JP2015213139A - 位置決め装置 - Google Patents

位置決め装置 Download PDF

Info

Publication number
JP2015213139A
JP2015213139A JP2014095942A JP2014095942A JP2015213139A JP 2015213139 A JP2015213139 A JP 2015213139A JP 2014095942 A JP2014095942 A JP 2014095942A JP 2014095942 A JP2014095942 A JP 2014095942A JP 2015213139 A JP2015213139 A JP 2015213139A
Authority
JP
Japan
Prior art keywords
cycle
image processing
processing unit
signal
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014095942A
Other languages
English (en)
Inventor
ビンミン グェン
Binh Minh Nguyen
ビンミン グェン
ヤーフェイ ワン
Yafei Wang
ヤーフェイ ワン
博志 藤本
Hiroshi Fujimoto
博志 藤本
洋一 堀
Yoichi Hori
洋一 堀
潔人 伊藤
Kiyohito Ito
潔人 伊藤
小田井 正樹
Masaki Odai
正樹 小田井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
University of Tokyo NUC
Original Assignee
Hitachi Ltd
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, University of Tokyo NUC filed Critical Hitachi Ltd
Priority to JP2014095942A priority Critical patent/JP2015213139A/ja
Publication of JP2015213139A publication Critical patent/JP2015213139A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supply And Installment Of Electrical Components (AREA)

Abstract

【課題】移動体を静止させることなく目標位置に精度良く位置決めする。
【解決手段】カメラの撮影画像に伴われる遅延サイクルRだけ前の目標物の位置Xk−Rを入出力信号Uを基に算出する予測処理部と、画像処理信号Yを基に位置Xk−Rを補正する補正処理部と、画像処理信号Y時機に応じて補正処理部及び予測処理部の出力値をRサイクル前の位置情報として切り換え出力するスイッチと、Rサイクル分の遅延補償処理を施してRサイクル前の位置情報から目標物の現在位置Xを推定する処理部と、現在位置Xを基に移動機構に指令信号を指令出力部とを備える。
【選択図】 図6

