JP2016010292A - Power demand suppression control device - Google Patents

Power demand suppression control device Download PDF

Info

Publication number
JP2016010292A
JP2016010292A JP2014131321A JP2014131321A JP2016010292A JP 2016010292 A JP2016010292 A JP 2016010292A JP 2014131321 A JP2014131321 A JP 2014131321A JP 2014131321 A JP2014131321 A JP 2014131321A JP 2016010292 A JP2016010292 A JP 2016010292A
Authority
JP
Japan
Prior art keywords
power
power demand
control device
suppression control
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014131321A
Other languages
Japanese (ja)
Other versions
JP6415872B2 (en
Inventor
匡 嶋田
Tadashi Shimada
匡 嶋田
英明 永野
Hideaki Nagano
英明 永野
孝昭 千代谷
Takaaki Chiyotani
孝昭 千代谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Power Solutions Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Power Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Power Solutions Co Ltd filed Critical Hitachi Ltd
Priority to JP2014131321A priority Critical patent/JP6415872B2/en
Publication of JP2016010292A publication Critical patent/JP2016010292A/en
Application granted granted Critical
Publication of JP6415872B2 publication Critical patent/JP6415872B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power demand suppression control device capable of surely suppressing power consumption within contract power even for a user who uses a storage battery of which the power storage capacity is not sufficient and for whom control of electric equipment cannot be introduced, and taking properties of a prime mover generator and the storage battery into account.SOLUTION: A power demand suppression control device is configured to suppress power which is received from a commercial system to the user within a predetermined time, within target power. The user includes the prime mover generator and the storage battery. The power demand suppression control device includes: a power demand monitoring and calculating section for calculating predictive demand power within the predetermined time from a result value of received power acquired by a result value measuring section on the basis of target power at the user; and an output command value calculating section for determining an output command value ratio to the prime mover generator and the storage battery on the basis of a control target value which is calculated on the basis of an excessive amount in the case where the predictive demand power exceeds the target power. The storage battery partially charges power in the case where the prime mover generator is activated.

Description

本発明は、需要家における電力需要抑制制御装置に係り、特に原動発電機と蓄電池を有する需要家における電力需要抑制制御装置に関する。   The present invention relates to a power demand suppression control apparatus for a consumer, and more particularly to a power demand suppression control apparatus for a consumer having a prime mover and a storage battery.

従来のエネルギーシステムは、大規模な発電所等で発電した電力を各需要家(住宅、ビル、工場等)が購入、使用するシステムであった。   The conventional energy system is a system in which each customer (house, building, factory, etc.) purchases and uses the electric power generated at a large-scale power plant.

しかし、近年では、エネルギー利用の効率化や省コスト化、災害時対応、エネルギー系統の安定化などのニーズから、需要家が自然エネルギーや蓄電池、小型の発電機等を導入し、自家発電として利用する事例が多くなってきており、エネルギーシステムは分散型電力の組合せによるマイクログリッド構造へと変化しつつある。分散型電力導入における需要家の目的としては、省エネ・省コスト、BCP(事業継続計画)対応、エネルギー供給の安定化等が挙げられる。   However, in recent years, customers have introduced natural energy, storage batteries, small generators, etc. for use as private power generation due to needs such as efficiency and cost saving of energy use, disaster response, and stabilization of the energy system. The energy system is changing to a microgrid structure with a combination of distributed power. The objectives of consumers in the introduction of distributed power include energy saving and cost saving, BCP (Business Continuity Plan) response, and stabilization of energy supply.

上記目的のうち、需要家における省エネ・省コスト達成の具体的な対応策として、電力需要抑制制御がある。需要家が支払う電気料金は、電力会社が計測している30分毎の需要電力のうち、過去1年間で最大のものを基準として決定される。そのため需要家側においてその支払う電気料金を抑制するためには、最大電力需要を下げる必要がある。   Among the above-mentioned purposes, there is power demand suppression control as a specific countermeasure for achieving energy saving and cost saving in the consumer. The electricity bill paid by the consumer is determined based on the highest one in the past one year among the 30 minute demand electricity measured by the electric power company. Therefore, it is necessary to reduce the maximum power demand in order to suppress the electricity bill paid on the consumer side.

この目的のために需要家が採用可能な策としては、分散型エネルギー源の導入がある。これにより、商用系統の代わりに分散型エネルギー源から自己使用エネルギーを供給し、最大電力需要を下げることが可能となる。また電力需要が増大した場合に、各分散型エネルギー源の出力制御、または各電気機器の遮断等により需要を必要量へと抑制することで、最大電力需要を抑制することができる。   One approach that customers can adopt for this purpose is the introduction of distributed energy sources. Thereby, it becomes possible to supply self-use energy from a distributed energy source instead of a commercial system, and to reduce the maximum power demand. Further, when the power demand increases, the maximum power demand can be suppressed by suppressing the demand to a necessary amount by controlling the output of each distributed energy source or shutting off each electric device.

また需要家が採用可能な他の策としては、蓄電池の使用がある。電力需要が増大した場合に蓄電池から放電させ負荷である電気機器に給電することで電力系統からの入力電力を契約電力以下に抑制する。なお電力需要に余裕がある場合に蓄電池を充電しておく。   Another measure that can be adopted by consumers is the use of storage batteries. When the power demand increases, the input power from the power system is suppressed below the contract power by discharging the storage battery and supplying power to the electrical equipment as a load. In addition, when there is a margin in power demand, the storage battery is charged.

具体的に蓄電池を適用した電力需要抑制制御の方法として特許文献1には、蓄電容量が十分でない蓄電池の使用や、電力需要制御において即時性が担保されない制御手段を使用した場合でも、電力使用量を契約電力内に抑制できる電力管理方法が開示されている。   As a method of power demand suppression control that specifically applies a storage battery, Patent Document 1 discloses the use of power even when using a storage battery with insufficient storage capacity or using control means that does not guarantee immediacy in power demand control. Has been disclosed.

さらに特許文献1以外にも、蓄電池から放電させて電気機器に給電することにより商用電力系統からの入力電力を契約電力以下に抑制し、あるいは電気機器の遮断制御や消費電力の低減制御を行う電力供給システムが従来から提案されている。   Furthermore, in addition to Patent Document 1, electric power for controlling the input power from the commercial power system to be less than or equal to the contracted power by discharging from the storage battery and supplying power to the electrical equipment, or for controlling the electrical equipment to be cut off or reduced in power consumption. Supply systems have been proposed in the past.

特開2012−95424号公報JP 2012-95424 A

以上述べたように、需要家に分散型エネルギー源を導入し、さらには蓄電池を導入して蓄電池との組み合わせ運用を図ることは、電力需要家における電力需要抑制制御に有効である。   As described above, introducing a distributed energy source to a consumer, and further introducing a storage battery to perform combined operation with the storage battery is effective for power demand suppression control in the power consumer.

然しながら電力需要抑制制御について、蓄電池の残量が低下した段階で電力需要抑制制御を開始した場合、蓄電池の残量がなくなる前に電力使用量を抑制しなければならないため、電力需要抑制制御に比較的長時間を要する制御手段では対応できない可能性がある。また、制御対象となる電気機器は空調などが挙げられるが、実施した制御により需要家の快適性が損なわれる可能性がある。また、インターフェイスの問題などから電気機器制御を導入できない需要家も存在する。   However, with regard to power demand suppression control, when power demand suppression control is started when the remaining amount of storage battery has fallen, power consumption must be suppressed before the remaining amount of storage battery runs out. It may not be possible to use a control means that requires a long time. Moreover, although the electric equipment used as a control object includes an air conditioning etc., the comfort of a consumer may be impaired by the implemented control. There are also customers who cannot introduce electrical equipment control due to interface problems.

