. In addition to metal, ceramics such as alumina can be used.

低熱膨張材8は、例えば厚さ0.1〜1mm程度に加工した薄板を管体25の主板部251の表面にろう付けして接合される。低熱膨張材8は、図9の斜線で示すように、もっとも上流側(図9で下側)に並ぶ1つ1つの高温側電極42bの全周を囲繞する状態に配設される。低熱膨張材8は、高温側電極42bと接触せず、高温側電極42bとの間に僅かな間隔が空くように配設される。   The low thermal expansion material 8 is joined by brazing a thin plate processed to a thickness of, for example, about 0.1 to 1 mm to the surface of the main plate portion 251 of the tube body 25. As shown by the oblique lines in FIG. 9, the low thermal expansion material 8 is disposed so as to surround the entire circumference of each high temperature side electrode 42b arranged on the most upstream side (lower side in FIG. 9). The low thermal expansion material 8 is disposed so as not to contact the high temperature side electrode 42b and to have a slight space between the high temperature side electrode 42b.

[3]発電装置の作用
上記構成からなる発電装置1では、管体25の管路253に、一方の開口から他方の開口に向けて高温の加熱流体Hを流して管体25を加熱する。また、水冷ジャケット3の一方の導入出口33から冷却水を冷却空間32に導入するとともに他方の導入出口33から冷却水を排出させ、冷却空間32に冷却水を充満させた状態で流すことにより密閉容器2の薄板22を冷却する。
[3] Action of power generator In power generator 1 having the above-described configuration, high-temperature heating fluid H is flowed from one opening to the other opening through pipe 253 of pipe 25 to heat pipe 25. In addition, the cooling water is introduced into the cooling space 32 from one introduction outlet 33 of the water cooling jacket 3, the cooling water is discharged from the other introduction outlet 33, and the cooling space 32 is filled with the cooling water to be sealed. The thin plate 22 of the container 2 is cooled.

管路253に流される加熱流体Hの熱は、管体25の対向する一対の主板部251を直接加熱し、また、フィン7によって集熱されて各主板部251に伝わり、主板部251の高温化が促進される。加熱された管体25の主板部251の熱は熱電変換モジュール4の内面側に伝わり、熱電変換モジュール4の内面側が加熱される。一方、薄板22は冷却水で冷却される熱交換手段6により冷却が促進される。冷却された薄板22の熱は熱電変換モジュール4の外面側に伝わり、熱電変換モジュール4の外面側が冷却される。これにより、熱電変換モジュール4の熱電変換素子41には、内面側が高温、外面側が低温というように温度差が与えられる。   The heat of the heating fluid H that flows through the pipe 253 directly heats the pair of opposing main plate portions 251 of the tube body 25, and is collected by the fins 7 and transmitted to each main plate portion 251, and the high temperature of the main plate portion 251. Is promoted. Heat of the main plate portion 251 of the heated tube body 25 is transmitted to the inner surface side of the thermoelectric conversion module 4, and the inner surface side of the thermoelectric conversion module 4 is heated. On the other hand, the cooling of the thin plate 22 is promoted by the heat exchange means 6 that is cooled by cooling water. The heat of the cooled thin plate 22 is transmitted to the outer surface side of the thermoelectric conversion module 4, and the outer surface side of the thermoelectric conversion module 4 is cooled. Thereby, a temperature difference is given to the thermoelectric conversion element 41 of the thermoelectric conversion module 4 so that the inner surface side is high temperature and the outer surface side is low temperature.

密閉容器2においては上記のように内部の減圧空間29が減圧されて外部と圧力差が生じることにより、筐体20の薄板22が熱電変換モジュール4側に加圧される。これにより、筐体20の薄板22が緩衝材5に加圧されて密着し、緩衝材5は熱電変換モジュール4側に加圧された状態で密着する。   In the hermetic container 2, the internal decompression space 29 is decompressed as described above to generate a pressure difference with the outside, whereby the thin plate 22 of the housing 20 is pressurized toward the thermoelectric conversion module 4. Thereby, the thin plate 22 of the housing | casing 20 is pressurized and closely_contact | adhered to the shock absorbing material 5, and the shock absorbing material 5 closely_contact | adheres in the state pressurized to the thermoelectric conversion module 4 side.

上記のようにして熱電変換モジュール4の外面側と内面側に温度差が与えられることで、熱電変換モジュール4は発電し、リード線49から電気が取り出される。管路253に流される加熱流体Hの熱はフィン7で集熱されて一対の主板部251に伝わり、主板部251の高温化が促進され発電効率が向上する。   As described above, a temperature difference is given between the outer surface side and the inner surface side of the thermoelectric conversion module 4, so that the thermoelectric conversion module 4 generates power and electricity is extracted from the lead wire 49. The heat of the heating fluid H that flows through the pipe 253 is collected by the fins 7 and transmitted to the pair of main plate portions 251, and the main plate portion 251 is heated to a high temperature and the power generation efficiency is improved.

