JP2015517500A - Mcm複合体を阻害するための方法および化合物ならびにガン処置におけるそれらの適用 - Google Patents

Mcm複合体を阻害するための方法および化合物ならびにガン処置におけるそれらの適用 Download PDF

Info

Publication number
JP2015517500A
JP2015517500A JP2015511684A JP2015511684A JP2015517500A JP 2015517500 A JP2015517500 A JP 2015517500A JP 2015511684 A JP2015511684 A JP 2015511684A JP 2015511684 A JP2015511684 A JP 2015511684A JP 2015517500 A JP2015517500 A JP 2015517500A
Authority
JP
Japan
Prior art keywords
cells
mcm
17beta
deacetyltanginine
cancer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015511684A
Other languages
English (en)
Other versions
JP2015517500A5 (ja
Inventor
リアン チュン
リアン チュン
ジアン ジホン
ジアン ジホン
ワン ジイ
ワン ジイ
ユー ジリン
ユー ジリン
ワン ジンロン
ワン ジンロン
バイ リピン
バイ リピン
Original Assignee
ザ ホン コン ユニバーシティ オブ サイエンス アンド テクノロジイ
ザ ホン コン ユニバーシティ オブ サイエンス アンド テクノロジイ
ホン コン バプティスト ユニバーシティ
ホン コン バプティスト ユニバーシティ
マカウ ユニバーシティ オブ サイエンス アンド テクノロジイ
マカウ ユニバーシティ オブ サイエンス アンド テクノロジイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ザ ホン コン ユニバーシティ オブ サイエンス アンド テクノロジイ, ザ ホン コン ユニバーシティ オブ サイエンス アンド テクノロジイ, ホン コン バプティスト ユニバーシティ, ホン コン バプティスト ユニバーシティ, マカウ ユニバーシティ オブ サイエンス アンド テクノロジイ, マカウ ユニバーシティ オブ サイエンス アンド テクノロジイ filed Critical ザ ホン コン ユニバーシティ オブ サイエンス アンド テクノロジイ
Publication of JP2015517500A publication Critical patent/JP2015517500A/ja
Publication of JP2015517500A5 publication Critical patent/JP2015517500A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/58Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
    • A61K31/585Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin containing lactone rings, e.g. oxandrolone, bufalin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2458/00Labels used in chemical analysis of biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/10Screening for compounds of potential therapeutic value involving cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Toxicology (AREA)
  • Oncology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hospice & Palliative Care (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

MCM複合体(6個のサブユニットから形成されるヘテロヘキサマー環状体)の機能性をDNA複製の過程において阻害することができる作用因を使用することによってガンを処置するための方法、ならびに、候補化合物で処理される細胞におけるMCMサブユニット(例えば、hMcm2およびhMcm6など)の所在および機能を検出することによってそのような作用因についてスクリーニングする方法。

Description

(関連出願に対する相互参照)
本出願は米国仮特許出願第61/644,442号(2012年5月9日出願;その内容がその全体において参照によって本明細書中に組み込まれる)からの利益を主張する。
(技術分野)
本発明は、MCM複合体(6個のサブユニットから形成されるヘテロヘキサマー環状体)の機能性をDNA複製の過程において阻害することができる作用因を使用することによってガンを処置するための方法に関連し、また、さらには、候補化合物で処理される細胞におけるMCMサブユニット(例えば、hMcm2およびhMcm6など)の所在および機能を検出することによってそのような作用因についてスクリーニングする方法に関連する。
ガン性細胞は、制御できずに***および成長し、身体の近くの部分に浸潤し、また、リンパ系および/または血流を介して身体の他の部分に広がることもある細胞である。ガンの処置は通常、例えば、手術、化学療法、放射線療法または免疫療法などによるガン性細胞の除去または破壊を伴う。しかしながら、それらの形態の処置のすべてにおける課題の1つが、ガン性細胞をいかにして完全に除去または破壊するかであり、また、同時に、正常または健康な細胞および組織に対する重大な損傷をいかにして生じさせないかである。化学療法の場合、数十年間にわたって、細胞毒性化合物についてスクリーニングすることが研究開発の主要な焦点であることをもたらした。多数の化学化合物が細胞毒性活性および抗ガン活性を有することが示されている。Schwartsmann他によって述べられるように、1988年までに、600,000を超える化合物がスクリーニングされており、しかし、それらのうちの約40個だけが何らかの臨床的重要性を有している。この低い成功率は主として、抗ガン薬物についての毒性の懸念のためである。これは、抗ガン薬物は一般に、狭い治療指数を有しており、すなわち、抗ガン効果のために要求される用量と、許容できない毒性を引き起こす用量との間の余裕が小さいからである。細胞増殖に対する阻害効果を細胞毒性に基づいて有する化合物を発見することの有用性は限定されており、また、そのような発見は、臨床的に関連があるとはとてもいえないものである。必要とされ、かつ、より有意義であることが、細胞増殖を強く阻害するだけでなく、正常または健康な細胞および組織に対する重大な損傷を引き起こすことなく、ガン性細胞に対する特異性を伴って細胞増殖を強く阻害する化合物を見つけることである。
したがって、本発明の1つの目的が、正常な細胞に対する著しい損傷を引き起こすことなく、大きい特異性によりガン性細胞を殺す方法を提供することである。この目的が、機能的なMCM(ミニ染色体維持)複合体がそのサブユニットから形成されることを中断させることによって実現される。MCM複合体は、プレRC(すなわち、複製前複合体)組み立て(これはまた、複製ライセンス化と呼ばれる)およびDNA複製伸長において不可欠な役割を果たすことが知られている。機能的なMCM複合体は、Orcl−6、Noc3、Ipil−3、Cdtl、Cdc6およびおそらくはいくつかの他のタンパク質の助けを借りて複製起点に載るヘテロヘキサマー環状体を形成するために6個すべてのMCMサブユニット(Mcm2〜Mcm7)を必要とする。AAA+(様々な活性に関連するATPase)ファミリーのタンパク質のメンバーとして、MCM複合体は複製フォークと一緒に移動して、おそらくは、複製ヘリカーゼとして働いてDNA二重鎖を巻き戻すと考えられる。本発明者らの以前の研究は、米国特許第7393950号および同第8318922号に開示されるが、MCMサブユニットの遺伝子を標的とするアンチセンスオリゴヌクレオチドが細胞増殖阻害効果を有することを明らかにしている。上記特許の内容が本書により参照によって組み込まれる。
MCMタンパク質は、機能的であるためには環状構造体との無傷の複合体を形成しなければならないので、それらの相互作用の中断(すなわち、MCMタンパク質に、機能的な複合体を形成することができなくさせること)により、DNA複製が阻害されるであろうし、かつ、アポトーシスが誘導されるであろうし、また、より重要なことに、MCMの機能性を中断させることの影響が、正常な細胞および健康な細胞に対してではなく、ガン性細胞に対して重大かつ永続的であるにすぎない。
そのような大きい特異性が本発明の本質である。理論によってとらわれることを望まないが、本発明の大きい特異性は、正常な細胞は、細胞死を回避するために細胞周期をG1期において停止させる無傷のチェックポイントを有しており、これに対して、ガン細胞はチェックポイント制御を欠き、頓挫性S期に入るであろうという違いにあると考えられる。言い換えれば、正常な細胞は、MCM複合体が形成されて、機能的であるかどうかを感知する能力を有しており、かつ、MCM複合体がその規則をDNA複製において果たす準備ができていることに気づいたときにS期に入るだけである。そうでない場合、正常な細胞はG1期において一時的に停止されるであろう。比喩を使用すると、このことは、機能するブレーキを備える走行中の車に似ている。運転者は、前方の川に架かる橋が壊れていることに気づくと、車を停止させることができる。他方で、ガン性細胞は、機能不全のブレーキを有する車に似ており、車は、壊れた橋に到達する前に止まることができず、川の中に落下するまでその進路を続けるであろう(すなわち、進行し続けて頓挫性S期の中に入るであろう)。
本発明の別の目的が、ガン性細胞を殺し、一方で、正常な細胞に対する重大な損傷を引き起こさない大きい特異性を有する抗ガン薬物についてスクリーニングする方法を提供することである。この目的が、細胞質に留まることになり、核に輸送され得ない、サブユニットからの機能的なMCM複合体(ヘテロヘキサマー環状構造体)の形成を損なう化合物を特定するためのプロセスによって実現される。
好ましくは、上記方法は、(a)多数の候補化合物を一定の期間にわたって細胞の集団と接触させる工程、および、(b)機能的なMCM複合体のレベルを前記候補化合物で処理される前記細胞において検出する工程を含む。より好ましくは、工程(b)が、核に位置するMCMサブユニットの一部を、細胞質に位置する一部と比較して検出することによって間接的に行われる。機能的なMCM複合体のみが核内に位置することができるので、MCMサブユニットが核に少なく位置するほど、機能的なMCM複合体の形成に対する候補化合物の破壊的影響が強くなる。一層より好ましくは、工程(b)が、1つまたは複数の内因性MCMタンパク質に対する一次抗体を認識する蛍光標識された二次抗体により、候補化合物に特定の継続期間にわたってさらされた後における内因性MCMタンパク質の細胞内所在の可視化が可能になる間接的な蛍光法(免疫染色)によって行われる。代替において、工程(b)はまた、細胞が、蛍光タンパク質と融合される1つまたは複数のMCMサブユニット(例えば、hMcm2−GFPおよび/またはhMcm6−GFPなど)を発現することができるプラスミドでトランスフェクションされており、それにより、細胞が候補化合物で処理された後における蛍光性MCM融合タンパク質の所在を検出することができる直接的な蛍光法によって行われる場合がある。工程(b)のための他の方法には、MCMサブユニットの物理的相互作用を検出すること、または、様々なMCMタンパク質が正常にそれらの機能を行うクロマチンに結合するMCMタンパク質の量を測定することが含まれる。
必要に応じて、追加の工程が、工程(b)を補完するために行われる場合があり、または、別個の工程として、DNA複製の欠陥を様々な方法によって調べるために、例えば、BrdU取り込みアッセイ、フローサイトメトリーなどによって調べるために行われる場合がある。さらなる工程がまた、機能的なMCM複合体の形成を中断させる能力により特定される化合物がまた、抗増殖およびアポトーシス誘導の面での強力な示差的影響をガン性細胞と正常な細胞との間において有することを確認するために取られる場合がある。
本発明の別の目的が、本発明による治療方法を具体化するための大きい特異性を有する抗ガン剤としての特異的な化合物を提供することである。好ましい化合物が、4環骨格構造を含む式(I)である:


式中、R1はHであるか、あるいは、1つまたは複数の糖ユニットによって置換される;R2はベータ型立体配置での5員環基または6員環基である;R3およびR4はそれぞれがHまたはOHであるか、あるいは、R3およびR4は、R3およびR4がそれぞれ、それぞれ結合する2個のC原子との3員環を形成するただ1つのO原子である;R5はOHであり、かつ、R6はHであるか、あるいは、R5およびR6は、R5およびR6がそれぞれ、それぞれ結合する2個のC原子との3員環を形成するただ1つのO原子である。
本発明の方法および化合物は、MCM複合体の中断に対して感受性であるすべての形態のガンに対して適用可能であり、例えば、子宮頸ガン、前立腺ガン、結腸ガン、乳ガン、卵巣ガン、急性骨髄球性白血病、慢性リンパ球性白血病、非ホジキン病リンパ腫、ホジキン病リンパ腫、急性リンパ球性白血病、膵臓ガン、胃ガン、皮膚ガン、膀胱ガン、食道ガン、鼻咽頭ガン、小細胞肺ガン、濾胞性リンパ腫または非小細胞肺ガンに対して適用可能である。
要約すれば、本発明の根底にある特別な技術的特徴は、機能的なMCM複合体がそのサブユニットから形成されることを妨げることによってガン性細胞を選択的に殺すことができる作用因を伴う。
発明を特徴づける新規な様々な特徴が、本開示に添付され、かつ、本開示の一部を形成する請求項において詳しく指摘される。本発明、その操作上の利点、および、その使用によって達成される特定の目的をよりよく理解するためには、本発明の好ましい実施形態が例示され、また、記載される図面および下記の説明を参照しなければならない。
本発明の抗ガン化合物(3〜8)の構造を不活性な異性体(1〜2)の構造との比較で示す。
直接的な顕微鏡法観察(A)およびWST−1(水溶性テトラゾリウム−1)アッセイデータ(B〜H)を示し、これらは、17ベータ−デアセチルタンギニン(A〜C)、17ベータ−ネリイホリン(D)および17ベータ−デアセチルタンギニンジオール(E)、すなわち、本発明の抗ガン化合物の3つの代表例が、正常な細胞に対する著しい細胞毒性を伴うことなく、強力な抗ガン活性を有することを示す。比較のために、パクリタキセル(タキソール)は、ガン細胞よりも、正常な細胞に対して細胞毒性であり(F)、VP16(リン酸エトポシド)は選択性を正常な細胞とガン細胞との間においてほとんど有していない(GおよびH)。
17ベータ−デアセチルタンギニン(DAT)および17ベータ−ネリイホリン(NRF)がMCMサブユニットの間における相互作用を損ない、一方、17ベータ−デアセチルタンギニンジオール(Diol)はより弱い活性を有することを共免疫沈澱によって示す。
17ベータ−デアセチルタンギニン(DAT)、17ベータ−ネリイホリン(NRF)および17ベータ−デアセチルタンギニンジオール(Diol)がhMcm2(h、ヒト)およびhMcm6の核局在化を損なうことを示す間接的な免疫蛍光顕微鏡法のデータを示す。
17ベータ−デアセチルタンギニンが複製前複合体(プレRC)の組み立てを阻害し、ガン細胞のアポトーシスを誘導することを示すためのクロマチン結合アッセイデータおよびフローサイトメトリーデータを示す。
17ベータ−デアセチルタンギニンがガン細胞においてDNA複製を阻害し、アポトーシスを誘導することをフローサイトメトリーによって示す。
17ベータ−デアセチルタンギニンがDNA複製を阻害することを示すためのBrdU取り込みアッセイデータを示す。
17ベータ−デアセチルタンギニン(DAT)、17ベータ−ネリイホリン(NRF)および17ベータ−デアセチルタンギニンジオール(Diol)がアポトーシスをガン細胞において誘導し得ることを示すフローサイトメトリーデータおよびアネキシンV染色データを示す。
ガン細胞ではなく、正常な細胞は、WST−1アッセイによって測定されるように、17ベータ−デアセチルタンギニンが除かれた後において成長を再開することができることを示す。
ヌードマウス異種移植モデルにおける17ベータ−デアセチルタンギニンのインビボ抗腫瘍活性を示す。
17ベータ−デアセチルタンギニンは、明白な毒性を、図10に示される実験に供されたヌードマウスにおいて何ら有しないことを示す。
細胞株およびプラスミド
ヒトMcm6およびヒトMcm2のcDNAフラグメントをそれぞれ、局在化検出のためにpEGFP−C3ベクター(Invitrogen)にクローン化した。HeLa細胞(子宮頸部腺ガン)、HepG2細胞(肝細胞ガン)、Hep3B細胞(肝細胞ガン)、HKl(鼻咽頭ガン)およびC666−1(鼻咽頭ガン)を、10%のFBSを含有するDMEMにおいて培養した。L−02細胞(正常なヒト肝臓細胞)を、10%のFBSを伴うRPMI1640において培養した。NP460細胞を補充物S0125(Cascade Biologics)とともに1:1のケラチノサイト−SFM(Invitrogen)およびMEPI500CAにおいて培養した。すべての細胞株を、5%のCOを含有する加湿雰囲気において37℃で培養した。
抗増殖活性アッセイ
化合物の抗増殖活性をヒト細胞株において試験し、IC50を計算するために、HepG2、HeLaおよびHep3Bを含むガン細胞(4×10細胞/ウエル)ならびに正常なL−02細胞(5×10細胞/ウエル)を100μlの培養培地において96ウエルプレートにそれぞれ播種し、37℃で約12時間インキュベーションした。細胞を48時間にわたって薬物の2倍連続希釈物で処理した。培地を除き、1μMのWST−1(水溶性テトラゾリウム−1)を含有する100μlの培養培地をそれぞれのウエルに加えた。細胞を2時間インキュベーションし、その後、405nmにおける吸光度(630nmにおける参照)を測定した。細胞数とOD405における吸光度との関係の標準曲線を構築するために、既知の細胞数を有する細胞の連続希釈物を播種し、6時間インキュベーションし、その後で、WST−1アッセイによる測定を行った。細胞生存性を、候補化合物で処理される生細胞の数の、DMSO処理細胞の数に対する比率として表した。
抗ガン化合物の天然物スクリーニングおよび生物活性誘導による単離
化学サンプルを抗ガン薬物選別アッセイのための天然供給源から調製するための一般的プロトコルは下記の通りであった。10〜100グラムの薬草材料(植物全体、根、茎、葉または実)を、室温で3回、メタノールで抽出した。それぞれの総抽出物を水に懸濁し、その後、EtO、EtOAc、n−BuOHにより順次、分配して、4つの画分、すなわち、EtO画分、EtOAc画分、n−BuOH画分およびHO画分を得た。それぞれの総抽出物または画分をスクリーニングアッセイのための10mg/mlのストック液としてDMSOに溶解した。精製された単一の化合物をそれぞれ1mg/mlのストック液として調製した。
上記のスクリーニング手法を使用して、強力なMCM複合体中断活性および抗ガン活性を有する1つの画分を特定した。この画分は、セレブラ・マンハス(Cerebra manhas)およびセレブラ・オドラム(Cerebra odollam)の乾燥葉または幼若ブラチ(brach)の抽出物のEtO画分である。この画分を続いて、SiO、MCIゲル CHP 20P(75〜150m、Mitsubish Chemical Corporation、日本)、Chromatorex ODS(100〜200メッシュ、Fuji Silysia Chemical Ltd.、日本)およびToyopearl HW−40F(Tosoh Corporation、日本)での異なるカラムクロマトグラフィーの組合せを使用することによって活性誘導による分画化に供し、これにより、17ベータ−デアセチルタンギニンを、セレブラ・オドラムおよびセレブラ・マンハスの乾燥葉および幼若ブラチの活性画分の活性を担うリード化合物として単離した。
17ベータ−デアセチルタンギニンの構造特定
17ベータ−デアセチルタンギニンの構造を分光学的証拠に基づいて特徴づけた。NMRスペクトルを、Varian−400分光計を使用して記録した。結合定数がHz単位で与えられ、化学シフトを内部標準としてのMe4Siに対して(ppm)で表した。HR−ESI−MSをQ−TOF質量分析計(Bruker Daltonics、MA、米国)で行った。
高分解能ESI−MS(陽イオンモード):m/z 549.3077[M+H](計算値、C3045:549.3064)。H−NMR(400MHz、ピリジン−d5):δ6.31(1H、s、H−22)、5.25(1H、d、J=2.9Hz、H−1’)、5.20(1H、m、H−21)、5.02(1H、dd、J=18.0、1.4Hz、H−21)、4.33(1H、m、H−5’)、4.12(1H、brs、H−3)、4.09(1H、dd、J=9.0、4.0Hz、H−2’)、4.03(1H、t、J=9.5Hz、H−3’)、3.85(3H、s、3’−OMe)、3.69(1H、m、H−4’)、3.41(1H、d、J=5.8Hz、H−7)、2.82(1H、dd、J=9.0、5.0Hz、H−17)、1.66(1H、d、J=6.2Hz、H−6’)、1.06(3H、s、H−19)、0.99(3H、s、H−18)。13C−NMR(100MHz、ピリジン−d5):δ32.7(C−1)、28.0(C−2)、73.7(C−3)、33.5(C−4)、34.8(C−5)、28.9(C−6)、51.9(C−7)、65.1(C−8)、32.5(C−9)、34.4(C−10)、21.5(C−11)、41.4(C−12)、53.2(C−13)、82.4(C−14)、35.9(C−15)、29.3(C−16)、51.5(C−17)、13.0(C−18)、25.0(C−19)、175.9(C−20)、74.4(C−21)、113.4(C−22)、175.1(C−23)、99.6(C−1’)、74.0(C−2’)、86.0(C−3’)、77.2(C−4’)、69.6(C−5’)、19.2(C−6’)、61.2(C−3’−OMe)。