本発明は上記課題に鑑みて為されたものであり、原動発電機と蓄電池により電力需要を抑制する。その目的とするところは蓄電容量が十分でない蓄電池を使用し、電気機器の制御を導入できない需要家においても電力使用量を契約電力内に確実に抑制でき、上記原動発電機と蓄電池の特性を考慮した電力需要抑制制御装置を提供することにある。   This invention is made | formed in view of the said subject, and suppresses electric power demand with a motor generator and a storage battery. The purpose is to use a storage battery with insufficient storage capacity, and even for customers who cannot introduce control of electrical equipment, the power consumption can be reliably controlled within the contract power, taking into account the characteristics of the above power generator and storage battery. An object of the present invention is to provide an electric power demand suppression control device.

上記課題を解決するために本発明の電力需要抑制制御装置は、需要家における商用系統からの所定時間内受電電力を目標電力内に抑制するための電力需要抑制制御装置であって、需要家は原動発電機と蓄電池を備え、電力需要抑制制御装置は需要家における目標電力に基づいて、実績値計測部より取得した受電電力の実績値から所定時間内の予測需要電力を算出する電力需要監視演算部と、予測需要電力が目標電力を超過するときの超過量に基づいて算出された制御目標値に基づき原動発電機と蓄電池への出力指令値割合を決定する出力指令値演算部とを有し、蓄電池は原動発電機起動時の電力を分担することを特徴とする。   In order to solve the above-described problem, the power demand suppression control device of the present invention is a power demand suppression control device for suppressing the received power within a predetermined time from the commercial system in the consumer within the target power, A power demand monitoring calculation unit that includes a power generator and a storage battery, and that calculates a predicted demand power within a predetermined time from the actual value of the received power acquired from the actual value measurement unit based on the target power at the consumer And an output command value calculation unit that determines the output command value ratio to the power generator and the storage battery based on the control target value calculated based on the excess amount when the predicted demand power exceeds the target power The storage battery is characterized by sharing the electric power when starting the prime mover.

本発明によれば、原動発電機と蓄電池による分散型エネルギーネットワークを有する需要家において、ユーザが要求する目標電力に対して、計測した受電電力の実績値から、30分の需要電力を予測し、目標電力の超過が予測される場合に、各電力の特徴を考慮した適切な出力指令を出すことで、目標電力の超過を防止することができる。   According to the present invention, in a consumer having a distributed energy network with a prime mover and a storage battery, the target power required by the user is predicted from the measured value of the received power, and the demand power of 30 minutes is predicted. When it is predicted that the target power will be exceeded, it is possible to prevent the target power from being exceeded by issuing an appropriate output command in consideration of the characteristics of each power.

エネルギーネットワークと電力需要抑制制御装置に係るシステム構成を示す図。The figure which shows the system configuration | structure which concerns on an energy network and an electric power demand suppression control apparatus. 電力需要監視演算部106の処理フローを示す図。The figure which shows the processing flow of the electric power demand monitoring calculating part 106. FIG. 受電電力量上限値超過判定の考え方の一例を示す図。The figure which shows an example of the way of thinking of receiving power amount upper limit excess determination. 電力需要対策の時系列的な処理の流れを説明するための図。The figure for demonstrating the flow of a time-sequential process of an electric power demand countermeasure. 消費電力平均値上限値超過判定の考え方を示す図。The figure which shows the way of thinking of power consumption average value upper limit excess determination. 過去1分の消費電力平均値が上限値を超過した場合を示す図。The figure which shows the case where the power consumption average value for the past one minute exceeds an upper limit. 制御目標値増加時の原動発電機と蓄電池の出力分担の考え方を示す図。The figure which shows the view of the output sharing of a motor generator and a storage battery at the time of control target value increase. 制御目標値増加時の原動発電機と蓄電池の出力分担の考え方を示す図。The figure which shows the view of the output sharing of a motor generator and a storage battery at the time of control target value increase. 蓄電池を回復充電させるための考え方を示した図。The figure which showed the idea for carrying out recovery charge of the storage battery.

本発明が適用されるエネルギーネットワークでは、エネルギー供給設備として商用電力以外に需要家側に設置された原動発電機(例えばガスエンジン発電機)、蓄電池等を有し、電力需要設備として照明、空調設備等を有する需要家電力系統を構成する。またこのために需要家側に設置される電力需要抑制制御装置では、電力需要が増加した時間帯において商用電力の使用を抑制するため、発電機と蓄電池に出力指令を送り、制御する機能を備える。以下、本発明の実施例について、図面を用いて詳細に説明する。   The energy network to which the present invention is applied has a power generator (for example, a gas engine generator), a storage battery, and the like installed on the consumer side as an energy supply facility, and lighting and air conditioning facilities as a power demand facility. Etc. are configured. For this purpose, the power demand suppression control device installed on the consumer side has a function to send and control output commands to the generator and the storage battery in order to suppress the use of commercial power in the time zone when the power demand increases. . Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1はエネルギーネットワークNWの全体構成と、電力需要抑制制御装置CNの処理内容を概略的に示している。   FIG. 1 schematically shows the overall configuration of the energy network NW and the processing contents of the power demand suppression control device CN.

このうちまずエネルギーネットワークNWは、商用電力101と原動発電機(以下ガスエンジン発電機を採用する事例について説明する)103と蓄電池104と需要家設備102で構成されており、需要家設備102は商用電力101とガスエンジン発電機103と蓄電池104から電力の供給を受けている。このエネルギーネットワークNWにおいて、需要家設備102は自己が消費する30分単位での商用電力101が制限値を超えないように運用され、制限値を超えることが予想されるときには、ガスエンジン発電機103あるいは蓄電池104から電力の供給を受ける。   First of all, the energy network NW includes a commercial power 101, a power generator (hereinafter, a case where a gas engine generator is used) 103, a storage battery 104, and a customer facility 102. Power is supplied from the power 101, the gas engine generator 103, and the storage battery 104. In this energy network NW, the customer facility 102 is operated such that the commercial power 101 consumed by itself for 30 minutes does not exceed the limit value, and when it is expected to exceed the limit value, the gas engine generator 103 Alternatively, power is supplied from the storage battery 104.

これに対し、30分単位での電力監視制御を行う電力需要抑制制御装置CNは例えば計算機で構成され、その内部機能として実績値計測部105、電力需要監視演算部106、制御指令値算出部107、出力指令部108を有している。   On the other hand, the power demand suppression control device CN that performs power monitoring control in units of 30 minutes is constituted by, for example, a computer, and the actual value measuring unit 105, the power demand monitoring calculating unit 106, and the control command value calculating unit 107 as its internal functions. The output command unit 108 is provided.

このうち実績値計測部105では、商用電力101からの電力供給量、蓄電池104の充放電量、ガスエンジン発電機103の発電量を取得している。   Of these, the actual value measurement unit 105 acquires the power supply amount from the commercial power 101, the charge / discharge amount of the storage battery 104, and the power generation amount of the gas engine generator 103.

取得したこれらの実績値に基づき電力需要監視演算部106は、30分単位での商用電力101からの受電電力予測値を演算する。30分単位で演算した予測値が、予め設定した目標電力を超過することが予測される場合、超過量をガスエンジン発電機103や蓄電池104から負担して商用電力101からの受電電力を目標電力以内に抑制すべく、超過量相当の制御目標電力を算出する。   Based on the acquired actual values, the power demand monitoring calculation unit 106 calculates a predicted received power value from the commercial power 101 in units of 30 minutes. When the predicted value calculated in units of 30 minutes is predicted to exceed the preset target power, the excess power is paid from the gas engine generator 103 or the storage battery 104 to receive the received power from the commercial power 101 as the target power. The control target power corresponding to the excess amount is calculated so as to be suppressed within the range.

制御指令値割合演算部107では、電力需要監視演算部106が算出した制御目標電力に基づき、各電力(ガスエンジン発電機103や蓄電池104)への出力指令値割合を決定する。そして、出力指令部108により蓄電池104、ガスエンジン発電機103に指令する。   The control command value ratio calculation unit 107 determines an output command value ratio to each power (the gas engine generator 103 and the storage battery 104) based on the control target power calculated by the power demand monitoring calculation unit 106. Then, the output command unit 108 commands the storage battery 104 and the gas engine generator 103.