Description

本発明は、撮像装置を用いて移動体を目標位置に位置決めする位置決め装置に関する。
電子機器の製造装置や、各種加工装置などの産業機械においては、装置を構成する移動体の位置決め精度が製品の品質に大きく影響する。例えば、プリント基板上の所定の位置に電子部品(抵抗やICチップ等)を実装することで電子基板を生産する部品実装装置(チップマウンタ)が知られている。部品実装装置は、例えばリニアモータ機構により水平面内の任意の箇所に移動可能な実装ヘッド、及び実装ヘッドに具備された吸着ノズルを備える。電子部品フィーダから供給される部品を吸着ノズルにて吸着し、吸着ノズルを移動させて目標実装箇所で降下させた後、部品吸着を解除することで電子部品をプリント基板上に実装する。また、部品実装装置は、エンコーダによって取得される実装ヘッドの位置からリニアモータに与える駆動電流指令を決定する処理を所定周期で実行する位置決め制御器を備える。
前述した通り、部品実装装置では、移動体である実装ヘッドの位置決め精度が製品である電子基板の品質に大きく影響する。同様に、吸着ノズルで電子部品を吸着してから目標実装箇所に移動するまでの時間が生産性に大きく影響する。近年、電子部品の微細化が急速に進んでおり、部品実装の位置精度の向上とともに高速化が求められている。しかし、プリント基板は、製造工程のばらつきや変形等によって目標実装箇所が個体毎に異なる。即ち、プリント基板の設計値に頼って位置決めした場合、実際の電子部品の配置箇所と目標実装箇所との間にずれが生じ得る。また、装置自体に歪みや熱膨張等が発生している場合、エンコーダの値にずれが生じ得る。これも位置ずれの要因となる。実装する電子部品の微細化に伴い、このような様々な位置ずれ要因に起因する影響は増大している。
それに対して、撮像装置の画像信号を基に目標実装箇所に対する吸着部品の相対的な位置ずれを算出し、算出した位置ずれに応じて吸着ノズルを移動させて部品位置を補正する技術が提唱されている(特許文献1,2等参照)。
特開平7−115296号公報 米国特許出願公開公報2001/0055069A1号公報 特開2001−325005号公報
通常、カメラで画像を撮影してその画像を基に位置ずれを算出するまでには所定時間を要し、これが遅延時間となる。遅延時間内に実装ヘッドが移動すると、目標実装位置と実装ヘッドの相対関係はその間に変化してしまう。そのため、特許文献1,2の技術では、少なくとも撮影開始から画像を基に位置ずれ量が算出されるまでの間は実装ヘッドが静止していなければ撮影画像から適正な補正動作を実行することができない。即ち、実装ヘッドを静止させてから撮影を開始し、位置ずれ補正を実行したら再び実装ヘッドを静止させて撮影を開始するといった動作を繰り返すため、位置決め制御の高速化が困難であった。
また、カメラは撮影画像を得るのに所定の露光時間を要するため、位置決め制御器がリニアモータに駆動電流指令を与えるサイクルと比較してカメラの撮影サイクルは長くなるのが通常である。従って、画像撮影及び画像処理の間に実装ヘッドを移動させるにしても、画像信号の入力のないサイクルでは駆動電流指令の演算が不定となる問題もある。なお、短い周期の信号を用いて、長い周期の信号を短い周期の情報として推定する技術(特許文献3参照)もあるが、推定に用いるパラメタが固定値であるため、推定に用いるモデルの誤差が推定精度に与える影響が大きい。
本発明は上記事情に鑑みなされたもので、移動体を静止させることなく目標位置に精度良く位置決めすることができる位置決め装置を提供することを目的とする。
上記目的を達成するために、本発明は、位置推定型の手続き、及び状態再構成手続きによってシステムの目標実装箇所の位置を得ることを1つの特徴とする。
また、本発明は、処理部と、試料を撮像する撮像部と、試料に対して相対的に移動する移動体とを有し、処理部が、(1)所定の入力及び前記撮像部からの画像の少なくとも1つに対して位置推定型の補正手続きを行い、(2)前記補正手続きの結果に対して所定の処理を行い、(3)前記所定の処理の結果を使用して前記移動体の位置を得ることを1つの特徴とする。
本発明によれば、移動体を静止させることなく目標位置に精度良く位置決めすることができる。
実施例1に係る位置決め装置の一構成例の全体構成を表す斜視図である。 実施例1における制御装置の一構成例を示すブロック図である。 実装ヘッドで電子部品を吸着して目標位置に配置する動作を模式的に示す図である。 実装ヘッドで電子部品を吸着して目標位置に配置する動作を模式的に示す図である。 実装ヘッドで電子部品を吸着して目標位置に配置する動作を模式的に示す図である。 撮影画像の一例を表す図である。 実施例1におけるカメラ、画像処理部及び本体制御部の各処理のタイミングの一例を示したチャート図である。 実施例1における位置推定器の構成例を示すブロック図である。 実施例1における位置決め制御系の構成例を示すブロック図である。 実施例2に係る位置決め装置の概念構成を例示する図である。 実施例3におけるカメラ、画像処理部及び本体制御部の各処理のタイミングの一例を示したチャート図である。 実施例3の他の例におけるカメラ、画像処理部及び本体制御部の各処理のタイミングの一例を示したチャート図である。 実施例4における位置推定器の構成例を示すブロック図である。 符号の表現を説明する図である。
以下に図面を用いて本発明の実施例を説明する。なお、全図面において同一部分には原則として同一符号を付して重複する説明は省略する。
・適用装置
本発明の適用対象は、撮影画像を用いて移動体の移動先の位置を決定する位置決め装置である。例えば、レール走行型の搬送装置、マニピュレータ型の搬送装置に適用可能であるが、装置態様は特に限定されず移動体を目標位置に移動させる装置であれば適用できる。移動体には、位置決め装置自体の可動要素の他、可動要素により搬送される物品も含まれる。部品実装装置(チップマウンタ等)であれば実装部品(チップ等)、半導体ウェハ供給装置であれば半導体ウェハ、検体搬送装置であれば検体、自己補充型フィーダであればテープリール等、レーザ加工機であればレーザ射出ユニット又は工作物、マシニングセンタであれば切削工具又は工作物が、移動体の例である。
以降、部品実装装置に本発明を適用した場合を例に挙げて説明する。
1.位置決め装置
図1は本発明の実施例1に係る位置決め装置の一構成例の全体構成を表す斜視図である。同図に示した位置決め装置は、プリント基板等の所望位置に電子部品等を配置する部品実装装置であり、説明の便宜上、模式的に図示してある。また、同図に示したX軸及びY軸は水平面内で互いに直交していて、Z軸はX軸及びY軸に直交して鉛直方向に延びている。
図1に示した部品実装装置100は、実装ヘッド10、X軸ビーム機構11、Y軸ビーム機構12、Y軸ガイド機構13、架台30(同図には4本の脚部のみ図示)、カメラ40、プリント基板搬送機構60、及び制御装置90を備えている。
Y軸ビーム機構12及びY軸ガイド機構13は対をなしていて、Y軸方向に互いに平行に延在している。Y軸ビーム機構12及びY軸ガイド機構13の両端はそれぞれ架台30の脚部によって支持されている。また、Y軸ビーム機構12はY軸リニアモータ固定子123及びY軸リニアスケール124を備えている。Y軸リニアモータ固定子123及びY軸リニアスケール124は、Y軸ビーム機構12の側面にY軸方向に延在して設けられている。一方、Y軸ガイド機構13にはY軸リニアガイド131がY軸方向に延在して設けられている。Y軸リニアガイド131にはスライドユニット(不図示)が取り付けられている。スライドユニットはY軸リニアガイド131に沿って移動する。
X軸ビーム機構11は、一端が支持部を介してY軸ビーム機構12に支持されていて、他端がY軸ガイド機構13の上記スライドユニットに支持されている。このX軸ビーム機構11には、Y軸リニアモータ可動子121、Y軸位置エンコーダヘッド部122、X軸リニアモータ固定子113及びX軸リニアスケール114が備えられている。Y軸リニアモータ可動子121は、Y軸ビーム機構12に対する支持部に内蔵されていて、Y軸リニアモータ固定子123に対向している。Y軸位置エンコーダヘッド部122はY軸ビーム機構12に対する支持部の下端に設けられていて、Y軸リニアスケール124に対向している。X軸リニアモータ固定子113及びX軸リニアスケール114は、X軸ビーム機構11の側面及び上面にX軸方向に延在して設けられている。このような構成により、X軸ビーム機構11は、Y軸リニアモータ可動子121とY軸リニアモータ固定子123との間に誘起される電磁気力によって駆動されて、Y軸ビーム機構12及びY軸ガイド機構13に沿ってY軸方向に移動する。Y軸位置エンコーダヘッド部122は、X軸ビーム機構11とともに移動し、Y軸リニアスケール124に備わった目盛を読み取って電気信号に変換する。
実装ヘッド10は支持部を介してX軸ビーム機構11に支持されている。この実装ヘッド10には、少なくとも1つの吸着ノズル20、X軸リニアモータ可動子111及びX軸位置エンコーダヘッド部112を備えている。吸着ノズル20は下端に電子部品を真空吸着する。X軸リニアモータ可動子111は実装ヘッド10の支持部に内蔵されていて、X軸リニアモータ固定子113に対向している。X軸位置エンコーダヘッド部112は実装ヘッド10の上端に設けられていて、X軸リニアスケール114に対向している。なお、実装ヘッド10には吸着ノズル20を上下方向に出し入れする機構が備わっている。このような構成により、実装ヘッド10は、X軸リニアモータ可動子111とX軸リニアモータ固定子113との間に誘起される電磁気力によって駆動されてX軸ビーム機構11に沿ってX軸方向に移動する。X軸位置エンコーダヘッド部112は実装ヘッド10とともに移動し、X軸リニアスケール114に備わった目盛を読み取って電気信号に変換する。
プリント基板搬送機構60はプリント基板61を搬送し、部品実装装置100に対してプリント基板61を出し入れする。プリント基板61の上面には少なくとも1つの所定形状の目標実装箇所50が形成されている。目標実装箇所50は電子部品を実装する目標位置である。
カメラ40は、撮影光軸をZ軸方向下向きにした姿勢で前述した実装ヘッド10に少なくとも1つ取り付けてある。このカメラ40は実装ヘッド10の吸着ノズル20のXY座標を視野領域に含んでいて、撮影画像内における特定位置(後述する原点O)が吸着ノズル20の位置(プリント基板61の高さまで下した際の吸着ノズル20の先端位置)に対応している。通常時において吸着ノズル20自体が視野領域に含まれている必要は必ずしもない。
制御装置90は、X軸リニアモータ可動子111、X軸位置エンコーダヘッド部112、Y軸リニアモータ可動子121、Y軸位置エンコーダヘッド部122、カメラ40等の要素と有線又は無線により電気的に接続されている。制御装置90には、Y軸位置エンコーダヘッド部122及びX軸位置エンコーダヘッド部112でそれぞれ読み取られた実装ヘッド10のX軸方向及びY軸方向の絶対位置の情報の他、が入力される。カメラ40の画像データ(所定のフォーマットに基づく画像データ)は、制御装置90の画像処理部940(図2で後述)に出力される。次いで制御装置90について説明する。
なお、本実施例においては、吸着ノズル20又はこれに吸着された電子部品が前述した「移動体」に該当し、実装ヘッド10、X軸ビーム機構11、Y軸ビーム機構12及びY軸ガイド機構13からなる駆動機構が、移動体を移動させる移動機構を構成する。また、X軸位置エンコーダヘッド部112及びY軸位置エンコーダヘッド部122から出力される位置検出信号、X軸リニアモータ可動子111及びY軸リニアモータ可動子121に対して出力される駆動電流指令が、移動機構との間で位置決め制御に関して授受する入出力信号に相当する。
