JP2015526921A - 経路制御システム、制御装置、エッジノード、経路制御方法及びプログラム - Google Patents

経路制御システム、制御装置、エッジノード、経路制御方法及びプログラム Download PDF

Info

Publication number
JP2015526921A
JP2015526921A JP2015511531A JP2015511531A JP2015526921A JP 2015526921 A JP2015526921 A JP 2015526921A JP 2015511531 A JP2015511531 A JP 2015511531A JP 2015511531 A JP2015511531 A JP 2015511531A JP 2015526921 A JP2015526921 A JP 2015526921A
Authority
JP
Japan
Prior art keywords
forwarding
node
sub
route
label
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2015511531A
Other languages
English (en)
Inventor
林 偉夫
偉夫 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2015511531A priority Critical patent/JP2015526921A/ja
Publication of JP2015526921A publication Critical patent/JP2015526921A/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0668Management of faults, events, alarms or notifications using network fault recovery by dynamic selection of recovery network elements, e.g. replacement by the most appropriate element after failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/38Flow based routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • H04L45/507Label distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

【課題】ネットワーク上の転送ノードに設定するエントリの数を増やすことなく、きめ細かに代替経路による転送制御ができるようにする。【解決手段】経路制御システムは、個々の転送ノードがいずれかのグループに属し、前記グループに対応するサブラベルに基づいてパケット転送を行う転送ネットワークと、受信したパケットの情報に基づいて、複数のサブラベルで構成されたラベルを付加するエッジノードと、前記エッジノードにおいて付加するサブラベルの組み合わせ及び前記転送ノードにおけるサブラベルに基づく転送処理を制御することにより、転送ネットワークの経路制御を行う制御装置とを含む。この制御装置は、通信経路に障害が発生した場合、エッジノードに、その後の受信パケットに付加するサブラベルのうち、通信経路の障害発生区間に対応するサブラベルの変更を行わせる。また、この制御装置は、転送ノードに、前記障害発生区間を経由しない経路にてパケット転送を行わせる。【選択図】図1

