JP2015216046A - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP2015216046A
JP2015216046A JP2014098745A JP2014098745A JP2015216046A JP 2015216046 A JP2015216046 A JP 2015216046A JP 2014098745 A JP2014098745 A JP 2014098745A JP 2014098745 A JP2014098745 A JP 2014098745A JP 2015216046 A JP2015216046 A JP 2015216046A
Authority
JP
Japan
Prior art keywords
active material
material layer
thickness
electrode active
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014098745A
Other languages
Japanese (ja)
Inventor
厚志 南形
Atsushi MINAGATA
厚志 南形
元章 奥田
Motoaki Okuda
元章 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2014098745A priority Critical patent/JP2015216046A/en
Publication of JP2015216046A publication Critical patent/JP2015216046A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a power storage device which enables the suppression of an internal short circuit caused by an expected foreign material.SOLUTION: A power storage device 1 comprises: a positive electrode 10 having a metal foil 11, and a positive electrode active material layer 12 provided on at least one surface of the metal foil; a negative electrode 20 having a metal foil 21, a negative electrode active material layer 22 provided on at least one surface of the metal foil, and a protection layer 23 provided on the negative electrode active material layer 22; and a separator 30 disposed between the positive electrode 10 and the negative electrode 20. The protection layer 23 is harder than the positive electrode active material layer 12 in hardness. Supposing that of the thickness of the positive electrode active material layer 12 of the thickness of the negative electrode active material layer 22, a larger thickness is P, the hardness of the positive electrode active material layer 12 is x, the hardness of the protection layer 23 is y, the thickness of the protection layer 23 is T, and the thickness of the separator 30 is D, they satisfy the conditions given by: x/(x+y)×(P-D)<T, and P>D.

Description

本発明は、蓄電装置に関する。   The present invention relates to a power storage device.

正極と、負極と、正極と負極との間に介在するセパレータと、電極(正極又は負極)の表面に接着された多孔質絶縁膜とを含む非水電解液二次電池が知られている(例えば特許文献1参照)。   A non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a porous insulating film bonded to the surface of the electrode (positive electrode or negative electrode) is known ( For example, see Patent Document 1).

特許第4847861号公報Japanese Patent No. 4847861

非水電解液二次電池等の蓄電装置を製造中に、異物(例えば、活物質層から落ちた活物質)がセパレータと電極(正極又は負極)との間に入る場合がある。異物が入った場合、異物によって、まずセパレータが破断し、その後、電極表面の保護層(多孔質絶縁膜)が破断する可能性がある。セパレータ及び保護層の両方が破断すると、正極と負極とが直接又は異物を介して内部短絡する可能性がある。   During manufacturing of a power storage device such as a non-aqueous electrolyte secondary battery, foreign matter (for example, an active material dropped from the active material layer) may enter between the separator and the electrode (positive electrode or negative electrode). When a foreign substance enters, there is a possibility that the separator is first broken by the foreign substance, and then the protective layer (porous insulating film) on the electrode surface is broken. If both the separator and the protective layer are broken, the positive electrode and the negative electrode may be internally short-circuited directly or through foreign matter.

セパレータと電極(正極又は負極)との間に入る最大の異物としては、電極製造工程の打抜き等のときに活物質層から落ちる活物質又は活物質層の一部等が考えられる。よって、保護層の厚み方向における異物の最大サイズは、正極活物質層の厚みと負極活物質層の厚みのうちの厚いほうの厚みと同じであると想定される。   As the largest foreign substance that enters between the separator and the electrode (positive electrode or negative electrode), an active material falling from the active material layer or a part of the active material layer at the time of punching of the electrode manufacturing process or the like can be considered. Therefore, the maximum size of the foreign material in the thickness direction of the protective layer is assumed to be the same as the thicker one of the thickness of the positive electrode active material layer and the thickness of the negative electrode active material layer.

そこで、本発明の一側面は、想定される異物による内部短絡を抑制できる蓄電装置を提供することを目的とする。   In view of the above, an object of one aspect of the present invention is to provide a power storage device that can suppress an internal short circuit due to an assumed foreign object.

本発明の一側面に係る蓄電装置は、第1集電箔の少なくとも一面に設けられた第1活物質層を有する第1電極と、第2集電箔の少なくとも一面に設けられた第2活物質層と、前記第2活物質層上に設けられ前記第1活物質層に対向配置された保護層とを有する第2電極と、前記第1電極と前記第2電極との間に配置されたセパレータと、を備え、前記第1電極及び前記第2電極の一方が正極であり、前記第1電極及び前記第2電極の他方が負極であり、前記保護層の硬さは前記第1活物質層の硬さよりも硬く、前記第1活物質層の厚みと前記第2活物質層の厚みのうちの厚いほうの厚みをPとし、前記第1活物質層の硬さをxとし、前記保護層の硬さをyとし、前記保護層の厚みをTとし、前記セパレータの厚みをDとした場合、下記の式(1)及び式(2)を満たす。

Figure 2015216046
A power storage device according to one aspect of the present invention includes a first electrode having a first active material layer provided on at least one surface of a first current collector foil, and a second active material provided on at least one surface of a second current collector foil. A second electrode having a material layer and a protective layer provided on the second active material layer and disposed opposite to the first active material layer; and disposed between the first electrode and the second electrode. A separator, wherein one of the first electrode and the second electrode is a positive electrode, the other of the first electrode and the second electrode is a negative electrode, and the hardness of the protective layer is the first active layer. It is harder than the hardness of the material layer, the thickness of the thickness of the first active material layer and the thickness of the second active material layer is P, the hardness of the first active material layer is x, When the hardness of the protective layer is y, the thickness of the protective layer is T, and the thickness of the separator is D, the following formula ( ) And satisfies the equation (2).
Figure 2015216046

本明細書において、「硬さ」は、例えば、ビッカース硬さ試験で測定されたビッカース硬さ[HV]である。   In the present specification, the “hardness” is, for example, a Vickers hardness [HV] measured by a Vickers hardness test.