図2は電力需要監視演算部106の処理フローを示す図である。この処理フローでは、30分単位での受電電力予測演算並びにガスエンジン発電機103や蓄電池104を用いた電力支援(以下電力需要対策という)のための処理を所定周期で実行する。   FIG. 2 is a diagram illustrating a processing flow of the power demand monitoring calculation unit 106. In this processing flow, received power prediction calculation in units of 30 minutes and processing for power support (hereinafter referred to as power demand countermeasures) using the gas engine generator 103 and the storage battery 104 are executed at a predetermined cycle.

図2の処理は、要するに今回の処理周期において、電力需要対策を実施するか(処理ステップS210)、実施しないか(処理ステップS211)のいずれかを定めたものである。また電力需要対策を実施する場合には、その制御の大きさを定めたものである。当該処理フローの論理による電力需要対策実施(処理ステップS210)の要件Rは4種類であり、電力需要対策不実施(処理ステップS211)の要件Qは2種類である。   In short, the process of FIG. 2 determines whether the power demand countermeasure is to be implemented (processing step S210) or not (processing step S211) in the current processing cycle. In addition, when implementing power demand measures, the size of the control is determined. There are four types of requirements R for power demand countermeasure implementation (processing step S210) based on the logic of the processing flow, and there are two types of requirements Q for non-power demand countermeasure implementation (processing step S211).

電力需要対策実施の1番目の要件R1は、前回周期では電力需要対策不実施(処理ステップS200のN)であるが、受電電力量上限値を超過(処理ステップS201のY)するときである。図2にはこのルートがR1で示されている。   The first requirement R1 for implementing the power demand countermeasure is when the power demand countermeasure is not implemented in the previous cycle (N in processing step S200) but exceeds the upper limit value of received power (Y in processing step S201). In FIG. 2, this route is indicated by R1.

電力需要対策実施の2番目の要件R2は、前回周期では電力需要対策不実施(処理ステップS200のN)であり、かつ今回周期で受電電力量上限値を超過していない(処理ステップS201のN)が、消費電力平均値が上限値超過(処理ステップS203AのY)するときである。図2にはこのルートがR2で示されている。   The second requirement R2 for implementing the power demand countermeasure is that the power demand countermeasure is not implemented in the previous cycle (N in processing step S200), and the received power amount upper limit value is not exceeded in this cycle (N in processing step S201). ) Is when the average power consumption exceeds the upper limit (Y in process step S203A). In FIG. 2, this route is indicated by R2.

電力需要対策実施の3番目の要件R3は、前回周期では電力需要対策実施(処理ステップS200のY)であり、かつ今回電力需要対策を継続して実施(処理ステップS206のY)すべきときである。図2にはこのルートがR3で示されている。   The third requirement R3 for implementing the power demand countermeasure is when the power demand countermeasure has been implemented in the previous cycle (Y in processing step S200), and this power demand countermeasure should be continuously implemented (Y in processing step S206). is there. In FIG. 2, this route is indicated by R3.

電力需要対策実施の4番目の要件R4は、前回周期では電力需要対策実施(処理ステップS200のY)であり、かつ今回電力需要対策を継続して実施しない(処理ステップS206のN)が、消費電力平均値が上限値超過(処理ステップS203BのY)するときである。図2にはこのルートがR4で示されている。   The fourth requirement R4 for implementing the power demand countermeasure is the power demand countermeasure implementation in the previous cycle (Y in processing step S200), and the current power demand countermeasure is not continuously implemented (N in processing step S206). This is when the power average value exceeds the upper limit value (Y in process step S203B). In FIG. 2, this route is indicated by R4.

これらの電力需要対策実施の4つの要件のうち、R1、R2は今回周期から新たに電力需要対策を実施開始するときの条件を規定したものである。これに対し、R3、R4は前回周期での電力需要対策に引き続いて今回周期でも電力需要対策を実施する継続実施の条件を規定したものである。   Among these four requirements for implementing power demand countermeasures, R1 and R2 define conditions for starting a new power demand countermeasure from the current cycle. On the other hand, R3 and R4 define conditions for continuous execution for implementing the power demand countermeasure in the current cycle following the power demand countermeasure in the previous cycle.

またこの判断ロジックによれば、時間累積値である受電電力量をその上限値と比較して電力需要対策実施を決定するもの(処理ステップS201)と、時間平均値である消費電力平均値をその上限値と比較して電力需要対策実施を決定するもの(処理ステップS203)とがある。つまり、累積と平均の双方から超過を判定している。   Further, according to this determination logic, the amount of received power as a time cumulative value is compared with the upper limit value to determine the implementation of power demand countermeasures (processing step S201), and the average power consumption value as a time average value is Some of them determine the implementation of power demand countermeasures compared to the upper limit (processing step S203). That is, excess is determined from both cumulative and average.

これに対し電力需要対策不実施の要件Qの1番目の要件Q1は、前回周期では電力需要対策実施(処理ステップS200のY)であるが、今回電力需要対策を継続して実施しない(処理ステップS206のN)し、かつ消費電力平均値が上限値を超過しない(処理ステップS203BのN)ときである。図2にはこのルートがQ1で示されている。   On the other hand, the first requirement Q1 of the requirement Q for non-implementation of power demand measures is implementation of power demand measures in the previous cycle (Y in processing step S200), but does not continue to implement power demand measures this time (processing step). N in S206, and the average power consumption does not exceed the upper limit (N in processing step S203B). In FIG. 2, this route is indicated by Q1.

また電力需要対策不実施の要件Qの2番目の要件Q2は、前回周期では電力需要対策不実施(処理ステップS200のY)であり、今回周期で受電電力量上限値を超過していない(処理ステップS201のN)し、かつ消費電力平均値が上限値を超過していない(処理ステップS203AのN)ときである。図2にはこのルートがQ2で示されている。   The second requirement Q2 of the requirement Q for non-implementation of power demand measures is the non-implementation of power demand measures in the previous cycle (Y in processing step S200), and the received power amount upper limit value is not exceeded in this cycle (processing) N in step S201) and the average power consumption does not exceed the upper limit (N in processing step S203A). In FIG. 2, this route is indicated by Q2.

これらの電力需要対策不実施の2つの要件のうち、Q1は今回周期から新たに電力需要対策不実施とするときの条件を規定したものである。これに対し、Q2は前回周期での電力需要対策不実施に引き続いて今回周期でも電力需要対策不実施を継続実施する条件を規定したものである。この場合にも累積と平均の双方から不実施を判定している。   Of these two requirements for non-implementation of power demand countermeasures, Q1 defines a condition for newly unimplementing power demand countermeasures from the current cycle. On the other hand, Q2 defines a condition for continuing to implement the non-implementation of power demand measures in the current cycle following the non-implementation of power demand measures in the previous cycle. In this case as well, non-working is determined from both cumulative and average.

図2における電力需要対策可否の判断は、30分時点における電力予測値を用いて行うことが可能であり、その実現手法は種々の方式が採用可能であるが、その一例を示すと以下のようである。実施例では、例えば図3の特性L1、L2を想定し、基本的には電力の上限を定めたL1を超過するときに電力需要対策すべき方向と判断し、電力の下限を定めたL2以下である時電力需要対策を停止すべき方向と判断している。なお図2の処理は、電力の累積値から判断する事例を示している。なお平均値から判断する事例は別途図5を用いて説明する。   The determination of whether or not the power demand countermeasure is possible in FIG. 2 can be performed using the predicted power value at 30 minutes, and various methods can be adopted as a method for realizing it. It is. In the embodiment, for example, assuming the characteristics L1 and L2 of FIG. 3, basically, it is determined that the power demand countermeasure should be taken when exceeding the L1 that defines the upper limit of power, and the lower limit of L2 that defines the lower limit of power At that time, it is judged that power demand measures should be stopped. Note that the process of FIG. 2 shows a case where the determination is made from the accumulated value of power. An example of judging from the average value will be described separately with reference to FIG.

