JP2015230224A - Svoc group percutaneous exposure measuring device - Google Patents

Svoc group percutaneous exposure measuring device Download PDF

Info

Publication number
JP2015230224A
JP2015230224A JP2014116084A JP2014116084A JP2015230224A JP 2015230224 A JP2015230224 A JP 2015230224A JP 2014116084 A JP2014116084 A JP 2014116084A JP 2014116084 A JP2014116084 A JP 2014116084A JP 2015230224 A JP2015230224 A JP 2015230224A
Authority
JP
Japan
Prior art keywords
skin
svoc
adsorbent
source
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014116084A
Other languages
Japanese (ja)
Other versions
JP6367011B2 (en
Inventor
直秀 篠原
Naohide Shinohara
直秀 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2014116084A priority Critical patent/JP6367011B2/en
Publication of JP2015230224A publication Critical patent/JP2015230224A/en
Application granted granted Critical
Publication of JP6367011B2 publication Critical patent/JP6367011B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measuring device capable of directly measuring a parameter of SVOC percutaneous exposure using an artificial skin by modeling a phenomenon occurring on the skin surface.SOLUTION: A passive type SVOC percutaneous exposure measuring device substantially consists of a source side substrate, a SVOC source of an object to be measured, a plurality of spacers different in thickness for dispensing a gas-phase, an artificial skin, an adsorbent, and an adsorbent side substrate. The adsorbent is stored inside a concave part of an area A provided on the adsorbent side substrate. The spacer has a hole of the same area A of the same shape as that of the concave part. The SVOC source of the object to be measured, the spacer, and the artificial skin are arranged in this order between the source side substrate and the adsorbent side substrate, and fixing means for detachably fixing these elements is provided. The SVOC dispersed from the SVOC source surface moves inside the gas-phase formed in the hole of the spacer, and moves further inside the artificial skin so as to be adsorbed into the adsorbent.

Description

本発明は、SVOC(半揮発性有機化合物)類の経皮曝露量測定に関し、例えば、製品からのフタル酸エステル類への経皮曝露量を推定するのに好適な測定装置および測定方法に関する。   The present invention relates to measurement of dermal exposure of SVOCs (semivolatile organic compounds). For example, the present invention relates to a measurement apparatus and measurement method suitable for estimating dermal exposure to phthalates from a product.

近年、住宅の高気密化によって、家具や建材などから放散される様々な化学物質により、頭痛、喉の痛み、眼の痛み、鼻炎、嘔吐、めまい、呼吸器障害、皮膚炎などの、シックハウス症候群や化学物質過敏症等の健康被害が顕在化してきており、社会問題となっている。
本出願人は、すでに、家具や建材などの被検査体から放散される化学物質の放散フラックスを測定するためのパッシブ型放散量測定装置を出願している(特許文献1参照)。この装置は、シャーレ型をしており、底面に吸着剤を設置し、家具や建材などの発生源表面にかぶせると、発生源表面から放散された化学物質が装置内を分子拡散し、吸着材に捕集される構造であって、捕集された化学物質を分析することで、放散量を測定することができる。
また、一連の単位となる全経過期間において断続的に発生する化学物質の経皮曝露量をより現実的に推定できる計算方法(特許文献2、3参照)なども提案されている。
In recent years, sick house syndrome such as headache, sore throat, eye pain, rhinitis, vomiting, dizziness, respiratory disorder, dermatitis due to various chemical substances released from furniture and building materials due to high airtightness of houses Health hazards such as chemical sensitivity and chemical substances are becoming obvious and are becoming social problems.
The present applicant has already applied for a passive type radiation amount measuring device for measuring the radiation flux of a chemical substance diffused from an object to be inspected such as furniture and building materials (see Patent Document 1). This device has a petri dish type. When an adsorbent is installed on the bottom and covered with the surface of a generation source such as furniture or building material, the chemical substance diffused from the surface of the generation source undergoes molecular diffusion within the device, and the adsorbent The amount collected can be measured by analyzing the collected chemical substance.
In addition, a calculation method (see Patent Documents 2 and 3) that can more realistically estimate the dermal exposure amount of a chemical substance that is intermittently generated during the entire elapsed period as a series of units has been proposed.