セパレータと第1電極又は第2電極との間には、異物が入る可能性がある。そのような異物としては、電極製造工程の打抜き等のときに第1活物質層又は第2活物質層から落ちる活物質(粒子)又は活物質層の一部(バリ)等が考えられる。よって、保護層の厚み方向における異物の最大サイズは、第1活物質層の厚みと第2活物質層の厚みのうちの厚いほうの厚みPと同じであると想定される。最大サイズPの異物がセパレータと第1電極又は第2電極との間に入った場合、上記の式(2)のように、最大サイズPはセパレータの厚みDよりも大きいので、異物はセパレータを貫通する。異物がセパレータからはみ出す距離は(P−D)となる。はみ出た異物は、y/(x+y)×(P−D)だけ第1活物質層内に入り込み、x/(x+y)×(P−D)だけ保護層内に入り込む。したがって、保護層の凹み量はx/(x+y)×(P−D)となる。保護層の厚みTはx/(x+y)×(P−D)よりも大きい(上記の式(1)を満たす)ので、保護層の破断が抑制される。その結果、異物による内部短絡が抑制される。よって、上記の式(1)及び(2)を満たす蓄電装置では、セパレータと第1電極又は第2電極との間に異物が入っても、異物による内部短絡を抑制できる。したがって、この蓄電装置では、想定される異物による内部短絡を抑制できる。   There is a possibility that foreign matter enters between the separator and the first electrode or the second electrode. As such a foreign material, an active material (particles) falling from the first active material layer or the second active material layer or a part of the active material layer (burr) at the time of punching the electrode manufacturing process or the like can be considered. Therefore, the maximum size of the foreign matter in the thickness direction of the protective layer is assumed to be the same as the thicker thickness P of the thicknesses of the first active material layer and the second active material layer. When the foreign material of the maximum size P enters between the separator and the first electrode or the second electrode, the maximum size P is larger than the thickness D of the separator as in the above formula (2). To penetrate. The distance that the foreign matter protrudes from the separator is (PD). The protruding foreign matter enters the first active material layer by y / (x + y) × (P−D), and enters the protective layer by x / (x + y) × (P−D). Therefore, the amount of depression of the protective layer is x / (x + y) × (P−D). Since the thickness T of the protective layer is larger than x / (x + y) × (P−D) (the above formula (1) is satisfied), the breakage of the protective layer is suppressed. As a result, an internal short circuit due to foreign matter is suppressed. Therefore, in the power storage device that satisfies the above expressions (1) and (2), even if a foreign substance enters between the separator and the first electrode or the second electrode, an internal short circuit due to the foreign substance can be suppressed. Therefore, in this power storage device, it is possible to suppress an internal short circuit due to an assumed foreign object.

一実施形態において、前記第1活物質層の硬さは前記第2活物質層の硬さよりも硬くてもよい。   In one embodiment, the hardness of the first active material layer may be higher than the hardness of the second active material layer.

この場合、第1活物質層の凹み量y/(x+y)×(P−D)が小さくなるので、保護層の凹み量x/(x+y)×(P−D)が大きくなる。そのような場合であっても、保護層の厚みTはx/(x+y)×(P−D)よりも大きい(上記の式(1)を満たす)ので、保護層の破断が抑制される。   In this case, since the dent amount y / (x + y) × (P−D) of the first active material layer is reduced, the dent amount x / (x + y) × (P−D) of the protective layer is increased. Even in such a case, since the thickness T of the protective layer is larger than x / (x + y) × (P−D) (satisfies the above formula (1)), the breakage of the protective layer is suppressed.

一実施形態において、前記第1活物質層の厚みをtとした場合、下記の式(3)を満たしてもよい。

Figure 2015216046
In one embodiment, when the thickness of the first active material layer is t, the following formula (3) may be satisfied.
Figure 2015216046

セパレータからはみ出た異物は、y/(x+y)×(P−D)だけ第1活物質層内に入り込む。したがって、第1活物質層の凹み量はy/(x+y)×(P−D)となる。第1活物質層の厚みtがy/(x+y)×(P−D)よりも大きいと(上記の式(3)を満たすと)、異物が第1集電箔に到達しないので、第1活物質層の破断が抑制される。   Foreign matter that protrudes from the separator enters the first active material layer by y / (x + y) × (P−D). Therefore, the dent amount of the first active material layer is y / (x + y) × (P−D). When the thickness t of the first active material layer is larger than y / (x + y) × (P−D) (when the above expression (3) is satisfied), the foreign matter does not reach the first current collector foil. Breaking of the active material layer is suppressed.

一実施形態において、前記第1活物質層の厚みと前記第2活物質層の厚みのうちの厚いほうの厚みは、負極活物質層の厚みであってもよい。   In one embodiment, the thickness of the thickness of the first active material layer and the thickness of the second active material layer may be the thickness of the negative electrode active material layer.