本実施形態の発電装置1は、例えば工場やゴミ焼却炉で発生する排熱ガスや、自動車の排気ガスなどが、上記加熱流体Hとして利用される。   In the power generation apparatus 1 of this embodiment, for example, exhaust heat gas generated in a factory or a garbage incinerator, automobile exhaust gas, or the like is used as the heating fluid H.

[4]一実施形態の作用効果
上記実施形態の発電装置1においては、管体25は加熱流体Hで加熱されるため熱膨張により変形が生じる。特に、管体25は加熱流体Hの上流側(H1側)の方が下流側(H2側)よりも高熱であり、熱膨張による変形が生じやすい。しかしながら本実施形態では、上流側に対応する管体25の表面に接合された高温側電極42bの周囲に低熱膨張材8が接合されているため、この低熱膨張材8によって管体25の上流側の熱膨張は効果的に抑制される。したがって管体25から上流側の熱電変換素子41にかかる応力が減少し、結果として熱電変換素子41の破損が抑えられる。
[4] Effects of One Embodiment In the power generation apparatus 1 according to the above-described embodiment, since the tube body 25 is heated by the heating fluid H, deformation occurs due to thermal expansion. In particular, the tube body 25 has higher heat on the upstream side (H1 side) of the heated fluid H than on the downstream side (H2 side), and deformation due to thermal expansion is likely to occur. However, in this embodiment, the low thermal expansion material 8 is joined around the high temperature side electrode 42b joined to the surface of the tubular body 25 corresponding to the upstream side. The thermal expansion of is effectively suppressed. Therefore, the stress applied to the thermoelectric conversion element 41 on the upstream side from the tube body 25 is reduced, and as a result, damage to the thermoelectric conversion element 41 is suppressed.

上記実施形態のように、各高温側電極42bを囲繞する状態に低熱膨張材8を配設すると、管体25の主板部251における高温側電極42bの周囲部分の変形が抑えられるため、熱電変換素子41への応力伝達を高温側電極42bの全周にわたって減少させることができる。このため、主板部251からの応力が熱電変換素子41に対し偏ってかかることがなく、破損防止効果が向上する。   When the low thermal expansion material 8 is disposed so as to surround each high temperature side electrode 42b as in the above embodiment, deformation of the peripheral portion of the high temperature side electrode 42b in the main plate portion 251 of the tube body 25 is suppressed, so that thermoelectric conversion is performed. Stress transmission to the element 41 can be reduced over the entire circumference of the high temperature side electrode 42b. For this reason, the stress from the main plate portion 251 is not biased with respect to the thermoelectric conversion element 41, and the damage prevention effect is improved.

本発明では、低熱膨張材8を少なくとも加熱流体Hの上流側に対応する領域に配設することを必須とするものであり、低熱膨張材8の配置パターンは上記実施形態に限定されない。   In the present invention, it is essential to dispose the low thermal expansion material 8 at least in a region corresponding to the upstream side of the heating fluid H, and the arrangement pattern of the low thermal expansion material 8 is not limited to the above embodiment.

例えば、図10に示すように、高温側電極42bの全てを囲繞する最外周部の四辺に低熱膨張材8を配設する形態が挙げられる。この場合、加熱流体Hのもっとも上流側に並ぶ横1列の各高温側電極42bの、上流側の端縁に沿った最外周部の一辺に沿って低熱膨張材8が接合されており、さらに他の最外周部の三辺に沿って低熱膨張材8が連結され、全体として矩形状に形成されている。このように複数の高温側電極42bの全体を囲繞して低熱膨張材8を管体25の表面に接合すると、管体25からの全ての高温側電極42bへの応力伝達を低熱膨張材8で減少させることができる。   For example, as shown in FIG. 10, the form which arrange | positions the low thermal expansion material 8 to four sides of the outermost peripheral part which surrounds all the high temperature side electrodes 42b is mentioned. In this case, the low thermal expansion material 8 is joined along one side of the outermost peripheral portion along the upstream edge of each of the high temperature side electrodes 42b in the horizontal row aligned in the most upstream side of the heating fluid H. The low thermal expansion material 8 is connected along the other three sides of the outermost peripheral portion, and is formed in a rectangular shape as a whole. As described above, when the plurality of high temperature side electrodes 42b are surrounded and the low thermal expansion material 8 is joined to the surface of the tubular body 25, the stress transmission from the tubular body 25 to all the high temperature side electrodes 42b is performed by the low thermal expansion material 8. Can be reduced.

また、図11に示すように、管体25に接合された全ての高温側電極42bを1つ1つ囲繞する状態に低熱膨張材8を配設する形態は、管体25の膨張が強く抑制され、本発明の効果が顕著に発揮されるもっとも好ましい形態である。   Moreover, as shown in FIG. 11, the form which arrange | positions the low thermal expansion material 8 in the state which surrounds all the high temperature side electrodes 42b joined to the pipe body 25 one by one suppresses expansion | swelling of the pipe body 25 strongly. Therefore, this is the most preferable mode in which the effects of the present invention are remarkably exhibited.

