JP2015208858A - Rigid core for tire molding and tire production method using the same - Google Patents

Rigid core for tire molding and tire production method using the same Download PDF

Info

Publication number
JP2015208858A
JP2015208858A JP2014089437A JP2014089437A JP2015208858A JP 2015208858 A JP2015208858 A JP 2015208858A JP 2014089437 A JP2014089437 A JP 2014089437A JP 2014089437 A JP2014089437 A JP 2014089437A JP 2015208858 A JP2015208858 A JP 2015208858A
Authority
JP
Japan
Prior art keywords
tire
core
forming
dividing
circumferential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014089437A
Other languages
Japanese (ja)
Other versions
JP6454082B2 (en
Inventor
典男 林
Norio Hayashi
典男 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2014089437A priority Critical patent/JP6454082B2/en
Publication of JP2015208858A publication Critical patent/JP2015208858A/en
Application granted granted Critical
Publication of JP6454082B2 publication Critical patent/JP6454082B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Tyre Moulding (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress deterioration of the uniformity of tires by dispersing effects of the level difference between core segments in a circumferential direction.SOLUTION: A core body 2 consists of a first core segment 5A which increases in the circumferential-direction width between divided surfaces 6 and 6 toward the inner side in the radial direction, in an arbitrary cross-section K orthogonal to the tire axis i, and a second core segment 5B which decreases in the circumferential-direction width between the divided surfaces 6 and 6 toward the inner side in the radial direction. The outer periphery division line 7o on which the division surface 6 and the outer peripheral surface So of the core segment 6 intersect each other is inclined to the tire axial-direction line X.

Description

本発明は、中子本体の分割面に起因するタイヤのユニフォーミティ低下を抑制するタイヤ形成用の剛性中子、及びそれを用いたタイヤの製造方法に関する。   The present invention relates to a rigid core for forming a tire that suppresses a decrease in tire uniformity due to a split surface of a core body, and a tire manufacturing method using the same.

近年、タイヤの形成精度を高めるため、剛性中子を用いたタイヤ形成方法(以下「中子工法」という場合がある。)が提案されている(例えば特許文献1参照。)。この剛性中子は、加硫済みタイヤの内腔に近似した外形形状を有する中子本体を具え、この中子本体上でタイヤ構成部材を順次貼り付けることにより、生タイヤが形成される。又生タイヤを剛性中子ごと加硫金型内に投入することにより、中子本体と加硫金型との間に挟まれて、生タイヤが加硫成形される。   In recent years, a tire forming method using a rigid core (hereinafter sometimes referred to as “core method”) has been proposed in order to increase the formation accuracy of the tire (see, for example, Patent Document 1). The rigid core includes a core body having an outer shape that approximates the lumen of the vulcanized tire, and a tire component is sequentially affixed on the core body to form a raw tire. Further, by putting the green tire together with the rigid core into the vulcanization mold, the green tire is vulcanized and sandwiched between the core body and the vulcanization mold.

一方、図8(A)に示すように、中子本体aは、加硫成形後にタイヤから分解して取り外せるように、周方向の複数の中子セグメントbに分割されている。詳しくは、中子セグメントbは、周方向両端の分割面s、s間の周方向巾が、タイヤ半径方向内側に向かって増加する第1の中子セグメントb1と、分割面間の周方向巾がタイヤ半径方向内側に向かって減少するとともに前記第1の中子セグメントb1とは周方向に交互に配される第2の中子セグメントb2とから構成される。これにより、第1の中子セグメントb1から順次半径方向内方に一つずつ移動させることができ、前記中子本体aを分解してタイヤから取り外すことが可能となる。   On the other hand, as shown in FIG. 8 (A), the core body a is divided into a plurality of core segments b in the circumferential direction so that it can be disassembled and removed from the tire after vulcanization molding. Specifically, the core segment b includes a first core segment b1 in which the circumferential width between the divided surfaces s at both ends in the circumferential direction increases toward the inner side in the tire radial direction, and the circumferential width between the divided surfaces. Decreases inward in the tire radial direction, and the first core segment b1 includes second core segments b2 that are alternately arranged in the circumferential direction. Thereby, it can move one by one in the radial direction sequentially from the first core segment b1, and the core body a can be disassembled and removed from the tire.