特開2008−145207号公報JP 2008-145207 A 特開2005−112806号公報JP-A-2005-112806 特開2006−329808号公報JP 2006-329808 A

従来技術の特許文献1は、固体製品からの化学物質の放散量を測定するものであり、製品から皮膚を経由してどの程度曝露するかの情報を得ることは全くできなかった。また、特許文献2、3に挙げるように、計算により経皮曝露量を推計するものであった。また、海外でも、C.J.WeschlerらがSVOC類への経皮曝露量の推計を行っているが、これらは物理化学特性に基づいた推計であり、実測されたものではない。また、実測でも、実際のヒトや動物の皮膚に薬剤を添付した後の血中濃度を測定することで、経皮曝露量を求めている研究が多く、様々な固体製品を対象にした多数のサンプル測定には適していない。
このように従来技術では、個体製品からの経皮曝露量は、単なる推定もしくは血中濃度の測定によるものしかなく、間接的にしか経皮曝露量を測定できなかった。
Patent Document 1 of the prior art measures the amount of chemical substance diffused from a solid product, and could not obtain information on how much the product is exposed via the skin. Moreover, as disclosed in Patent Documents 2 and 3, the amount of dermal exposure was estimated by calculation. Also, overseas, CJWeschler et al. Estimate the amount of dermal exposure to SVOCs, but these are estimates based on physicochemical characteristics and are not actually measured. In actual measurements, there are many studies that seek the amount of dermal exposure by measuring the blood concentration after attaching a drug to actual human or animal skin. Not suitable for sample measurements.
Thus, in the prior art, the amount of dermal exposure from an individual product can be merely estimated or measured by measuring blood concentration, and the amount of dermal exposure can be measured only indirectly.

上記従来技術の問題点を解決するために、本発明は、皮膚表面で起こる現象をモデル化するとともに、人工皮膚を用いてパラメータを直接測定できるようにしたものである。
すなわち、本発明は、発生源側基板、被測定対象のSVOC発生源、気相を配するための複数の厚みの異なるスペーサ、人工皮膚、吸着材、吸着材側基板とからなるSVOC経皮曝露量測定装置であって、前記吸着材は吸着側基板に設けた面積Aの凹部内に収納され、前記スペーサには前記凹部と同じ形状で同じ面積Aの穴を有しており、前記発生源側基板と吸着材側基板の間に、被測定対象のSVOC発生源、スペーサ、人工皮膚、をこの順に配置して着脱自在に固定する固定手段を備えており、前記被測定対象のSVOC発生源表面から拡散したSVOCが前記スペーサの前記穴で形成された気相中を移動し、さらに前記人工皮膚内を移動し、前記吸着材に吸着させることを特徴とするパッシブ型のSVOC経皮曝露量測定装置である。
また、本発明は上記SVOC経皮曝露量測定装置を用いた発生源表面気中濃度y0の測定方法であって、前記人工皮膚無しで複数の厚みの異なる複数の前記スペーサにおいて前記吸着材から抽出・分析して得られたSVOCの総量を前記面積Aで割り算しさらに測定時間tで割り算してFluxを求め、各厚みすなわち各拡散距離でのFluxを、縦軸にFlux、横軸に拡散距離の逆数を取ったグラフにプロットすることにより求めた回帰直線の傾きを、被測定対象のSVOC発生源から放散されたSVOCの気中拡散係数Dで割り算することにより発生源表面気中濃度y0を導出することを特徴とする。
また、本発明は、上記SVOC経皮曝露量測定装置を用いた皮膚表面濃度Cskin及び皮膚透過物質移動係数hskinの測定方法であって、人工皮膚から抽出・分析して得られたSVOCの総量を2倍して人工皮膚厚さで割り算し、さらに前記面積Aで割り算することで皮膚表面濃度Cskinを導出し、前記吸着材から抽出・分析して得られたSVOCの総量を前記面積Aで割り算しさらに測定時間tで割り算して求めたFluxと、前記導出した皮膚表面濃度Cskinを次の式に代入して整理することで
Flux=hskin×Cskin
皮膚透過物質移動係数hskinを導出することを特徴とする。
また、本発明は、上記SVOC経皮曝露量測定装置を用いた皮膚表面気中濃度yskinの測定方法であって、複数の厚みの異なるスペーサにおいて皮膚中存在量及び吸着材中の存在量を抽出・分析して測定し、両者を加算した値を、前記面積Aで割り算しさらに測定時間tで割り算して求めたFluxと、請求項2記載の発生源表面気中濃度y0の測定方法で求めたy0と、被測定対象のSVOC発生源から放散されたSVOCの気中拡散係数Dを次式に代入して整理することで
Flux=D×(y0−yskin
皮膚表面気中濃度yskinを導出することを特徴とする
In order to solve the above-described problems of the prior art, the present invention models a phenomenon that occurs on the skin surface, and allows the parameters to be directly measured using artificial skin.