1…熱電変換式発電装置
25…管体
253…管路
3…水冷ジャケット(冷却部)
4…熱電変換モジュール
41…熱電変換素子
42a…低温側電極
42b…高温側電極
8…低熱膨張材
H…加熱流体
DESCRIPTION OF SYMBOLS 1 ... Thermoelectric conversion type generator 25 ... Pipe body 253 ... Pipe line 3 ... Water cooling jacket (cooling part)
DESCRIPTION OF SYMBOLS 4 ... Thermoelectric conversion module 41 ... Thermoelectric conversion element 42a ... Low temperature side electrode 42b ... High temperature side electrode 8 ... Low thermal expansion material H ... Heating fluid

Claims (3)

内部に加熱流体が流される管路が形成された管体と、
前記管体の外面側に配設される冷却部と、
前記管体の表面に配設される複数の高温側電極と、前記冷却部に配設される複数の低温側電極と、これら高温側電極と低温側電極とを直列に接続する熱電変換素子とを有する熱電変換モジュールと、を備え、
前記管体と前記冷却部とによって前記熱電変換モジュールに温度差が与えられることで発電する熱電変換式発電装置において、
前記管体の表面の、少なくとも前記加熱流体の上流側に対応する領域に、該管体よりも熱膨張係数の小さい低熱膨張材が前記高温側電極に近接して接合されていること
を特徴とする熱電変換式発電装置。
A pipe body in which a pipe line through which a heated fluid flows is formed;
A cooling unit disposed on the outer surface side of the tubular body;
A plurality of high temperature side electrodes disposed on the surface of the tubular body, a plurality of low temperature side electrodes disposed in the cooling section, and a thermoelectric conversion element connecting the high temperature side electrodes and the low temperature side electrodes in series. A thermoelectric conversion module having
In the thermoelectric conversion power generation device that generates power by giving a temperature difference to the thermoelectric conversion module by the tube and the cooling unit,
A low thermal expansion material having a coefficient of thermal expansion smaller than that of the tubular body is bonded to an area corresponding to at least the upstream side of the heating fluid on the surface of the tubular body, in proximity to the high temperature side electrode. A thermoelectric power generator.
前記低熱膨張材は、各前記高温側電極を囲繞する状態に配設されていることを特徴とする請求項1に記載の熱電変換式発電装置。   The thermoelectric conversion power generator according to claim 1, wherein the low thermal expansion material is disposed so as to surround each of the high temperature side electrodes. 前記低熱膨張材は、複数の前記高温側電極の全てを囲繞する最外周部に配設されていることを特徴とする請求項1に記載の熱電変換式発電装置。   The thermoelectric conversion power generator according to claim 1, wherein the low thermal expansion material is disposed on an outermost peripheral portion surrounding all of the plurality of high temperature side electrodes.
JP2014007749A 2014-01-20 2014-01-20 Thermoelectric conversion power generator Abandoned JP2015138793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014007749A JP2015138793A (en) 2014-01-20 2014-01-20 Thermoelectric conversion power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014007749A JP2015138793A (en) 2014-01-20 2014-01-20 Thermoelectric conversion power generator

Publications (1)

Publication Number Publication Date
JP2015138793A true JP2015138793A (en) 2015-07-30

Family

ID=53769626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014007749A Abandoned JP2015138793A (en) 2014-01-20 2014-01-20 Thermoelectric conversion power generator

Country Status (1)

Country Link
JP (1) JP2015138793A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017093148A (en) * 2015-11-10 2017-05-25 株式会社東芝 Environmental power generation apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017093148A (en) * 2015-11-10 2017-05-25 株式会社東芝 Environmental power generation apparatus

Similar Documents

Publication Publication Date Title
JP6078412B2 (en) Thermoelectric power generator
JP6081583B2 (en) Thermoelectric module, heat exchanger, exhaust system and internal combustion engine
US20150280097A1 (en) Thermoelectric conversion generating device
US20130327369A1 (en) Thermoelectric system with mechanically compliant element
JP2007165560A (en) Waste heat generator
US10777725B2 (en) Thermoelectric generator
JP2016025271A (en) Thermoelectric conversion device
JP2015138793A (en) Thermoelectric conversion power generator
JP2014075551A (en) Thermoelectric generator
JP2004088057A (en) Thermoelectric module
JP6039346B2 (en) Thermoelectric power generator
JP2015138790A (en) Thermoelectric conversion power generator
JP6002623B2 (en) Thermoelectric conversion module
JP6039347B2 (en) Thermoelectric power generator
JP2015138792A (en) Thermoelectric conversion power generator
JP2014212167A (en) Thermoelectric conversion type power generator
JP6358209B2 (en) Thermoelectric generator
JP2015135928A (en) Thermoelectric conversion power generator
KR102150308B1 (en) Thermoelectric power generating module
JP2017063091A (en) Thermoelectric conversion system
JP5988827B2 (en) Thermoelectric conversion module
JP5972743B2 (en) Thermoelectric power generator
JP5919013B2 (en) Thermoelectric converter
JP6376511B2 (en) Thermoelectric converter
JP2015138794A (en) Thermoelectric conversion type power generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161011

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20170531