この場合、想定される異物の最大サイズPは負極活物質層の厚みと同じになる。通常、正極活物質層に含まれるバインダと負極活物質層に含まれるバインダとの違いによって、正極活物質層の活物質等に比べて負極活物質層の活物質等は落ち易い。よって、最大の異物は、主として負極活物質層の活物質等であると想定される。   In this case, the assumed maximum size P of the foreign material is the same as the thickness of the negative electrode active material layer. Usually, the active material and the like of the negative electrode active material layer are more likely to fall than the active material and the like of the positive electrode active material layer due to the difference between the binder contained in the positive electrode active material layer and the binder contained in the negative electrode active material layer. Therefore, the largest foreign substance is assumed to be mainly the active material of the negative electrode active material layer.

一実施形態において、前記第1活物質層は正極活物質層であってもよい。   In one embodiment, the first active material layer may be a positive electrode active material layer.

本発明の一側面によれば、想定される異物による内部短絡を抑制できる蓄電装置が提供され得る。   According to one aspect of the present invention, it is possible to provide a power storage device that can suppress an internal short circuit due to an assumed foreign object.

本実施形態に係る蓄電装置を模式的に示す断面図である。It is sectional drawing which shows typically the electrical storage apparatus which concerns on this embodiment. 第1電極と第2電極との間に異物が入った場合の蓄電装置の一部を模式的に示す断面図である。It is sectional drawing which shows typically a part of electrical storage apparatus when a foreign material enters between the 1st electrode and the 2nd electrode.

以下、添付図面を参照しながら本発明の実施形態が詳細に説明される。図面の説明において、同一又は同等の要素には同一符号が用いられ、重複する説明は省略される。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same reference numerals are used for the same or equivalent elements, and redundant descriptions are omitted.

図1は、本実施形態に係る蓄電装置を模式的に示す断面図である。図1に示される蓄電装置1は、例えば二次電池又は電気二重層キャパシタ等である。二次電池としては、例えば、リチウムイオン二次電池等の非水電解質二次電池が挙げられる。   FIG. 1 is a cross-sectional view schematically showing the power storage device according to this embodiment. The power storage device 1 shown in FIG. 1 is, for example, a secondary battery or an electric double layer capacitor. Examples of the secondary battery include non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries.

蓄電装置1は、電極組立体2と、電極組立体2を収容するケース4とを備える。ケース4内には電解液3が収容される。電極組立体2は、第1電極としての正極10と、第2電極としての負極20と、正極10と負極20との間に配置されたセパレータ30とを備える。複数の正極10及び複数の負極20が、セパレータ30を介して交互に積層されている。電解液3は、例えば有機溶媒系又は非水系の電解液等である。ケース4は導電性を有し、例えばアルミニウム又はアルミニウム合金等の金属からなる。ケース4の形状は例えば直方体状である。   The power storage device 1 includes an electrode assembly 2 and a case 4 that houses the electrode assembly 2. The electrolyte solution 3 is accommodated in the case 4. The electrode assembly 2 includes a positive electrode 10 as a first electrode, a negative electrode 20 as a second electrode, and a separator 30 disposed between the positive electrode 10 and the negative electrode 20. A plurality of positive electrodes 10 and a plurality of negative electrodes 20 are alternately stacked via separators 30. The electrolytic solution 3 is, for example, an organic solvent-based or non-aqueous electrolytic solution. The case 4 has conductivity and is made of a metal such as aluminum or an aluminum alloy. The case 4 has a rectangular parallelepiped shape, for example.

正極10は、第1集電箔としての金属箔11と、金属箔11の少なくとも一面に設けられた第1活物質層としての正極活物質層12とを有する。本実施形態では、金属箔11の両面にそれぞれ正極活物質層12が設けられている。正極10は、金属箔11の端部において、正極活物質層12が設けられていないタブ部を有してもよい。タブ部は、正極10の上縁部に延び、導電部材を介して正極端子に接続される。   The positive electrode 10 includes a metal foil 11 as a first current collector foil and a positive electrode active material layer 12 as a first active material layer provided on at least one surface of the metal foil 11. In the present embodiment, the positive electrode active material layers 12 are provided on both surfaces of the metal foil 11, respectively. The positive electrode 10 may have a tab portion where the positive electrode active material layer 12 is not provided at the end of the metal foil 11. The tab portion extends to the upper edge portion of the positive electrode 10 and is connected to the positive electrode terminal via the conductive member.

金属箔11は、例えば、アルミニウム箔、アルミニウム合金箔である。正極活物質層12は、正極活物質及びバインダを含む。正極活物質層12は、導電助剤を含んでもよい。正極活物質は、例えば、複合酸化物、金属リチウム、硫黄である。複合酸化物は、マンガン、ニッケル、コバルト及びアルミニウムの少なくとも1つとリチウムとを含む。バインダは、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリノレ基含有樹脂等である。導電助剤は、例えば、カーボンブラック、黒鉛、アセチレンブラック、ケッチェンブラック(登録商標)である。   The metal foil 11 is, for example, an aluminum foil or an aluminum alloy foil. The positive electrode active material layer 12 includes a positive electrode active material and a binder. The positive electrode active material layer 12 may include a conductive additive. The positive electrode active material is, for example, a composite oxide, metallic lithium, or sulfur. The composite oxide includes at least one of manganese, nickel, cobalt, and aluminum and lithium. The binder is, for example, a fluorine-containing resin such as polyvinylidene fluoride, polytetrafluoroethylene or fluororubber, a thermoplastic resin such as polypropylene or polyethylene, an imide resin such as polyimide or polyamideimide, or an alkoxysilanol group-containing resin. . Examples of the conductive auxiliary agent include carbon black, graphite, acetylene black, and ketjen black (registered trademark).