That is, the present invention is an SVOC transcutaneous exposure comprising a source side substrate, an SVOC generation source to be measured, a plurality of spacers having different thicknesses for arranging a gas phase, artificial skin, an adsorbent, and an adsorbent side substrate. In the quantity measuring device, the adsorbent is housed in a recess having an area A provided on the suction side substrate, and the spacer has a hole having the same shape and the same area as the recess, and the generation source An SVOC generation source to be measured, a spacer, and artificial skin are arranged in this order between the side substrate and the adsorbent side substrate, and a fixing means for detachably fixing is provided. The SVOC generation source of the measurement target Passive SVOC transdermal exposure amount characterized in that SVOC diffused from the surface moves in the gas phase formed in the hole of the spacer, and further moves in the artificial skin and is adsorbed by the adsorbent. It is a measuring device.
The present invention also relates to a method for measuring a source surface air concentration y 0 using the SVOC transdermal exposure measuring apparatus, wherein the adsorbent is used in a plurality of spacers having different thicknesses without the artificial skin. The total amount of SVOC obtained by extraction and analysis is divided by the area A, and further divided by the measurement time t to obtain Flux. The Flux at each thickness, that is, each diffusion distance, Flux on the vertical axis and diffusion on the horizontal axis By dividing the slope of the regression line obtained by plotting on the graph obtained by taking the reciprocal of the distance by the air diffusion coefficient D of the SVOC diffused from the SVOC generation source to be measured, the source surface air concentration y It is characterized by deriving 0 .
The present invention also relates to a method for measuring the skin surface concentration C skin and skin permeation substance transfer coefficient h skin using the SVOC transcutaneous exposure measuring apparatus, wherein the SVOC obtained by extraction / analysis from artificial skin is used. Double the total amount, divide by the artificial skin thickness, and further divide by the area A to derive the skin surface concentration C skin , and extract and analyze the total amount of SVOC obtained from the adsorbent. By substituting Flux obtained by dividing by A and further dividing by measurement time t and the derived skin surface concentration C skin into the following formula,
Flux = h skin × C skin
A skin permeation substance transfer coefficient h skin is derived.
The present invention also relates to a method for measuring the skin surface air concentration y skin using the SVOC transdermal exposure measuring apparatus, wherein the abundance in the skin and the abundance in the adsorbent are measured in a plurality of spacers having different thicknesses. The method for measuring the concentration of the source surface air y 0 according to claim 2, wherein Flux is obtained by extracting and analyzing, adding and adding the two, and dividing by the area A and further dividing by the measurement time t. By substituting into the following equation the y 0 obtained in step 4 and the air diffusion coefficient D of the SVOC emitted from the SVOC generation source to be measured.
Flux = D × (y 0 −y skin )
Deriving skin skin air concentration y skin