X軸ビーム機構11又はY軸ビーム機構12は、リニアモータにより実装ヘッド10又はX軸ビーム機構11を移動させるが、実施例1はこれに限定するものではない。例えば、ボールねじ機構などを利用して、実装ヘッド10等を移動させる構成であっても良い。実装ヘッド10は目標位置に対して相対的に移動する移動体の一例である。
2.制御装置
図2は制御装置90の一構成例を示すブロック図である。
制御装置90は本体制御部930及び画像処理部940を備えている。
本体制御部930は、X軸位置エンコーダヘッド部112及びY軸位置エンコーダヘッド部122の入出力信号及び画像処理部940の画像処理信号(後述)を基にX軸リニアモータ可動子111及びY軸リニアモータ可動子121の制御をサイクル周期で繰り返し、吸着ノズル20の位置を目標物(本例では図4に示すプリント基板61の目標実装位置50)に近付ける機能を担う。本体制御部930には、CPU901、ROM(Read Only Memory)902及びRAM(Random Access Memory)903が内蔵されていて、ROM902又はRAM903内に格納されたプログラムに基づいて部品実装装置100全体の制御を実行する。本体制御部930は、X軸位置エンコーダヘッド部112で検出された実装ヘッド10のX軸上における現在位置を取得し、X軸リニアモータ可動子111に駆動電流指令を与える。同様に、本体制御部930は、Y軸位置エンコーダヘッド部122で検出されたXビーム機構11のY軸上の現在位置を取得し、Y軸リニアモータ可動子121に駆動電流指令を与える。こうした本体制御部930の処理により、実装ヘッド10は所定位置に移動する。以下の説明では、本体制御部930による実装ヘッド10の位置制御を「位置決め制御処理」と呼ぶ。
なお、本体制御部930は単一のCPU901、ROM902、RAM903を内蔵する構成を示しているが、当然ながらこの構成に限定されない。例えば、CPU901、ROM902及びRAM903の少なくとも1種を複数備える構成としてもよい。これにより、各構成要素の動作制御に必要な演算処理を高速に実行することができる。
画像処理部940は、
カメラ40に対して画像取得タイミングを指示する撮像トリガを与え、カメラ40の撮影画像を取得する。そして、画像処理部940は、撮影画像に対して所定の画像処理を実行し、撮影画像内における目標実装位置50の観測位置に基づく画像処理信号(後述)を算出し本体制御部930に送信する。
3.基本動作
図3A〜図3Cは実装ヘッドで電子部品を吸着して目標位置(プリント基板上の目標実装箇所50)に配置する動作を模式的に示した図である。これらの図におけるY軸及びZ軸の示す方向は、図1におけるY軸及びZ軸の示す方向と一致するものとする。図3A−図3Cにおいて、実装ヘッド10の吸着ノズル20の中心軸をC、カメラ40の光軸をL、カメラ40の視野領域をFとする。
まず、図3Aは実装ヘッド10の移動中の状態の一例を示している。図3Aに示すように目標実装箇所50がカメラ40の視野領域Fにない場合、本体制御部930は、Y軸位置エンコーダヘッド部122によって取得されるY軸上の位置情報に基づいてY軸リニアモータ可動子121に出力し、電子部品62を吸着した実装ヘッド10を目標地点yに向けて移動させる。また、これと並行して、画像処理部940は、カメラ40に撮像トリガを送信して撮影を開始させる。
ここで、目標地点yは、プリント基板61の設計データに基づいて設定された実装ヘッド10の動作範囲における目標実装箇所50の推定位置情報であり、ROM902又はRAM903に予め格納されている。即ち、本体制御部930は、部品配置個所50が所定の目標地点yに存在するとして実装ヘッド10の移動を開始する。しかし、プリント基板61の加工時の歪み等の誤差要因が存在すると、図3Aに示したように目標実装箇所50が目標地点yに一致しない場合がある。目標実装箇所50と目標位置yの位置にずれがある場合、実装ヘッド10を目標地点yに配置すると、プリント基板61上の目標実装箇所50からずれた位置に電子部品62が配置されてしまう。
実装ヘッド10の移動を続けるうちに、図3Bに示すように目標実装箇所50がカメラ40の視野領域Fに入ってくる。部品配置領域50を視野領域Fに捉えると、本体制御部930は、画像処理部940の画像処理により算出される目標実装箇所50の観察位置を用いた移動補正制御の実行を開始する。
ここで、図4は図3Bの状態に対応する撮影画像の一例を示す図である。
図4に例示した撮影画像400においては、吸着ノズル20の中心軸C及びプリント基板61の交点と目標実装箇所50とが捉えられている。ここで、撮影画像400における座標系を、上記交点を原点O(0,0)、撮影画像400のピクセル401の大きさを単位とするピクセル座標系として定義する。このピクセル座標系において、図中矢印に示すX軸及びY軸の方向は、図1におけるX軸及びY軸が示す方向と一致する。
撮影画像400に対して、画像処理部940によって行われる処理の一例は次の通りである。まず、画像処理部940は、撮影画像から前記ピクセル座標系における目標実装箇所50の中心点pの座標(px,py)を算出する。そして、得られた点pの座標に所定の係数を乗算することで、原点O(吸着ノズル20の中心位置)と目標実装箇所50の中心位置の偏差ベクトル(Δcamx,Δcamy)を算出する。そして、算出された偏差ベクトル(Δcamx,Δcamy)を画像処理信号として本体制御部930に出力する。画像処理信号は位置情報を基にした信号であり、このような偏差ベクトルに限らず、例えば位置情報自体であっても良い。
本体制御部930は、画像処理部940によって算出された偏差ベクトル(Δcamx,Δcamy)を基に位置推定器91(後述)で所定の処理を実行し、実装ヘッド10の位置を制御する。具体的には、偏差ベクトルの大きさが0になるまで位置決め制御処理を繰り返す。以下の説明では、このような画像処理部940の画像処理信号に基づく位置決め制御処理を「ビジュアルサーボ制御処理」と呼称する。ビジュアルサーボ制御処理の結果、図3Cに示すように吸着ノズル20の中心軸Cが目標実装箇所50の中心に実質的に一致する。
4.制御サイクル
図5は、カメラ40、画像処理部940、本体制御部930の各処理のビジュアルサーボ制御処理におけるタイミングの一例を示したチャート図である。
本体制御部930は、予め定められた所定の周期で位置決め制御処理を繰り返し実行する。この位置決め制御処理の実行周期τを1サイクル単位として各処理タイミングを説明する。以下の説明において、サイクルn(n=0,1,2…)と記載した場合はビジュアルサーボ処理の開始からn番目のサイクルを意味することとする。
図5において、カメラ40は、サイクル0の開始時に画像処理部940から撮影トリガを受信し、サイクル0の開始からサイクル5の終了までの時間、カメラ40の内部に備わるシャッターを開けて露光(露光1)する。この時間を露光時間1とし、この間に撮影された画像を第1画像とする。次に、画像処理部940は、サイクル6の開始からサイクル9の終了までの時間に第1画像に対して画像処理(画像処理1)を実行する。そして、第1画像から得られた画像処理信号がサイクル10の開始時に本体制御部930に入力される。
露光1終了の後、カメラ40は、画像処理部940から撮影トリガを受信し、シャッターを開けて次の露光(露光2)をする。この例では、サイクル6の開始からサイクル11の終了までの期間が第2画像を撮影するための露光時間2となる。画像処理部940は、サイクル12の開始からサイクル15の終了までの時間に第2画像に対して画像処理(画像処理2)を実行する。そして、第2画像から得られた画像処理信号がサイクル16の開始時に本体制御部930に入力される。
このように、本実施例においては、本体制御部930には、各露光時間のサイクル数をNとすると、画像処理部940による画像処理信号(Δcamx,Δcamy)がNサイクル毎に間欠的に入力される。具体的には、図5に示した範囲では、サイクル10、サイクル16で本体制御部930に画像処理信号が入力され、それ以外のサイクルにおいては本体制御部930に画像処理信号は入力されない。サイクル0の開始からサイクル5の終了までに露光1によって撮影された画像1の画像処理信号は、遅延してサイクル10になって本体制御部930に入力される。例えば先の図3Bに示した状態にあっては、本体制御装置930からの駆動電流指令により露光中も実装ヘッド10は移動を継続する。そのため、画像処理信号は各サイクルで本体制御装置930に入力されない上、画像処理信号は遅延して入力されるため、吸着ノズル20の中心軸Cが目標実装箇所50の中心に一致したことが判定できず目標実装箇所50を吸着ノズル20が通過してしまったり、このような通過の繰り返しにより実装ヘッド10の位置が振動的に移動したりし得る。本実施例においてはこのような不具合への対策として、本体制御部930に位置推定器91(図6参照)が備えられている。
5.位置推定器
図6は位置推定器91の構成の一例を示したブロック線図である。位置推定器91は、現在時刻をサイクルkとしたとき、サイクルkに入力される入出力信号U及び画像処理信号Yから、現在時刻における目標物(目標実装位置50)の位置Xの推定値を出力する。本実施例では、入出力信号Uにはサイクルkにおける本体制御部930の入出力信号(XYエンコーダヘッド部112,122の位置検出信号又はXY軸リニアモータ可動子111,121への駆動電流指令)が相当する。なお、本実施例ではXを目標物の位置と示すが、目標物と吸着ノズル20の中心軸Cとの距離など後述する(式1)の状態方程式で表現できる内部状態量Xであればよい。
ここで、図5を参照して、露光時間をNサイクル(本例ではNは偶数とする)、画像処理部940の画像処理の所要時間をMサイクルとして、R=(N/2+M)なる自然数Rを定義する。この自然数Rは、カメラ40が撮影した画像から演算された画像処理信号が本体制御部930に入力されるまでの遅延サイクル数に相当する。
位置推定器91は、Rサイクル制御指令記憶バッファ911、フィルタ912及び状態再構成器913を備えている。次いでRサイクル制御指令記憶バッファ911、フィルタ912及び状態再構成器913について順次説明する。
(1)Rサイクル制御指令記憶バッファ911
Rサイクル制御指令記憶バッファ911は、過去Rサイクル分のR個の入出力信号Uの値を記憶するシフトレジスタである。即ち、現在のサイクルkに対してRサイクル前から1サイクル前までの間に位置推定器91に入力された入出力信号Uk−R〜Uk−1を記憶し、また記憶している入出力信号Uk−R〜Uk−1から任意の信号を出力する。(R−1)サイクル前から1サイクル前までの入出力信号Uk−R+1〜Uk−1は状態再構成器913に出力され、Rサイクル前の入出力信号Uk−Rはフィルタ912に出力される。
(2)フィルタ912
フィルタ912は、現在のサイクルkのRサイクル前の入出力信号Uk−R、及び現在のサイクルkに入力された画像処理信号Yを基に、Rサイクル前の目標実装箇所50の位置Xk−Rの値を推定する。本実施例では、この推定型のフィルタ912として、カルマンフィルタ(Kalman Filter)を使用する場合を例に挙げて説明する。フィルタ912は、予測処理部9121、補正処理部9122及びスイッチ9123を備えている。
・予測処理部9121
予測処理部9121では、現在のサイクルkのRサイクル前の目標実装箇所50の位置Xk−Rの予測値を入出力信号Uを基にサイクル周期(τ周期)で算出する。具体的には、状態方程式(式1)を基にして、(式2)のようにUk−R及びXk−R−1を用いてRサイクル前の目標実装箇所50の位置Xk−Rを予測する。Xk−R−1は、現在のサイクルkの(R+1)サイクル前にフィルタ912によって算出された目標実装箇所50の推定位置である。
Figure 2015213139
Figure 2015213139
状態方程式(式1)において、Aは部品配置装置100の時間遷移の線形モデルを示す行列、Bは入出力信号Uに対する線形演算子、wは零平均かつプロセス誤差共分散行列Qに従うプロセスノイズである。(式2)では、誤差を無視している。