負極20は、第2集電箔としての金属箔21と、金属箔21の少なくとも一面に設けられた第2活物質層としての負極活物質層22と、負極活物質層22上に設けられ正極活物質層12に対向配置された保護層23とを有する。保護層23は、負極活物質層22の表面全体を覆ってもよい。本実施形態では、金属箔21の両面にそれぞれ負極活物質層22が設けられている。負極20は、金属箔21の端部において、負極活物質層22が設けられていないタブ部を有してもよい。タブ部は、負極20の上縁部に延び、導電部材を介して負極端子に接続される。   The negative electrode 20 includes a metal foil 21 as a second current collector foil, a negative electrode active material layer 22 as a second active material layer provided on at least one surface of the metal foil 21, and a positive electrode provided on the negative electrode active material layer 22. And a protective layer 23 disposed opposite to the active material layer 12. The protective layer 23 may cover the entire surface of the negative electrode active material layer 22. In the present embodiment, the negative electrode active material layers 22 are respectively provided on both surfaces of the metal foil 21. The negative electrode 20 may have a tab portion where the negative electrode active material layer 22 is not provided at the end of the metal foil 21. The tab portion extends to the upper edge portion of the negative electrode 20 and is connected to the negative electrode terminal via a conductive member.

金属箔21は、例えば、銅箔、銅合金箔である。負極活物質層22は、負極活物質及びバインダを含む。負極活物質層22は、導電助剤を含んでもよい。負極活物質は、例えば、黒鉛、高配向性グラファイト、メソカーボンマイクロビーズ、ハードカーボン、ソフトカーボン等のカーボン、リチウム、ナトリウム等のアルカリ金属、金属化合物、SiOx(0.5≦x≦1.5)等の金属酸化物、ホウ素添加炭素である。バインダ及び導電助剤としては、例えば、正極10に用いられるバインダ及び導電助剤と同じものが挙げられる。バインダとしては、さらに、例えばカルボキシメチルセルロース、メチルセルロース、スチレンブタジエンゴム、アルコキシシリル基含有樹脂等が挙げられる。保護層23は、例えば多孔質絶縁層である。保護層23は、例えばセラミック等の絶縁材料と、バインダとを含む。セラミックは、例えばAl、SiO、TiO等である。バインダとしては、例えば、正極10に用いられるバインダと同じものが挙げられる。 The metal foil 21 is, for example, a copper foil or a copper alloy foil. The negative electrode active material layer 22 includes a negative electrode active material and a binder. The negative electrode active material layer 22 may include a conductive additive. Examples of the negative electrode active material include graphite, highly oriented graphite, carbon such as mesocarbon microbeads, hard carbon, and soft carbon, alkali metals such as lithium and sodium, metal compounds, and SiOx (0.5 ≦ x ≦ 1.5). ) And the like, and boron-added carbon. As a binder and a conductive support agent, the same thing as the binder and conductive support agent used for the positive electrode 10 are mentioned, for example. Examples of the binder further include carboxymethyl cellulose, methyl cellulose, styrene butadiene rubber, and alkoxysilyl group-containing resin. The protective layer 23 is, for example, a porous insulating layer. The protective layer 23 includes, for example, an insulating material such as ceramic and a binder. The ceramic is, for example, Al 2 O 3 , SiO 2 , TiO 2 or the like. As a binder, the same thing as the binder used for the positive electrode 10 is mentioned, for example.

セパレータ30は、正極10と負極20とを隔離し、両極の接触による短絡を防止しつつ、リチウムイオンを通過させる。セパレータ30の一方の面が保護層23に密着し、セパレータ30の他方の面が正極活物質層12に密着してもよい。セパレータ30は、例えば、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂からなる多孔質フィルム、ポリプロピレン、ポリエチレンテレフタレート(PET)、メチルセルロース等からなる織布又は不織布である。   The separator 30 separates the positive electrode 10 and the negative electrode 20 and allows lithium ions to pass through while preventing a short circuit due to contact between the two electrodes. One surface of the separator 30 may be in close contact with the protective layer 23, and the other surface of the separator 30 may be in close contact with the positive electrode active material layer 12. The separator 30 is, for example, a porous film made of a polyolefin resin such as polyethylene (PE) or polypropylene (PP), a woven fabric or a non-woven fabric made of polypropylene, polyethylene terephthalate (PET), methylcellulose, or the like.

図2は、第1電極と第2電極との間に異物が入った場合の蓄電装置の一部を模式的に示す断面図である。図2では、蓄電装置1の正極10と負極20との間に異物Aが入っている。   FIG. 2 is a cross-sectional view schematically showing a part of the power storage device when a foreign substance enters between the first electrode and the second electrode. In FIG. 2, foreign matter A is present between the positive electrode 10 and the negative electrode 20 of the power storage device 1.

本実施形態では、正極活物質層12の硬さが負極活物質層22の硬さよりも硬い。保護層23の硬さは正極活物質層12の硬さよりも硬い。負極活物質層22の硬さは、セパレータ30の硬さよりも硬い。   In the present embodiment, the positive electrode active material layer 12 is harder than the negative electrode active material layer 22. The hardness of the protective layer 23 is harder than the hardness of the positive electrode active material layer 12. The hardness of the negative electrode active material layer 22 is harder than the hardness of the separator 30.