17ベータ−デアセチルタンギニンを、C3044の分子式に対応するその高分解能ESI−MS、カルデノリドに由来する特徴的なシグナルを示すH−NMRスペクトル[C−21におけるメチレンプロトン(δ5.20、m;5.02、dd、J=18.0、1.4Hz)およびC−22におけるオレフィンプロトン(δ6.31、s)]、および、糖成分のアノマープロトンのシグナル(δ5.25、d、J=2.9Hz)によってカルデノリドモノグリコシドであると決定した。C−7位およびC−8位におけるエポキシ基が、ネリホルリン(セルベラ・マングハス(Cerbera manghas)の葉から得られる主要なカルデノリド)のC−7およびC−8のシグナルと比較して、C−7およびC−8のシグナルについての大きい低磁場シフトによって示唆され、また、7,8−エポキシ基を有するカルデノリド類の化学シフトとの化学シフト比較によってさらに裏付けられた。C−17の立体配置が、H−17のシグナル(δ2.82、dd、J=9.0、5.0Hz)によって証明されるように、また、ラクトン環の遮蔽効果を受けているC−12のシグナル(δ41.4)によって裏付けられるように、βであることが立証された。アグリコンが、その13C−NMRデータを報告されるデータと比較することによって3β−ヒドロキシ−7β,8β−エポキシ−14β−ヒドロキシ−カルド−20(22)−エノリドとして特定された。糖成分が、そのプロトンシグナルおよび炭素シグナルを文献に記載されるデータと比較することによってα−L−テベトース(3−O−メチル−6−デオキシ−α−L−グルコピラノシル)であることが明らかにされた。上記の証拠に基づいて、HMG−17ベータ−デアセチルタンギニンの構造を、3β−O−(3−O−メチル−6−デオキシ−α−L−グルコピラノシル)−7β,8β−エポキシ−14β−ヒドロキシ−カルド−20(22)−エノリド(17ベータ−デアセチルタンギニン)であると特徴づけた。
Figure 2015517500
免疫染色アッセイ
hMcm2とhMcm6との間の相互作用に対する抗ガン化合物の影響を細胞において研究するために、免疫染色を、タンパク質の細胞内局在化を検出するために行った。薬物処理を伴う、または伴わない、(ポリ−D−リシンで被覆される)カバースリップにおいて成長させられるHeLa細胞を、室温で20分間、PBSにおける4%のPFAにより固定処理した。PBSにおける0.1%のTriton X−100および1%のBSAによる透過処理を20分間行った後、細胞を1%のBSAによりブロッキング処理し、その後、ウサギ抗hMcm6一次抗体(Santa Cruz;1:500)およびマウス抗hMcm2一次抗体(Becton Dickinson、1:500)と室温で1時間インキュベーションした。その後、細胞を、Alexa Fluor488コンジュゲート化ロバ抗ヤギ抗体およびAlexa Fluor594コンジュゲート化ロバ抗マウス抗体(Invitrogen、1:500)と室温で1時間インキュベーションした。PBSによる3回の洗浄を抗体インキュベーションのそれぞれの操作の後で行った。その後、細胞を核染色のためにHochest33852(Sigma Chemical Company;1μg/ml)と室温で15分間インキュベーションし、再度、PBSにより3回洗浄した。最後に、細胞をスライドガラスに載せ、蛍光顕微鏡(Nikon TE2000E)のもとで観察した。
細胞の同期化
細胞をM期において停止させるために、HeLa細胞を2μMのチミジンで18時間にわたって事前に同期化し、新鮮な培地の中に6時間にわたって解放し、その後、0.1μg/mlのノコドゾールで6時間にわたって初期M期において停止させた。HeLa細胞を0.5mMのミモシンによる20時間の処理によってG1/S期境界で停止させた。その後、G1/S期細胞のアリコートをヒドロキシ尿素含有培地の中に4時間にわたって解放して、初期S期細胞を得た。
BrdU取り込みアッセイ
ポリ−D−リシンで被覆されるカバースリップにおいて成長させられるHeLa細胞を、24時間の17ベータ−デアセチルタンギニン処理の後、50μMのBrdU(Sigma)と37℃で1時間インキュベーションした。その後、細胞をPBSにおける4%のPFAにより室温で20分間にわたって固定処理し、PBSにおける0.1%のTriton X−100および1%のBSAにより20分間にわたって透過処理し、その後、抗BrdU(Sigma Chemical Company;1:500)および抗マウスIgG−FITCコンジュゲート(Sigma Chemical Company;1:500)と順次、それぞれ37℃で1時間インキュベーションし、PBSにおける3回の洗浄をそれぞれの抗体インキュベーションの後で行った。BrdUシグナルを蛍光顕微鏡(Nikon TE2000E)のもとで観察した。
クロマチン結合アッセイ
細胞をトリプシン処理によって集め、冷PBSにより2回洗浄した。抽出緩衝液(EB;約20μl/10細胞)(100mM KCl、50mM HEPES−KOH pH7.5、2.5mM MgCl、50mM NaF、5mM Na、0.1mM NaVO、0.5% Triton X−100、1mM PMSF、2μg/mlのペプスタチンA、20μg/mlのロイペプチン、20μg/mlのアプロチニン、0.2mMのPefabloc、2mMのベンズアミジンHClおよび0.2mg/mlのバシトラシン)を加えて再懸濁し、細胞をピペッティングによって溶解した。細胞を氷上に10分間置き、インキュベーション期間中において2分毎〜3分毎に軽くたたいて混合した。プロテアーゼ阻害剤を含有するEBに等しい体積の30%氷冷スクロースをチューブの底に加えた。チューブを微量遠心分離器において最高速度で10分間遠心分離して、クロマチンおよび遊離タンパク質を分離した。上清を新しいチューブに移し、氷上で保った。ペレットを、チューブを軽くたたいてペレットをチューブの壁から取り除くことによって等体積のEBにより洗浄し、軽いボルテックス処理によって再懸濁した。懸濁物を再び、最高速度で5分間遠心分離した。2つの上清を一緒にした。ペレットを上清の体積の半量に等しいEBに再懸濁した。上清画分およびペレット画分を最終的には免疫ブロッティングのために処理した。
フローサイトメトリー(FACS分析)
浮遊細胞および付着細胞の両方を回収し、PBSにより1回洗浄した。細胞を、−20℃で1時間〜一晩、70%エタノールにおいて固定処理し、PBSにより徹底的に洗浄し、その後、50μg/mlのRNase A、0.1%のTriton X−100、0.1mMのEDTA(pH7.4)および50μg/mlのヨウ化プロピジウムにおいて4℃で30分間染色した。サンプルをFACSort装置(Becton Dickinson)により分析した。
大きい特異性を正常な細胞とガン細胞との間において有する抗増殖剤の特定
植物由来の化合物、分画物または粗抽出物、および、合成化合物である数百個のサンプルのスクリーニングの後、ヒトMCMタンパク質およびDNA複製を阻害することができるいくつかの候補物を特定した。これらの候補物のうち、17ベータ−デアセチルタンギニンと呼ばれる小さい化合物(図1)を、植物抽出物、分画物および化合物の数回の活性誘導分画化、精製および試験の後で単離し、特定した。17ベータ−デアセチルタンギニンに構造的に関連するいくつかの他の化合物および17ベータ−デアセチルタンギニンの化学的誘導体(7ベータ−デアセチルタンギニンジオール)もまた、17ベータ−デアセチルタンギニンと類似する活性を有することが見出された(図1の(3)〜(8))。一方で、それらの17アルファ異性体(図1の(1)および(2))は不活性であることが見出された。
1対のヒト細胞株、すなわち、L−02(正常な肝臓細胞)およびHepG2(肝臓ガン細胞株)を17ベータ−デアセチルタンギニンで48時間処理した。顕微鏡法のもとでの細胞密度および形態学の直接的な観察では、17ベータ−デアセチルタンギニンは培養においてガン細胞(HepG2)の増殖を効率的に阻害することができ、かつ、はるかにより低い活性を正常な細胞(L−02)に対して有することが示された(図2A)。したがって、17ベータ−デアセチルタンギニンが、細胞毒性を正常な細胞に対してほとんど有しない高活性な抗増殖剤として特定された。図2B〜図2Hにおいて、生細胞数の定量化が、WST−1(水溶性テトラゾリウム−1)アッセイを使用して行われた。
17ベータ−デアセチルタンギニンをさらに試験するために、また、IC50値を求めるために、L−O2およびHepG2の他に、Hep3B細胞(p53陰性である別の肝臓ガン細胞株)、HeLa細胞(子宮頸ガン細胞株)、HK1細胞およびC666−1細胞(鼻咽頭ガン)、ならびに、hTertにより不死化された正常な鼻咽頭細胞株(NP460)を17ベータ−デアセチルタンギニンで48時間処理し、相対的な細胞生存性をWST−1アッセイによって求めた(図2B、図2C)。これらのガン細胞株および(肺ガンなどを含む)他のガン細胞株(データは示されず)を用いて、17ベータ−デアセチルタンギニンが広範囲のガン細胞を殺傷し得ることを明らかにした。試験されたすべてのガン細胞株の成長が17ベータ−デアセチルタンギニンによって著しく阻害された。IC50値が種々のガン細胞株の間でわずかに異なっていたが、ガン細胞株に対する17ベータ−デアセチルタンギニンの平均IC50が約0.1μg/ml(0.2μM)であり、一方、正常な細胞についてのIC50ははるかにより大きかった(4μg/mlを超えていた)。ガン細胞と正常な細胞との間における類似する抗ガン活性および選択性が、いくつかの構造的に関連した化合物について得られた:例えば、17ベータ−ネリイホリン(図2D)、本発明者らが合成した17ベータ−デアセチルタンギニンの新規な化学的誘導体である17ベータ−デアセチルタンギニンジオール(これは17ベータ−デアセチルタンギニンよりも低い抗ガン活性を有した;図2E)、ブファリン、レシブホゲニンおよびシノブファギン(下記の表)。一方で、17アルファ−デアセチルタンギニンおよび17アルファ−ネリイホリンは抗増殖活性をほとんど有しておらず(下記の表)、このことは、17ベータの立体配置がこれらの化合物の抗増殖活性のために非常に重要であることを示している。