また、予測処理部9121では、(式3)のように、この時間遷移における誤差共分散行列Mk−Rの予測計算も実行される。誤差共分散行列Mk−Rの予測値は補正処理部9122に出力される。
Figure 2015213139
(式3)において、Pk−R−1は、位置推定器91の1サイクル前の推定誤差共分散行列である。
・補正処理部9122
補正処理部9122は、画像処理信号Yの入力周期で画像処理信号Yを基にRサイクル前の目標実装箇所50の位置Xk−Rの予測値を補正する機能を果たす。具体的には、補正処理部9122では、観測方程式(式4)を用いて、サイクルkにおける画像処理信号Y、及び予測処理部9121で求められた誤差共分散行列Mk−Rの予測値を基に、サイクルkのRサイクル前の目標実装箇所50の位置Xk−Rを補正して出力する。
Figure 2015213139
観測方程式(式4)において、Cは部品実装装置100の観測モデルを示す行列、vは零平均かつ観測誤差共分散行列Qに従う観測に伴うノイズである。観測方程式(式4)から分かる通り、本実施例の特徴の一つとして、Rサイクル前の部品実装装置100の目標実装箇所50の位置Xk―Rを観測した値として画像処理信号Yを取り扱っている。
補正処理部9122で実行される処理には(式5)−(式7)の処理が含まれる。
Figure 2015213139
Figure 2015213139
Figure 2015213139
(式5)の処理は、最適カルマンゲインLk―Rを算出する処理である。(式6)の処理は、カルマンゲインLk−Rを用いて予測処理部9121で求められたRサイクル前の目標実装箇所50の位置Xk−Rの予測値を補正してRサイクル前の目標実装箇所50の位置Xk−Rの推定値を求める処理である。(式7)の処理は、Rサイクル前の目標実装箇所50の位置Xk−Rの推定値の推定誤差共分散行列Pk−Rを算出する処理である。
・スイッチ9123
スイッチ9123は、状態再構成器913に入力する信号の入力元を予測処理部9121及び補正処理部9122のいずれかに切り換える機能を果たす。予測処理部9121は毎サイクル処理を実行する。それに対し、補正処理部9122はNサイクルにつき1回だけ処理を実行し、残りの(N−1)サイクルは処理を実行しない。本実施例においては、図5に示したように画像処理信号YがNサイクルに1回しか本体制御装置913の位置推定器91に入力されない。そこで、フィルタ912においては、画像処理信号Yが入力されたサイクルはスイッチ9123を補正処理部9122側に切り換えて補正処理部9122で補正した位置Xk−Rを、それ以外の画像処理信号Yが入力されないサイクルはスイッチ9123を予測処理部9121側に切り換えて補正されないままの位置Xk−Rを、目標実装箇所50のRサイクル前の推定位置の情報として状態再構成器913に切り換え出力する。即ち、画像処理信号Yが入力されないサイクルでは、補正された位置Xk−Rの代替値として補正されないままの位置Xk−Rが出力される。なお、画像処理信号Yが入力されないサイクルで計算されない推定誤差共分散行列Pk−Rは、予測処理部9121で計算される誤差共分散行列Mk−Rが、そのままPk−Rに代入される。
(3)状態再構成器913
状態再構成器913は、Rサイクル分の遅延補償処理を施すことでRサイクル前の位置情報から目標実装箇所50の現在位置Xを推定する処理部として機能する。この状態再構成器913は、R個の遅延補償処理部9131を備えている。状態再構成器913においては、Rサイクル制御指令記憶バッファ911に記憶された(R−1)サイクル前から1サイクル前までの入出力信号Uk−R+1〜Uk−1及び現在のサイクルkの入出力信号Uをそれぞれ用いた遅延補償処理をフィルタ912の出力値(スイッチの出力値)に対してRステップ繰り返すことによって、現在のサイクルkにおける目標実装箇所50の位置Xを推定する。
各遅延補償処理部9131の具体的な処理内容を(式8)に示す。
Figure 2015213139
即ち、ある整数iについて、サイクル(k−R+i−1)の目標実装箇所50の位置Xk−R+i−1、及びサイクル(k−R+i)の入出力信号Uk−R+iを用いて、サイクル(k−R+i)の目標実装箇所50の位置Xk−R+iを算出する計算である。状態再構成器913は、i={1,・・・,R−1,R}について、遅延補償処理部9131を実行する。(式8)に示される計算をR回行うことで、Rサイクル前の状態から現在の状態を導き出すことができる。
本体制御装置930の指令信号出力部(例えばCPU901)は、現在のサイクルkにおける目標実装箇所50の位置Xを基に駆動電流指令を算出しX軸リニアモータ可動子111及びY軸リニアモータ可動子121に出力する。以上の位置決め制御処理を毎サイクル繰り返し実行することで偏差ベクトル(Δcamx,Δcamy)が0(ゼロ)になったら本体制御装置930はビジュアルサーボ処理を終了する。
なお、以上説明した位置推定器91は、所定の電子回路を用いたハードウェアで構成することもできるが、本体制御部930の例えばCPU901で実行されるプログラムの形で具現化することもできる。
6.位置決め制御系
次に、位置推定器91を用いた位置決め制御系の一例を説明する。
図7は位置推定器91を用いたX軸方向の位置決め制御系の一例であり、その情報伝達経路を抽出して表している。Y軸方向の位置決め制御系についても同様にして構成できることは言うまでもない。
図7の位置決め制御系には、内部制御系及び外部制御系が含まれる。内部制御系は、内部制御器Cin2011、周期τのホルダ2012、制御入力Iからエンコーダ出力Eに至るまでの制御対象P2013、周期τのサンプラ2014及び加算器2015を含む。外部制御系は、外部制御器Cout2021、位置推定器91、カメラ画像処理部2022、エンコーダ出力Eからカメラ位置xに至るまでの機構特性2025を含む。カメラ画像処理部2022は、図4を用いて説明した通り、カメラ位置xと目標実装箇所50の位置xの差分である画像処理信号Δcamを出力する。この画像処理信号Δcamには、画像処理によるR・τの遅れ時間要素2023と撮像によるN・τのサンプラ2024を伴って画像処理信号Yとして出力される。
内部制御系においては、軌道Rrにエンコーダ出力Eを追従させる制御(位置決め制御処理)を実行する。制御対象P2013はX軸リニアモータ可動子111やX軸位置エンコーダヘッド部112、実装ヘッド10であり、内部制御器Cin2011は例えば本体制御部930に備えられたPID制御器等で実現可能である。図3Aのように、目標実装箇所50がカメラ40の視野領域Fから外れていて画像処理信号Yが得られない場合、スイッチ2002は、例えばCPU901(図2参照)の指令によって軌道生成器2001の出力であるエンコーダ軌道Renc側を選択しており、軌道Rrはエンコーダ軌道Rencとなる。エンコーダ軌道Rencは、図3Aで説明した目標地点yまでの移動軌道である。
その後、図3B及び図3Cのように、目標実装箇所50がカメラ40の視野領域Fに含まれた場合、例えばCPU901(図2参照)の指令によってスイッチ2002は画像軌道Rを選択する。この間、位置推定器91は、画像処理信号Yと入出力信号Uを用いて目標実装箇所50の推定位置Xを出力している。外部制御器Cout2021は、入力された推定位置Xを用いて画像軌道Rを演算して出力し、これが内部制御系の軌道Rrとなる。即ち、外部制御器Cout2021は、X軸リニアモータ可動子111に駆動電流指令を出力する指令出力部(例えばCPU901)に該当する。外部制御器Cout2021に例えばローパスフィルタ等の直流ゲインが1のフィルタを用いることで、軌道Rrを推定位置Xへと収束させる。このビジュアルサーボ処理を繰り返し実行することにより、エンコーダ出力Eが推定位置Xに実質的に一致し、目標実装箇所50への電子部品62の実装が可能となる。
なお、図7に示した位置決め制御系の構造は一例であって実施例を限定するものではない。例えば、内部制御器Cinに制御入力Iや軌道Rrを入力する構成とすることもできる。また、スイッチ2002は目標実装箇所50への吸着ノズル20の位置決めを最終的にビジュアルサーボ処理で行えば良いので、スイッチ2002を切り換えるタイミングは目標実装箇所50が視野領域Fに入った時点に限らず、目標実装箇所50がカメラ40の視野領域Fに入ってから設定の時間又は距離だけエンコーダ軌道Rencを選択した位置決め制御処理を継続する構成としても良い。さらに、図7のような2重ループの制御系構造でなく、カメラ40の視野領域Fが目標実装箇所50を含む場合と含まない場合で、それぞれ別の制御系を組んでも良い。
7.効果
以上のように、本実施例によれば、遅延サイクルRを伴いNサイクル毎にしか画像処理信号Yが得られないものの、スイッチ9123を用いて補正処理部9122の出力と予測処理部9121の代替出力とを切り換えることにより、現在のサイクルkの入出力信号U及び画像処理信号Yに基づく現在のサイクルkにおける目標実装箇所50の推定位置Xを毎サイクル出力することができる。これにより、遅延サイクルR中も目標実装箇所50の位置Xを推定し続けることができる。そして、常にカメラ40の撮影画像に基づいて吸着ノズル20の位置を制御することができるので、位置決め精度も向上する。従って、吸着ノズル20を静止させることなく高精度に目標実装箇所50に位置決めすることができる。
特に、本実施例では、画像処理信号Yと入出力信号Uk−Rから演算される時変のカルマンゲインLk−Rを用いている。カルマンゲインLk−Rは(式5)に示したように誤差が小さくなるように時々刻々と変化する。そして、このカルマンゲインLk−Rを(式6)のように用いることにより、時間に伴って推定誤差を修正することができる。そのため、推定精度の信頼性は極めて高い。
また、カメラ40は吸着ノズル20に固定されているため、吸着ノズル20の移動中であっても撮影画像400内で原点O(0,0)が動くことはない。他方、目標実装箇所50は撮影画像400内で原点O(0,0)に向かって移動するため露光時間Nに応じた被写体ぶれを伴って映る。言い換えれば、本体制御装置930に入力された時点からすれば、入力された画像処理信号には、カメラ40の露光時間N及び画像処理装置940の画像処理時間Mに起因する遅延時間が伴われることとなる。上記自然数Rはこの遅延時間に相当するサイクル数を表している。具体的には、画像処理部940で計算されるp(px,py)は被写体ぶれを伴った像の中心位置であり、露光時間の中間時点の位置ということになる。従って、露光時間Nの半分の時間を画像処理時間Mに加えた時間を遅延サイクルR(=N/2+M)として考慮することで、撮影画像400内の点p(px,py)から推定された目標実装位置50の現在位置Xに高い妥当性を与えることができる。
次に実施例2について説明する。実施例1と同様の点は説明を省略する。
図8は実施例2に係る位置決め装置の概念構成を例示する図である。同図において実施例1と同様の部分には既出図面と同符号を付してある。
同図はX軸ビーム機構11を支える架台30が共振特性を持つことを表している。この架台30の共振特性による振動は、目標実装箇所50及び部品装着ノズル20の相対振動となる。従って、目標実装箇所50に吸着ノズル20を位置決めするためには、架台振動の影響を抑制する必要がある。しかし、架台振動はX軸位置エンコーダヘッド114では観測できない。そのため、画像処理信号Yを基に位置推定器91で振動を推定し、位置決め制御系に反映する必要がある。
ここで、位置推定器91は(式1)に示すA,B、(式4)に示すCを部品実装装置100のモデルとして用いる。この位置推定器91で用いるようなモデルは、一般にはX軸リニアモータ可動子111、X軸位置エンコーダヘッド114、実装ヘッド10からなる駆動系をモデル化したものである。しかし、前述した通り架台振動はX軸位置エンコーダヘッド114では観測できないためモデル化できない。そこで、本実施例では、位置推定器91で架台振動を推定するために、架台30の振動モードをモデルに反映させることが考えられる。