従来技術では間接的にしか材料からの経皮曝露量を測定することができなかったが、本発明では、簡単な装置構成でSVOC類経皮曝露量に関するパラメータを直接測定することができ、暴露量を推定できるようにした。   In the prior art, the amount of dermal exposure from a material could be measured only indirectly, but in the present invention, parameters related to the SVOCs dermal exposure amount can be directly measured with a simple device configuration. The amount can be estimated.

本発明のSVOC類経皮曝露量測定装置の一実施例を示した説明図。BRIEF DESCRIPTION OF THE DRAWINGS Explanatory drawing which showed one Example of the SVOCs transdermal exposure measuring device of this invention. 図2は、図1で示した装置の主な部品を示した図。FIG. 2 is a diagram showing main components of the apparatus shown in FIG. 図3は、図1の装置で用いる培養人工皮膚を示した図。FIG. 3 is a view showing cultured artificial skin used in the apparatus of FIG.

本発明のSVOC類経皮曝露量測定装置は、人工皮膚を用いて床材等のSVOC類発生源から放散されるSVOC経皮暴露量を測定するためのパッシブ型の想定装置であり、被測定対象のSVOC発生源、気相を配するためのスペーサ、皮膚(培養人工皮膚)、吸着材をこの順で二つの基板の間に着脱自在に装着する。スペーサの厚みを変えることで気相(空気層)の厚みを変えることができ律速過程について情報を得ることができ、被測定対象のSVOC発生源表面から放散されたSVOCが気相中を分子拡散し、人工皮膚表面に吸着し、皮膚中を透過して吸着材(血液をモデル化したもの)に捕集される。このときの、皮膚中及び吸着材中に捕集されたSVOCを抽出・分析することで、皮膚表面濃度(Cskin)及び皮膚透過物質移動係数(hskin)を測定することができる。皮膚無しで異なる複数のスペーサ厚みについて、吸着材中に捕集されたSVOCを抽出・分析することにより発生源表面気中濃度(y0)を測定することができ、皮膚有りで異なる複数のスペーサ厚みについてFluxを測定し、先に求めた発生源表面気中濃度(y0)と気中拡散係数の文献値とを用いれば、皮膚表面気中濃度(yskin)求めることができる。 The SVOCs percutaneous exposure measuring apparatus of the present invention is a passive assumed apparatus for measuring SVOC percutaneous exposures emitted from a source of SVOCs such as flooring using artificial skin. A target SVOC generation source, a spacer for arranging a gas phase, skin (cultured artificial skin), and an adsorbent are detachably mounted between the two substrates in this order. By changing the thickness of the spacer, the thickness of the gas phase (air layer) can be changed, and information on the rate-determining process can be obtained, and the SVOC diffused from the surface of the SVOC generation source to be measured diffuses in the gas phase. Then, it is adsorbed on the artificial skin surface, permeates through the skin, and is collected by an adsorbent (modeled blood). By extracting and analyzing the SVOC collected in the skin and the adsorbent at this time, the skin surface concentration (C skin ) and the skin permeation substance transfer coefficient (h skin ) can be measured. By extracting and analyzing SVOCs collected in the adsorbent for different spacer thicknesses without skin, the source surface air concentration (y 0 ) can be measured. By measuring the flux with respect to the thickness and using the previously determined source surface air concentration (y 0 ) and the literature value of the air diffusion coefficient, the skin surface air concentration (y skin ) can be determined.

図1、2に本発明のパッシブ型のSVOC類経皮曝露量測定装置の一実施例を示す。
図1では、発生源側基板、被測定対象のSVOC発生源の例としての床材、気相を配するためのスペーサ、皮膚(培養人工皮膚)、吸着材、吸着材側基板をこの順にボルトナットなどの固定手段で着脱自在に固定する。なお吸着材は吸着材側基板に設けた凹部内に納める。また、スペーサは厚みの異なる複数種類を備える。図2で示した例では、スペーサ厚さは、例えば0.5mm、3mm、5mm、8mmの4種類を備え、スペーサに設けた穴(SVOC類が通過する領域となる)は内径10mmφ、吸着材側基板に設けた吸着材を納める凹部の内径10mmφ、両基板とスペーサにはいずれもSVOC類の吸着の少ない材質例えばPTFE製のものを用いる。図3は、培養人工皮膚(角質層+真皮層)を示したものである。
1 and 2 show an embodiment of the passive SVOC transdermal exposure measuring apparatus of the present invention.
In FIG. 1, the source side substrate, the floor material as an example of the SVOC generation source to be measured, the spacer for arranging the gas phase, the skin (cultured artificial skin), the adsorbent, and the adsorbent side substrate are bolts in this order. It is detachably fixed by a fixing means such as a nut. The adsorbent is stored in a recess provided on the adsorbent side substrate. The spacer includes a plurality of types having different thicknesses. In the example shown in FIG. 2, the spacer thickness includes, for example, four types of 0.5 mm, 3 mm, 5 mm, and 8 mm, and the hole provided in the spacer (the region through which SVOCs pass) has an inner diameter of 10 mmφ, an adsorbent The inner diameter of the concave portion for accommodating the adsorbent provided on the side substrate is 10 mmφ, and both the substrate and the spacer are made of a material with little adsorption of SVOCs, for example, PTFE. FIG. 3 shows cultured artificial skin (a stratum corneum + a dermis layer).