Figure 2015517500
比較のために、臨床での抗ガン薬物であるパクリタキセル(タキソール;図2F)およびVP16(リン酸エトポシド;図2G、図2H)は、有意な選択性をガン細胞と正常な細胞との間で示さなかった(それらは、ガン細胞と同様に、正常な細胞に対して細胞毒性である;実際、パクリタキセルは、肝臓ガン細胞よりも、正常な肝臓細胞に対して毒性である)。
MCM複合体の形成の中断およびMCMタンパク質の核局在化
17ベータ−デアセチルタンギニンがヒト細胞においてhMcm2タンパク質およびhMcm6タンパク質を標的とするかを試験するために、これら2つのタンパク質の起こり得る共免疫沈澱(co−IP)を、17ベータ−デアセチルタンギニンで処理される細胞から得られるヒト細胞抽出物において試験した。図3において、非同期のHeLa細胞をDMSOまたは17ベータ−デアセチルタンギニン(DAT)で処理し(図3A)、あるいは、DMSO、17ベータ−ネリイホリン(NRF)または17ベータ−デアセチルタンギニンジオール(Diol)で処理した(図3B)。また、全細胞抽出物を調製し、化合物とさらにインキュベーションし、その後で、化合物の存在下でのco−IPのために使用した。その後、免疫沈殿物を、抗hMcm6抗体、抗hMcm2体、抗hMcm4抗体および抗hMcm7抗体により免疫ブロットした。結果は、17ベータ−デアセチルタンギニンがhMcm2とhMcm6との相互作用および他のMCMサブユニットの間における相互作用を中断させたことを示した(図3A)。同様に、17ベータ−ネリイホリンもまた、hMcm2−hMcm6の相互作用を中断させることができ、一方、17ベータ−デアセチルタンギニンジオールはより弱い活性を示した(図3B)。
MCMサブユニットの間における対での相互作用がMCMヘテロヘキサマー環状構造体のために要求され、また、このMCMヘテロヘキサマー環状構造体が核内へのそれらの輸入のために不可欠であるので、hMcm2とhMcm6との間での相互作用の中断はこのヘキサマーを破壊し、かつ、MCMタンパク質の核局在化の不首尾を生じさせるであろう
。このことを試験するために、本発明者らは、内因性MCMタンパク質に対する抗体を使用する間接的な蛍光顕微鏡法(免疫染色)と、hMcm2−GFPおよびhMcm6−GFPを細胞において発現するためのプラスミドによるトランスフェクションの後における直接的な蛍光顕微鏡法との両方を用いた。
免疫染色において、HeLa細胞を17ベータ−デアセチルタンギニンによって24時間処理し、内因性のhMcm2およびhMcm6をこれらのタンパク質に対する特異的な抗体によって検出した。結果は、hMcm2およびhMcm6の核局在化が17ベータ−デアセチルタンギニンによって損なわれたことを示した(図4A)。直接的な蛍光顕微鏡法において、hMcm2−GFPおよびhMcm6−GFPを発現するHeLa細胞を、hMcm2−GFPおよびhMcm6−GFPを発現するプラスミドによるトランスフェクションの後4時間から開始して36時間、17ベータ−デアセチルタンギニンで処理した。結果は、発現したhMcm2−GFPおよびhMcm6−GFPの一部が細胞質に位置し、一方、非処理のコントロール細胞では、発現したhMcm2−GFPおよびhMcm6−GFPのほとんどすべてが核に位置したことを示した(図4B)。いくつかのMCMタンパク質の細胞質局在化が、17ベータ−デアセチルタンギニンによって引き起こされる細胞周期停止に起因したという可能性を除外するために、本発明者らはミモシンを使用して、細胞を、MCMタンパク質が阻害されない場合にはすべてのMCMタンパク質が核に存在するにちがいない後期G1期において停止させた。本発明者らは、hMcm2およびhMcm6の核局在化が依然として17ベータ−デアセチルタンギニンによって妨げられたことを見出した(データは示されず)。
まとめると、これらのデータは、17ベータ−デアセチルタンギニンはMCMの核局在化を特異的に阻止し得ることを示している。本発明者らはまた、17ベータ−ネリイホリン、すなわち、セレブラ・マンハスから単離され、17ベータ−デアセチルタンギニンに構造的に関連する別の化合物もまた、17ベータ−デアセチルタンギニンが中断させ得るのと同じくらい効率的にMCMの核局在化を中断させ得ること、一方、17ベータ−デアセチルタンギニンの化学的誘導体である17ベータ−デアセチルタンギニンジオールはより弱い活性を有することを見出した(図4C)。
プレRCの組み立ての阻害
プレPCの成分として、MCM複合体がDNA複製のライセンス化において中心的な役割を果たしている。17ベータ−デアセチルタンギニンはhMcm2およびhMcm6の相互作用を中断させることができ、かつ、それらの核局在化を妨げることができるので、17ベータ−デアセチルタンギニンはMCMタンパク質のクロマチン会合を阻害するにちがいなく、このことはプレRC組み立て(複製ライセンス化)の不首尾を示している。このことを試験するために、本発明者らは、クロマチン会合タンパク質を検出するためにクロマチン結合アッセイを行った。図5Aおよび図5Bにおいて、非同期のHela細胞を17ベータ−デアセチルタンギニンで24時間処理し、クロマチン結合アッセイによって分析した(図5A)。非処理の細胞(Untreat)、溶媒のDMSOで処理される細胞、および、0.2、0.4または0.8g/mlの17ベータ−デアセチルタンギニンで処理される細胞を、免疫ブロッティングによって、クロマチン画分および上清画分におけるプレRC成分について分析した(図5A)。ベータ−アクチンを負荷コントロールとして使用した。それぞれの細胞サンプルはまた、フローサイトメトリーによって細胞周期分布について分析した(図5B)。図5Cおよび図5Dに示される実験は、細胞が、ノコダゾール(Noc.)を使用してM期において同期化され、その後、示されるようにDMSOまたは17ベータ−デアセチルタンギニン(DAT)を含有する新鮮な培地の中に解放されたことを除いて、図5Aおよび図5Bにおける実験と類似していた。
予測と一致して、hMcm2およびhMcm6の両方が、投薬量依存的様式で17ベータ−デアセチルタンギニンによってクロマチン画分において著しく減少した(図5A)。これらの結果から、プレRCは17ベータ−デアセチルタンギニンの存在下において集合することができなかったことが示唆される。そのうえ、細胞は、同じ実験から得られる細胞のアリコートを用いるフローサイトメトリーによって求められるように、アポトーシスを受けた(図5B)。
同期化された細胞における17ベータ−デアセチルタンギニンの影響を明らかにするために、HeLa細胞を最初に、チミジンにより後期G1/初期S期において事前に同期化し、その後、ノコドゾールによりM期において停止させた。その後、細胞を17ベータ−デアセチルタンギニンの存在下において新鮮な培地の中に解放した。DMSO処理細胞および非処理細胞を含むコントロール細胞はM期およびG1期を通過して、S期に入ることができた(図5D)。しかしながら、17ベータ−デアセチルタンギニン処理細胞はG1期に入っただけで、細胞のほとんどがS期に入らなかった(図5D)。免疫ブロティング分析は、クロマチンへのMCM負荷が17ベータ−デアセチルタンギニンによって大きく妨げられたことを示した(図5C)。これらの結果は、17ベータ−デアセチルタンギニンはヒト細胞におけるプレRCの組み立てを妨げることができることを示している。
ガン細胞におけるアポトーシスを伴うDNA複製の阻害
17ベータ−デアセチルタンギニンはhMcm2とhMcm6との間における相互作用を中断させ、かつ、クロマチンとのMCMタンパク質の会合を阻害するので、17ベータ−デアセチルタンギニンはDNA複製を阻止するにちがいない。このことを確認するために、本発明者らはHeLa細胞を17ベータ−デアセチルタンギニンで24時間処理し、その後、細胞をBrdUにより1時間標識した。細胞のDNAにおける取り込まれたBrdUを、抗brdU抗体、続いて、蛍光顕微鏡のもとで可視化されたFITC−抗マウス二次抗体によって検出した(図6A)。DAPIを使用して、核を染色し(図6A)、BrdU陽性細胞の割合を定量化した(図6B)。BrdUシグナルが、17ベータ−デアセチルタンギニンが0.2g/mlを超えたときにはほとんど全く認められず、一方、DMSO処理細胞および非処理細胞では、約30%が、予想されるようにBrdU陽性であったように(図6A、図6B)、DNA複製の有意な阻害が17ベータ−デアセチルタンギニン処理のHeLa細胞において認められた。
そのうえ、17ベータ−デアセチルタンギニンによるDNA複製の阻害およびその後でのアポトーシスの誘導をフローサイトメトリーによって示すことができた。図7において、Hela細胞がノコダゾールによってM期で阻止され(Noc;図7A)、ミモシンによってG1/S移行において阻止され(MMS;図7B)、または、ヒドロキシ尿素によって初期S期で阻止され(HU;図7C)、その後、17ベータ−デアセチルタンギニン(DAT)の存在下において新鮮な培地の中に解放された。解放後の種々の時点での細胞をフォローサイトメトリーによって分析した。Ayn.は非同期の細胞を意味する。非処理細胞、および、溶媒のDMSOで処理される細胞は、解放後にM期、G1期およびS期を完了することができた(図7A)。17ベータ−デアセチルタンギニンで処理される細胞は有糸***を完了することができ、しかし、M期におけるノコダゾール停止から解放された後ではS期に入ることができず、また、アポトーシスを17ベータ−デアセチルタンギニンによるより長時間の処理により開始した(図7A)。同様に、(G1/S移行における)ミモシン(MMS)停止から解放された細胞(図7B)、または、(初期S期おける)ヒドロキシ尿素(HU)停止から解放された細胞(図7C)は、17ベータ−デアセチルタンギニンの存在下においてS期を終えることができなかった。これらの結果は、DNA複製の開始および伸長の両方においてMCM機能の阻害と一致している。