正極活物質層12の硬さ及び負極活物質層22の硬さは、活物質層の密度によって決まり、密度が高いほど硬い。したがって、活物質層の密度を所望の密度(予め設定された値)にすることによって、活物質層の硬さを調整することができる。密度は、例えば、活物質層を形成するための電極ペーストの固形分率、金属箔11,21に電極ペーストを塗布して乾燥させた後のプレス工程におけるプレス圧等を調整することによって調整され得る。   The hardness of the positive electrode active material layer 12 and the hardness of the negative electrode active material layer 22 are determined by the density of the active material layer, and the higher the density, the harder. Therefore, the hardness of the active material layer can be adjusted by setting the density of the active material layer to a desired density (a preset value). The density is adjusted, for example, by adjusting the solid content ratio of the electrode paste for forming the active material layer, the pressing pressure in the pressing step after the electrode paste is applied to the metal foils 11 and 21, and dried. obtain.

保護層23の硬さは、保護層23に用いる素材の選択、保護層23の密度によって決まり、密度が高いほど硬い。したがって、保護層23の密度を所望の密度(予め設定された値)にすることによって、保護層23の硬さを調整することができる。密度は、例えば、保護層23を形成するためのペーストの固形分率、ペーストを塗布して乾燥させた後のプレス工程におけるプレス圧等を調整することによって調整され得る。   The hardness of the protective layer 23 is determined by the selection of the material used for the protective layer 23 and the density of the protective layer 23, and the higher the density, the harder. Therefore, the hardness of the protective layer 23 can be adjusted by setting the density of the protective layer 23 to a desired density (a preset value). The density can be adjusted, for example, by adjusting the solid content ratio of the paste for forming the protective layer 23, the pressing pressure in the pressing step after the paste is applied and dried, and the like.

セパレータ30の硬さは、セパレータ30に用いる素材の選択、気孔率又は気孔径の調整等によって調整され得る。   The hardness of the separator 30 can be adjusted by selecting a material used for the separator 30, adjusting the porosity or the pore diameter, and the like.

本実施形態では、負極活物質層22が正極活物質層12よりも厚い。正極活物質層12及び負極活物質層22はセパレータ30よりも厚い。保護層23は正極活物質層12、負極活物質層22及びセパレータ30よりも薄い。保護層23は、蓄電装置1の容量に寄与しないので、蓄電装置1の小型化のためには薄い方が好ましい。負極活物質層22の厚み、正極活物質層12の厚み及び保護層23の厚みは、例えば、ペーストの塗布量、プレス工程におけるプレスロール間隔の調整等によって調整され得る。セパレータ30の厚みは、例えば素材を引っ張って薄くする際の力等によって調整され得る。   In the present embodiment, the negative electrode active material layer 22 is thicker than the positive electrode active material layer 12. The positive electrode active material layer 12 and the negative electrode active material layer 22 are thicker than the separator 30. The protective layer 23 is thinner than the positive electrode active material layer 12, the negative electrode active material layer 22, and the separator 30. Since the protective layer 23 does not contribute to the capacity of the power storage device 1, the protective layer 23 is preferably thinner in order to reduce the size of the power storage device 1. The thickness of the negative electrode active material layer 22, the thickness of the positive electrode active material layer 12, and the thickness of the protective layer 23 can be adjusted, for example, by adjusting the amount of paste applied, the press roll interval in the pressing step, and the like. The thickness of the separator 30 can be adjusted by, for example, a force when the material is pulled and thinned.

正極活物質層12の厚みと負極活物質層22の厚みのうち厚いほうである負極活物質層22の厚みをPとし、正極活物質層12の硬さをxとし、保護層23の硬さをyとし、保護層23の厚みをTとし、セパレータ30の厚みをDとした場合、下記の式(1)及び式(2)を満たす。
x/(x+y)×(P−D)<T…(1)
P>D…(2)
The thickness of the positive electrode active material layer 12 and the thickness of the negative electrode active material layer 22, which is the thicker one, is P, the positive electrode active material layer 12 is x, and the protective layer 23 is hard. Is y, the thickness of the protective layer 23 is T, and the thickness of the separator 30 is D, the following expressions (1) and (2) are satisfied.
x / (x + y) × (P−D) <T (1)
P> D (2)

正極活物質層12の厚みをtとした場合、下記の式(3)を満たしてもよい。
y/(x+y)×(P−D)<t…(3)
When the thickness of the positive electrode active material layer 12 is t, the following formula (3) may be satisfied.
y / (x + y) × (P−D) <t (3)