Description

本発明は、日本国特許出願:特願2012−187867号(2012年8月28日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
本発明は、経路制御システム、制御装置、エッジノード、経路制御方法及びプログラムに関し、特に、転送ノードと、これら転送ノードを集中制御する制御装置とを含む経路制御システム、制御装置、エッジノード、経路制御方法及びプログラムに関する。
IP網(Internet Protocol Network)では、経路障害が発生したときに、ルータ間で経路情報のやりとりを行い、経路の再計算を行うダイナミックルーティングが用いられている。これらルータ間の情報のやり取りに用いられるプロトコルとしては、RIP(Routing information protocol)、OSPF(Open Shortest Path First)やBGP(Border Gateway Protocol)等が知られている。
しかしながら、上記したルーティングプロトコルを用いる手法では、経路情報のやり取りを行い経路の再計算を行うため、障害経路を回避して代替経路で転送できるようになるまでに時間が掛かるという問題点がある。その他の障害時の代替経路の切替を行う方法としては、MPLS(Multi Protocol Label Switching)におけるFRR(Fast ReRoute)が知られている(非特許文献1を参照)。FRRは、MPLSネットワークに設定されたLSP(Label Switching Path)において、途中のリンクやノードの障害発生時に代替経路へ切り替える技術であり、予め代替経路を計算し設定を行うものである。
また、非特許文献2、3には、オープンフロー(OpenFlow)という技術が提案されている。オープンフローは、通信をエンドツーエンドのフローとして捉え、フロー単位で経路制御、障害回復、負荷分散、最適化を行うものである。非特許文献3に仕様化されているオープンフロースイッチは、オープンフローコントローラとの通信用のセキュアチャネルを備え、オープンフローコントローラから適宜追加または書き換え指示されるフローテーブルに従って動作する。フローテーブルには、フロー毎に、パケットヘッダと照合するマッチ条件(Match Fields)と、フロー統計情報(Counters)と、処理内容を定義したインストラクション(Instructions)と、の組が定義される(非特許文献3の「4.1 Flow Table」の項参照)。
例えば、オープンフロースイッチは、パケットを受信すると、フローテーブルから、受信パケットのヘッダ情報に適合するマッチ条件(非特許文献3の「4.3 Match Fields」参照)を持つエントリを検索する。検索の結果、受信パケットに適合するエントリが見つかった場合、オープンフロースイッチは、フロー統計情報(カウンタ)を更新するとともに、受信パケットに対して、当該エントリのインストラクションフィールドに記述された処理内容(指定ポートからのパケット送信、フラッディング、廃棄等)を実施する。一方、検索の結果、受信パケットに適合するエントリが見つからなかった場合、オープンフロースイッチは、セキュアチャネルを介して、オープンフローコントローラに対してエントリ設定の要求、即ち、受信パケットの処理内容の決定の要求(Packet−Inメッセージ)を送信する。オープンフロースイッチは、処理内容が定められたフローエントリを受け取ってフローテーブルを更新する。このように、オープンフロースイッチは、フローテーブルに格納されたエントリを処理規則として用いてパケット転送を行う。
P.Pan,G.Swallow and A.Atlas、"Fast Reroute Extensions to RSVP−TE for LSP Tunnels"、IETF RFC4090、 May 2005、インターネット〈URL: http://www.ietf.org/rfc/rfc4090.txt〉 Nick McKeownほか7名、"OpenFlow: Enabling Innovation in Campus Networks"、[online]、[平成24(2012)年5月31日検索]、インターネット〈URL:http://www.openflow.org/documents/openflow-wp-latest.pdf〉 "OpenFlow Switch Specification" Version 1.1.0 Implemented (Wire Protocol 0x02)、[online]、[平成24(2012)年5月31日検索]、インターネット〈URL:http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf〉
上記非特許文献の開示を、本書に引用をもって繰り込むものとする。以下の分析は、本発明によって与えられたものである。上記したMPLSにおけるFRRの第1の問題点は、ネットワークに障害が発生したときに、代替経路を柔軟に選択できない点である。その理由は、障害が発生したときに予め設定された代替経路に切り替えることで経路制御を実現しているためである。また、FRRの第2の問題点は、ネットワーク機器の設定が増加する点である。その理由は、ネットワークに障害が発生したときに、代替経路で転送するための設定を行う必要があり、アプリケーション(ラベル)単位に設定を行う場合には、その設定数(LIB(Label Information Base)のエントリ数)が多くなるためである。
また、非特許文献2、3のオープンフローには、フロー単位での経路制御や障害回復を行う機能が備えられているが、代替経路の計算を行った上で、その経路を実現するフローエントリを作成し、個々のオープンフロースイッチに設定する必要があるため、相応の負荷が掛かってしまうという問題点がある。事前に代替経路を計算し、個々のオープンフロースイッチに設定しておくことも可能であるが、フロー毎に代替経路を設定しておくとなると、上記MPLSの場合と同様に、個々のオープンフロースイッチが保持するフローエントリの数が増大してしまうという問題点がある。
本発明の目的は、ネットワーク上の転送ノードに設定するエントリの数を増やすことなく、きめ細かに代替経路による転送制御を可能とする経路制御システム、制御装置、エッジノード、経路制御方法及びプログラムを提供することにある。
本発明の第1の視点によれば、個々の転送ノードがいずれかのグループに属し、前記グループに対応するサブラベルに基づいてパケット転送を行う転送ネットワークと、受信したパケットの情報に基づいて、複数のサブラベルで構成されたラベルを付加するエッジノードと、前記エッジノードにおいて付加するサブラベルの組み合わせ及び前記転送ノードにおける前記サブラベルに基づく転送処理を制御することにより、前記転送ネットワークの経路制御を行う制御装置と、を含み、前記制御装置は、通信経路に障害が発生した場合、前記エッジノードに、その後の受信パケットに付加するサブラベルのうち、前記通信経路の障害発生区間に対応するサブラベルの変更を行わせ、前記転送ノードに、前記障害発生区間を経由しない経路にてパケット転送を行わせる経路制御システムが提供される。
本発明の第2の視点によれば、個々の転送ノードがいずれかのグループに属し、前記グループに対応するサブラベルに基づいてパケット転送を行う転送ネットワークと、受信したパケットの情報に基づいて、複数のサブラベルで構成されたラベルを付加するエッジノードと、に接続され、前記エッジノードにおいて付加するサブラベルの組み合わせ及び前記転送ノードにおける前記サブラベルに基づく転送処理を制御することにより、前記転送ネットワークの経路制御を行う制御装置であって、通信経路に障害が発生した場合、前記エッジノードに、その後の受信パケットに付加するサブラベルのうち、前記通信経路の障害発生区間に対応するサブラベルの変更を行わせ、前記転送ノードに、前記障害発生区間を経由しない経路にてパケット転送を行わせる制御装置が提供される。
本発明の第3の視点によれば、送信元アドレスとパケットのペイロードの内容とに基づいて優先度情報と、宛先アドレスと、サブラベルの組み合わせとを対応付けた経路エントリ群から選択した受信パケットに適合するエントリに基づいてサブラベルの付加を行うエッジノードが提供される。
本発明の第4の視点によれば、個々の転送ノードがいずれかのグループに属し、前記グループに対応するサブラベルに基づいてパケット転送を行う転送ネットワークと、受信したパケットの情報に基づいて、複数のサブラベルで構成されたラベルを付加するエッジノードと、前記エッジノードにおいて付加するサブラベルの組み合わせ及び前記転送ノードにおける前記サブラベルに基づく転送処理を制御することにより、前記転送ネットワークの経路制御を行う制御装置と、を含む経路制御システムにおける経路制御方法であって、前記通信経路に障害が発生したか否かを検出するステップと、前記通信経路に障害が発生した場合、前記エッジノードに、その後の受信パケットに付加するサブラベルのうち、前記通信経路の障害発生区間に対応するサブラベルの変更を行わせるステップと、前記転送ノードに、前記障害発生区間を経由しない経路にてパケット転送を行わせるステップと、を含む経路制御方法が提供される。本方法は、上記した転送ノード及びエッジノードを制御する制御装置という、特定の機械に結びつけられている。
本発明の第5の視点によれば、個々の転送ノードがいずれかのグループに属し、前記グループに対応するサブラベルに基づいてパケット転送を行う転送ネットワークと、受信したパケットの情報に基づいて、複数のサブラベルで構成されたラベルを付加するエッジノードと、前記エッジノードにおいて付加するサブラベルの組み合わせ及び前記転送ノードにおける前記サブラベルに基づく転送処理を制御することにより、前記転送ネットワークの経路制御を行う制御装置と、を含む経路制御システムの前記制御装置に搭載されたコンピュータに、前記通信経路に障害が発生したか否かを検出する処理と、前記通信経路に障害が発生した場合、前記エッジノードに、その後の受信パケットに付加するサブラベルのうち、前記通信経路の障害発生区間に対応するサブラベルの変更を行わせる処理と、前記転送ノードに、前記障害発生区間を経由しない経路にてパケット転送を行わせる処理と、を実行させるプログラムが提供される。なお、このプログラムは、コンピュータが読み取り可能な(非トランジエントな)記憶媒体に記録することができる。即ち、本発明は、コンピュータプログラム製品として具現することも可能である。