図1における記号は、それぞれ
0:SVOCの発生源(床材)表面濃度
K:発生源表面分配係数
0:発生源表面気中濃度
skin:皮膚表面気中濃度
skin:皮膚表面濃度
skin:皮膚表面分配係数
ad:皮膚吸着材側表面濃度
などを表す。また、図1の例から皮膚(人工皮膚)を除いて組み立てた場合の吸着材表面気中濃度をyadで表す。
ここで、吸着材は血管をモデル化したものであり、Cad及びyadの値はゼロと仮定する。
また、
SVOCの吸着材への吸着量=Flux×A×t
で表せ、ここでAは吸着材の面積(吸着材側基板に設けた吸着材を納める凹部の面積であり、図2の例では10mmφの円の面積となる。また、スペーサに設けた穴の面積とも等しい)であり、tは吸着させる間の時間であり、Fluxは単位面積・単位時間当たりの移動量にあたる。そうすると、Aは装置構成から既知の値、吸着材への吸着量は測定により求まり、tも測定時の吸着に要した時間であるから、前記式からFlux(以下「フラックス」と表記することもある)が求まる。
The symbols in FIG. 1 are C 0 : SVOC source (floor material) surface concentration K: Source surface distribution coefficient y 0 : Source surface air concentration y skin : Skin surface air concentration C skin : Skin surface concentration K skin : skin surface distribution coefficient C ad : skin adsorbent side surface concentration and the like. Moreover, the adsorbent surface air concentration at the time of assembling excluding skin (artificial skin) from the example of FIG. 1 is represented by yad .
Here, it is assumed that the adsorbent is a blood vessel model, and the values of C ad and yad are zero.
Also,
Adsorption amount of SVOC to adsorbent = Flux × A × t
Here, A is the area of the adsorbent (the area of the concave portion for accommodating the adsorbent provided on the adsorbent side substrate, and in the example of FIG. 2, it is the area of a circle of 10 mmφ. T is the time during adsorption, and Flux is the amount of movement per unit area / unit time. Then, A is a known value from the apparatus configuration, the amount adsorbed on the adsorbent is obtained by measurement, and t is the time required for adsorption at the time of measurement, so Flux (hereinafter referred to as “flux”) may be expressed from the above equation. Is found).

(各パラメータの導出法)
(1)y0:発生源表面気中濃度の導出
図1で示した本発明の経皮曝露量測定装置を用い、皮膚無しで異なる複数のスペーサ厚さ(装置構成から既知の値)、すなわち異なる複数の拡散距離、における気中でのFluxを測定により求め、求めた各拡散距離でのFluxを、縦軸にFlux、横軸に拡散距離の逆数を取ったグラフにプロットすることにより求めた回帰直線の傾きを、拡散係数Dで割り算することによりy0を導出する。
なお、被測定対象のSVOC発生源から放散される各SVOCの気中での拡散係数Dは文献値としてすでに知られているものを用いればよく、また、yadの値はゼロとみなす。
(Derivation method of each parameter)
(1) y 0 : Derivation of source surface air concentration Using the apparatus for measuring the amount of percutaneous exposure of the present invention shown in FIG. Flux in the air at different diffusion distances was obtained by measurement, and Flux at each diffusion distance was obtained by plotting it on a graph with Flux on the vertical axis and the inverse of the diffusion distance on the horizontal axis. Y 0 is derived by dividing the slope of the regression line by the diffusion coefficient D.
The diffusion coefficient D in a vapor of each SVOC dissipated from SVOC source to be measured may be used what is known as the literature value, and the value of y ad is regarded as zero.

(2)Cskin:皮膚表面濃度の導出
図1に示した本発明の経皮曝露量測定装置を皮膚有りで用い、Cad:皮膚吸着材側表面濃度をゼロと仮定し、皮膚中の濃度は皮膚の厚み方向に沿って皮膚表面濃度Cskinからゼロに直線的に変化すると仮定する。そうすると、皮膚中に存在するSVOCの量は皮膚表面濃度Cskinに皮膚厚さ(装置構成から既知の値)をかけ算して2で割って前記面積A(図2の例では10mmφの円の面積)をかけ算した値となる。そのため、皮膚から抽出・分析して得られたSVOCの総量を2倍して皮膚厚さで割り算し、さらに前記面積Aで割り算することで皮膚表面濃度Cskinが導出できる。
(3)hskin:皮膚透過物質移動係数の導出
皮膚の吸着材側表面濃度Cadをゼロと仮定すると、測定で得られるFluxは以下の式を満たす。
Flux=hskin×Cskin
つまり、測定で得られたFluxと上記(2)で求めたCskinを上式に代入して整理すれば皮膚透過物質移動係数hskinが導出できる。
(2) C skin : Derivation of skin surface concentration Using the percutaneous exposure measurement apparatus of the present invention shown in FIG. 1 with skin, C ad : Skin adsorbent side surface concentration is assumed to be zero, and the concentration in the skin Is assumed to change linearly from the skin surface concentration C skin to zero along the thickness direction of the skin. Then, the amount of SVOC present in the skin is obtained by multiplying the skin surface concentration C skin by the skin thickness (known value from the device configuration) and dividing by 2 to obtain the area A (the area of a circle of 10 mmφ in the example of FIG. 2). ) Is multiplied. Therefore, the skin surface concentration C skin can be derived by doubling the total amount of SVOC obtained by extraction and analysis from the skin, dividing by the skin thickness, and further dividing by the area A.
(3) h skin : Derivation of skin permeation substance transfer coefficient Assuming that the skin adsorbent side surface concentration C ad is zero, Flux obtained by measurement satisfies the following formula.
Flux = h skin × C skin
That is, the skin permeation substance transfer coefficient h skin can be derived by substituting Flux obtained by measurement and C skin obtained in the above (2) into the above equation and organizing it.