図3において、横軸は時間であり、30分ごとの電力需要監視期間(時刻0分から30分まで)を表している。縦軸は、電力[kW]あるいは電力量[kWh]であり、左側軸に電力、右側軸に電力量を示している。ここでは、30分後の電力が契約電力DW[kW]を超過させないために、実際の管理上の電力としては契約電力目標余裕度d1[kW]を含む目標電力制限値DS[kW]を設定している。目標電力制限値DS[kW]は、目標電力制限値DS[kW]から契約電力目標余裕度d1[kW]を差し引いた値として低めに設定されている。   In FIG. 3, the horizontal axis represents time, and represents a power demand monitoring period (from time 0 to 30 minutes) every 30 minutes. The vertical axis represents power [kW] or power [kWh], with the left axis indicating power and the right axis indicating power. Here, in order that the power after 30 minutes does not exceed the contract power DW [kW], the target power limit value DS [kW] including the contract power target margin d1 [kW] is set as the actual management power. doing. The target power limit value DS [kW] is set lower as a value obtained by subtracting the contract power target margin d1 [kW] from the target power limit value DS [kW].

上記の契約電力DW[kW]および目標電力制限値DS[kW]は、横軸の30分時点における監視上の値であり、これに対し監視開始時点(横軸の0分の時点)において制御開始余裕度d2[kW]を設定する。そのうえで、開始時点の電力が制御開始余裕度d2[kW]であって30分後に目標電力制限値DS[kW]となる直線状の、従って時間関数で表される受電電力上限値dWhU(t)[kW]を設定する。受電電力上限値dWhU(t)[kW]は、この時間期間内の任意時刻における電力の上限値を意味しており、時間tの関数である。受電電力上限値dWhU(t)[kW]は(1)式で表現される。
[数1]
dWhU(t)=(DS−d2)×t÷1800+d2 (1)
受電電力上限値dWhU(t)[kW]は、図3において直線L1で表記された右肩上がりの直線である。
The contract power DW [kW] and the target power limit value DS [kW] are monitoring values at 30 minutes on the horizontal axis, and are controlled at the monitoring start time (time 0 minutes on the horizontal axis). A start margin d2 [kW] is set. In addition, the received power upper limit value dWhU (t) in a linear form, which is the control start margin d2 [kW] and becomes the target power limit value DS [kW] after 30 minutes, and thus represented by a time function. Set [kW]. The received power upper limit value dWhU (t) [kW] means an upper limit value of power at an arbitrary time within this time period, and is a function of time t. The received power upper limit dWhU (t) [kW] is expressed by equation (1).
[Equation 1]
dWhU (t) = (DS−d2) × t ÷ 1800 + d2 (1)
The received power upper limit dWhU (t) [kW] is a straight line that rises to the right and is represented by the straight line L1 in FIG.

これに対し、検知された実際の電力が(1)式の受電電力上限値dWhU(t)[kW]を超過することがある。図3の時刻t1における電力(現在時刻受電電力量積算値DJ(t1)[kWh])は、この時刻における受電電力上限値dWhU(t1)[kW]を超過している。この状態が継続すれば30分後の電力超過が想定される。   On the other hand, the detected actual power may exceed the received power upper limit dWhU (t) [kW] of the equation (1). The power at the time t1 in FIG. 3 (current time received power integrated value DJ (t1) [kWh]) exceeds the received power upper limit dWhU (t1) [kW] at this time. If this state continues, an excess of power after 30 minutes is assumed.

図2の受電電力量上限値超過判定処理ステップS201においては、図3の受電電力上限値dWhU(t)[kW]を(1)式の実行により算出している。そのうえで、現在時刻における受電電力量DJ(t)と比較し、あるいは30分時点の電力を予測演算して将来の電力超過を判定している。この超過判定手法としては種々の考えのものが利用可能であるが、その一例を示すと(2)式のようである。ΔDが所定値より大きいとき電力超過と判定する。
[数2]
ΔD=2×DJ(t)−dWhU(t) (2)
上記(1)(2)式の処理による受電電力量上限値超過判定は処理ステップS201において実行されるが、これに対し、開始した電力需要対策を停止する条件を定めておく必要がある。この停止時期を定めるのが電力需要対策継続判定処理ステップS206である。
In the received power amount upper limit excess determination processing step S201 in FIG. 2, the received power upper limit value dWhU (t) [kW] in FIG. 3 is calculated by executing the equation (1). After that, it is compared with the received power amount DJ (t) at the current time, or the power at 30 minutes is predicted and calculated to determine the future power excess. Although various ideas can be used as this excess determination method, an example thereof is shown by equation (2). When ΔD is larger than a predetermined value, it is determined that the power is excessive.
[Equation 2]
ΔD = 2 × DJ (t) −dWhU (t) (2)
The received power amount upper limit excess determination by the processing of the above formulas (1) and (2) is executed in processing step S201. On the other hand, it is necessary to define a condition for stopping the started power demand countermeasure. This stop time is determined in the power demand countermeasure continuation determination processing step S206.

処理ステップS206の処理の考え方の一例を図3で説明する。ここでは、先の受電電力上限値dWhU(t)[kW]に加えて、受電電力量電力需要対策終了値dWhUL(t)[kW]を設定する。受電電力量電力需要対策終了値dWhUL(t)[kW]は、受電電力上限値dWhU(t)[kW]よりも低い値として設定される。   An example of the concept of the processing in processing step S206 will be described with reference to FIG. Here, in addition to the previous received power upper limit value dWhU (t) [kW], the received power amount power demand measure end value dWhUL (t) [kW] is set. The received power amount power demand countermeasure end value dWhUL (t) [kW] is set as a value lower than the received power upper limit value dWhU (t) [kW].

受電電力量電力需要対策終了値dWhUL(t)[kW]は、開始時点の電力が0[kW]であって30分後に目標電力制限値DS−d0[kW]となる直線状の、従って時間関数で表される。受電電力量電力需要対策終了値dWhUL(t)[kW]は、例えば(3)式で表現される。
[数3]
dWhUL(t)=MIN((DS−d0)×t÷1800)、((DS−d2)×t÷1800+d2−d0)) (3)
受電電力量電力需要対策終了値dWhUL(t)[kW]は、図3において直線L2で表記された右肩上がりの直線である。
The received power amount power demand measure end value dWhUL (t) [kW] is a linear shape in which the power at the start time is 0 [kW] and becomes the target power limit value DS-d0 [kW] after 30 minutes, and thus the time. Expressed as a function. The received power amount power demand countermeasure end value dWhUL (t) [kW] is expressed by, for example, equation (3).
[Equation 3]
dWhUL (t) = MIN ((DS−d0) × t ÷ 1800), ((DS−d2) × t ÷ 1800 + d2−d0)) (3)
The received power consumption power demand countermeasure end value dWhUL (t) [kW] is a straight line that rises to the right in the form of a straight line L2 in FIG.

処理ステップS206における処理の前提は、前回周期の状況において既に電力需要対策を実施していることであり、処理ステップS206ではこの電力需要対策を今回の周期でも継続して実施するか否かを判断する。   The premise of the processing in the processing step S206 is that the power demand countermeasure has already been implemented in the state of the previous cycle, and in the processing step S206, it is determined whether or not to continue the power demand countermeasure in the current cycle. To do.