本発明によれば、ネットワーク上の転送ノードに設定するエントリ数を増やすことなく、きめ細かに代替経路による転送を行うことが可能となる。
本発明の一実施形態の経路制御システムの構成を示す図である。 本発明の一実施形態の経路制御システムの動作を説明するための図である。 本発明の第1の実施形態の経路制御システムの構成を示す図である。 本発明の第1の実施形態のエッジノードの構成を示す図である。 本発明の第1の実施形態のエッジノードが保持する優先度テーブルの構成を示す図である。 本発明の第1の実施形態のエッジノードが保持する経路テーブルの構成を示す図である。 本発明の第1の実施形態のエッジノードがパケットに付加するラベルの構成を示す図である。 本発明の第1の実施形態の転送ノードに設定されるフローテーブルの構成を示す図である。 本発明の第1の実施形態のエッジノードの動作を示す流れ図である。 本発明の第1の実施形態の制御装置の動作を示す流れ図である。 本発明の第2の実施形態の経路制御システムの構成を示す図である。 本発明の第2の実施形態のエッジノードが保持する経路テーブルの構成を示す図である。 本発明の第2の実施形態のエッジノードがパケットに付加するラベルの構成を示す図である。 本発明の第2の実施形態の転送ノードに設定されるフローテーブルの構成を示す図である。 本発明の第3の実施形態の経路制御システムの構成を示す図である。 本発明の第3の実施形態のエッジノードが保持する優先度テーブルの構成を示す図である。 本発明の第3の実施形態のエッジノードが保持する経路テーブルの構成を示す図である。 本発明の第3の実施形態の転送ノードに設定されるフローテーブルの構成を示す図である。
はじめに本発明の一実施形態の概要について図面を参照して説明する。なお、この概要に付記した図面参照符号は、理解を助けるための一例として各要素に便宜上付記したものであり、本発明を図示の態様に限定することを意図するものではない。
本発明は、その一実施形態において、図1に示すように、複数の転送ノード30a〜30fによって構成される転送ネットワーク30と、転送ネットワークに流れるパケットにラベルを付加するエッジノード20と、転送ノード30a〜30f及びエッジノード20を制御する制御装置40とを含む構成にて実現できる。
転送ノード30a〜30fは、ネットワークトポロジ上の任意の2点間の通信を実現するにあたり並列関係にある(代替関係にある)転送ノード同士をまとめたいくつかのグループにグループ分けされている。個々の転送ノード30a〜30fは、それぞれ自装置が属するグループに対応するサブラベルに基づいてパケット転送を行う。例えば、図1の例では、転送ノード30a、30b、転送ノード30c、30d、転送ノード30e、30fの3つのグループが設けられている。
エッジノード20は、受信したパケットの情報に基づいて、複数のサブラベルで構成されたラベルを付加する。図1の例では、エッジノード20は、制御装置40から予め指示されたラベル付加ルールに従い、端末10または端末11から受信した受信パケットに、3つのサブラベルによって構成されるラベルを付加する。
制御装置40は、エッジノード20に対し、受信パケットに対するラベル付加ルールを指示する。また、制御装置40は、転送ノード30a〜30fに対し、前記サブラベルに基づく転送処理を指示する。例えば、制御装置40は、端末10から見て最も上流側のグループの転送ノード30a、30bに対し、受信したパケットの第1サブラベル(図1の吹き出し内左側のサブラベル)を参照し、その値に従い転送先を決定するよう指示する。同様に、転送ノード30c、30dは、受信したパケットの第2サブラベル(図1の吹き出し内中央のサブラベル)を参照し、転送先を決定する。同様に、転送ノード30e、30fは、受信したパケットの第3サブラベル(図1の吹き出し内右側のサブラベル)を参照し、転送先を決定する。この結果、転送ノード30a〜30fは、一つの転送用エントリで、端末10から端末12宛てのパケット転送と端末11から端末12宛てのパケット転送、を実行することが可能となる。
また、制御装置40は、経路上の転送ノードに障害が発生したことを検出した場合、次の動作を行う。例えば、図2に示すように、転送ノード30dに障害が発生した場合、制御装置40は、エッジノード20に対し、転送ノード30dにて障害が発生したことを通知し、第1サブラベルとして書き込む値を変更させる(例えば、エッジノード20に図6に例示する経路テーブルの更新を行わせる。)。以上の結果、図2の矢線に示すように、端末10、11からのパケットは、転送ノード30dの代わりに転送ノード30cを経由して端末12に転送されるようになる。
以上のようにして、ネットワーク上の転送ノードに設定するエントリ数を増やすことなく、代替経路による転送が実現される。
[第1の実施形態]
続いて、代替経路を事前設定しておくようにした本発明の第1の実施形態について図面を参照して詳細に説明する。
図3は、本発明の第1の実施形態の経路制御システムの構成を示す図である。図3を参照すると、端末100−1〜100−3と、サーバ103−1〜103−3と、転送ノード102−1〜102−8で構成される転送ネットワーク108と、転送ネットワーク108と端末やサーバ等の外部ノードとの間に配置されるエッジノード101−1〜101−4と、転送ネットワーク108とエッジノード101−1〜101−4を監視制御するための制御装置104と、を含んだ構成が示されている。なお、図3の例では、エッジノード101−1〜101−4は、端末100−1〜100−3およびサーバ103−1〜103−3と直接接続しているが、端末100−1〜100−3やサーバ103−1〜103−3と間にスイッチなどのネットワーク機器が存在してもよい。
以降の説明では、端末100−1〜100−3とエッジノード101−1〜101−4と転送ノード102−1〜102−8とサーバ103−1〜103−3は、特に区別する必要がある場合を除き、端末100とエッジノード101と転送ノード102とサーバ103と記載する。
転送ネットワーク108は、フロー単位の転送制御が可能な転送ノード102−1〜102−8で構成されている。転送ノード102は、制御装置104の指示により、フロー単位に転送先を設定することが可能であり、非特許文献3の仕様に準拠したスイッチが該当する。転送ノード102は、第1の横階層105、第2の横階層106、第3の横階層107のいずれかに属している。フローは、たとえば、送信元や送信先のMAC(Media Access Control)アドレス、IPアドレス、ポート番号の組み合わせで特定される一連のパケットの流れであるが、要素はこれに限定されるものではない。また、本実施形態では、転送ネットワーク108を3つの横階層に分割しているが、これに限定するものではない。
制御装置104は、後記するエッジノード20の制御のほか、転送ノード102を制御する制御装置として動作する。制御装置104と転送ノード102間には専用のチャネルが設けられ、制御メッセージを授受することが可能となっている。また、これら制御メッセージを授受するためのプロトコルとしては、非特許文献3のオープンフロープロトコルを用いることができる。
図4は、図3のエッジノード101の詳細な構成例を示すブロック図である。図4を参照すると、エッジノード101は、受信部200と、パケット解析部201と、フロー識別部202と、優先度テーブル203と、転送ネットワーク108の経路情報を記憶している経路テーブル205と、経路テーブル205を参照して経路を決定する経路解決部204と、制御装置104の指示に従い経路テーブル205の情報を更新する経路管理部208と、ラベル格納部206と、送信部207と、ヘッダ変換部209とを含んで構成されている。
図5は、図4の優先度テーブル203の詳細な構成例を示す図である。優先度テーブル203は、端末や利用者を特定するための送信元IPアドレス300と、利用するサービスを特定するフロー識別子301と、優先度302とを対応付けたエントリを格納する。フロー識別子301としては、WebのサービスにおけるURL(Uniform Resource Locator)などを用いることができる。もちろん、URLに限定するものではなく、アプリケーションを特定するための情報であればよい。また、送信元IPアドレス300は、利用者や端末を特定できる情報であればよく、IPアドレスに限定するものではない。
図6は、図4における経路テーブル205の詳細な構成例を示す図である。経路テーブル205は、宛先IPアドレス400と、優先度401と、経路が利用可能か否かを示す経路状態402と、第1の横階層105に属する転送ノード102で利用する第1のサブラベル403と、第2の横階層106に属する転送ノード102で利用する第2のサブラベル404と、第3の横階層107に属する転送ノード102で利用する第3のサブラベル405とを対応付けたエントリを格納する。これらのエントリは、後記するように、パケットのペイロードの内容に応じたサブラベルの組み合わせを持つラベルを付加するラベル付加ルールとして機能する。
経路解決部204は、宛先IPアドレス400と優先度401を検索キーとして、サブラベルの解決を行う。経路テーブル205に格納されている経路情報は、同一の宛先と優先度に関して、複数のエントリを持つことが可能であり、たとえば図6において上位にあるエントリが先にヒットするように登録する。すなわち通常時の転送用エントリを経路テーブル205の上の方に登録しておき、障害時の代替経路用のエントリをそれより下側に登録しておく。このようにすることにより、通常時の転送用エントリの経路状態402が異常となった場合には、代替経路用のエントリが検索結果として得られる。
図7は、ラベル格納部206がパケットヘッダに格納するラベルを示す図である。ラベル500は、第1の横階層105に属する転送ノード102で利用する第1のサブラベル501と、第2の横階層106に属する転送ノード102で利用する第2のサブラベル502と、第3の横階層107に属する転送ノード102で利用する第3のサブラベル503とから構成されている。