17ベータ−デアセチルタンギニンはまた、アポトーシス細胞死をガン細胞において誘導した。これは、亜G1ガン細胞の集団(これはアポトーシスを示す)が17ベータ−デアセチルタンギニンによる処理の後においてフローサイトメトリーによって検出され(図5B、図7および図8A)、これに対して、正常なL−02細胞は大部分が、低下したG2/M集団を伴ってG1期において停止されたからである(図8A)。図8Aにおいて、フローサイトメトリーを、様々な濃度での17ベータ−デアセチルタンギニンで24時間処理されるHepG2細胞およびL−02細胞におけるDNA含有量を分析するために行った。図8Bにおいて、Hela細胞を17ベータ−デアセチルタンギニンで24時間処理し、アネキシンV−Cy3(Arm.Cy3)により20分間標識した。ミトキサントロン(MTX)、すなわち、アポトーシスをガン細胞において誘導することができる臨床での抗ガン薬物を陽性コントロールとして使用した。結果は、17ベータ−デアセチルタンギニン処理のガン細胞がアネキシンVによって染色され得たことを示す(図8B)。このことは、アポトーシスが17ベータ−デアセチルタンギニンによって誘導されたという見解を裏付けている。
上記のように、17ベータ−デアセチルタンギニンはDNA複製を(BrdU取り込みアッセイによって)非同期のHeLa細胞において阻害し(図6)、また、フローサイトメトリーの結果によって判断されるように、M期から解放される同期化された細胞のほとんどがG1期に入り、しかし、明らかに、17ベータ−デアセチルタンギニンの存在下ではS期に入らなかった(図7A)。17ベータ−デアセチルタンギニンとのガン細胞のより長期間のインキュベーションは、フローサイトメトリーのプロフィルにおける亜G1集団(図7A)によって、また、アネキシンV染色(図8B)によって証明されるように、アポトーシスを誘導することができた。17ベータ−デアセチルタンギニンで処理されるガン細胞における細胞死の原因を明らかにするために、本発明者らはHeLa細胞をミモシンによりG1/S移行において停止させ、その後、17ベータ−デアセチルタンギニンを培地に加えて、細胞を12時間にわたって前処理した。その後、細胞を、17ベータ−デアセチルタンギニンの存在下においてミモシン阻止から解放し、解放後の種々の時点で集め、フローサイトメトリーおよびBrdU取り込みアッセイによって分析した。BrdU取り込みの結果は、約100%がBrdU陽性である非処理細胞およびDMSO処理細胞と比較して、17ベータ−デアセチルタンギニンで処理される細胞の約40%がBrdU陽性であったことを示した;しかしながら、17ベータ−デアセチルタンギニン処理細胞におけるBrdUシグナル強度は、非処理細胞およびDMSO処理細胞におけるBrdUシグナル強度よりもはるかに低かった(図8C)。このことは、少なくとも一部の17ベータ−デアセチルタンギニン処理細胞が低度のDNA複製を経たことを示しており、この場合のDNA複製は、17ベータ−デアセチルタンギニン処理細胞におけるMCM複合体の不完全な阻害、したがって、いくつかの複製起点の低度の活性化およびDNA複製の限定された伸長のためであると考えられた。そのようなものとして、ゲノムの頓挫的な部分的重複化がDNA損傷を引き起こし、これにより、アポトーシスをもたらしたということが最も考えられる。
17ベータ−デアセチルタンギニンに加えて、多数の構造的に関連する化合物、例えば、17ベータ−ネリイホリンおよび17ベータ−デアセチルタンギニンジオールもまた、フローサイトメトリー分析における亜G1集団の細胞によって示されるように、ガン細胞のアポトーシスを誘導することができることが見出された(図8D)。
ガン性細胞に対する抗増殖化合物の特異性のさらなる試験
図2および図8Aにおけるデータは、本発明の抗増殖化合物が、正常な細胞に対する細胞毒性をほとんど伴うことなく、ガン細胞を特異的に殺傷し得ることを示している。正常な細胞および/またはガン細胞が、17ベータ−デアセチルタンギニンを除いた後で細胞成長を再開し得るかを試験するために、L−02(正常な肝臓)細胞およびHepG2(肝臓ガン)細胞を17ベータ−デアセチルタンギニンまたはDMSOと1日間インキュベーションし、その後、17ベータ−デアセチルタンギニンまたはDMSOを除き、細胞をさらに、新鮮な成長培地と3日間インキュベーションした。生細胞数をWST−1アッセイによって毎日モニターした。図9において、L+DATは、17ベータ−デアセチルタンギニンで処理されるL−02細胞を示す;L+Dは、DMSOで処理されるL−02細胞を示す;H+DATは、17ベータ−デアセチルタンギニンで処理されるHepG2細胞を示す;H+Dは、DMSOで処理され、その後で、新鮮な培地の中に解放されるHepG2細胞を示す。結果は、ガン細胞ではなく、正常な細胞が、17ベータ−デアセチルタンギニンを除いた後で成長を再開したことを示した(図9)。このことは、正常な細胞の大部分が、17ベータ−デアセチルタンギニンで処理されたときにはG1期に留まり、これに対して、ガン細胞は、同じ処理のもとでは頓挫性S期に入り、死んだという本発明者らの発見と一致している(図8A)。
ヌードマウス異種移植モデルにおけるインビボ抗ガン活性
インビボ抗ガン活性試験を、ヌードマウスにHeLa細胞を左側腹および右側腹の両方に接種することによってヌードマウス異種移植モデルにおいて行った。無作為グループ化の後、ヌードマウスを17ベータ−デアセチルタンギニンまたは溶媒(PBSにおける30%のプロピレングリコール)により腹腔内処理した。小さい腫瘍が形成し始めた腫瘍接種後3日での最初の試験において、2群のヌードマウスを1日目〜3日目および6日目〜10日目に3.5mg−薬物/kg−体重および7.0mg−薬物/kg−体重の17ベータ−デアセチルタンギニンでそれぞれ処置し、別の一群のコントロールマウスを同じ体積の溶媒で処置した(図10A)。図10Aにおいて、細い線でつながれる小さいサイズのデータ点記号によって表される腫瘍体積データは、腫瘍サイズの両方の測定および薬物注入が行われた日に得られ、太い線でつながれる大きいサイズのデータ点記号によって表される腫瘍体積データは、薬物注入のない日に得られた。それぞれの腫瘍サイズがそれぞれの群において5匹のマウスにおける10個の腫瘍の平均であった。結果は、17ベータ−デアセチルタンギニンが腫瘍成長を著しく抑制し、高用量(7.0mg/kg)では90%抑制し、低用量(3.5mg/kg)では70%抑制したことを示した。実際、高用量において、17ベータ−デアセチルタンギニンの最後の5回の連続注入については、腫瘍サイズが低下さえした。このことは、17ベータ−デアセチルタンギニンがマウスにおいて腫瘍細胞の死を誘導していたことを示唆する。
タキソールによる比較研究およびインビボ毒性評価
次に、さらなる一組の動物実験をより長い期間により行い、この期間において、5.0mg/kgでの15回の薬物注入を、腫瘍サイズが0.05〜0.1cmに達した腫瘍接種後1週において行った。図10Bにおいて、薬物注入および腫瘍サイズ測定をデータ点によって表される日に行い、図10Cにおける写真を20日目に撮影した。結果は、腫瘍成長が再び、著しく抑制されたことを示した;17ベータ−デアセチルタンギニンで処置されるマウスにおける腫瘍は、溶媒処置されたコントロールマウスにおける腫瘍よりも80%を超えて小さかった(図10B、図10C)。比較のために、注入あたり10mg/kgでのパクリタキセル(タキソール)は、最初の10日において17ベータ−デアセチルタンギニンよりもはるかに小さい抗腫瘍活性を示し、これらのマウスはタキソールの毒性のために10日目に死亡した(図10B)。
図10Bに記載されるような薬物処置が終了したとき、明白な体重減少が、5.0mg/kgの17ベータ−デアセチルタンギニンによる20日間の腹腔内投与の後のヌードマウスにおいて何ら認められなかった(図11A)。図11において、Sは、腫瘍接種が行われない溶媒処置マウスを示す;S+Tは、腫瘍接種が行われる溶媒処置マウスを表す;DATは、腫瘍接種が行われない17ベータ−デアセチルタンギニン処置マウスを示す;DAT+Tは、腫瘍接種が行われる17ベータ−デアセチルタンギニン処置マウスを表す;P+Tは、腫瘍接種が行われるパエリタキセル処置マウスを示す。それぞれの群において中間的な腫瘍サイズを有する5匹のマウスのうちの3匹を生理学的パラメーター検査のために選択した。腫瘍(T)、ならびに、肝臓(L)、心臓(H)および腎臓(K)を含む内臓器官をそれぞれのマウスから切除した。腫瘍のサイズ(図11B)は、図10Bに示される腫瘍体積測定と一致していた。すべての臓器が正常であるように見えた。例えば、膨大または異常な色はどちらも認められず(図11B)、また、体重に対する臓器重量は有意に変化していなかった(図11C)。
さらに、それぞれのマウスから得られる血液もまた、ALT(アラニンアミノトランスフェラーゼ)活性およびLDH(乳酸デヒドロゲナーゼ)活性の試験のために採取した。ATLレベルは肝臓損傷を明らかにし、一方、LDHレベルは一般には、どのような組織であれ、組織に対する損傷を反映する。両試験の結果を、非処理マウスに対する種々に処置されたマウスの値として表した。図11Dに示されるように、17ベータ−デアセチルタンギニンは血中のATLレベルまたはLDHレベルの著しい増大を誘導しなかった。まとめると、これらのデータは、17ベータ−デアセチルタンギニンが、マウスにおいて、毒性をほとんど伴うことなく、著しい抗腫瘍活性を有することを強く示唆する。
本発明の好ましい実施形態に対して適用されるような本発明の基本的な新規特徴が記載され、また指摘されているが、様々な省略および置換および変化が、例示される実施形態の形式および細部においては、本発明の精神から逸脱することなく、当業者によって行われる場合があることが理解されるであろう。本発明は、例としてのみ示される上記で記載される実施形態によって限定されるのではなく、添付されている特許請求項によって定義される保護の範囲の範囲内において様々な様式で改変することができる。