この判断の考え方を図4で時系列的な処理の流れとして説明すると、まず現在時刻受電電力量積算値DJ(t)[kWh]が、時刻t1において受電電力上限値dWhU(t)[kW]を超過してガスエンジン発電機103や蓄電池104からの電力応援を受けた。その結果、その後に現在時刻受電電力量積算値DJ(t)[kWh]が時刻t2において受電電力上限値dWhU(t)[kW]を下回り、さらには時刻t3において受電電力量電力需要対策終了値dWhUL(t)[kW]をも下回るまでに低下した。係る状態では30分の時刻での超過の恐れは少ないと考えられるので電力支援を終了するというものである。   The concept of this determination will be described as a time-series processing flow in FIG. 4. First, the current time received power amount integrated value DJ (t) [kWh] is the received power upper limit value dWhU (t) [kW] at time t1. The power support from the gas engine generator 103 and the storage battery 104 was received. As a result, the current time received power integrated value DJ (t) [kWh] is lower than the received power upper limit dWhU (t) [kW] at time t2, and further, the received power amount power demand measure end value at time t3. It decreased to below dWhUL (t) [kW]. In such a state, it is considered that there is little risk of excess at the time of 30 minutes, so the power support is terminated.

図2の電力需要対策継続判定処理ステップS206においては、図3の受電電力量電力需要対策終了値dWhUL(t)[kW]を(3)式の実行により算出している。そのうえで、現在時刻における受電電力量DJ(t)と比較し、あるいは30分時点の電力を予測演算して将来の電力超過を判定している。この超過判定手法としては種々の考えのものが利用可能であるが、その一例を示すと(4)式のようである。この式において、現在時刻における受電電力量DJ(t)とdWhUL(t)との偏差がΔDL[kW]であり、この値に応じて継続終了を判定する。ΔDLが所定値より大きいとき電力超過の継続終了と判定する。
[数4]
ΔDL=2×DJ(t)−dWhUL(t) (4)
以上、受電電力量上限値超過判定処理ステップS201と、電力需要対策継続判定処理ステップS206の考え方について図3を用いて説明した。これらの判断は、時間累積値である電力量から実施したものである。これに対し、処理ステップS203A、S203Bは平均値に基づいた判断を行っている。処理ステップS203A、S203Bは基本的に同じ処理内容のものであり、この考え方について図5、図6を用いて説明する。
In the power demand countermeasure continuation determination processing step S206 in FIG. 2, the received power amount power demand countermeasure end value dWhUL (t) [kW] in FIG. 3 is calculated by executing the expression (3). After that, it is compared with the received power amount DJ (t) at the current time, or the power at 30 minutes is predicted and calculated to determine the future power excess. Although various ideas can be used as this excess determination method, an example thereof is shown by equation (4). In this equation, the deviation between the received power amount DJ (t) and dWhUL (t) at the current time is ΔDL [kW], and the end of continuation is determined according to this value. When ΔDL is larger than a predetermined value, it is determined that the continuation of excess power has been completed.
[Equation 4]
ΔDL = 2 × DJ (t) −dWhUL (t) (4)
The concept of the received power amount upper limit excess determination processing step S201 and the power demand countermeasure continuation determination processing step S206 has been described above with reference to FIG. These determinations are made from the amount of power that is a cumulative value over time. In contrast, processing steps S203A and S203B make a determination based on the average value. Processing steps S203A and S203B basically have the same processing contents, and this concept will be described with reference to FIGS.

図5、図6において現在時刻をtとすると、時刻0分から時刻tまでの間の消費電力の累積実績が受電電力量DJ(t)として示されている。さらに受電電力量DJ(t)について1分ごとの平均値を求めた現在時刻受電電力量平均値がdJ(t)[kW]として示されている。但し図5では、現在時刻受電電力量平均値dJ(t)[kW]を30倍した値(逆に言えば契約電力DW[kW]、目標電力制限値DS[kW]を1/30した値)として表示しており、これにより契約電力DW[kW]、目標電力制限値DS[kW]との比較で現状が理解しやすい形に工夫して表記されている。この等価表記によれば時刻tの時の平均値で運用したときには、30分後に契約電力DW[kW]、目標電力制限値DS[kW]を大幅に上回ることが図5の図示上から容易に視認可能である。   In FIG. 5 and FIG. 6, when the current time is t, a cumulative performance of power consumption from time 0 minutes to time t is shown as received power amount DJ (t). Further, the average value of the received power amount at the current time for which the average value per minute for the received power amount DJ (t) is obtained is shown as dJ (t) [kW]. However, in FIG. 5, a value obtained by multiplying the current received power average value dJ (t) [kW] by 30 (conversely, the contract power DW [kW] and the target power limit value DS [kW] are 1/30). ), Which is devised in a form that makes it easy to understand the current state by comparing with the contract power DW [kW] and the target power limit value DS [kW]. According to this equivalent notation, when operating at the average value at time t, it is easy to easily exceed the contract power DW [kW] and the target power limit value DS [kW] after 30 minutes from the illustration of FIG. Visible.

なお以下の説明において、契約電力をDW[kW]、目標電力制限値をDS[kW]、制御余裕度をd0[kW]、契約電力目標余裕度をd1[kW]、制御開始余裕度をd2[kW]、現在時刻受電電力量積算値をDJ(t)[kWh]、現在時刻受電電力量平均値をdJ(t)[kW]、現在時刻ガスエンジン発電出力平均値をdG(t)[kW]、現在時刻蓄電池出力平均値をdB(t)[kW]、現在時刻消費電力平均値をdC(t)[kW]、制御目標値dSvwk[kW]とする。   In the following description, the contract power is DW [kW], the target power limit value is DS [kW], the control margin is d0 [kW], the contract power target margin is d1 [kW], and the control start margin is d2. [KW], current time received power integrated value DJ (t) [kWh], current time received power average value dJ (t) [kW], current time gas engine power generation output average value dG (t) [ kW], the current time storage battery output average value is dB (t) [kW], the current time power consumption average value is dC (t) [kW], and the control target value dSvwk [kW].

図5の平均値管理では、目標電力制限値DS[kW]を基準とする。(5)式では目標電力制限値DS[kW]を用いて、受電電力量上限値dWhU1[kW]を設定する。この式は30分(1800秒)を秒単位で表示した式であり、1分(60秒)ごとの平均値で管理することから、この式は図5の縦軸を1/30した式ということができる。これにより図4の等価表記を実現している。
[数5]
dWhU1=(DS×t÷1800) (5)
(5)式はあくまでも平均目標値であり、1分ごとの受電電力平均値が常に平均目標値に合致すればよいが、実際には偏差を生じるのが常である。このため、30分内の現在時刻までの状況では平均電力に対してこれを超過し、あるいは平均電力に対してこれに不足している。従って、監視制御の観点からは、平均目標値を監視の基準とするのではなく、前半の状態に応じて後半の基準値を変更するのが好ましい。図5では時刻tまでの前半に余裕電力を生じているのであれば、この分を後半の監視の際の目標値変更に反映さすべきことを示している。
In the average value management of FIG. 5, the target power limit value DS [kW] is used as a reference. In equation (5), the received power amount upper limit value dWhU1 [kW] is set using the target power limit value DS [kW]. This formula is a formula that displays 30 minutes (1800 seconds) in units of seconds, and is managed by an average value every 1 minute (60 seconds), so this formula is called a formula that is 1/30 of the vertical axis of FIG. be able to. Thereby, the equivalent notation of FIG. 4 is realized.
[Equation 5]
dWhU1 = (DS × t ÷ 1800) (5)
Equation (5) is merely an average target value, and it is sufficient that the received power average value per minute always matches the average target value, but in reality, a deviation is usually generated. For this reason, the situation up to the current time within 30 minutes exceeds the average power, or is insufficient for the average power. Therefore, from the viewpoint of monitoring control, it is preferable not to use the average target value as a monitoring reference, but to change the latter reference value in accordance with the first half state. FIG. 5 shows that if surplus power is generated in the first half until time t, this amount should be reflected in the target value change in the second half of the monitoring.