(式9)は、位置推定器91における制御入力Iから画像処理信号Δcamに至るまでの伝達特性の一例である。
Figure 2015213139
sはラプラス演算子、mは可動部の質量、ωは架台振動の共振角周波数、ζは架台振動の共振減衰定数、Kは架台振動の共振レジドゥーである。右辺第1項は駆動系の特性であり、第2項は架台30の振動モードである。この伝達特性を離散状態空間表現したモデルを補正処理に用いることで、位置推定器91により架台振動を考慮した推定が可能となり、目標実装箇所50に吸着ノズル20を位置決めすることができる。
なお、(式9)はモデルに用いる伝達特性の一例であり、本実施例を限定するものではない。例えば、右辺第1項の駆動系の特性は、制御指令Iから画像処理信号Δcamに至るまでの特性でなくても良く、例えばエンコーダ出力Eに対する速度と位置の関係であっても良い。また、ここではX軸について示したが、Y軸についても同様であることは言うまでもない。
次に実施例3について説明する。実施例1と同様の点は説明を省略する。
先の実施例1では、図5においてカメラ40の露光時間のサイクル数を示すNが偶数である場合を例に挙げて説明した。従って、遅延時間のサイクル数を示すR=(N/2+M)は自然数となった。しかし、露光時間のサイクル数は、図9に示すように奇数となる場合もある。この場合は、切り上げを行うCeil関数を用い、遅延時間のサイクル数RをR=(Ceil(N/2)+M)と定義すれば良い。
また、図5において、本体制御部930に対する画像処理信号Yの入力周期はカメラ40の露光時間Nであった。カメラ40の露光時間Nと比較して、画像処理部940の画像処理時間Mが短かったためである。しかし、図10に示すように露光時間Nよりも画像処理時間Mが長い場合もある。画像処理信号Yの入力周期は露光時間N及び画像処理時間Mの長い方となるため、この場合にはMサイクル毎に本体制御部930に画像処理信号Yが入力される。この場合、図6に示した位置推定器91のフィルタ912において、スイッチ9123を切り換えるタイミングをMサイクルに1回とすればよい。即ち、補正処理部9122による処理は、Mサイクルに1回だけ実行され、その間の(M−1)サイクルは実行されない。
次に実施例4について説明する。
実施例1と同様の点は説明を省略する。
先の実施例1ではRサイクル制御指令記憶バッファ911に記憶された入出力信号Uk−R+1〜Uk−1及び現在のサイクルkの入出力信号Uをそれぞれ用いてR個の遅延補償処理部9131によってRステップの遅延補償処理を繰り返したのに対し、本実施例では、R個の遅延誤差補正パラメタ導出処理部914により遅延補償パラメタ導出処理をRステップ繰り返して遅延誤差補正パラメタを予め算出しておき、算出した遅延誤差補正パラメタを用いて位置Xk−RにRサイクル分の遅延補償処理を加える点が相違する。カメラ40、画像処理部940、本体制御部930の各処理のビジュアルサーボ制御処理におけるタイミングは、図5に示した実施例1の場合と同様である。
図11は、本実施例にかかる位置推定器91の構成の一例を示したブロック線図である。位置推定器91は、R個の遅延誤差補正パラメタ導出処理部914、予測処理部915、Rサイクル予測値記憶部916、補正処理部917、スイッチ918、バッファ920及び更新処理部919を備えている。以降、これら各要素について位置推定器91の処理内容に沿って説明していく。
・予測処理部915
予測処理部915は、サイクルkにおける入出力信号U、及び1サイクル前の目標実装箇所50の位置Xk−1の推定値を基に、状態方程式(式1)によってXの予測値を出力する。具体的には、誤差を無視してXk−Rを予測する計算(式10)、及びその際の誤差共分散行列Mを予測する計算(式11)を含む。(式11)において、Pk−1は、後述する更新処理部919の1サイクル前の推定誤差共分散行列である。
Figure 2015213139
Figure 2015213139
・Rサイクル予測値記憶部916
Rサイクル予測値記憶部916は、予測処理部915から過去Rサイクル間に入力されたR個のX予測値(Xk−R〜Xの予測値)を記憶するとともに、Rサイクル前の予測値Xk−Rを補正処理部917に出力する。
・補正処理部917、スイッチ918、バッファ920
補正処理部917は、画像処理信号Yの入力周期で画像処理信号Yを基に予測位置Xk−Rの補正に関する処理を実行する。具体的には、補正処理部917では、(式12)を用いて、画像処理信号Y及びXk−Rの関係を示す遅延観測残差εk−Rを算出する。
Figure 2015213139
しかし、第1実施例と同様、本実施例においても位置推定器91に画像処理信号Yが入力されるのはNサイクルに1回である。そこで、バッファ920とスイッチ918によって、次のような処理を実行する。まず、位置推定器91は、画像処理信号Yが入力されたサイクルにおいてはスイッチ918を補正処理部917側に切り換え、遅延観測残差εk−Rを更新処理部919に出力するとともにバッファ920に記憶する。一方、画像処理信号Yが位置推定器91に入力されないサイクルでは、スイッチ918をバッファ920側に切り換え、バッファ920に記憶された最新の遅延観測残差εk−Rを代替として更新処理部919に出力する。
このように、本実施例においても、補正処理部917の処理はNサイクル毎に実行され、その間の(N−1)サイクルは実行されない。
・更新処理部919、遅延誤差補正パラメタ導出処理部914
更新処理部919では、予測処理部915で算出されたサイクルkにおける目標実装箇所50の予測位置Xと遅延観測残差εk−Rとから、サイクルkにおける目標実装箇所50の推定位置Xを算出する。
本実施例においては、第1の実施例のように観測方程式(式6)を用いて画像処理信号Y及びXk−Rの予測値を比較するのではなく、(式13)に示すように遅延観測残差εk−Rに遅延逆行ゲイン行列Gを乗じたもの、サイクルkにおける目標実装箇所50の予測位置X、及び観測モデル行列Cから新たに擬似画像処理信号Y を定義し、これを用いてXを推定する。
Figure 2015213139
具体的には、更新処理部919では、擬似画像処理信号Y に関する擬似カルマンゲインL が算出され(後述)、(式14)のように擬似カルマンゲインL を用いて予測処理部915で求められた予測値Xk−Rを補正することで推定位置Xが算出される他、(式15)のように補正後の推定位置Xの推定誤差共分散行列Pも算出される。なお、(式1)〜(式14)で使用した記号は図12に示すように第1の推定値、第2の推定値、第3の推定値、推定位置、第1の予測値、第2の予測値と表現することもできる。
Figure 2015213139
Figure 2015213139
ここで、擬似カルマンゲインL の算出処理について説明すると、まず、前述した線形モデル行列Aと同一サイズの単位行列Iに対して、遅延誤差補正パラメタ導出処理部914による処理をRステップ繰り返すことで、遅延誤差補正パラメタΓ[R]を算出する。遅延誤差補正パラメタ導出処理部914による処理内容は(式16)に示す通りである。
Figure 2015213139
(式16)に示した通り、遅延誤差補正パラメタΓ[R]は線形モデル行列AをRステップ乗じたものである。このように、現在のサイクルkにおける位置Xを推定するために、(式1)に用いたモデルに加えて、画像処理信号Yと入出力信号Uから演算される時変パラメタ(疑似カルマンゲインL )用いることで、精度の高い推定を可能とする。
次に、予測処理部915で算出された誤差共分散行列M、遅延誤差補正パラメタΓ[R]、及び前述した観測モデル行列Cを基に、(式17)のようにして相互共分散行列Ωを算出する。同様に、観測モデル行列C、誤差共分散行列M、及び前述した観測誤差共分散Qを基に、(式18)のように観測残差共分散行列Ψを算出する。
Figure 2015213139
Figure 2015213139
そして、相互共分散行列Ω、観測残差共分散行列Ψ、遅延逆行ゲイン行列Gとから、擬似カルマンゲインL を(式19)に基づき算出する。
Figure 2015213139
以上のようにして、更新処理部919では、Rサイクル分の遅延補償処理を施すことでRサイクル前の位置情報から吸着ノズル20の現在位置Xが推定される。
本実施例においても、スイッチ918を用いて補正処理部917の出力とバッファ920の代替出力とを切り換えることにより、現在のサイクルkの入出力信号U及び画像処理信号Yに基づく現在のサイクルkにおける目標実装箇所50の推定位置Xを毎サイクル出力することができる。これにより、遅延サイクルR中も目標実装箇所50の位置Xを推定し続けることができる。そして、常にカメラ40の撮影画像に基づいて吸着ノズル20の位置を制御することができるので、位置決め精度も向上する。従って、吸着ノズル20を静止させることなく高精度に目標実装箇所50に位置決めすることができる。前述した通り、時変の擬似カルマンゲインL を用いることにより、推定精度を更に向上させることができる。
また、(式17)〜(式19)に基づく擬似カルマンゲインL の算出は、更新処理部919において実施されるが、線形モデル行列Aが時間に対して一定である場合には、遅延誤差補正パラメタΓ[R]は予め算出しておくことができる。つまり、部品実装装置100の初期化時等の所定時機に一度遅延誤差補正パラメタΓ[R]を算出しておけばこれを毎サイクル用いることができるので、ビジュアルサーボ処理の1サイクル当たりの計算量を削減することができる。そのため、ビジュアルサーボ処理の制御周期を短縮することができ、実施例1に比べて制御を高速化することができる。
なお、本実施例に係る位置推定器91を図7の位置決め制御系に適用することができることは言うまでもない。図7の位置決め制御系は実施例1で説明した通り一例である。また、本実施例に係る位置推定器91に用いるモデルに対しては、図8や(式9)の機構共振モデルを当然に用いることができる。
100・・・部品実装装置
10・・・実装ヘッド
11・・・X軸ビーム機構
111・・・X軸リニアモータ可動子
112・・・X軸位置エンコーダヘッド部
113・・・X軸リニアモータ固定子
114・・・X軸位置エンコーダヘッド
12・・・Y軸ビーム機構
121・・・Y軸リニアモータ可動子
122・・・Y軸位置エンコーダヘッド部
123・・・Y軸リニアモータ固定子
124・・・Y軸エンコーダ
13・・・Y軸ガイド機構
131・・・Y軸リニアガイド
20・・・吸着ノズル
21・・・電子部品
22・・・目標実装箇所
30・・・架台
40・・・カメラ
50・・・目標実装箇所
60・・・プリント基板搬送路
61・・・プリント基板
62・・・電子部品
90・・・制御装置
901・・・CPU
902・・・ROM
903・・・RAM
940・・・画像処理部
91・・・位置推定器
911・・・Rサイクル制御指令記憶バッファ
912・・・フィルタ
9121・・・予測処理部
9122・・・補正処理部
9123・・・スイッチ
913・・・状態再構成器
9131・・・遅延補償処理部
914・・・遅延誤差補償パラメタ導出処理部
915・・・予測処理部
916・・・Rサイクル予測値記憶バッファ
917・・・補正処理部
918・・・スイッチ
917・・・バッファ
919・・・更新処理部
2001・・・軌道生成器
2002・・・スイッチ
2011・・・内部制御器
2012・・・ホルダ
2013・・・機構特性
2014・・・サンプラ
2015・・・加算器
2021・・・外部制御器
2022・・・カメラ画像処理部
2023・・・遅れ時間要素
2024・・・サンプラ
2025・・・機構特性