図8は、転送ノード102において、パケットの転送先を決定するためのフローテーブルの詳細構成を示す図である。フローテーブルは、パケットヘッダに格納されているラベル600と、転送ノード102が属する階層に対してラベルのどの部分を参照すればよいかを示すマスク601と、出力ポートなど転送ノードの動作を示すアクション602とを対応付けたエントリを格納する。アクション602は、パケットを指定したポートへ出力することやパケットヘッダの書き換え指示などが該当する。例えば、第1の横階層105に属する転送ノード102には、第1のサブラベル501の参照を指示するマスクと、第1のサブラベル501と同一のサブラベルを持つパケットを受信した際に、当該パケットに適用する処理を定めたアクションを設定したエントリが設定される(その他の転送ノードも同様)。
次に、本実施形態の全体動作について図面を参照して詳細に説明する。以下、本実施形態の説明では、端末100−1とサーバ103−1間の転送ネットワーク108を経由する通信に関して、転送ノード102の障害や転送ノード102間の経路障害が発生した場合の経路制御方法について説明する。
端末100−1とサーバ103−1は、転送ノード102−1、転送ノード102−4、転送ノード102−6を通る経路や、転送ノード102−1、転送ノード102−5、転送ノード102−6を通る経路といった複数の経路が存在する。以下の説明では、正常時の転送では、転送ノード102−1、転送ノード102−5、転送ノード102−6を通る経路を利用するものとし、代替経路として転送ノード102−1、転送ノード102−4、転送ノード102−6を通る経路を利用するものとする。
初期設定時や通信開始時といった所定のタイミングで制御装置104は、転送ネットワーク108を構成する転送ノード102のフローテーブルの設定を行う。より具体的には、制御装置104は、図8に示すように転送ノード102が属する横階層に応じて、第1のサブラベル603〜第3のサブラベル605とマスク601とアクション602とを対応付けたエントリの登録を行う。例えば、第1の階層105に属する転送ノード102−1は、第1のサブラベル603と第1のサブラベル603を参照することを示すマスク601を設定し、これらに合致するサブラベル(第1のサブラベル)が設定されたパケットを受信した際に、アクション602フィールドに設定された処理を行う。アクション602としては、指定ポートから出力等が該当する。
例えば、48ポートスイッチであれば、6ビットの情報ですべてのポートを表現できるため、第1のサブラベル603は6ビットの情報でよい。制御装置104は、転送ノード102のフローテーブルに、各転送ノードが属する階層のサブラベルの値と、出力ポートとを対応付けたエントリを設定する。また、制御装置104は、エッジノード101に対して、これら転送ノード102に設定したサブラベルの情報を通知する。エッジノード101の経路管理部208は、経路テーブル205へ通知されたサブラベルの組み合わせを持つ経路エントリを設定する。
図9は、上記のように経路テーブル205へエントリが設定されたエッジノード101の動作を表したフローチャートである。図9を参照すると、まず、エッジノード101は、受信部200で端末100−1からパケットを受信すると(図9のステップS100)、転送ネットワーク108向きのパケットか否かを判断する(図9のステップS101)。
エッジノード101は、受信パケットを受信したポートが、端末100−1との接続ポートか、転送ネットワーク108側の転送ノード102との接続ポートであるか否かにより、転送ネットワーク108向きのパケットか否かを判断する。受信パケットが転送ネットワーク108向きのパケットである場合、エッジノード101は、パケット解析部201に受信したパケットを渡し、パケットヘッダの解析を実施させる(図9のステップS102)。
次に、フロー識別部202は、前記パケットヘッダの解析により特定されたペイロードの位置に基づき、パケットのペイロードに含まれる上位プロトコルヘッダからアプリケーションを特定する情報としてフロー識別子を抽出する(図9のステップS103)。フロー識別子は、WebのサービスにおけるURLが該当する。
さらに、フロー識別部202は、優先度テーブル203を参照して、優先度を決定する(図9のステップS104)。優先度テーブル203は、図5に示すように、送信元IPアドレス300とフロー識別子301と優先度302で構成されており、パケット解析部201で抽出した送信元IPドレスとフロー識別部202で抽出したフロー識別子で検索を行い、優先度を決定することができる。
次に、経路解決部204は、経路テーブル205を参照して経路解決すなわちサブラベル解決を行う(図9のステップS105)。経路テーブル205は、図6に示すように宛先IPアドレス400と、優先度401を検索キーとして、サブラベルを解決することが可能である。また、経路状態402により、登録されている経路が利用できるかどうかを判断できる。経路状態402が正常となっている経路が登録されていない場合、エッジノード101は、受信したパケットを廃棄する(図9のステップS109)。
経路テーブル205に、受信パケットの宛先IPアドレス400と、優先度401に対応するエントリが登録されている場合、エッジノード101は、ラベル格納部206において、解決したサブラベルを連結してラベルを生成し、パケットヘッダに格納する(図9のステップS107)。本実施形態では、ラベルを格納する領域として、送信元MAC(Media Access Control)アドレスを用いるものとする。なお、ラベル格納先としては、送信元MACアドレスのほか、転送ノード102で制御可能なその他領域を用いることができる。もちろん、ラベル格納先するための追加ヘッダをパケットに付加する構成や、その他既存ヘッダのオプションフィールドにラベルを格納する構成も採用可能である。
送信部207は、転送ネットワーク108に対してラベルが格納されたパケットを送信する(図9のステップS108)。
転送ネットワーク108において、転送ノード102−1は、エッジノード101−1からパケットを受信する。転送ノード102−1は、第1の横階層105に属しており、パケットヘッダに格納されたラベルのうち、第1のサブラベル501に基づき転送処理を行う。転送ノード102−1は、そのフローテーブルに、エッジノード101−1が格納したラベルの第1のサブラベル603に対して、転送ノード102−5へ出力するエントリが設定されており、本設定に従い転送ノード102−5に対してパケットを送信する。
同様に、転送ノード102−5は、第2の横階層106に属しており、パケットヘッダに格納されたラベルのうち、第2のサブラベル502に基づき転送処理を行う。転送ノード102−5は、そのフローテーブルに、エッジノード101−1が格納したラベルの第2のサブラベル604に対して、転送ノード102−6へ出力するエントリが設定されており、本設定に従い転送ノード102−6に対してパケットを送信する。
同様に、転送ノード102−6は、第3の横階層107に属しており、パケットヘッダに格納されたラベルのうち、第3のサブラベル503に基づき転送処理を行う。転送ノード102−6は、そのフローテーブルに、エッジノード101−1が格納したラベルの第3のサブラベル605に対して、エッジノード101−3へ出力するエントリが設定されており、本設定に従いエッジノード101−3に対してパケットを送信する。
エッジノード101−3は、受信部200でパケットを受信し(図9のステップS100)、転送ネットワーク108向きのパケットか否かを判断する(図9のステップS101)。転送ネットワーク108向きのパケットではないため、受信部200はヘッダ変換部209に対し受信パケットを渡す。ヘッダ変換部209はラベルが格納された送信元MACアドレスにエッジノード101−3のMACアドレスを格納する(図9のステップS110;復元処理)。送信部207は、サーバ103−1に対して、前記MACアドレスを格納したパケットを送信する(図9のステップS108)。
サーバ103−1から端末100−1方向へのパケットの転送制御は、上記と同様であるため説明を省略する。
次に、転送ノード102−5に障害が発生し、経路が利用できなくなった場合の動作について説明する。図10は、本発明の第1の実施形態の制御装置の動作を示す流れ図である。
制御装置104は、転送ネットワーク108において、転送ノード102や転送ノード102間の経路に障害が発生していないか監視する(図10のステップS200)。
制御装置104は、ある転送ノード102にて障害が発生したことを検知すると(図10のステップS201)、エッジノード101−1〜101−4に対し、障害が発生した旨と、障害が発生した転送ノードを通知する(図10のステップS202)。ここでは、図3の転送ノード102−5にて障害が発生したものとして説明する。
前記通知を受けたエッジノード101−1の経路管理部208は、制御装置104から受信した障害情報に基づき、経路テーブル205の更新を行う(図10のステップS203)。具体的には、転送ノード102−5を利用する経路に関して、図6の経路テーブル205の該当エントリの経路状態402を正常から異常の状態に変更する。経路テーブル205の更新を行うことにより、以降エッジノード101−1にて受信したパケットは、転送ノード102−1、転送ノード102−5、転送ノード102−6の経路用エントリではなく、代替経路である転送ノード102−1、転送ノード102−4、転送ノード102−6の経路用エントリで処理されることになる。
以上説明したように、転送ノード102−1〜102−8で構成された転送ネットワーク108と、受信したパケットのペイロード情報をもとに転送ネットワーク108で転送するためのラベルをパケットヘッダに格納するエッジノード101と、これらを制御するための制御装置104とを含む本実施形態の経路制御システムは、いくつかの階層に分けて転送ネットワークを管理し、それぞれの転送ノードが属する階層に応じたサブラベルと転送先を設定する。エッジノード101は転送ネットワーク108の階層ごとのサブラベルを解決して、ラベルとしてパケットヘッダに格納する。以上により、転送ネットワーク108の障害発生時における、アプリケーション単位の経路制御が実現される。