以上のことから実施例では、前半における受電電力余裕値dWM[kW]を(6)式により定めたものである。さらに(7)式は、後半の監視のために受電電力余裕値dWM[kW]を目標値変更(増加)に反映させ、後半の受電電力上限値dWU(t)[kW]としたものである。これにより、30分電力需要の演算開始から現在までの消費電力が小さい場合に、受電電力上限値(過去1分の消費電力)に加算し、不要な電力需要対策判定を防止するものである。なお(7)式においてGは適宜に設定可能である。
[数6]
ΔdWM=((dWhU1(t)−2×DJ(t))×3600/(1800−t))/2 (6)
[数7]
dWU(t)=MAX(((−G1)×t÷1800)+dS+d0+G1+ΔdWM、(DS+d0)) (7)
消費電力平均値上限値超過処理ステップS203では、消費電力平均値上限値目標を均一目標値ではなく時間変化目標値として定める。そのうえで検知した消費電力平均値と比較して超過判定を行う。図5において、(6)(7)式の考え方を採用して設定された消費電力平均値上限値目標は時間経過とともに減少する目標特性L3とされる。
From the above, in the embodiment, the received power margin value dWM [kW] in the first half is determined by the equation (6). Further, the expression (7) reflects the received power margin value dWM [kW] in the target value change (increase) for the latter half of the monitoring and sets the received power upper limit dWU (t) [kW] in the latter half. . As a result, when the power consumption from the calculation start of the 30-minute power demand to the present is small, it is added to the received power upper limit value (power consumption for the past one minute) to prevent unnecessary power demand countermeasure determination. In equation (7), G can be set as appropriate.
[Equation 6]
ΔdWM = ((dWhU1 (t) −2 × DJ (t)) × 3600 / (1800−t)) / 2 (6)
[Equation 7]
dWU (t) = MAX (((− G1) × t ÷ 1800) + dS + d0 + G1 + ΔdWM, (DS + d0)) (7)
In the power consumption average value upper limit excess processing step S203, the power consumption average value upper limit target is determined not as a uniform target value but as a time change target value. Then, an excess determination is made by comparing with the detected average power consumption. In FIG. 5, the power consumption average upper limit target set by adopting the concept of equations (6) and (7) is a target characteristic L3 that decreases with time.

以上、処理ステップS201、S203、S206の処理内容について説明した。これにより、電力超過と判断されると、処理ステップS202あるいは処理ステップS204に至る。処理ステップS202では電力実績値を基準として制御目標値を算出し、処理ステップS204では消費電力実績値を基準として制御目標値を算出する。   The processing contents of the processing steps S201, S203, and S206 have been described above. As a result, when it is determined that the power is exceeded, the processing step S202 or the processing step S204 is reached. In process step S202, a control target value is calculated based on the actual power value, and in process step S204, a control target value is calculated based on the actual power consumption value.

具体的には、受電電力上限値超過判定処理ステップS201において超過判定となった場合と、電力需要対策継続判定処理ステップS206において継続判定となった場合には、(8)(9)式で制御目標値dSv1を定める。(8)式は、受電電力の30分電力需要の予測値と、目標電力を比較し、偏差を算出しており、(9)式は、(8)式で算出された偏差ΔdW[kW]に基づき、算出する制御目標値dSv1を求めている。なお(8)式においてdC(t)は、現在時刻消費電力平均値である。
[数8]
制御目標値の算出:ΔdW[kW]
ΔdW=2×DJ(t)+(dC(t)×(1800−t)÷1800)−DS (8)
[数9]
dSv1=ΔdW×1800÷(1800−t) (9)
また制御目標値算出処理ステップS203では、現在時刻消費電力平均値dC(t)と、(7)式の後半の受電電力上限値dWU(t)[kW]とから、上限値超偏差dSv2[kW]を(10)式により求めている。
[数10]
dSv2=dC(t)−dWU(t) (10)
図6は、過去1分の消費電力平均値が上限値を超過した場合を示しており、この時の超過量(上限値超偏差)がdSv2である。
Specifically, in the case where an excess determination is made in the received power upper limit excess determination processing step S201 and in the case where a continuation determination is made in the power demand countermeasure continuation determination processing step S206, the control is performed by the equations (8) and (9). A target value dSv1 is determined. The equation (8) compares the predicted value of the 30-minute power demand of the received power with the target power, and calculates the deviation. The equation (9) is the deviation ΔdW [kW] calculated by the equation (8). Based on the above, the control target value dSv1 to be calculated is obtained. In equation (8), dC (t) is the current time power consumption average value.
[Equation 8]
Calculation of control target value: ΔdW [kW]
ΔdW = 2 × DJ (t) + (dC (t) × (1800−t) ÷ 1800) −DS (8)
[Equation 9]
dSv1 = ΔdW × 1800 ÷ (1800−t) (9)
Further, in the control target value calculation processing step S203, the upper limit value excess deviation dSv2 [kW] is calculated from the current time average power consumption value dC (t) and the received power upper limit value dWU (t) [kW] in the latter half of the equation (7). ] Is obtained from the equation (10).
[Equation 10]
dSv2 = dC (t) −dWU (t) (10)
FIG. 6 shows a case where the average power consumption for the past one minute exceeds the upper limit value, and the excess amount at this time (upper limit upper deviation) is dSv2.

制御目標値算出処理ステップ(消費電力基準)S204において、(11)式により最終的な制御目標値dSvwk[kW]を決定する。
[数11]
dSvwk=MAX(dSv1、dSv2) (11)
なお図2において、処理ステップS205では出力上限超過の確認を行い、超過する場合には処理ステップS208においてその旨の警報を行う。また処理ステップS209では電力需要対策を停止するために、従前の電力需要対策時に使用していた制御目標値をリセットする。
In a control target value calculation processing step (power consumption reference) S204, a final control target value dSvwk [kW] is determined by the equation (11).
[Equation 11]
dSvwk = MAX (dSv1, dSv2) (11)
In FIG. 2, it is confirmed in process step S205 that the output upper limit has been exceeded, and if it exceeds, a warning to that effect is given in process step S208. In process step S209, in order to stop the power demand countermeasure, the control target value used in the previous power demand countermeasure is reset.

図7、図8は制御指令値割合算出部107の演算概要を説明するための図である。まず図7において、Gはガスエンジン発電機103出力の時間経緯を示しており、時刻t以前には出力G1を与えていたものが、電力需要監視演算部106において算出された制御目標値の増大に伴う出力分担増加を受けてその最大出力Gmまでの急速増加を指示されている。しかし、ガスエンジン発電機103は起動開始から定格出力到達まで制御指令値に対して出力応答遅れが生じる。このため時刻tからt1までの期間Tでは、変化率が制限された傾きでの出力増加とならざるを得ない。   FIG. 7 and FIG. 8 are diagrams for explaining the calculation outline of the control command value ratio calculation unit 107. First, in FIG. 7, G indicates the time history of the output of the gas engine generator 103, and the output G1 given before the time t is the increase in the control target value calculated by the power demand monitoring calculation unit 106. In response to the increase in the output sharing accompanying this, a rapid increase to the maximum output Gm is instructed. However, the gas engine generator 103 has an output response delay with respect to the control command value from the start of startup until the rated output is reached. For this reason, in the period T from the time t to the time t1, the output must increase with a slope with a limited change rate.

これに対しCは蓄電池104出力の時間経緯を示しており、時刻t以前には出力0であったものが、電力需要監視演算部106において算出された制御目標値の増大に伴う出力分担増加を受けてその最大出力Cmまでの急速増加を実現している。この結果、ガスエンジン発電機103出力と蓄電池104出力の合計出力は、極力制御目標値の増大に沿ったものとすることが可能である。但し、蓄電池104は最大出力での持続時間が制限されているので、適宜のタイミングt2で、低減運転(出力C1)に移行している。   On the other hand, C shows the time course of the output of the storage battery 104, and the output that was 0 before the time t increased the output sharing with the increase of the control target value calculated by the power demand monitoring calculation unit 106. In response, a rapid increase to its maximum output Cm is realized. As a result, the total output of the output of the gas engine generator 103 and the output of the storage battery 104 can be set along the increase of the control target value as much as possible. However, since the storage battery 104 has a limited duration at the maximum output, it shifts to a reduction operation (output C1) at an appropriate timing t2.