他方、図8(B)に誇張して示すように、中子本体aでは、分割面s、s間の隙間や加硫時の熱膨張により、中子セグメントb1、b2間に半径方向の位置ずれが生じる傾向があり、この位置ずれは段差eとなって外周面に表れる。   On the other hand, as shown exaggeratedly in FIG. 8 (B), in the core body a, the radial position between the core segments b1 and b2 due to the gap between the split surfaces s and s and thermal expansion during vulcanization. There is a tendency for deviation to occur, and this positional deviation becomes a step e and appears on the outer peripheral surface.

しかし従来の中子セグメントbでは、分割面sがタイヤ軸心iに対して平行な平面で形成されている。そのため、前記段差eも外周面ではタイヤ軸方向に沿って表れる。その結果、タイヤ周方向の均一性に与える影響が大きくなり、タイヤのユニフォーミティを低下させるという問題が生じる。   However, in the conventional core segment b, the dividing surface s is formed as a plane parallel to the tire axis i. For this reason, the step e also appears along the tire axial direction on the outer peripheral surface. As a result, the influence on the uniformity in the tire circumferential direction is increased, and there arises a problem that the uniformity of the tire is lowered.

特開2013−006326号公報JP2013-006326A

そこで発明は、中子セグメント間の段差による影響を周方向に分散緩和させることができ、タイヤのユニフォーミティの低下を抑制しうるタイヤ形成用の剛性中子、及びそれを用いたタイヤの製造方法を提供することを課題としている。   Therefore, the present invention can reduce the influence of a step between core segments in the circumferential direction, and can suppress the decrease in tire uniformity, and a tire forming rigid core, and a tire manufacturing method using the same It is an issue to provide.

本願の第1発明は、生タイヤを形成するタイヤ成形面部を外表面に有する環状の中子本体を具え、かつ生タイヤごと加硫金型内に投入されることにより、該加硫金型と中子本体との間で前記生タイヤを加硫成形する剛性中子であって、
前記中子本体は、分割面により周方向に分割される複数の中子セグメントからなり、
かつ前記中子セグメントは、
タイヤ軸心と直交する任意の断面において、周方向両端の分割面間の周方向巾が、タイヤ半径方向内側に向かって増加することにより、タイヤ軸心に向く引き抜き方向に引き抜き可能な第1の中子セグメントと、
タイヤ軸心と直交する任意の断面において、周方向両端の分割面間の周方向巾が、タイヤ半径方向内側に向かって減少するとともに、前記第1のセグメントとは周方向に交互に配される第2の中子セグメントとからなり、
しかも、前記分割面と中子セグメントの外周面とが交差する外周分割線は、それぞれタイヤ軸方向線に対して傾斜することを特徴としている。
The first invention of the present application includes an annular core body having a tire molding surface portion forming a green tire on the outer surface, and the raw tire is put into the vulcanization mold together with the vulcanization mold, A rigid core that vulcanizes and molds the green tire with the core body,
The core body is composed of a plurality of core segments divided in the circumferential direction by a dividing surface;
And the core segment is
In an arbitrary cross section orthogonal to the tire axis, the circumferential width between the divided surfaces at both ends in the circumferential direction increases toward the inner side in the tire radial direction, whereby the first pullable in the pulling direction toward the tire axis is performed. The core segment,
In an arbitrary cross section orthogonal to the tire axis, the circumferential width between the divided surfaces at both ends in the circumferential direction decreases toward the inner side in the tire radial direction, and the first segments are alternately arranged in the circumferential direction. The second core segment,
In addition, the outer peripheral dividing lines at which the dividing surfaces and the outer peripheral surfaces of the core segments intersect each other are inclined with respect to the tire axial direction line.