なお、図9、10に示したエッジノードや制御装置における処理は、これらの装置に搭載されたコンピュータに、そのハードウェアを用いて、上記した各処理を実行させるコンピュータプログラムにより実現することもできる。
[第2の実施形態]
次に、転送ノードをマトリックス状に複数の階層に所属させるようにした本発明の第2の実施形態について図面を参照して詳細に説明する。図11は、本発明の第2の実施形態の経路制御システムの構成を示す図である。図3に示した第1の実施形態の構成との相違点は、転送ネットワーク108において、第1の縦階層900と、第2の縦階層901と、第3の縦階層902とが新たに定義されている点である。例えば、転送ノード102−1は、第3の横階層107と第1の縦階層900に属し、転送ノード102−3は、第3の横階層107と第3の縦階層902に属する。
図12は、本実施形態における経路テーブル205を示すもので、サブラベルに加え、第1の階層識別子1000と、第2の階層識別子1001と、第3の階層識別子1002を有する点が異なる。
図13は、エッジノード101がパケットヘッダに格納するラベルを示すもので、サブラベルに加え、第1の階層識別子1100と、第2の階層識別子1101と、第3の階層識別子1102を有する点が異なる。
図14は、転送ノード102のフローテーブルを示すもので、マッチ条件として、サブラベルに加え、第1の階層識別子1200と、第2の階層識別子1201と、第3の階層識別子1202とが設定されている点で異なっている。
本発明の第2の実施形態では、第1の実施形態のサブラベルに階層識別子を追加して管理を行う。本実施形態の動作は、第1の実施形態におけるサブラベルによる経路制御に代えて、サブラベルと階層識別子による経路制御に置き換えて説明することができるため、説明を省略する。
以上説明したように本実施形態によれば、転送ネットワーク108を縦階層に分割して管理するようにしたことにより、端末間やサーバ間の通信をよりきめ細かく制御することが可能となる。
[第3の実施形態]
続いて、上記した本発明の第1の実施形態をより具体的に表した形態を、本発明の第3の実施形態として説明する。本実施形態では、図15に示す端末100−1とサーバ103−1間の通信に関して説明する。端末100−1は、IPアドレス“10.0.0.1”を有し、サーバ103−1は、IPアドレス“192.168.0.1”を有するものとする。また、図15によると、端末100−1は、エッジノード101−1に接続して、転送ネットワーク108に収容されている。サーバ103−1も同様に、エッジノード101−3に接続して、転送ネットワーク108に収容されている。
図16は、エッジノード101−1における優先度テーブル203の構成を示す図である。優先度テーブル203には、送信元IPアドレス300に端末100−1のIPアドレス“10.0.0.1”(図16の1400)、フロー識別子としてサーバ103−1が提供するURL−A(図16の1401)、優先度として“1”(図16の1402)とを対応付けたエントリが設定されている。
転送ノード102は、48ポートスイッチとし、次のように接続されている。転送ノード102−1のポート1(図15の1300)は転送ノード102−4に接続しており、ポート2(図15の1301)は転送ノード102−5に接続している。転送ノード102−4のポート1(図15の1302)は、転送ノード102−6に接続しており、ポート2(図15の1303)は転送ノード102−7に接続している。転送ノード102−5のポート3(図15の1304)は、転送ノード102−6に接続しており、ポート4(図15の1305)は転送ノード102−7に接続している。転送ノード102−6のポート10(図15の1306)は、エッジノード101−3に接続している。転送ノード102−7のポート8(図15の1307)は、エッジノード101−3に接続している。
図15に示す転送ネットワーク108において、端末100−1とサーバ103−1間の経路として、転送ノード102−1と転送ノード102−4と転送ノード102−6を通る経路、転送ノード102−1と転送ノード102−4と転送ノード102−7を通る経路、転送ノード102−1と転送ノード102−5と転送ノード102−6を通る経路と、転送ノード102−1と転送ノード102−5と転送ノード102−7を通る経路の4つが存在する。
図17は、端末100−1とサーバ103−1間の経路に関して、エッジノード101−1の経路テーブル205を示すものである。経路テーブル205は、予め制御装置104より次に示す設定がなされているものとする。すべての経路エントリは、宛先IPアドレス400としてサーバ103−1のIPアドレスである“192.168.0.1”が設定されており、優先度401として“1”が設定されている。また、各経路エントリの経路状態402は、すべて正常の状態を示している。
第1の経路1500は、転送ノード102−1と転送ノード102−5と転送ノード102−6の経路を示すもので、第1のサブラベル403に“2”、第2のサブラベル404に“3”、第3のサブラベル405に“10”が設定されている。サブラベルは、転送ノード102の処理を決定するために利用するもので、転送ノード102の処理として指定ポートからの転送を設定するとしても、ポート数だけ、即ち48通りのアクションが必要となる。本実施形態では、サブラベルは、48通りを表現できる6ビットの情報であるものとする。その他、指定ポートからの転送以外に、パケットヘッダの加工などの処理を行う場合は、サブラベルのサイズを大きくすることで対応することが可能となる。本実施形態では、転送ノード102は指定ポートからの転送処理のみを実行するため、サブラベルは6ビットの情報とする。経路テーブル205の第2の経路1501、第3の経路1502、第4の経路1503に関しても、第1の経路1500と同様に設定がなされているものとする。
図18は、本実施例における転送ノード102のフローテーブルを示すものである。図18に示すフローテーブルは、制御装置104によって予め設定されているものとする。
転送ノード102−1のフローテーブルには、第1のフローエントリ1600として第1のサブラベルに“1”が設定されたラベルと、マスクとして第1のサブラベルを参照することを示す“111111000000000000”と、アクションとしてポート1へ出力するエントリが格納されている。また、第2のフローエントリ1601として第1のサブラベルに“2”が設定されたラベルと、マスクとして第1のサブラベルを参照することを示す“111111000000000000”と、アクションとしてポート2へ出力するエントリが格納されている。
転送ノード102−4のフローテーブルには、第1のフローエントリ1602として第2のサブラベルに“1”が設定されたラベルと、マスクとして第2のサブラベルを参照することを示す“000000111111000000”と、アクションとしてポート1へ出力するエントリが格納されている。第2のフローエントリ1603として第2のサブラベルに“2”が設定されたラベルと、マスクとして第2のサブラベルを参照することを示す“000000111111000000”と、アクションとしてポート2へ出力するエントリが格納されている。
転送ノード102−5のフローテーブルには、第1のフローエントリ1604として第2のサブラベルに“3”が設定されたラベルと、マスクとして第2のサブラベルを参照することを示す“000000111111000000”と、アクションとしてポート3へ出力する情報が格納されている。第2のフローエントリ1605として第2のサブラベルに“4”が設定されたラベルと、マスクとして第2のサブラベルを参照することを示す“000000111111000000”と、アクションとしてポート4へ出力するエントリが格納されている。
転送ノード102−6のフローテーブルには、第1のフローエントリ1606として第3のサブラベルに“10”が設定されたラベルと、マスクとして第3のサブラベルを参照することを示す“000000000000111111”と、アクションとしてポート10へ出力するエントリが格納されている。
転送ノード102−7のフローテーブルには、第1のフローエントリ1607として第3のサブラベルに“8”が設定されたラベルと、マスクとして第3のサブラベルを参照することを示す“000000000000111111”と、アクションとしてポート8へ出力するエントリが格納されている。
続いて、上記した経路エントリやフローテーブルを元に、端末100−1からサーバ103−1へのパケット転送について、再度図9を参照して詳細に説明する。
エッジノード101−1は、受信部200で端末100−1からパケットを受信すると(図9のステップS100)、転送ネットワーク108向きのパケットかどうかを判断する(図9のステップS101)。
端末100−1からサーバ103−1へと宛てたパケットは、転送ネットワーク108向きのパケットであるため、エッジノード101は、パケット解析部201に受信パケットを入力する。パケット解析部201は、パケットヘッダの解析を行いペイロードの位置を特定する(図9のステップS102)。
フロー識別部202は、パケットのペイロードから、利用するサービスを特定する情報であり、フロー識別子でもある“URL−A”を抽出する(図9のステップS103)。さらに、フロー識別部202は、優先度テーブル203を参照して、優先度を決定する(図9のステップS104)。優先度テーブル203は、図16に示すように構成されており、フロー識別部202は、端末のIPアドレス“10.0.0.1”とパケットのペイロードから抽出したフロー識別子“URL−A”をもとに、優先度を“1”に決定する。
次に、経路解決部204は、経路テーブル205を参照して経路解決すなわちサブラベルの解決を行う(図9のステップS105)。経路テーブル205は、図17に示すように構成されており、サーバ103−1のIPアドレス“192.168.0.1”と優先度“1”を検索キーとして検索を実行する。前記検索の結果、第1の経路1500が検索結果として得られ、経路状態402は正常であるため第1のサブラベル“2”と第2のサブラベル“3”と第3のサブラベル“10”を決定する。
ラベル格納部206は、解決したサブラベルを連結してラベルを生成し、パケットヘッダである送信元MACアドレスに格納する(図9のステップS107)。送信部207は、転送ネットワーク108に対してラベルが格納されたパケットを送信する(図9のステップS108)。