Claims (21)

  1. ガンを患者において処置する方法であって、抗ガン剤をガン性細胞におけるヒトMCM複合体に対するその阻害効果のために選択する工程(a)、および、(b)前記選択された抗ガン剤を含む医薬組成物の治療効果的な量を前記患者に投与する工程(b)を含む方法。
  2. 前記抗ガン剤が、ガン性細胞を頓挫性S期に入らせ、かつ、正常な細胞をG1期において実質的に停止させるその能力のためにさらに選択される、請求項1に記載の方法。
  3. 前記阻害効果が、MCMサブユニットからの機能的なMCM複合体の形成を中断させることによって達成される、請求項2に記載の方法。
  4. 前記機能的なMCM複合体が、核の中に移動することができるヘテロヘキサマー環状構造体であり、かつ、DNA複製のために必要である、請求項3に記載の方法。
  5. 選択された抗ガン剤が、hMcm2とhMcm6との間における相互作用を妨害することによって前記機能的なMCM複合体の前記形成を中断させる、請求項3に記載の方法。
  6. 前記抗ガン剤が、式(I)


    (式中、R1はHであるか、あるいは、1つまたは複数の糖ユニットによって置換される;R2はベータ型立体配置での5員環基または6員環基である;R3およびR4はそれぞれがHまたはOHであるか、あるいは、R3およびR4は、R3およびR4がそれぞれ、それぞれ結合する2個のC原子との3員環を形成するただ1つのO原子である;R5はOHであり、かつ、R6はHであるか、あるいは、R5およびR6は、R5およびR6がそれぞれ、それぞれ結合する2個のC原子との3員環を形成するただ1つのO原子である)
    である、請求項1に記載の方法。
  7. 前記抗ガン剤が、17ベータ−デアセチルタンギニン、17ベータ−ネリイホリン、ブファリン、17ベータ−デアセチルタンギニンジオール、レシブホゲニンおよびシノブファギンからなる群から選択される、請求項6に記載の方法。
  8. 前記抗ガン剤が17ベータ−デアセチルタンギニンである、請求項7に記載の方法。
  9. 前記抗ガン剤が17ベータ−デアセチルタンギニンジオールである、請求項7に記載の方法。
  10. 前記抗ガン剤が、ブファリン、シノブファギンまたはレシブホゲニンである、請求項7に記載の方法。
  11. 抗ガン化合物についてスクリーニングする方法であって、(a)候補化合物を一定の期間にわたって細胞の集団と接触させる工程、および、(b)そのサブユニットから形成される機能的なMCM複合体の量を前記細胞において決定する工程を含む方法。
  12. 工程(b)が、核に位置するMCMサブユニットの一部を、細胞質に位置する一部と比較して検出することによって行われる、請求項11に記載の方法。
  13. 間接的な蛍光プロセス(免疫染色)が、1つまたは複数の内因性MCMサブユニットに対する1つまたは複数の一次抗体と、前記一次抗体を認識する蛍光標識された二次抗体とが、前記細胞が特定の継続期間にわたって前記候補化合物で処理された後における前記MCMタンパク質の所在を可視化するために使用される工程(b)において行われる、請求項12に記載の方法。
  14. 直接的な蛍光プロセスが、前記細胞が、蛍光タンパク質と融合される1つまたは複数のMCMサブユニットを発現することができる1つまたは複数のプラスミドでトランスフェクションされており、その後、前記蛍光標識されたMCMサブユニットの所在が、前記細胞が特定の継続期間にわたって前記候補化合物で処理された後で検出される工程(b)において行われる、請求項12に記載の方法。
  15. 前記MCMサブユニットが、hMcm2、hMcm3、hMcm4、hMcm5、hMcm6およびhMcm7からなる群から選択される1つまたは複数のものを含む、請求項12に記載の方法。
  16. 工程(b)が、前記MCMサブユニットの物理的相互作用を検出することによって、または、クロマチンに結合するMCMタンパク質の量を測定することによって行われる、請求項11に記載の方法。
  17. 工程(b)が、MCMタンパク質の酵素機能(例えば、ATPase活性および/またはヘリカーゼ活性など)を測定することによって行われる、請求項11に記載の方法。
  18. 前記細胞に対する前記候補化合物の抗増殖効果およびアポトーシス誘導効果を調べる確認工程をさらに含む、請求項11に記載の方法。
  19. 前記確認工程が、BrdU取り込みアッセイおよび/またはフローサイトメトリーを使用することによって行われる、請求項17に記載の方法。
  20. ガンを患者において処置するための方法であって、効果的な量の式(I)の化合物またはその医薬的に許容される塩またはその配合物
    (式中、R1はHであるか、あるいは、1つまたは複数の糖ユニットによって置換される;R2はベータ型立体配置での5員環基または6員環基である;R3およびR4はそれぞれがHまたはOHであるか、あるいは、R3およびR4は、R3およびR4がそれぞれ、それぞれ結合する2個のC原子との3員環を形成するただ1つのO原子であり、但し、R1が1つまたは複数の糖ユニットによって置換されるとき、R3およびR4はただ1つのO原子でなければならず、これにより、3員環を形成する;R5はOHであり、かつ、R6はHであるか、あるいは、R5およびR6は、R5およびR6がそれぞれ、それぞれ結合する2個のC原子との3員環を形成するただ1つのO原子である)
    を患者に投与することを含む方法。
  21. 前記化合物が17ベータ−デアセチルタンギニンである、請求項19に記載の方法。
JP2015511684A 2012-05-09 2013-05-09 Mcm複合体を阻害するための方法および化合物ならびにガン処置におけるそれらの適用 Pending JP2015517500A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261644442P 2012-05-09 2012-05-09
US61/644,442 2012-05-09
PCT/US2013/040287 WO2013169989A1 (en) 2012-05-09 2013-05-09 Method and compounds for inhibiting the mcm complex and their application in cancer treatment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018002988A Division JP2018100274A (ja) 2012-05-09 2018-01-11 Mcm複合体の形成を阻害する方法および抗ガン化合物についてスクリーニングする方法