本発明に係る前記タイヤ形成用の剛性中子では、各前記外周分割線は、タイヤ軸方向線に対する角度θが10〜60度の範囲であることが好ましい。   In the rigid core for forming a tire according to the present invention, each of the outer circumferential dividing lines preferably has an angle θ with respect to a tire axial line in a range of 10 to 60 degrees.

本発明に係る前記タイヤ形成用の剛性中子では、各前記分割面は、タイヤ軸心と直交する任意の断面において直線をなすことが好ましい。   In the rigid core for forming a tire according to the present invention, it is preferable that each of the divided surfaces forms a straight line in an arbitrary cross section orthogonal to the tire axis.

本発明に係る前記タイヤ形成用の剛性中子では、各前記分割面は、捻れ面からなることが好ましい。   In the rigid core for forming a tire according to the present invention, it is preferable that each of the divided surfaces is a twisted surface.

本発明に係る前記タイヤ形成用の剛性中子では、周方向で隣り合う一方、他方の外周分割線において、一方の外周分割線のタイヤ軸方向一方側の端点は、他方の外周分割線のタイヤ軸方向他方側の端点を通るタイヤ軸方向線上に位置することが好ましい。   In the tire-forming rigid core according to the present invention, the end point on one side in the tire axial direction of one outer circumferential dividing line is the tire on the other outer circumferential dividing line in the other outer circumferential dividing line adjacent in the circumferential direction. It is preferable to be located on the tire axial line passing through the end point on the other side in the axial direction.

本願の第2発明は、タイヤの製造方法であって、第1発明の剛性中子を用いて生タイヤを形成する生タイヤ形成工程と、形成された前記生タイヤを剛性中子ごと加硫金型内に投入して生タイヤを加熱加硫する加硫工程とを具えることを特徴としている。   2nd invention of this application is a manufacturing method of a tire, Comprising: The raw tire formation process which forms a raw tire using the rigid core of 1st invention, and vulcanized gold | metal | money with the rigid core formed said raw tire And a vulcanization step in which the raw tire is heated and vulcanized.

本発明は叙上の如く、分割面と中子セグメントの外周面とが交差する外周分割線を、タイヤ軸方向線に対して傾斜させている。従って、中子本体の外周面に、中子セグメント間の段差が生じた場合、この段差もタイヤ軸方向線に対して傾斜して表れる。即ち、前記段差が、周方向にある程度の巾を有して連続して表れる。そのため、トレッド厚の均一性や真円性などに与える影響を周方向に緩和させることができ、タイヤのユニフォーミティの低下を抑制することができる。   In the present invention, as described above, the outer peripheral dividing line where the dividing surface and the outer peripheral surface of the core segment intersect is inclined with respect to the tire axial direction line. Therefore, when a step between core segments occurs on the outer peripheral surface of the core body, this step also appears inclined with respect to the tire axial line. That is, the steps appear continuously with a certain width in the circumferential direction. Therefore, the influence on the uniformity and roundness of the tread thickness can be mitigated in the circumferential direction, and a decrease in tire uniformity can be suppressed.

本発明の剛性中子の一実施例の使用状態を示す断面図である。It is sectional drawing which shows the use condition of one Example of the rigid core of this invention. 中子本体の斜視図である。It is a perspective view of a core main body. 中子本体におけるタイヤ軸心と直交する任意の断面を示す部分断面図である。It is a fragmentary sectional view which shows the arbitrary cross sections orthogonal to the tire axial center in a core main body. 第1、第2の中子セグメントを模式的に示す斜視図である。It is a perspective view which shows the 1st and 2nd core segment typically. (A)〜(D)は、図2における中子本体2の上面、断面K1、断面K2、底面を示す概念図である。(A)-(D) are the conceptual diagrams which show the upper surface, the cross section K1, the cross section K2, and the bottom face of the core main body 2 in FIG. 中子本体の他の例を示す斜視図である。It is a perspective view which shows the other example of a core main body. 表1の実施例1に使用される中子本体を示す斜視図である。It is a perspective view which shows the core main body used for Example 1 of Table 1. FIG. (A)は従来の中子本体の側面図、(B)は段差を誇張して示す中子本体の斜視図である。(A) is a side view of the conventional core main body, (B) is a perspective view of the core main body exaggerating the level difference.