転送ネットワーク108において、転送ノード102−1は、エッジノード101−1から前記パケットを受信する。受信したパケットは、第1のサブラベルに“2”が格納されているため、転送ノード102−1のフローテーブルの第2のフローエントリ1601と一致する(図18参照)。転送ノード102−1は、第2のフローエントリ1601を参照して、パケットをポート2(図15の1301)から出力する。
次に、転送ノード102−5は、転送ノード102−1からパケットを受信する。受信したパケットは、第2のサブラベルに“3”が格納されているため、転送ノード102−5のフローテーブルの第1のフローエントリ1604と一致する(図18参照)。転送ノード102−5は、第1のフローエントリ1604を参照して、パケットをポート3(図15の1304)から出力する。
最後に、転送ノード102−6は、転送ノード102−5からパケットを受信する。受信したパケットは、第3のサブラベルに“10”が格納されているため、転送ノード102−6のフローテーブルの第1のフローエントリ1606と一致する(図18参照)。転送ノード102−6は、第1のフローエントリ1606を参照して、パケットをポート10(図15の1306)から出力する。
エッジノード101−3は、受信部200でパケットを受信し(図9のステップS100)、転送ネットワーク108向きのパケットかどうかを判断する(図9のステップS101)。転送ネットワーク108向きのパケットではないため、受信部200はヘッダ変換部209へパケットを渡し、ヘッダ変換部209はラベルが格納された送信元MACアドレスにエッジノード101−3のMACアドレスを格納する(図9のステップS110)。送信部207は、サーバ103−1に対してパケットを送信する(図9のステップS108)。
サーバ103−1から端末100−1への逆方向のパケット転送の詳細な動作は、端末100−1からサーバ103−1の転送と同様であるため、説明を省略する。
次に、転送ノード102−5に障害が発生し、経路が利用できなくなった場合の動作について再度図10を参照して説明する。制御装置104は、転送ネットワーク108に対して、転送ノード102や転送ノード102間の経路に障害が発生していないか監視する(図10のステップS200)。
転送ノード102−5にて障害が発生したことを検知すると(図10のステップS201)、制御装置104は、転送ノード102−5にて障害が発生したことをエッジノード101−1〜101−4へ通知する(図10のステップS202)。
前記通知を受けたエッジノード101−1は、経路管理部208において制御装置104からの障害情報を受信し、経路テーブル205の更新を行う(図10のステップS203)。具体的には、図17における第1の経路1500と第2の経路1501の経路状態402を異常に変更する。
以上のような経路テーブル205の更新を行うことにより、以降に受信したパケットについて、エッジノード101−1の経路解決部204は、第3の経路1502を得る。そして、エッジノード101−1は、フロー制御ネットワークに対して、第1のサブラベル“1”と第2のサブラベル“1”と第3のサブラベル“10”で構成されたラベルをパケットヘッダに格納する。エッジノード101−1が送信したパケットは、転送ノード102−1と転送ノード102−4と転送ノード102−6の経路で転送される。転送の詳細な動作は、正常時の動作と同様のため省略する。
以上、本発明の実施形態を説明したが、本発明は、上記した実施形態に限定されるものではなく、本発明の基本的技術的思想を逸脱しない範囲で、更なる変形・置換・調整を加えることができる。例えば、図1〜図3、図11及び図15に示したネットワーク構成や図4に示したエッジノードの構成は、本発明の理解を助けるための一例であり、これらの図面に示した構成に限定されるものではない。
また例えば、上記した実施形態では、サーバ103に接続された下流側のエッジノードでMACアドレスの復元(端末101側のエッジノードが付加したラベルをMACアドレスに書き戻す)を行うものとして説明したが、例えば、最終ホップの転送ノードにおいて、MACアドレスの復元を行うものとしてもよい。
最後に、本発明の好ましい形態を要約する。
[第1の形態]
(上記第1の視点による経路制御システム参照)
[第2の形態]
第1の形態の経路制御システムにおいて、
前記制御装置は、前記転送ノードに、前記障害発生区間を経由しない経路にて前記変更後のサブラベルに適合するパケットを転送させる制御情報を予め設定しておくことが好ましい。
[第3の形態]
第1又は第2の形態の経路制御システムにおいて、
前記制御装置は、前記転送ノードに、受信パケットと照合するサブラベルを指示することにより、前記サブラベルに基づく転送処理を実施させることが望ましい。
[第4の形態]
第1から第3いずれか一の形態の経路制御システムにおいて、
前記エッジノードは、送信元アドレスとパケットのペイロードの内容とに基づいて優先度情報と、宛先アドレスと、サブラベルの組み合わせとを対応付けた経路エントリ群から検索した受信パケットに適合するエントリに基づいてサブラベルの付加を行うことが望ましい。
[第5の形態]
第4の形態の経路制御システムにおいて、
前記経路エントリには、通信経路の状態を記録するフィールドが設けられ、前記エッジノードは、受信パケットに適合するエントリのうち、最も優先順位が高く、経路状態が正常であるエントリを選択できるようにすることが望ましい。
[第6の形態]
第1から第5いずれか一の形態の経路制御システムにおいて、
前記転送ノードが前記グループのほか、予め設定された階層のいずれかにも属しており、
前記制御装置は、前記エッジノードにおいて付加するサブラベルと階層識別子との組み合わせ及び前記転送ノードにおける前記サブラベルと前記階層識別子とに基づく転送処理を制御することが望ましい。
[第7の形態]
第1から第6いずれか一の形態の経路制御システムにおいて、
前記エッジノードは、パケットヘッダの送信元MACアドレス領域に、生成したラベルを格納し、
前記制御装置は、下流側のエッジノードまたは転送ノードに前記送信元MACアドレス領域の復元処理を実行させることが望ましい。
[第8の形態]
(上記第2の視点による制御装置参照)
[第9の形態]
第8の形態の制御装置において、
前記エッジノードに、送信元アドレスとパケットのペイロードの内容とに基づいて優先度情報と、宛先アドレスと、サブラベルの組み合わせとを対応付けた経路エントリ群を設定し、
前記エッジノードに、前記経路エントリ群の経路エントリのうち、受信パケットに適合するエントリを用いてサブラベルの付加を行わせることが望ましい。
[第10の形態]
第9の形態の制御装置において、
前記経路エントリには、経路の状態を記録するフィールドが設けられ、前記エッジノードに、受信パケットに適合するエントリのうち、最も優先順位が高く、経路状態が正常であるエントリを選択させることが望ましい。
[第11の形態]
(上記第3の視点によるエッジノード参照)
[第12の形態]
(上記第4の視点による経路制御方法参照)
[第13の形態]
(上記第5の視点によるプログラム参照)
なお、上記の特許文献および非特許文献の各開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素(各請求項の各要素、各実施形態ないし実施例の各要素、各図面の各要素等を含む)の多様な組み合わせ、ないし選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。特に、本書に記載した数値範囲については、当該範囲内に含まれる任意の数値ないし小範囲が、別段の記載のない場合でも具体的に記載されているものと解釈されるべきである。
10、11、12:端末
20:エッジノード
30:転送ネットワーク
30a〜30f:転送ノード
40:制御装置
100−1〜100−3:端末
101−1〜101−4:エッジノード
102−1〜102−8:転送ノード
103−1〜103−3:サーバ
104:制御装置
105:第1の横階層
106:第2の横階層
107:第3の横階層
108:転送ネットワーク
200:受信部
201:パケット解析部
202:フロー識別部
203:優先度テーブル
204:経路解決部
205:経路テーブル
206:ラベル格納部
207:送信部
208:経路管理部
209:ヘッダ変換部
300:送信元IPアドレス
301:フロー識別子
302:優先度
400:宛先IPアドレス
401:優先度
402:経路状態
403:第1のサブラベル
404:第2のサブラベル
405:第3のサブラベル
500:ラベル
501:第1のサブラベル
502:第2のサブラベル
503:第3のサブラベル
600:ラベル
601:マスク
602:アクション
603:第1のサブラベル
604:第2のサブラベル
605:第3のサブラベル
900:第1の縦階層
901:第2の縦階層
902:第3の縦階層
1000、1100、1200:第1の階層識別子
1001、1101、1201:第2の階層識別子
1002、1102、1202:第3の階層識別子
1300:転送ノード102−1のポート1
1301:転送ノード102−1のポート2
1302:転送ノード102−4のポート1
1303:転送ノード102−4のポート2
1304:転送ノード102−5のポート3
1305:転送ノード102−5のポート4
1306:転送ノード102−6のポート10
1307:転送ノード102−7のポート8
1400:送信元IPアドレス(10.0.0.1)
1401:フロー識別子(URL−A)
1402:優先度(1)
1500:第1の経路
1501:第2の経路
1502:第3の経路
1503:第4の経路
1600:転送ノード102−1における第1のフローエントリ
1601:転送ノード102−1における第2のフローエントリ
1602:転送ノード102−4における第1のフローエントリ
1603:転送ノード102−4における第2のフローエントリ
1604:転送ノード102−5における第1のフローエントリ
1605:転送ノード102−5における第2のフローエントリ
1606:転送ノード102−6における第1のフローエントリ
1607:転送ノード102−7における第1のフローエントリ