係る制御を実現すべく、電力需要抑制制御装置CNでは、電力需要監視演算部106において算出された制御目標値に基づき、まずガスエンジンへの出力指令を行う。そのため、制御目標値に対してガスエンジン発電機103の現在出力値dGs(t)として実績値計測部105によって取得した値に差が有る場合、蓄電池Cの放電により出力補助を行う。蓄電池の出力値は(12)式で算出する。ここで蓄電池出力予定値をBMPとする。
[数12]
BMP=dSvwk−dGs(t) (11)
図7は蓄電池Cが、その容量をフルに使用して最大電力を与える場合を示しており、図8は制御目標値の増加分が少なく、基本的にガスエンジン発電機103の出力増加で増分を賄うことができるので、蓄電池としては過渡的な電力支援で済む場合を示している。
In order to realize such control, the power demand suppression control device CN first issues an output command to the gas engine based on the control target value calculated by the power demand monitoring calculation unit 106. Therefore, when there is a difference in the value acquired by the actual value measurement unit 105 as the current output value dGs (t) of the gas engine generator 103 with respect to the control target value, output assistance is performed by discharging the storage battery C. The output value of the storage battery is calculated by equation (12). Here, the planned output value of the storage battery is BMP.
[Equation 12]
BMP = dSvwk-dGs (t) (11)
FIG. 7 shows a case where the storage battery C uses its capacity fully to give the maximum power, and FIG. 8 shows that the increase in the control target value is small and basically increases as the output of the gas engine generator 103 increases. This shows the case where a transitional power support is sufficient for a storage battery.

以上の説明における蓄電池の役割は、過渡的な出力増加指令に対するガスエンジン発電機103の追従遅れの部分を補完したものであり、主に放電側での利用とされている。このため、緊急出力動員に備えて、事前に充電を完了しておく必要がある。   The role of the storage battery in the above description is to complement the follow-up delay of the gas engine generator 103 with respect to the transient output increase command, and is mainly used on the discharge side. For this reason, it is necessary to complete charging in advance for emergency output mobilization.

図9は蓄電池104を回復充電させるための考え方を示した図である。図では横軸に時間を取り、縦軸に蓄電池のSOCの推移を示しており、期間TR1、TR2、TR3がSOC回復充電期間である。ここでは、電力需要抑制が不要で、通常運転時、かつSOC値が充電開始SOCに満たないときに蓄電池のSOC回復充電を行う。SOCが充電終了SOCに達したときにSOC回復充電を終了する。   FIG. 9 is a diagram illustrating a concept for recovering and charging the storage battery 104. In the figure, time is taken on the horizontal axis, and the transition of the SOC of the storage battery is shown on the vertical axis, and periods TR1, TR2, and TR3 are SOC recovery charging periods. Here, power demand suppression is unnecessary, and during normal operation and when the SOC value is less than the charge start SOC, the SOC recovery charge of the storage battery is performed. When the SOC reaches the charge end SOC, the SOC recovery charge is ended.

本発明によれば蓄電池104は、ガスエンジン発電機103における起動過渡時の電力不足を賄うべく運用されている。蓄電池は充放電の一方向のみの継続運転には適さないが、過渡的な即時運用には適しているのでガスエンジン発電機103との組み合わせにより需要家における電力使用量を契約電力内に確実に抑制することに貢献できる。   According to the present invention, the storage battery 104 is operated so as to cover the power shortage during the startup transition in the gas engine generator 103. The storage battery is not suitable for continuous operation in only one direction of charging / discharging, but is suitable for transient immediate operation, so it can be used in combination with the gas engine generator 103 to ensure that the amount of power consumed by the customer is within the contract power. Can contribute to suppression.

101:商用電力
102:需要家設備
103:ガスエンジン発電機
104:蓄電池
105:実績値計測部
106:電力需要監視演算部
107:制御指令値演算部
S201:受電電力量上限値超過処理ステップ
S202:制御目標値算出(電力積算値基準)処理ステップ
S203:消費電力平均値上限値超過処理ステップ
S204:制御目標値算出(消費電力基準)処理ステップ
S205:出力上限超過処理ステップ
S206:電力需要対策継続判定処理ステップ
101: Commercial power 102: Customer facility 103: Gas engine generator 104: Storage battery 105: Actual value measuring unit 106: Power demand monitoring calculation unit 107: Control command value calculation unit S201: Received power amount upper limit excess processing step S202: Control target value calculation (power integrated value reference) processing step S203: Power consumption average value upper limit excess processing step S204: Control target value calculation (power consumption reference) processing step S205: Output upper limit excess processing step S206: Electricity demand countermeasure continuation determination Processing steps

Claims (10)