(4)yskin:皮膚表面気中濃度の導出
図1に示した本発明の経皮曝露量測定装置を皮膚有りで用い、異なる複数のスペーサ厚さ(装置構成から既知の値)、すなわち異なる複数の拡散距離、において皮膚中存在量及び吸着材中の存在量を抽出・分析して測定し、両者を加算した値を、前記面積Aで割り算しさらに測定時間tで割り算してFluxを求める(ここでのFluxは、上記段落0011、0012、0013のFluxの値と異なる点に注意)。
こうして求めたFluxは以下の式を満たしており、
Flux=D×(y0−yskin
ここで、y0は上記(1)で求めており、Dは気中拡散係数の文献値を用いればよいから、上式にFlux、y0、Dの値を代入して整理することにより皮膚表面気中濃度yskinが導出できる。
(4) y skin : Derivation of skin surface air concentration The transdermal exposure measurement apparatus of the present invention shown in FIG. 1 is used with skin, and a plurality of different spacer thicknesses (known values from the apparatus configuration), that is, different Extract and analyze the abundance in the skin and the absorptive material at multiple diffusion distances, measure the sum, divide by the area A, and further divide by the measurement time t to obtain Flux. (Note that Flux here differs from the Flux value in paragraphs 0011, 0012, and 0013 above).
Flux obtained in this way satisfies the following formula,
Flux = D × (y 0 −y skin )
Here, y 0 is obtained in the above (1), and D should be a literature value of the air diffusion coefficient. Therefore, by substituting the values of Flux, y 0 , and D into the above equation, the skin can be obtained. Surface air concentration y skin can be derived.

上記説明ではSVOC類の経皮曝露量測定装置として説明したが、SVOC類以外の化学物質の経皮曝露量の測定にも利用することができる。
また本測定装置は、例えば、材料開発分野において、健康影響の小さい製品の開発に際しての利用や、化学物質管理を行う際のデータ取得のために利用することができる。
In the above description, the device for measuring the amount of dermal exposure to SVOCs has been described. However, the device can also be used to measure the amount of dermal exposure to chemical substances other than SVOCs.
In addition, this measuring apparatus can be used, for example, in the field of material development for the development of products with small health effects and for the acquisition of data when performing chemical substance management.

Claims (4)