Claims (10)

  1. 個々の転送ノードがいずれかのグループに属し、前記グループに対応するサブラベルに基づいてパケット転送を行う転送ネットワークと、
    受信したパケットの情報に基づいて、複数のサブラベルで構成されたラベルを付加するエッジノードと、
    前記エッジノードにおいて付加するサブラベルの組み合わせ及び前記転送ノードにおける前記サブラベルに基づく転送処理を制御することにより、前記転送ネットワークの経路制御を行う制御装置と、を含み、
    前記制御装置は、通信経路に障害が発生した場合、
    前記エッジノードに、その後の受信パケットに付加するサブラベルのうち、前記通信経路の障害発生区間に対応するサブラベルの変更を行わせ、
    前記転送ノードに、前記障害発生区間を経由しない経路にてパケット転送を行わせること、
    を特徴とする経路制御システム。
  2. 前記制御装置は、前記転送ノードに、前記障害発生区間を経由しない経路にて前記変更後のサブラベルに適合するパケットを転送させる制御情報を予め設定しておくこと、を特徴とする請求項1の経路制御システム。
  3. 前記エッジノードは、送信元アドレスとパケットのペイロードの内容とに基づいて優先度情報と、宛先アドレスと、サブラベルの組み合わせとを対応付けた経路エントリ群から選択した受信パケットに適合するエントリに基づいてサブラベルの付加を行う請求項1または2の経路制御システム。
  4. 前記経路エントリには、通信経路の状態を記録するフィールドが設けられ、前記エッジノードは、受信パケットに適合するエントリのうち、最も優先順位が高く、経路状態が正常であるエントリを選択する請求項3の経路制御システム。
  5. 前記転送ノードが前記グループのほか、予め設定された階層のいずれかにも属しており、
    前記制御装置は、前記エッジノードにおいて付加するサブラベルと階層識別子との組み合わせ及び前記転送ノードにおける前記サブラベルと前記階層識別子とに基づく転送処理を制御する請求項1から4いずれか一の経路制御システム。
  6. 前記エッジノードは、パケットヘッダの送信元MACアドレス領域に、生成したラベルを格納し、
    前記制御装置は、下流側のエッジノードまたは転送ノードに前記送信元MACアドレス領域の復元処理を実行させる請求項1から5いずれか一の経路制御システム。
  7. 個々の転送ノードがいずれかのグループに属し、前記グループに対応するサブラベルに基づいてパケット転送を行う転送ネットワークと、
    受信したパケットの情報に基づいて、複数のサブラベルで構成されたラベルを付加するエッジノードと、に接続され、
    前記エッジノードにおいて付加するサブラベルの組み合わせ及び前記転送ノードにおける前記サブラベルに基づく転送処理を制御することにより、前記転送ネットワークの経路制御を行う制御装置であって、
    通信経路に障害が発生した場合、
    前記エッジノードに、その後の受信パケットに付加するサブラベルのうち、前記通信経路の障害発生区間に対応するサブラベルの変更を行わせ、
    前記転送ノードに、前記障害発生区間を経由しない経路にてパケット転送を行わせる制御装置。
  8. 前記エッジノードに、送信元アドレスとパケットのペイロードの内容とに基づいて優先度情報と、宛先アドレスと、サブラベルの組み合わせとを対応付けた経路エントリ群を設定し、
    前記エッジノードに、前記経路エントリ群の経路エントリのうち、受信パケットに適合するエントリを用いてサブラベルの付加を行わせる請求項7の制御装置。
  9. 前記経路エントリには、通信経路の状態を記録するフィールドが設けられ、前記エッジノードに、受信パケットに適合するエントリのうち、最も優先順位が高く、経路状態が正常であるエントリを選択させる請求項8の制御装置。
  10. 個々の転送ノードがいずれかのグループに属し、前記グループに対応するサブラベルに基づいてパケット転送を行う転送ネットワークと、
    受信したパケットの情報に基づいて、複数のサブラベルで構成されたラベルを付加するエッジノードと、
    前記エッジノードにおいて付加するサブラベルの組み合わせ及び前記転送ノードにおける前記サブラベルに基づく転送処理を制御することにより、前記転送ネットワークの経路制御を行う制御装置と、を含む経路制御システムにおける経路制御方法であって、
    前記通信経路に障害が発生したか否かを検出するステップと、
    前記通信経路に障害が発生した場合、前記エッジノードに、その後の受信パケットに付加するサブラベルのうち、前記通信経路の障害発生区間に対応するサブラベルの変更を行わせるステップと、
    前記転送ノードに、前記障害発生区間を経由しない経路にてパケット転送を行わせるステップと、を含む経路制御方法。
JP2015511531A 2012-08-28 2013-08-27 経路制御システム、制御装置、エッジノード、経路制御方法及びプログラム Ceased JP2015526921A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015511531A JP2015526921A (ja) 2012-08-28 2013-08-27 経路制御システム、制御装置、エッジノード、経路制御方法及びプログラム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012187867 2012-08-28
JP2012187867 2012-08-28
PCT/JP2013/005053 WO2014034097A1 (en) 2012-08-28 2013-08-27 Path control system, control apparatus, edge node, path control method, and program
JP2015511531A JP2015526921A (ja) 2012-08-28 2013-08-27 経路制御システム、制御装置、エッジノード、経路制御方法及びプログラム