需要家における商用系統からの所定時間内受電電力を目標電力内に抑制するための電力需要抑制制御装置であって、
前記需要家は原動発電機と蓄電池を備え、電力需要抑制制御装置は前記需要家における目標電力に基づいて、実績値計測部より取得した受電電力の実績値から前記所定時間内の予測需要電力を算出する電力需要監視演算部と、予測需要電力が前記目標電力を超過するときの超過量に基づいて算出された制御目標値に基づき前記原動発電機と蓄電池への出力指令値割合を決定する出力指令値演算部とを有し、前記蓄電池は前記原動発電機起動時の電力を分担することを特徴とする電力需要抑制制御装置。
It is a power demand suppression control device for suppressing received power within a predetermined time from a commercial system in a consumer within target power,
The consumer includes a power generator and a storage battery, and the power demand suppression control device calculates the predicted demand power within the predetermined time from the actual value of the received power acquired from the actual value measurement unit based on the target power in the consumer. An output for determining the output command value ratio to the prime mover and storage battery based on the control target value calculated based on the excess amount when the predicted demand power exceeds the target power A power demand suppression control device, comprising: a command value calculation unit, wherein the storage battery shares power when starting the prime mover.
請求項1記載の電力需要抑制制御装置であって、
前記蓄電池は、前記制御目標値と前記原動発電機出力の差分を分担すべく制御されることを特徴とする電力需要抑制制御装置。
The power demand suppression control device according to claim 1,
The power demand suppression control device, wherein the storage battery is controlled to share a difference between the control target value and the power generator output.
請求項1または請求項2記載の電力需要抑制制御装置であって、
予測需要電力が前記目標電力を超過するときの超過量を、前記所定時間の演算周期開始からの経過時間における積算電力値とその閾値の差分、及び過去における平均消費電力とその閾値の差分により求めることを特徴とする電力需要抑制制御装置。
The power demand suppression control device according to claim 1 or 2,
The excess amount when the predicted demand power exceeds the target power is obtained from the difference between the integrated power value and the threshold value in the elapsed time from the start of the calculation period of the predetermined time, and the average power consumption in the past and the difference between the threshold values. A power demand control apparatus characterized by that.
請求項1から請求項3のいずれか1項に記載の電力需要抑制制御装置であって、
前記原動発電機と蓄電池を用いた電力需要対策の実行可否を判断することを特徴とする電力需要抑制制御装置。
A power demand suppression control device according to any one of claims 1 to 3,
A power demand suppression control device that determines whether or not to execute a power demand measure using the prime mover and a storage battery.
請求項4に記載の電力需要抑制制御装置であって、
前記電力需要対策の実行可否判断は所定周期で実行され、前回周期では電力需要対策不実施であるが、今回受電電力量がその上限値を超過したことを持って、前記原動発電機と蓄電池を用いた電力需要対策の実行可とすることを特徴とする電力需要抑制制御装置。
The power demand suppression control device according to claim 4,
The determination as to whether or not the power demand countermeasure can be executed is performed in a predetermined cycle, and the power demand countermeasure is not performed in the previous cycle, but the power generator and the storage battery are connected with the fact that the received power amount has exceeded the upper limit value this time. A power demand suppression control device characterized in that the power demand countermeasure used can be executed.
請求項4に記載の電力需要抑制制御装置であって、
前記電力需要対策の実行可否判断は所定周期で実行され、前回周期では電力需要対策不実施であり、かつ今回周期で受電電力量がその上限値を超過していないが、消費電力平均値がその上限値を超過したことを持って、前記原動発電機と蓄電池を用いた電力需要対策の実行可とすることを特徴とする電力需要抑制制御装置。
The power demand suppression control device according to claim 4,
The determination as to whether or not the power demand measure can be executed is performed in a predetermined cycle, the power demand measure is not performed in the previous cycle, and the received power amount does not exceed the upper limit value in the current cycle, but the average power consumption value is A power demand suppression control device that enables execution of a power demand measure using the prime mover and a storage battery when an upper limit is exceeded.
請求項4に記載の電力需要抑制制御装置であって、
前記電力需要対策の実行可否判断は所定周期で実行され、前回周期では電力需要対策実施であり、かつ今回電力需要対策を継続して実施することを持って、前記原動発電機と蓄電池を用いた電力需要対策の実行可とすることを特徴とする電力需要抑制制御装置。
The power demand suppression control device according to claim 4,
The determination as to whether or not the power demand countermeasure can be executed is performed in a predetermined cycle, the power demand countermeasure is implemented in the previous cycle, and the current power demand countermeasure is continuously implemented, and the power generator and the storage battery are used. A power demand suppression control apparatus characterized by enabling execution of power demand countermeasures.
請求項4に記載の電力需要抑制制御装置であって、
前記電力需要対策の実行可否判断は所定周期で実行され、前回周期では電力需要対策実施であり、かつ今回電力需要対策を継続して実施しないが、消費電力平均値がその上限値を超過したことを持って、前記原動発電機と蓄電池を用いた電力需要対策の実行可とすることを特徴とする電力需要抑制制御装置。
The power demand suppression control device according to claim 4,
The determination as to whether or not the power demand measure can be executed is performed in a predetermined cycle, the power demand measure is implemented in the previous cycle, and the current power demand measure is not continuously implemented, but the average power consumption exceeds the upper limit. A power demand suppression control device characterized by enabling execution of power demand countermeasures using the prime mover and storage battery.
請求項4に記載の電力需要抑制制御装置であって、
前記電力需要対策の実行可否判断は所定周期で実行され、今回電力需要対策を継続して実施しないし、かつ消費電力平均値が上限値を超過しないことを持って、前記原動発電機と蓄電池を用いた電力需要対策の実行不可とすることを特徴とする電力需要抑制制御装置。
The power demand suppression control device according to claim 4,
The determination as to whether or not the power demand measure can be executed is performed at a predetermined cycle, and the power generator and the storage battery are connected with the fact that the power demand measure is not continuously executed and the average power consumption does not exceed the upper limit value. A power demand suppression control device characterized in that the power demand countermeasure used cannot be executed.
請求項4に記載の電力需要抑制制御装置であって、
前記電力需要対策の実行可否判断は所定周期で実行され、前回周期では電力需要対策不実施であり、今回周期で受電電力量がその上限値を超過していないし、かつ消費電力平均値がその上限値を超過していないことを持って、前記原動発電機と蓄電池を用いた電力需要対策の実行不可とすることを特徴とする電力需要抑制制御装置。
The power demand suppression control device according to claim 4,
The determination as to whether or not the power demand countermeasure can be executed is performed at a predetermined cycle, the power demand countermeasure is not performed at the previous cycle, the received power amount does not exceed the upper limit value at the current cycle, and the average power consumption is the upper limit value. A power demand suppression control device that makes it impossible to execute a power demand measure using the prime mover and a storage battery when it does not exceed a value.
JP2014131321A 2014-06-26 2014-06-26 Electric power demand control device Active JP6415872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014131321A JP6415872B2 (en) 2014-06-26 2014-06-26 Electric power demand control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014131321A JP6415872B2 (en) 2014-06-26 2014-06-26 Electric power demand control device

Publications (2)

Publication Number Publication Date
JP2016010292A true JP2016010292A (en) 2016-01-18
JP6415872B2 JP6415872B2 (en) 2018-10-31

Family

ID=55227496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014131321A Active JP6415872B2 (en) 2014-06-26 2014-06-26 Electric power demand control device

Country Status (1)

Country Link
JP (1) JP6415872B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018081336A (en) * 2016-11-14 2018-05-24 株式会社Ihi Resource management system
JP2020167757A (en) * 2019-03-28 2020-10-08 大阪瓦斯株式会社 Storage battery control system
JP2020167756A (en) * 2019-03-28 2020-10-08 大阪瓦斯株式会社 Storage battery control system
JP2021100304A (en) * 2019-12-20 2021-07-01 川崎重工業株式会社 Control device for power utilization facility

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713928A (en) * 1980-06-27 1982-01-25 Tokyo Shibaura Electric Co Power reception demand monitor controlling system
JP2001112176A (en) * 1999-10-08 2001-04-20 Hitachi Ltd Private power generation facility
WO2014057613A1 (en) * 2012-10-12 2014-04-17 パナソニック株式会社 Energy management device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713928A (en) * 1980-06-27 1982-01-25 Tokyo Shibaura Electric Co Power reception demand monitor controlling system
JP2001112176A (en) * 1999-10-08 2001-04-20 Hitachi Ltd Private power generation facility
WO2014057613A1 (en) * 2012-10-12 2014-04-17 パナソニック株式会社 Energy management device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018081336A (en) * 2016-11-14 2018-05-24 株式会社Ihi Resource management system
JP2020167757A (en) * 2019-03-28 2020-10-08 大阪瓦斯株式会社 Storage battery control system
JP2020167756A (en) * 2019-03-28 2020-10-08 大阪瓦斯株式会社 Storage battery control system
JP7177740B2 (en) 2019-03-28 2022-11-24 大阪瓦斯株式会社 Storage battery control system
JP7204560B2 (en) 2019-03-28 2023-01-16 大阪瓦斯株式会社 Storage battery control system
JP2021100304A (en) * 2019-12-20 2021-07-01 川崎重工業株式会社 Control device for power utilization facility
JP7349344B2 (en) 2019-12-20 2023-09-22 川崎重工業株式会社 Control device for power usage equipment

Also Published As

Publication number Publication date
JP6415872B2 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
US11231733B2 (en) System and method of power control for an energy storage charging station
JP5738212B2 (en) Power storage type power generation system
JP6145722B2 (en) Power control method, power control apparatus, power control system
JP6202674B2 (en) Power management system
JP2009268247A (en) Power supply/demand control program, power supply/demand controller, and power supply/demand control system
JP6734756B2 (en) Storage battery control system and power supply system
EP3410560B1 (en) Management device and control method
JP6415872B2 (en) Electric power demand control device
US10084314B2 (en) Storage battery equipment
JP6243064B2 (en) Power control apparatus, power control method, and power control system
JP5396549B1 (en) Charge / feed device, charge / feed management device, energy management system, and charge / feed management method
JP5897899B2 (en) Power control system, control device, and power control method
JP2017500836A (en) Charging method and charging system
KR101570944B1 (en) Peak cut system
EP2996218A1 (en) Storage cell managing device
JPWO2014118903A1 (en) Battery complex system
JP2014107923A (en) Demand controller and program
JP5995804B2 (en) Storage system management device and control target value determination method
JP2016167913A (en) Power supply system and power supply method
JP2014027779A (en) Storage battery control device and storage battery sharing system
JP6246091B2 (en) Power supply system
JP2016158479A (en) Power storage device, management server of power-supply system, and power-supply method
JP6181201B2 (en) Storage battery control device
JP2014168343A (en) Power storage system, controller of power storage system, control method of power storage system, and control program of power storage system
WO2013101443A1 (en) Methods and systems for estimating charge capacity of an electrical energy-storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181003

R150 Certificate of patent or registration of utility model

Ref document number: 6415872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350