Claims (9)

  1. 移動体を移動させる移動機構と、
    前記移動機構に設けたカメラと、
    前記カメラの撮影画像を画像処理し撮影画像内における目標物の観測位置に基づく画像処理信号Yを算出する画像処理部と、
    前記移動機構との間で位置決め制御に関して授受する入出力信号U及び前記画像処理信号Yを基に前記移動機構の制御をサイクル周期で繰り返し前記移動体の位置を前記目標物に近付ける本体制御部とを備え、
    前記本体制御部は、
    前記カメラの露光時間N及び前記画像処理部の画像処理時間Mに起因して前記撮影画像に伴われる遅延サイクルRだけ前の前記目標物の位置Xk−Rを前記入出力信号Uを基に前記サイクル周期で算出する予測処理部と、
    前記画像処理信号Yの入力周期で前記画像処理信号Yを基に前記位置Xk−Rの補正又はこれに関連する処理である補正処理を実行する補正処理部と、
    前記画像処理信号Yが入力されたサイクルは前記補正処理部の出力値を、それ以外のサイクルは代替値を前記目標物のRサイクル前の位置情報として切り換え出力するスイッチと、
    Rサイクル分の遅延補償処理を施すことで前記Rサイクル前の位置情報から前記目標物の現在位置Xを推定する処理部と、
    前記現在位置Xを基に前記移動機構に指令信号を指令出力部と
    を備えたことを特徴とする位置決め装置。
  2. 請求項1の位置決め装置において、
    前記現在値Xは、前記入出力信号Uと前記画像処理信号Yとを基に演算した時変パラメタを用いて推定されることを特徴とする位置決め装置。
  3. 請求項1の位置決め装置において、
    前記画像処理信号Yの入力周期は、前記露光時間N及び前記画像処理時間Mの長い方であることを特徴とする位置決め装置。
  4. 請求項2の位置決め装置において、
    前記位置検出器のRサイクル分の入出力信号を記憶するバッファを備え、
    前記Rサイクル分の遅延補償処理は、前記バッファに記憶された(R−1)サイクル前から現在のサイクルまでの入出力信号Uk−R+1〜Uをそれぞれ用いた遅延補償処理を前記スイッチの出力値に対してRステップ繰り返す処理であることを特徴とする位置決め装置。
  5. 請求項4の位置決め装置において、前記代替値は、前記予測処理部から出力された補正前の前記位置Xk−Rであることを特徴とする位置決め装置。
  6. 請求項2の位置決め装置において、
    遅延補償パラメタ導出処理をRステップ繰り返して遅延誤差補正パラメタを予め算出する遅延誤差補正パラメタ導出処理部を備え、
    前記Rサイクル分の遅延補償処理は、前記遅延誤差補正パラメタ導出処理部で算出した遅延誤差補正パラメタを用いて前記スイッチの出力値を遅延補償する処理であることを特徴とする位置決め装置。
  7. 請求項6の位置決め装置において、
    前記補正処理部の出力値を記憶するバッファを備え、
    前記代替値は、前記バッファに記憶された前記補正処理部の最新の出力値であることを特徴とする位置決め装置。
  8. 請求項2の位置決め装置において、前記補正処理は、前記移動機構を支持する架台の振動モデルを用いて実行されることを特徴とする位置決め装置。
  9. 請求項2の位置決め装置において、前記遅延サイクルRは(Ceil(N/2)+M)で定義されることを特徴とする位置決め装置。
JP2014095942A 2014-05-07 2014-05-07 位置決め装置 Pending JP2015213139A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014095942A JP2015213139A (ja) 2014-05-07 2014-05-07 位置決め装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014095942A JP2015213139A (ja) 2014-05-07 2014-05-07 位置決め装置