発生源側基板、被測定対象のSVOC発生源、気相を配するための複数の厚みの異なるスペーサ、人工皮膚、吸着材、吸着材側基板とからなるSVOC経皮曝露量測定装置であって、
前記吸着材は吸着側基板に設けた面積Aの凹部内に収納され、前記スペーサには前記凹部と同じ形状で同じ面積Aの穴を有しており、
前記発生源側基板と吸着材側基板の間に、被測定対象のSVOC発生源、スペーサ、人工皮膚、をこの順に配置して着脱自在に固定する固定手段を備えており、前記SVOC発生源表面から拡散したSVOCが前記スペーサの前記穴で形成された気相中を移動し、さらに前記人工皮膚内を移動し、前記吸着材に吸着させることを特徴とするパッシブ型のSVOC経皮曝露量測定装置。
An SVOC transcutaneous exposure measuring device comprising a source side substrate, an SVOC generation source to be measured, a plurality of spacers having different thicknesses for arranging a gas phase, artificial skin, an adsorbent, and an adsorbent side substrate. ,
The adsorbent is housed in a recess having an area A provided on the suction side substrate, and the spacer has a hole having the same shape and the same area as the recess,
An SVOC generation source to be measured, a spacer, and artificial skin are arranged in this order between the generation source side substrate and the adsorbent side substrate, and a fixing means for detachably fixing is provided, and the SVOC generation source surface The SVOC transdermal exposure measurement is characterized in that the SVOC diffused from the gas moves in the gas phase formed in the hole of the spacer, further moves in the artificial skin, and is adsorbed by the adsorbent. apparatus.
請求項1記載のSVOC経皮曝露量測定装置を用いた発生源表面気中濃度yの測定方法であって、
前記人工皮膚無しで複数の厚みの異なる複数の前記スペーサにおいて前記吸着材から抽出・分析して得られたSVOCの総量を前記面積Aで割り算しさらに測定時間tで割り算してFluxを求め、各厚みすなわち各拡散距離でのFluxを、縦軸にFlux、横軸に拡散距離の逆数を取ったグラフにプロットすることにより求めた回帰直線の傾きを、被測定対象のSVOC発生源から放散されたSVOCの気中拡散係数Dで割り算することにより発生源表面気中濃度y0を導出することを特徴とする発生源表面気中濃度y0の測定方法。
A method for measuring a source surface air concentration y 0 using the SVOC transdermal exposure measuring apparatus according to claim 1,
The total amount of SVOC obtained by extracting and analyzing from the adsorbent in the plurality of spacers having different thicknesses without the artificial skin is divided by the area A and further divided by the measurement time t to obtain Flux, The slope of the regression line obtained by plotting the thickness, ie, Flux at each diffusion distance, in a graph with Flux on the vertical axis and the inverse of the diffusion distance on the horizontal axis was dissipated from the SVOC source being measured. A source surface air concentration y 0 measurement method, characterized by deriving the source surface air concentration y 0 by dividing by the SVOC air diffusion coefficient D.
請求項1記載のSVOC経皮曝露量測定装置を用いた皮膚表面濃度Cskin及び皮膚透過物質移動係数hskinの測定方法であって、
人工皮膚から抽出・分析して得られたSVOCの総量を2倍して人工皮膚厚さで割り算し、さらに前記面積Aで割り算することで皮膚表面濃度Cskinを導出し、
前記吸着材から抽出・分析して得られたSVOCの総量を前記面積Aで割り算しさらに測定時間tで割り算して求めたFluxと、前記導出した皮膚表面濃度Cskinを次の式に代入して整理することで
Flux=hskin×Cskin
皮膚透過物質移動係数hskinを導出することを特徴とする皮膚表面濃度Cskin及び皮膚透過物質移動係数hskinの測定方法。
A method for measuring a skin surface concentration C skin and a skin permeation substance transfer coefficient h skin using the SVOC transdermal exposure measurement apparatus according to claim 1,
The total amount of SVOC extracted and analyzed from the artificial skin is doubled, divided by the artificial skin thickness, and further divided by the area A to derive the skin surface concentration C skin ,
The total amount of SVOC obtained by extraction / analysis from the adsorbent is divided by the area A and further divided by the measurement time t, and the derived skin surface concentration C skin is substituted into the following equation. By organizing
Flux = h skin × C skin
A method for measuring a skin surface concentration C skin and a skin permeation material transfer coefficient h skin , wherein a skin permeation substance transfer coefficient h skin is derived.
請求項1記載のSVOC経皮曝露量測定装置を用いた皮膚表面気中濃度yskinの測定方法であって、
複数の厚みの異なるスペーサにおいて皮膚中存在量及び吸着材中の存在量を抽出・分析して測定し、両者を加算した値を、前記面積Aで割り算しさらに測定時間tで割り算して求めたFluxと、請求項2記載の発生源表面気中濃度y0の測定方法で求めたy0と、被測定対象のSVOC発生源から放散されたSVOCの気中拡散係数Dを次式に代入して整理することで
Flux=D×(y0−yskin
皮膚表面気中濃度yskinを導出することを特徴とする皮膚表面気中濃度yskinの測定方法。
A method for measuring the skin surface air concentration y skin using the SVOC transdermal exposure measuring apparatus according to claim 1,
The abundance in the skin and the abundance in the adsorbent were measured by extracting and analyzing in a plurality of spacers having different thicknesses, and a value obtained by adding both was divided by the area A and further divided by the measurement time t. and Flux, and y 0 obtained by the measurement method of the source surface airborne concentrations y 0 according to claim 2, by substituting the air in the diffusion coefficient D of SVOC that is dissipated from SVOC source to be measured in the following equation By organizing
Flux = D × (y 0 −y skin )
A method for measuring the skin surface air concentration y skin , wherein the skin surface air concentration y skin is derived.
JP2014116084A 2014-06-04 2014-06-04 SVOCs Dermal Exposure Measurement Device Active JP6367011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014116084A JP6367011B2 (en) 2014-06-04 2014-06-04 SVOCs Dermal Exposure Measurement Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014116084A JP6367011B2 (en) 2014-06-04 2014-06-04 SVOCs Dermal Exposure Measurement Device

Publications (2)

Publication Number Publication Date
JP2015230224A true JP2015230224A (en) 2015-12-21
JP6367011B2 JP6367011B2 (en) 2018-08-01

Family

ID=54887068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014116084A Active JP6367011B2 (en) 2014-06-04 2014-06-04 SVOCs Dermal Exposure Measurement Device

Country Status (1)