セパレータ30と正極10又は負極20との間には、異物Aが入る可能性がある。そのような異物Aとしては、電極製造工程の打抜き等のときに正極活物質層12又は負極活物質層22から落ちる活物質(粒子)又は活物質層の一部(バリ)等が考えられる。よって、保護層23の厚み方向における異物Aの最大サイズは、正極活物質層12の厚みと負極活物質層22の厚みのうちの厚いほうである負極活物質層22の厚みPと同じであると想定される。最大サイズPの異物Aがセパレータ30と正極10又は負極20との間に入った場合、上記の式(2)のように、最大サイズPはセパレータ30の厚みDよりも大きいので、異物Aはセパレータ30を貫通する。異物Aがセパレータ30からはみ出す距離は(P−D)となる。はみ出た異物Aは、y/(x+y)×(P−D)だけ正極活物質層12内に入り込み、x/(x+y)×(P−D)だけ保護層23内に入り込む。したがって、保護層23の凹み量はx/(x+y)×(P−D)となる。保護層23の厚みTはx/(x+y)×(P−D)よりも大きい(上記の式(1)を満たす)ので、保護層23の破断が抑制される。その結果、異物Aによる内部短絡が抑制される。よって、上記の式(1)及び(2)を満たす蓄電装置1では、セパレータ30と正極10又は負極20との間に最大サイズPの異物Aが入っても、異物Aによる内部短絡を抑制できる。したがって、蓄電装置1では、想定される異物Aによる内部短絡を抑制できる。   There is a possibility that foreign matter A enters between the separator 30 and the positive electrode 10 or the negative electrode 20. As such a foreign material A, an active material (particle) falling from the positive electrode active material layer 12 or the negative electrode active material layer 22 or a part of the active material layer (burr) at the time of punching of the electrode manufacturing process or the like can be considered. Therefore, the maximum size of the foreign matter A in the thickness direction of the protective layer 23 is the same as the thickness P of the negative electrode active material layer 22 which is the larger of the thickness of the positive electrode active material layer 12 and the thickness of the negative electrode active material layer 22. It is assumed. When the foreign matter A having the maximum size P enters between the separator 30 and the positive electrode 10 or the negative electrode 20, the maximum size P is larger than the thickness D of the separator 30 as in the above formula (2). The separator 30 is penetrated. The distance that the foreign matter A protrudes from the separator 30 is (P−D). The protruding foreign matter A enters the positive electrode active material layer 12 by y / (x + y) × (P−D), and enters the protective layer 23 by x / (x + y) × (P−D). Therefore, the amount of depression of the protective layer 23 is x / (x + y) × (P−D). Since the thickness T of the protective layer 23 is larger than x / (x + y) × (P−D) (the above formula (1) is satisfied), the breakage of the protective layer 23 is suppressed. As a result, an internal short circuit due to the foreign matter A is suppressed. Therefore, in the power storage device 1 that satisfies the above formulas (1) and (2), even if the foreign matter A having the maximum size P enters between the separator 30 and the positive electrode 10 or the negative electrode 20, an internal short circuit due to the foreign matter A can be suppressed. . Therefore, in the power storage device 1, an internal short circuit due to the assumed foreign object A can be suppressed.

セパレータ30からはみ出た異物Aは、y/(x+y)×(P−D)だけ正極活物質層12内に入り込む。したがって、正極活物質層12の凹み量はy/(x+y)×(P−D)となる。正極活物質層12の厚みtがy/(x+y)×(P−D)よりも大きいと(上記の式(3)を満たすと)、異物Aが金属箔11に到達しないので、正極活物質層12の破断が抑制される。   The foreign matter A protruding from the separator 30 enters the positive electrode active material layer 12 by y / (x + y) × (P−D). Therefore, the amount of depression of the positive electrode active material layer 12 is y / (x + y) × (P−D). When the thickness t of the positive electrode active material layer 12 is larger than y / (x + y) × (P−D) (when the above formula (3) is satisfied), the foreign matter A does not reach the metal foil 11, so the positive electrode active material Breakage of the layer 12 is suppressed.

本実施形態では、正極活物質層12の硬さが負極活物質層22の硬さよりも硬い。よって、正極活物質層12の凹み量y/(x+y)×(P−D)が小さくなるので、保護層23の凹み量x/(x+y)×(P−D)が大きくなる。そのような場合であっても、保護層23の厚みTがx/(x+y)×(P−D)よりも大きい(上記の式(1)を満たす)ので、保護層23の破断が抑制される。   In the present embodiment, the positive electrode active material layer 12 is harder than the negative electrode active material layer 22. Therefore, since the dent amount y / (x + y) × (P−D) of the positive electrode active material layer 12 decreases, the dent amount x / (x + y) × (P−D) of the protective layer 23 increases. Even in such a case, since the thickness T of the protective layer 23 is larger than x / (x + y) × (P−D) (the above formula (1) is satisfied), the breakage of the protective layer 23 is suppressed. The

本実施形態では、保護層23の厚み方向における異物Aの最大サイズPは負極活物質層22の厚みPと同じである。通常、正極活物質層12に含まれるバインダと負極活物質層22に含まれるバインダとの違いによって、正極活物質層12の活物質等に比べて負極活物質層22の活物質等は落ち易い。よって、最大の異物Aは、主として負極活物質層22の活物質等であると想定される。   In the present embodiment, the maximum size P of the foreign matter A in the thickness direction of the protective layer 23 is the same as the thickness P of the negative electrode active material layer 22. Usually, the active material of the negative electrode active material layer 22 is more likely to fall than the active material of the positive electrode active material layer 12 due to the difference between the binder contained in the positive electrode active material layer 12 and the binder contained in the negative electrode active material layer 22. . Therefore, it is assumed that the largest foreign material A is mainly the active material of the negative electrode active material layer 22.