Publications (1)

Publication Number Publication Date
JP2015213139A true JP2015213139A (ja) 2015-11-26

Family

ID=54697248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014095942A Pending JP2015213139A (ja) 2014-05-07 2014-05-07 位置決め装置

Country Status (1)

Country Link
JP (1) JP2015213139A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017156242A (ja) * 2016-03-02 2017-09-07 キヤノン株式会社 計測装置、システム、計測方法、および物品の製造方法
EP3416007A1 (en) 2017-06-15 2018-12-19 Omron Corporation Control device, position control system, position control method, and position control program
WO2019064428A1 (ja) * 2017-09-28 2019-04-04 ヤマハ発動機株式会社 部品実装装置、撮影方法、実装順序の決定方法
JP2019185654A (ja) * 2018-04-17 2019-10-24 オムロン株式会社 制御システム、制御方法およびプログラム
WO2019208109A1 (ja) * 2018-04-26 2019-10-31 オムロン株式会社 制御システム、制御方法、および制御プログラム
JP2019188550A (ja) * 2018-04-26 2019-10-31 オムロン株式会社 制御システム、制御方法、および制御プログラム
JP2019188549A (ja) * 2018-04-26 2019-10-31 オムロン株式会社 制御システム、制御方法、および制御プログラム
JP2020140646A (ja) * 2019-03-01 2020-09-03 オムロン株式会社 制御装置および位置合わせ装置
KR20210095918A (ko) * 2019-01-09 2021-08-03 미쓰비시덴키 가부시키가이샤 제어 장치 및 제어 방법
JP2022514980A (ja) * 2018-12-27 2022-02-16 ライカ インストゥルメンツ (シンガポール) プライヴェット リミテッド デジタル顕微鏡システム、デジタル顕微鏡システムを操作するための方法およびコンピュータプログラム
WO2022239588A1 (ja) * 2021-05-13 2022-11-17 パナソニックIpマネジメント株式会社 モータ制御システム、制御装置、制御方法、およびプログラム
WO2023089925A1 (ja) * 2021-11-16 2023-05-25 パナソニックIpマネジメント株式会社 部品装着システム