Publications (1)

Publication Number Publication Date
JP2015526921A true JP2015526921A (ja) 2015-09-10

Family

ID=50182934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015511531A Ceased JP2015526921A (ja) 2012-08-28 2013-08-27 経路制御システム、制御装置、エッジノード、経路制御方法及びプログラム

Country Status (3)

Country Link
US (1) US20150207675A1 (ja)
JP (1) JP2015526921A (ja)
WO (1) WO2014034097A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020527918A (ja) * 2017-07-25 2020-09-10 新華三技術有限公司New H3C Technologies Co., Ltd. データフロー伝送

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10594604B1 (en) 2013-10-08 2020-03-17 Juniper Networks, Inc. End to end application identification and analytics of tunnel encapsulated traffic in the underlay
JP6268943B2 (ja) * 2013-11-06 2018-01-31 富士通株式会社 情報処理システム,スイッチ装置及び情報処理システムの制御方法
US9807004B2 (en) * 2014-04-01 2017-10-31 Google Inc. System and method for software defined routing of traffic within and between autonomous systems with enhanced flow routing, scalability and security
CN105337852B (zh) * 2014-07-03 2019-11-05 华为技术有限公司 更新业务流报文的处理方式的方法及装置
US10171511B2 (en) 2014-09-25 2019-01-01 Microsoft Technology Licensing, Llc Media session between network endpoints
US10244003B2 (en) * 2014-09-25 2019-03-26 Microsoft Technology Licensing, Llc Media session between network endpoints
CN104468349B (zh) * 2014-11-27 2017-11-14 中国科学院计算机网络信息中心 一种基于逐跳监督的bgp路由验证方法
JP6582723B2 (ja) 2015-08-19 2019-10-02 富士通株式会社 ネットワークシステム、スイッチ装置、及びネットワークシステム制御方法
US10158679B2 (en) 2015-11-18 2018-12-18 Microsoft Technology Licensing, Llc Media session between network endpoints
CN106936713B (zh) 2015-12-30 2020-02-21 华为技术有限公司 一种标签管理方法,数据流处理方法及设备
US11855885B2 (en) * 2020-10-20 2023-12-26 Nokia Solutions And Networks Oy Label switched path scalability

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004254328A (ja) * 2003-02-20 2004-09-09 Huawei Technologies Co Ltd Ipネットワークにおける保証付きサービス品質を提供するための方法およびそのシステム
JP2005277446A (ja) * 2004-03-22 2005-10-06 Fujitsu Ltd 予備パス設定方法及びその装置
JP2006295938A (ja) * 2005-04-12 2006-10-26 Fujitsu Ltd ネットワーク型ルーティング機構
JP2006324910A (ja) * 2005-05-18 2006-11-30 Fujitsu Ltd 情報処理方法及びルータ
JP2008219083A (ja) * 2007-02-28 2008-09-18 Nippon Telegr & Teleph Corp <Ntt> ネットワークシステム、現用パス上コアノード、エッジノード、迂回パス上コアノードおよび現用パス上コアノードによる通信制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010040895A1 (en) * 2000-03-16 2001-11-15 Templin Fred Lambert An IPv6-IPv4 compatibility aggregatable global unicast address format for incremental deployment of IPv6 nodes within IPv4
KR100694205B1 (ko) * 2005-02-14 2007-03-14 삼성전자주식회사 Mpls 패킷 처리 장치 및 방법
US8081620B2 (en) * 2007-11-26 2011-12-20 Alcatel Lucent System and method for supporting link aggregation and other layer-2 protocols primarily over unidirectional links
US8885459B2 (en) * 2010-02-26 2014-11-11 Futurewei Technologies, Inc. System and method for computing a backup ingress of a point-to-multipoint label switched path
EP2748986B1 (en) * 2011-09-27 2018-12-12 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for path switching
US8693478B2 (en) * 2012-03-16 2014-04-08 Cisco Technology, Inc. Multiple shortest-path tree protocol

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004254328A (ja) * 2003-02-20 2004-09-09 Huawei Technologies Co Ltd Ipネットワークにおける保証付きサービス品質を提供するための方法およびそのシステム
JP2005277446A (ja) * 2004-03-22 2005-10-06 Fujitsu Ltd 予備パス設定方法及びその装置
JP2006295938A (ja) * 2005-04-12 2006-10-26 Fujitsu Ltd ネットワーク型ルーティング機構
JP2006324910A (ja) * 2005-05-18 2006-11-30 Fujitsu Ltd 情報処理方法及びルータ
JP2008219083A (ja) * 2007-02-28 2008-09-18 Nippon Telegr & Teleph Corp <Ntt> ネットワークシステム、現用パス上コアノード、エッジノード、迂回パス上コアノードおよび現用パス上コアノードによる通信制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020527918A (ja) * 2017-07-25 2020-09-10 新華三技術有限公司New H3C Technologies Co., Ltd. データフロー伝送
US11190439B2 (en) 2017-07-25 2021-11-30 New H3C Technologies Co., Ltd. Data stream transmission

Also Published As

Publication number Publication date
US20150207675A1 (en) 2015-07-23
WO2014034097A1 (en) 2014-03-06

Similar Documents

Publication Publication Date Title
JP2015526921A (ja) 経路制御システム、制御装置、エッジノード、経路制御方法及びプログラム
US9769054B2 (en) Network topology discovery method and system
JP5590263B2 (ja) 情報システム、制御装置、仮想ネットワークの提供方法およびプログラム
US7668116B2 (en) Root node shutdown messaging for multipoint-to-multipoint transport tree
US9306855B2 (en) System and method for using label distribution protocol (LDP) in IPv6 networks
CN112118182B (zh) 发送流量工程的ip路径隧道
JP5850068B2 (ja) 制御装置、通信システム、通信方法およびプログラム
JP5880570B2 (ja) マッピングサーバ装置、ネットワークシステム、パケット転送方法およびプログラム
US9491000B2 (en) Data transport system, transmission method, and transport apparatus
US11134004B2 (en) Enhanced flexible-algorithm definition
CN113347091A (zh) 灵活算法感知边界网关协议前缀分段路由标识符
EP3754914B1 (en) Class-based traffic engineering in an ip network
JP6064989B2 (ja) 制御装置、通信システム、ノード制御方法及びプログラム
WO2011118574A1 (ja) 通信システム、制御装置、遅延測定方法およびプログラム
WO2014129624A1 (ja) 制御装置、通信システム、経路切替方法及びプログラム
EP2905932B1 (en) Method for multiple path packet routing
JPWO2014175423A1 (ja) 通信ノード、通信システム、パケット処理方法及びプログラム
JPWO2015151442A1 (ja) 通信システム、通信方法および制御装置
WO2014119602A1 (ja) 制御装置、スイッチ、通信システム、スイッチの制御方法及びプログラム
EP3104562B1 (en) Method of aggregation of flows in ict networks
KR20150016916A (ko) 컴퓨터 네트워킹에서의 패킷들의 다중 경로 라우팅을 위한 장치 및 그의 사용 방법
JP5071415B2 (ja) ネットワーク管理装置及びプログラム
JP6264469B2 (ja) 制御装置、通信システム及び中継装置の制御方法
JP2004349881A (ja) フラッディング量削減方法および通信装置
WO2014149960A1 (en) System, method and apparatus for lsp setup using inter-domain abr indication

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20180227