蓄電装置1を製造する際に、負極活物質層22の厚みをPとし、正極活物質層12の硬さをxとし、保護層23の硬さをyとし、保護層23の厚みをTとし、セパレータ30の厚みをDとした場合、上記の式(1)及び式(2)を満たすように、負極活物質層22の厚み、正極活物質層12の硬さ、保護層23の硬さ、保護層23の厚み、及びセパレータ30の厚みを決定してもよい。また、正極活物質層12の厚みをtとした場合、上記の式(3)を満たすように、正極活物質層12の厚みを決定してもよい。   When the power storage device 1 is manufactured, the thickness of the negative electrode active material layer 22 is P, the hardness of the positive electrode active material layer 12 is x, the hardness of the protective layer 23 is y, and the thickness of the protective layer 23 is T. When the thickness of the separator 30 is D, the thickness of the negative electrode active material layer 22, the hardness of the positive electrode active material layer 12, and the hardness of the protective layer 23 so as to satisfy the above formulas (1) and (2). The thickness of the protective layer 23 and the thickness of the separator 30 may be determined. In addition, when the thickness of the positive electrode active material layer 12 is t, the thickness of the positive electrode active material layer 12 may be determined so as to satisfy the above formula (3).

各層の厚み及び硬さは例えば以下のように決定される。まず、電極組立体2のサイズ、正極10及び負極20の積層数等を考慮して、正極活物質層12の厚みt、負極活物質層22の厚みP、保護層23の厚みT、セパレータ30の厚みDを決定する。次に、上記の式(1)〜式(3)を満たすように、正極活物質層12の硬さx及び保護層23の硬さyを決定する。次に、決められた厚み及び硬さに従って、電極組立体2を作製する。   The thickness and hardness of each layer are determined as follows, for example. First, in consideration of the size of the electrode assembly 2, the number of stacked positive electrodes 10 and negative electrodes 20, the thickness t of the positive electrode active material layer 12, the thickness P of the negative electrode active material layer 22, the thickness T of the protective layer 23, the separator 30. Thickness D is determined. Next, the hardness x of the positive electrode active material layer 12 and the hardness y of the protective layer 23 are determined so as to satisfy the above formulas (1) to (3). Next, the electrode assembly 2 is produced according to the determined thickness and hardness.

以上、本発明の好適な実施形態について詳細に説明されたが、本発明は上記実施形態に限定されない。   As mentioned above, although preferred embodiment of this invention was described in detail, this invention is not limited to the said embodiment.

例えば、正極活物質層12の硬さが負極活物質層22の硬さと同じであってもよい。また、負極活物質層22が正極活物質層12よりも硬くてもよい。この場合、正極活物質層12の硬さxが小さくなる。すなわち、正極活物質層12が軟らかくなる。よって、正極活物質層12の凹み量y/(x+y)×(P−D)が大きくなり、保護層23の凹み量x/(x+y)×(P−D)が小さくなる。   For example, the hardness of the positive electrode active material layer 12 may be the same as the hardness of the negative electrode active material layer 22. Further, the negative electrode active material layer 22 may be harder than the positive electrode active material layer 12. In this case, the hardness x of the positive electrode active material layer 12 is reduced. That is, the positive electrode active material layer 12 becomes soft. Therefore, the dent amount y / (x + y) × (PD) of the positive electrode active material layer 12 is increased, and the dent amount x / (x + y) × (PD) of the protective layer 23 is decreased.

また、正極活物質層12の厚みが負極活物質層22の厚みと同じであってもよい。さらに、正極活物質層12が負極活物質層22よりも厚くてもよい。この場合、上記の式(1)〜式(3)において、負極活物質層22の厚みではなく、正極活物質層12の厚みをPとする。正極活物質層12の厚みが異物Aの最大サイズPと同じになる。   Further, the thickness of the positive electrode active material layer 12 may be the same as the thickness of the negative electrode active material layer 22. Further, the positive electrode active material layer 12 may be thicker than the negative electrode active material layer 22. In this case, in the above formulas (1) to (3), P is not the thickness of the negative electrode active material layer 22 but the thickness of the positive electrode active material layer 12. The thickness of the positive electrode active material layer 12 is the same as the maximum size P of the foreign matter A.

また、負極20が保護層23を有しておらず、正極10が保護層23を有してもよい。この場合、負極20が第1電極に相当し、正極10が第2電極に相当する。負極活物質層22が第1活物質層に相当し、正極活物質層12が第2活物質層に相当する。負極活物質層22の硬さが第1活物質層の硬さに相当する。よって、上記の式(1)及び式(3)において、正極活物質層12の硬さではなく、負極活物質層22の硬さがxとなり、正極活物質層12の厚さではなく、負極活物質層22の厚さがtとなる。この場合であっても、保護層23の厚みTがx/(x+y)×(P−D)よりも大きい(上記の式(1)を満たす)ので、保護層23の破断が抑制される。   The negative electrode 20 may not have the protective layer 23, and the positive electrode 10 may have the protective layer 23. In this case, the negative electrode 20 corresponds to the first electrode, and the positive electrode 10 corresponds to the second electrode. The negative electrode active material layer 22 corresponds to a first active material layer, and the positive electrode active material layer 12 corresponds to a second active material layer. The hardness of the negative electrode active material layer 22 corresponds to the hardness of the first active material layer. Therefore, in the above formulas (1) and (3), not the hardness of the positive electrode active material layer 12 but the hardness of the negative electrode active material layer 22 is x, not the thickness of the positive electrode active material layer 12 but the negative electrode The thickness of the active material layer 22 is t. Even in this case, since the thickness T of the protective layer 23 is larger than x / (x + y) × (P−D) (the above formula (1) is satisfied), the breakage of the protective layer 23 is suppressed.