Publications (2)

Publication Number Publication Date
JP2015517500A true JP2015517500A (ja) 2015-06-22
JP2015517500A5 JP2015517500A5 (ja) 2016-06-23

Family

ID=49551267

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2015511684A Pending JP2015517500A (ja) 2012-05-09 2013-05-09 Mcm複合体を阻害するための方法および化合物ならびにガン処置におけるそれらの適用
JP2018002988A Pending JP2018100274A (ja) 2012-05-09 2018-01-11 Mcm複合体の形成を阻害する方法および抗ガン化合物についてスクリーニングする方法
JP2019237597A Pending JP2020073544A (ja) 2012-05-09 2019-12-27 Mcm複合体の形成を阻害する方法および抗ガン化合物についてスクリーニングする方法
JP2021150771A Pending JP2021193132A (ja) 2012-05-09 2021-09-16 Mcm複合体の形成を阻害する方法および抗ガン化合物についてスクリーニングする方法
JP2023154199A Pending JP2024001049A (ja) 2012-05-09 2023-09-21 Mcm複合体の形成を阻害する方法および抗ガン化合物についてスクリーニングする方法

Family Applications After (4)

Application Number Title Priority Date Filing Date
JP2018002988A Pending JP2018100274A (ja) 2012-05-09 2018-01-11 Mcm複合体の形成を阻害する方法および抗ガン化合物についてスクリーニングする方法
JP2019237597A Pending JP2020073544A (ja) 2012-05-09 2019-12-27 Mcm複合体の形成を阻害する方法および抗ガン化合物についてスクリーニングする方法
JP2021150771A Pending JP2021193132A (ja) 2012-05-09 2021-09-16 Mcm複合体の形成を阻害する方法および抗ガン化合物についてスクリーニングする方法
JP2023154199A Pending JP2024001049A (ja) 2012-05-09 2023-09-21 Mcm複合体の形成を阻害する方法および抗ガン化合物についてスクリーニングする方法

Country Status (9)

Country Link
US (1) US11648258B2 (ja)
EP (2) EP2846807B1 (ja)
JP (5) JP2015517500A (ja)
CN (2) CN104736157B (ja)
AU (1) AU2013259486B2 (ja)
CA (2) CA2873283C (ja)
ES (1) ES2949335T3 (ja)
IN (1) IN2014MN02513A (ja)
WO (1) WO2013169989A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019283946B2 (en) * 2017-05-19 2021-05-20 Enkang Pharmaceuticals (Guangzhou), Ltd. Crystal characteristics, preparation processes and anticancer applications of 17beta-neriifolin crystal forms
CN108948119B (zh) 2017-05-19 2023-11-21 恩康药业科技(广州)有限公司 黄夹次甙乙多晶型的晶型特征、制备方法及在抗癌上的应用
CN114099527A (zh) * 2019-03-27 2022-03-01 天津中医药大学 黄夹次乙苷作为抗肿瘤药物的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131435A (ja) * 2002-10-11 2004-04-30 Mitsubishi Chemicals Corp 抗癌剤のスクリーニング方法及び組織の癌化の判定方法
JP2006514545A (ja) * 2002-10-18 2006-05-11 ヴォルフガング ベルデル, 異常局在化分子およびその使用
JP2008525479A (ja) * 2004-12-22 2008-07-17 オークランド ユニサービシス リミテッド トレフォイル因子およびそれを用いた増殖性疾患の処置方法
JP2009515932A (ja) * 2005-11-18 2009-04-16 アンスティテュート キュリー カルシニューリンの調節に基づく癌を処置するための新しい方法
US20110311651A1 (en) * 2008-12-10 2011-12-22 Sloan-Kettering Institute For Cancer Research Cardenolides for the treatment of ocular cancer