以下、本発明の実施の形態について、詳細に説明する。
図1に示すように、本実施形態のタイヤ形成用の剛性中子1は、外表面にタイヤ成形面部2Sを有する環状の中子本体2を具える。そして、このタイヤ成形面部2S上に、カーカスプライ、ベルトプライ、サイドウォールゴム、トレッドゴム等のタイヤ構成部材を順次貼り付けることにより、仕上がりタイヤとほぼ同形状の生タイヤTが形成される。又前記生タイヤTを、剛性中子1ごと加硫金型B内に投入し、中子本体2と加硫金型Bとの間で前記生タイヤTを加熱加圧することで加硫成形が行われる。
Hereinafter, embodiments of the present invention will be described in detail.
As shown in FIG. 1, a rigid core 1 for forming a tire according to this embodiment includes an annular core body 2 having a tire molding surface portion 2S on the outer surface. Then, tire constituent members such as a carcass ply, a belt ply, a sidewall rubber, and a tread rubber are sequentially pasted on the tire molding surface portion 2S, thereby forming a green tire T having substantially the same shape as the finished tire. Further, the raw tire T is put together with the rigid core 1 into the vulcanization mold B, and the raw tire T is heated and pressurized between the core body 2 and the vulcanization mold B to perform vulcanization molding. Done.

本例の剛性中子1は、環状の前記中子本体2と、その中心孔2Hに内挿される円筒状のコア3とを含んで構成される。前記中子本体2以外は、従来的な周知構造を採用できるので、以下に中子本体2のみを説明する。   The rigid core 1 of this example includes the annular core body 2 and a cylindrical core 3 that is inserted into the center hole 2H. Since the conventional well-known structure can be adopted except for the core body 2, only the core body 2 will be described below.

前記中子本体2は、図2に示すように、分割面6によって周方向に分割される複数の中子セグメント5からなり、又中子セグメント5は、周方向に交互に配される第1、第2の中子セグメント5A、5Bから構成される。本例では、各中子セグメント5A、5Bの内部には、スチーム等の熱流体が充填される加熱用の気密なチャンバ室4(図1に一点鎖線で示す。)が形成される。各チャンバ室4は、適宜の流路を介して熱流体供給源(図示しない。)に接続される。なお熱流体以外に、例えば電気ヒータなどの周知の加熱手段を用いることもできる。   As shown in FIG. 2, the core body 2 includes a plurality of core segments 5 that are divided in the circumferential direction by the dividing surface 6, and the core segments 5 are first arranged alternately in the circumferential direction. , Second core segments 5A and 5B. In this example, an airtight chamber chamber 4 for heating (indicated by a one-dot chain line in FIG. 1) filled with a thermal fluid such as steam is formed inside each core segment 5A, 5B. Each chamber 4 is connected to a thermal fluid supply source (not shown) via an appropriate flow path. In addition to the thermal fluid, known heating means such as an electric heater can also be used.