1…蓄電装置、2…電極組立体、3…電解液、4…ケース、10…正極(第1電極)、11…金属箔(第1集電箔)、12…正極活物質層(第1活物質層)、20…負極(第2電極)、21…金属箔(第2集電箔)、22…負極活物質層(第2活物質層)、23…保護層、30…セパレータ。   DESCRIPTION OF SYMBOLS 1 ... Power storage device, 2 ... Electrode assembly, 3 ... Electrolyte solution, 4 ... Case, 10 ... Positive electrode (1st electrode), 11 ... Metal foil (1st current collection foil), 12 ... Positive electrode active material layer (1st Active material layer), 20 ... Negative electrode (second electrode), 21 ... Metal foil (second current collector foil), 22 ... Negative electrode active material layer (second active material layer), 23 ... Protective layer, 30 ... Separator.

Claims (5)

第1集電箔の少なくとも一面に設けられた第1活物質層を有する第1電極と、
第2集電箔の少なくとも一面に設けられた第2活物質層と、前記第2活物質層上に設けられ前記第1活物質層に対向配置された保護層とを有する第2電極と、
前記第1電極と前記第2電極との間に配置されたセパレータと、
を備え、
前記第1電極及び前記第2電極の一方が正極であり、
前記第1電極及び前記第2電極の他方が負極であり、
前記保護層の硬さは前記第1活物質層の硬さよりも硬く、
前記第1活物質層の厚みと前記第2活物質層の厚みのうちの厚いほうの厚みをPとし、前記第1活物質層の硬さをxとし、前記保護層の硬さをyとし、前記保護層の厚みをTとし、前記セパレータの厚みをDとした場合、下記の式(1)及び式(2)を満たす、蓄電装置。
Figure 2015216046
A first electrode having a first active material layer provided on at least one surface of the first current collector foil;
A second electrode having a second active material layer provided on at least one surface of the second current collector foil, and a protective layer provided on the second active material layer and disposed opposite to the first active material layer;
A separator disposed between the first electrode and the second electrode;
With
One of the first electrode and the second electrode is a positive electrode;
The other of the first electrode and the second electrode is a negative electrode,
The hardness of the protective layer is harder than the hardness of the first active material layer,
The thickness of the thickness of the first active material layer and the thickness of the second active material layer is P, the hardness of the first active material layer is x, and the hardness of the protective layer is y. A power storage device satisfying the following formulas (1) and (2), where T is the thickness of the protective layer and D is the thickness of the separator.
Figure 2015216046
前記第1活物質層の硬さは前記第2活物質層の硬さよりも硬い、請求項1に記載の蓄電装置。   The power storage device according to claim 1, wherein the hardness of the first active material layer is harder than the hardness of the second active material layer. 前記第1活物質層の厚みをtとした場合、下記の式(3)を満たす、請求項1又は2に記載の蓄電装置。
Figure 2015216046
The power storage device according to claim 1 or 2, wherein when the thickness of the first active material layer is t, the following formula (3) is satisfied.
Figure 2015216046
前記第1活物質層の厚みと前記第2活物質層の厚みのうちの厚いほうの厚みは、負極活物質層の厚みである、請求項1〜3のいずれか一項に記載の蓄電装置。   The power storage device according to any one of claims 1 to 3, wherein a thickness of the thickness of the first active material layer and the thickness of the second active material layer is a thickness of the negative electrode active material layer. . 前記第1活物質層は正極活物質層である、請求項1〜4のいずれか一項に記載の蓄電装置。   The power storage device according to claim 1, wherein the first active material layer is a positive electrode active material layer.
JP2014098745A 2014-05-12 2014-05-12 Power storage device Pending JP2015216046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014098745A JP2015216046A (en) 2014-05-12 2014-05-12 Power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014098745A JP2015216046A (en) 2014-05-12 2014-05-12 Power storage device

Publications (1)

Publication Number Publication Date
JP2015216046A true JP2015216046A (en) 2015-12-03

Family

ID=54752768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014098745A Pending JP2015216046A (en) 2014-05-12 2014-05-12 Power storage device

Country Status (1)

Country Link
JP (1) JP2015216046A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054455A (en) * 2007-08-28 2009-03-12 Sony Corp Nonaqueous electrolyte secondary battery and manufacturing method of electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054455A (en) * 2007-08-28 2009-03-12 Sony Corp Nonaqueous electrolyte secondary battery and manufacturing method of electrode

Similar Documents

Publication Publication Date Title
US10103376B2 (en) Stacked all-solid-state battery
US10686214B2 (en) Sandwich electrodes and methods of making the same
JP2017050270A (en) battery
CN111448687B (en) Secondary battery
KR102105296B1 (en) Stacked battery
KR101629499B1 (en) Electrode assembly and secondary battery comprising the same
JP2019021805A (en) Electrode body and electric storage device
KR20120020895A (en) Lithium ion capacitor
JP2019212590A (en) Laminated battery
WO2019187941A1 (en) Current collector tab for solid-state batteries, current collector, and electrode sheet
JP2017041439A (en) battery
JP2017183539A (en) Electrochemical device
JP2016181409A (en) Power storage element
US20220140415A1 (en) Secondary battery
JP2015215988A (en) Square battery
KR20180109703A (en) Electrochemical device
JP7346988B2 (en) battery
CN113454827A (en) Secondary battery and insulating member
KR101629498B1 (en) Electrode assembly and secondary battery comprising the same
JP2018018666A (en) Power storage device and method for manufacturing power storage device
JP2017212145A (en) Power storage device
KR20140058508A (en) Lithium accumulator
JP6939035B2 (en) All solid state battery
WO2018025867A1 (en) Power storage device
JP2019067619A (en) Secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180703