Country Link
JP (1) JP6367011B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108426966A (en) * 2018-06-07 2018-08-21 北京理工大学 A kind of method of interior material semi-volatile organic matter emission parameter in measuring cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442417A (en) * 1987-08-03 1989-02-14 Toujiyou Kakuji Evaluation of drug transdermal permeability
JPH08501875A (en) * 1992-07-27 1996-02-27 インビトロ インターナショナル In vitro test for skin toxicity
JP2008145207A (en) * 2006-12-08 2008-06-26 National Institute Of Advanced Industrial & Technology Passive type diffusion quantity measuring instrument
JP2011200224A (en) * 2010-03-03 2011-10-13 Nikko Chemical Co Ltd Evaluation device and evaluation method of percutaneous absorption
JP2013512448A (en) * 2009-12-01 2013-04-11 ヘルス プロテクション エージェンシー Analysis method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442417A (en) * 1987-08-03 1989-02-14 Toujiyou Kakuji Evaluation of drug transdermal permeability
JPH08501875A (en) * 1992-07-27 1996-02-27 インビトロ インターナショナル In vitro test for skin toxicity
JP2008145207A (en) * 2006-12-08 2008-06-26 National Institute Of Advanced Industrial & Technology Passive type diffusion quantity measuring instrument
JP2013512448A (en) * 2009-12-01 2013-04-11 ヘルス プロテクション エージェンシー Analysis method and apparatus
JP2011200224A (en) * 2010-03-03 2011-10-13 Nikko Chemical Co Ltd Evaluation device and evaluation method of percutaneous absorption

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108426966A (en) * 2018-06-07 2018-08-21 北京理工大学 A kind of method of interior material semi-volatile organic matter emission parameter in measuring cell
CN108426966B (en) * 2018-06-07 2023-04-28 北京理工大学 Method for measuring emission parameters of semi-volatile organic compounds of indoor vehicle interior materials

Also Published As

Publication number Publication date
JP6367011B2 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
Farsalinos et al. Evaluation of electronic cigarette use (vaping) topography and estimation of liquid consumption: implications for research protocol standards definition and for public health authorities’ regulation
Lundov et al. Emission of isothiazolinones from water-based paints
Leach et al. Validating and calibrating the Nintendo Wii balance board to derive reliable center of pressure measures
Amann et al. Assessment of the exhalation kinetics of volatile cancer biomarkers based on their physicochemical properties
Sadowski et al. Large-scale human skin lipidomics by quantitative, high-throughput shotgun mass spectrometry
Wang et al. Characterization of human plasma proteome dynamics using deuterium oxide
Yun et al. Correlation-based prediction of tissue-to-plasma partition coefficients using readily available input parameters
WO2015168250A8 (en) Decision support system for hospital quality assessment
Sorimachi et al. Quality assurance and quality control for thoron measurement at NIRS
Mizukoshi et al. A novel methodology to evaluate health impacts caused by VOC exposures using real-time VOC and Holter monitors
Stradolini et al. Cleaning strategy for carbon-based electrodes: Long-term propofol monitoring in human serum
Calatayud-Pascual et al. Influence of chemical enhancers and iontophoresis on the in vitro transdermal permeation of propranolol: evaluation by dermatopharmacokinetics
Ghazouani et al. Assessing Hydrus-2D model to investigate the effects of different on-farm irrigation strategies on potato crop under subsurface drip irrigation
Maier et al. Long term soil gas monitoring as tool to understand soil processes
La Maida et al. Determination of the synthetic cannabinoids JWH-122, JWH-210, UR-144 in oral fluid of consumers by GC-MS and quantification of parent compounds and metabolites by UHPLC-MS/MS
JP6367011B2 (en) SVOCs Dermal Exposure Measurement Device
Dumas-Campagna et al. Ethanol toxicokinetics resulting from inhalation exposure in human volunteers and toxicokinetic modeling
Holmgaard et al. Percutaneous Penetration‐Methodological Considerations
Leung et al. Sulfur isotopic fractionation in the gas-phase oxidation of sulfur dioxide initiated by hydroxyl radicals
Bertoni et al. Nanostructured p3ht as a promising sensing element for real-time, dynamic detection of gaseous acetone
Huet et al. Study of commercial detector responses in non-equilibrium small photon fields of a 1000 MU/min CyberKnife system
Cai et al. A new drug release method in early development of transdermal drug delivery systems
WO2019044254A1 (en) Sterilization performance prediction system and sterilization performance prediction method
Li et al. Does the systemic plasma profile inform the liver profile? Analysis using a physiologically based pharmacokinetic model and individual compounds
Welz et al. Rapid targeted method of detecting abused piperazine designer drugs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180220

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180704

R150 Certificate of patent or registration of utility model

Ref document number: 6367011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250