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017156242A (ja) * 2016-03-02 2017-09-07 キヤノン株式会社 計測装置、システム、計測方法、および物品の製造方法
JP7003454B2 (ja) 2017-06-15 2022-01-20 オムロン株式会社 制御装置、位置制御システム、位置制御方法、および、位置制御プログラム
US20180365791A1 (en) * 2017-06-15 2018-12-20 Omron Corporation Control device, position control system, position control method, and recording medium
JP2019003388A (ja) * 2017-06-15 2019-01-10 オムロン株式会社 制御装置、位置制御システム、位置制御方法、および、位置制御プログラム
EP3416007A1 (en) 2017-06-15 2018-12-19 Omron Corporation Control device, position control system, position control method, and position control program
WO2019064428A1 (ja) * 2017-09-28 2019-04-04 ヤマハ発動機株式会社 部品実装装置、撮影方法、実装順序の決定方法
US11272651B2 (en) 2017-09-28 2022-03-08 Yamaha Hatsudoki Kabushiki Kaisha Component mounting device, method of capturing image, and method of determining mounting sequence
JPWO2019064428A1 (ja) * 2017-09-28 2020-04-23 ヤマハ発動機株式会社 部品実装装置、撮影方法、実装順序の決定方法
CN111096102B (zh) * 2017-09-28 2021-08-24 雅马哈发动机株式会社 元件安装装置
CN111096102A (zh) * 2017-09-28 2020-05-01 雅马哈发动机株式会社 元件安装装置、拍摄方法、安装顺序的决定方法
JP2019185654A (ja) * 2018-04-17 2019-10-24 オムロン株式会社 制御システム、制御方法およびプログラム
WO2019202944A1 (ja) * 2018-04-17 2019-10-24 オムロン株式会社 制御システム、制御方法およびプログラム
JP7020262B2 (ja) 2018-04-17 2022-02-16 オムロン株式会社 制御システム、制御方法およびプログラム
KR20210004957A (ko) * 2018-04-26 2021-01-13 오므론 가부시키가이샤 제어 시스템, 제어 방법 및 제어 프로그램
WO2019208109A1 (ja) * 2018-04-26 2019-10-31 オムロン株式会社 制御システム、制御方法、および制御プログラム
CN111902785B (zh) * 2018-04-26 2024-06-21 欧姆龙株式会社 控制***、控制方法以及计算机可读存储介质
CN111886556B (zh) * 2018-04-26 2024-06-07 欧姆龙株式会社 控制***、控制方法以及计算机可读存储介质
CN111868658A (zh) * 2018-04-26 2020-10-30 欧姆龙株式会社 控制***、控制方法以及控制程序
CN111886556A (zh) * 2018-04-26 2020-11-03 欧姆龙株式会社 控制***、控制方法以及控制程序
CN111902785A (zh) * 2018-04-26 2020-11-06 欧姆龙株式会社 控制***、控制方法以及控制程序
WO2019208108A1 (ja) * 2018-04-26 2019-10-31 オムロン株式会社 制御システム、制御方法、および制御プログラム
KR20210004956A (ko) * 2018-04-26 2021-01-13 오므론 가부시키가이샤 제어 시스템, 제어 방법 및 제어 프로그램
KR102613860B1 (ko) * 2018-04-26 2023-12-14 오므론 가부시키가이샤 제어 시스템, 제어 방법 및 컴퓨터 판독 가능한 기억 매체
KR102612470B1 (ko) * 2018-04-26 2023-12-12 오므론 가부시키가이샤 제어 시스템, 제어 방법 및 컴퓨터 판독 가능한 기억 매체
JP2019188551A (ja) * 2018-04-26 2019-10-31 オムロン株式会社 制御システム、制御方法、および制御プログラム
JP2019188549A (ja) * 2018-04-26 2019-10-31 オムロン株式会社 制御システム、制御方法、および制御プログラム
WO2019208107A1 (ja) * 2018-04-26 2019-10-31 オムロン株式会社 制御システム、制御方法、および制御プログラム
JP2019188550A (ja) * 2018-04-26 2019-10-31 オムロン株式会社 制御システム、制御方法、および制御プログラム
JP7271676B2 (ja) 2018-12-27 2023-05-11 ライカ インストゥルメンツ (シンガポール) プライヴェット リミテッド デジタル顕微鏡システム、デジタル顕微鏡システムを操作するための方法およびコンピュータプログラム
JP2022514980A (ja) * 2018-12-27 2022-02-16 ライカ インストゥルメンツ (シンガポール) プライヴェット リミテッド デジタル顕微鏡システム、デジタル顕微鏡システムを操作するための方法およびコンピュータプログラム
KR20210095918A (ko) * 2019-01-09 2021-08-03 미쓰비시덴키 가부시키가이샤 제어 장치 및 제어 방법
KR102537029B1 (ko) 2019-01-09 2023-05-26 미쓰비시덴키 가부시키가이샤 제어 장치 및 제어 방법
CN113260941B (zh) * 2019-01-09 2023-10-24 三菱电机株式会社 控制装置及控制方法
CN113260941A (zh) * 2019-01-09 2021-08-13 三菱电机株式会社 控制装置及控制方法
US11874679B2 (en) 2019-01-09 2024-01-16 Mitsubishi Electric Corporation Using an imaging device to correct positioning errors
EP3933542A4 (en) * 2019-03-01 2022-11-16 Omron Corporation CONTROL DEVICE AND ALIGNMENT DEVICE
JP7059968B2 (ja) 2019-03-01 2022-04-26 オムロン株式会社 制御装置および位置合わせ装置
US11999068B2 (en) 2019-03-01 2024-06-04 Omron Corporation Control device and alignment device
WO2020179507A1 (ja) * 2019-03-01 2020-09-10 オムロン株式会社 制御装置および位置合わせ装置
JP2020140646A (ja) * 2019-03-01 2020-09-03 オムロン株式会社 制御装置および位置合わせ装置
WO2022239588A1 (ja) * 2021-05-13 2022-11-17 パナソニックIpマネジメント株式会社 モータ制御システム、制御装置、制御方法、およびプログラム
WO2023089925A1 (ja) * 2021-11-16 2023-05-25 パナソニックIpマネジメント株式会社 部品装着システム

Similar Documents

Publication Publication Date Title
JP2015213139A (ja) 位置決め装置
CN107015530B (zh) 模拟装置以及模拟方法
JP6952368B2 (ja) 対象物に対して第1移動体及び第2移動体を直線移動させる装置及び方法
JP6188440B2 (ja) ロボット装置及びロボット制御方法
KR101540278B1 (ko) 표면실장기 및 표면실장기의 보정계수 산출방법
CN109421047B (zh) 机器人***
JP2017170599A (ja) ロボットを用いた位置決め装置
KR102537029B1 (ko) 제어 장치 및 제어 방법
JP2012146907A (ja) 電子部品実装方法
JP6752977B2 (ja) 部品装着機及び部品装着方法
JP4701037B2 (ja) 電子部品の画像取得方法及び装置
JP2009016673A (ja) 部品の吸着位置補正方法および部品移載装置
CN109143968B (zh) 控制装置、位置控制***、位置控制方法及记录媒体
JP2017004033A (ja) 位置決め制御システムおよび周波数特性同定方法
JP7059968B2 (ja) 制御装置および位置合わせ装置
JP6253847B1 (ja) レーザ加工装置、レーザ加工方法、及びレーザ加工プログラム
JP7162574B2 (ja) 制御装置および周波数特性の同定方法
JP7040567B2 (ja) 制御装置、制御装置の制御方法、情報処理プログラム、および記録媒体
JP6407433B2 (ja) モデルデータ作成装置、モデルデータの作成方法、搭載基準点決定装置、搭載基準点の決定方法
CN115452866A (zh) 控制***、控制方法和存储介质
JP7050171B2 (ja) 移動***置決め制御装置及び部品実装機
JP2022034420A (ja) 位置特定装置、位置特定装置の制御方法、情報処理プログラム、および記録媒体
CN110581944A (zh) 控制***、控制装置以及存储介质
JP2004179201A (ja) 電子部品搭載方法、及び電子部品搭載装置
JP2018103268A (ja) ロボットおよび撮像方法