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0592990A (ja) 1991-08-06 1993-04-16 Taisho Pharmaceut Co Ltd カルデノライド誘導体
WO2002014343A1 (en) * 2000-08-17 2002-02-21 Terness, Peter Bufadienolide derivatives and use as immunosuppressive, antiinflammatory and analgesic agents
US8318922B2 (en) 2002-08-29 2012-11-27 The Hong Kong Polytechnic University Treatment and prevention of hyperproliferative conditions in humans and antisense oligonucleotide inhibition of human replication-initiation proteins
US7393950B2 (en) 2002-08-29 2008-07-01 Hong Kong University Of Science & Technology Antisense oligonucleotides targeted to human CDC45
US20070207120A1 (en) * 2004-04-14 2007-09-06 Sarah Drayton Selective Killing Of Cancer Cells By Induction Of Acetyltransferase Via Tnf-Alpha And Il-6
US20090018088A1 (en) * 2006-10-27 2009-01-15 University Of Louisville Research Foundation Treating cancer with cardiac glycosides
CN101683359B (zh) 2008-09-28 2012-05-09 上海秀新臣邦医药科技有限公司 一种***的中药组合物及其制备方法
CN101726577A (zh) * 2008-10-13 2010-06-09 中山大学 通过干扰巢蛋白表达来筛选抑制肿瘤增殖和促进细胞凋亡的药物的方法
CN102219821A (zh) 2011-05-05 2011-10-19 沈阳药科大学 一类强心苷类化合物及其抗肿瘤用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131435A (ja) * 2002-10-11 2004-04-30 Mitsubishi Chemicals Corp 抗癌剤のスクリーニング方法及び組織の癌化の判定方法
JP2006514545A (ja) * 2002-10-18 2006-05-11 ヴォルフガング ベルデル, 異常局在化分子およびその使用
JP2008525479A (ja) * 2004-12-22 2008-07-17 オークランド ユニサービシス リミテッド トレフォイル因子およびそれを用いた増殖性疾患の処置方法
JP2009515932A (ja) * 2005-11-18 2009-04-16 アンスティテュート キュリー カルシニューリンの調節に基づく癌を処置するための新しい方法
US20110311651A1 (en) * 2008-12-10 2011-12-22 Sloan-Kettering Institute For Cancer Research Cardenolides for the treatment of ocular cancer

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CANCER SCIENCE, vol. 99, no. 12, JPN6017002758, 2008, pages 2467 - 2476, ISSN: 0003491950 *
CHEMICAL AND PHARMACEUTICAL BULLETIN, vol. 52, no. 8, JPN6017002756, 2004, pages 1023 - 1025, ISSN: 0003491949 *
GENES TO CELLS, vol. 1, JPN6017002763, 1996, pages 977 - 993, ISSN: 0003491952 *
JOURNAL OF ETHNOPHARMACOLOGY, vol. 141, JPN6017002761, 2011, pages 692 - 700, ISSN: 0003491951 *

Also Published As

Publication number Publication date
JP2024001049A (ja) 2024-01-09
CA2873283A1 (en) 2013-11-14
AU2013259486A1 (en) 2014-12-18
EP4248978A2 (en) 2023-09-27
CN110412285B (zh) 2022-11-15
CA2873283C (en) 2021-05-04
ES2949335T3 (es) 2023-09-27
CN104736157B (zh) 2019-06-11
JP2021193132A (ja) 2021-12-23
US11648258B2 (en) 2023-05-16
EP4248978A3 (en) 2023-11-08
US20150099712A1 (en) 2015-04-09
EP2846807A4 (en) 2016-07-27
IN2014MN02513A (ja) 2015-07-17
WO2013169989A1 (en) 2013-11-14
JP2018100274A (ja) 2018-06-28
EP2846807A1 (en) 2015-03-18
JP2020073544A (ja) 2020-05-14
EP2846807B1 (en) 2023-06-07
EP2846807C0 (en) 2023-06-07
AU2013259486B2 (en) 2019-12-12
CN110412285A (zh) 2019-11-05
CA3111702A1 (en) 2013-11-14
CN104736157A (zh) 2015-06-24

Similar Documents

Publication Publication Date Title
JP2021193132A (ja) Mcm複合体の形成を阻害する方法および抗ガン化合物についてスクリーニングする方法
Li et al. Solamargine induces apoptosis associated with p53 transcription-dependent and transcription-independent pathways in human osteosarcoma U2OS cells
Winnicka et al. Antiproliferative activity of derivatives of ouabain, digoxin and proscillaridin A in human MCF-7 and MDA-MB-231 breast cancer cells
Emanuele et al. Sodium butyrate induces apoptosis in human hepatoma cells by a mitochondria/caspase pathway, associated with degradation of β-catenin, pRb and Bcl-XL
Zhang et al. Fresh red raspberry phytochemicals suppress the growth of hepatocellular carcinoma cells by PTEN/AKT pathway
Han et al. Sweroside eradicated leukemia cells and attenuated pathogenic processes in mice by inducing apoptosis
Xu et al. In vitro and in vivo antitumor effects of plant-derived miliusanes and their induction of cellular senescence
Du et al. Steroidal glycoalkaloids from Solanum lyratum inhibit the pro-angiogenic activity of A549-derived exosomes
Li et al. The effect of dihydroartemisinin on the malignancy and epithelial-mesenchymal transition of gastric cancer cells
Zhang et al. Umbelliprenin and lariciresinol isolated from a long-term-used herb medicine Ferula sinkiangensis induce apoptosis and G0/G1 arresting in gastric cancer cells
Wu et al. Anti-lung cancer activity of the curcumin analog JZ534 in vitro
Han et al. A new semisynthetic 1-O-acetyl-6-O-lauroylbritannilactone induces apoptosis of human laryngocarcinoma cells through p53-dependent pathway
Aghaei et al. Pimpinelol, a novel atypical sesquiterpene lactone from Pimpinella haussknechtii fruits with evaluation of endoplasmic reticulum stress in breast cancer cells
Tahtamouni et al. Cephalostatin 1 analogues activate apoptosis via the endoplasmic reticulum stress signaling pathway
Zhang et al. Podophyllotoxin–pterostilbene fused conjugates as potential multifunctional antineoplastic agents against human uveal melanoma cells
Park et al. Synthesis of apoptotic chalcone analogues in HepG2 human hepatocellular carcinoma cells
Goswami et al. Antiproliferative potential of a novel parthenin analog P16 as evident by apoptosis accompanied by down-regulation of PI3K/AKT and ERK pathways in human acute lymphoblastic leukemia MOLT-4 cells
US20230293564A1 (en) Method and compounds for inhibiting the MCM complex and their application in cancer treatment
Rao et al. The role of PICT1 in RPL11/Mdm2/p53 pathway-regulated inhibition of cell growth induced by topoisomerase IIα inhibitor against cervical cancer cell line
Huang et al. Phragmunis a suppresses glioblastoma through the regulation of MCL1-FBXW7 by blocking ELK1-SRF complex-dependent transcription
JP2022520132A (ja) 生物活性Ganoderma lucidum化合物および抗がん誘導体の合成;細胞の局在のためのエルゴステロールペルオキシドプローブ
Chen et al. Anticancer effects of sinocrassulosides VI/VII from Silene viscidula on HeLa cells
Wang et al. Role of mimic of manganese superoxide dismutase in proliferation and apoptosis of gastric carcinoma BGC-823 cells in vitro and in vivo
JP6931889B2 (ja) 白血病幹細胞のニッチ形成抑制活性を有する海洋生物由来の抽出物、化合物及び医薬組成物
Estévez et al. Pei Liu 1, 2, Dong-Wei Xu 1, 2, Run-Tian Li1, 2, Shao-Hui Wang3, Yan-Lan Hu1, 2, Shao-Yu Shi1, 2, Jia-Yao Li1, 2, Yu-He Huang1, 2, Li-Wei Kang1, 2 and Tong-Xiang Liu1, 2

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160506

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170203

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170502

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170913