図3には、中子本体2における、タイヤ軸心iと直交する任意の断面Kの一部が示される。図3に示すように、第1の中子セグメント5Aは、タイヤ軸心iと直交する任意の断面Kにおいて、周方向両端の分割面6、6間の周方向巾が、タイヤ半径方向内側に向かって増加している。これにより、第1の中子セグメント5Aは、タイヤ軸心iに向く引き抜き方向Fに引き抜きできる。即ち、中子本体2を分解することができる。なお分割面6が中子本体2の上側面Suと交わる上縁6juを一点鎖線で示す。本例では、引き抜き方向Fが、前記上縁6ju、6ju間の二等分線上を通る場合が示される。なお図5(A)〜(D)には、図2における、中子本体2の上面、断面K1、断面K2、底面が概念的に示される。各面において、第1の中子セグメント5Aの周方向両端の分割面6、6間の周方向巾は、タイヤ半径方向内側に向かって増加している。   FIG. 3 shows a part of an arbitrary cross section K perpendicular to the tire axis i in the core body 2. As shown in FIG. 3, the first core segment 5A has a circumferential width between the dividing surfaces 6 and 6 at both ends in the circumferential direction at the inner side in the tire radial direction in an arbitrary cross section K orthogonal to the tire axis i. It is increasing towards. Accordingly, the first core segment 5A can be pulled out in the pulling direction F facing the tire axis i. That is, the core body 2 can be disassembled. The upper edge 6ju where the dividing surface 6 intersects the upper surface Su of the core body 2 is indicated by a one-dot chain line. In this example, a case where the drawing direction F passes on a bisector between the upper edges 6ju and 6ju is shown. 5A to 5D conceptually show the top surface, the cross section K1, the cross section K2, and the bottom surface of the core body 2 in FIG. In each surface, the circumferential width between the divided surfaces 6 and 6 at both circumferential ends of the first core segment 5A increases toward the inner side in the tire radial direction.

又第2の中子セグメント5Bでは、前記タイヤ軸心iと直交する任意の断面Kにおいて、周方向両端の分割面6、6間の周方向巾は、タイヤ半径方向内側に向かって減少している。   In the second core segment 5B, in an arbitrary cross section K orthogonal to the tire axis i, the circumferential width between the dividing surfaces 6 and 6 at both ends in the circumferential direction decreases toward the inner side in the tire radial direction. Yes.

図4は、中子本体2の一部を模式的に示す斜視図であって、図2、4に示すように、前記分割面6と中子セグメント5の外周面Soとが交差する外周分割線7oは、それぞれタイヤ軸方向線Xに対して傾斜している。なお前記タイヤ軸方向線Xは、中子セグメント5の外周面So上をタイヤ軸方向にのびる線を意味する。   FIG. 4 is a perspective view schematically showing a part of the core body 2, and as shown in FIGS. 2 and 4, an outer peripheral division in which the division surface 6 and the outer peripheral surface So of the core segment 5 intersect each other. Each of the lines 7o is inclined with respect to the tire axial line X. The tire axial direction line X means a line extending in the tire axial direction on the outer peripheral surface So of the core segment 5.

このように外周分割線7oがタイヤ軸方向線Xに対して傾斜することにより、以下の効果が得られる。加硫時の熱膨張などに起因して、中子セグメント5A、5B間に半径方向の位置ずれが生じた場合、この位置ずれは、外周面Soに段差となって表れる。しかし本発明では、この段差は、前記外周分割線7oに沿って斜めに発生する。即ち、前記段差は、周方向にある程度の巾Wを有して連続して表れる。そのため、トレッド厚の均一性や真円性などに与える影響を周方向に緩和させることができ、タイヤのユニフォーミティの低下を抑制することができる。   Thus, the following effects are acquired when the outer periphery dividing line 7o inclines with respect to the tire axial direction line X. FIG. When a radial position shift occurs between the core segments 5A and 5B due to thermal expansion during vulcanization, the position shift appears as a step on the outer peripheral surface So. However, in the present invention, this level difference occurs obliquely along the outer peripheral dividing line 7o. That is, the steps appear continuously with a certain width W in the circumferential direction. Therefore, the influence on the uniformity and roundness of the tread thickness can be mitigated in the circumferential direction, and a decrease in tire uniformity can be suppressed.

このとき、前記外周分割線7oのタイヤ軸方向線Xに対する角度θは、10〜60度の範囲が好ましい。この角度θが10度を下回ると、ユニフォーミティの低下抑制効果が十分発揮されなくなる。又角度θが60度を超える場合、第1の中子セグメント5Aから順に引き抜いて中子本体2を分解することができなくなる恐れが生じる。前記角度θは一定である必要はなく、前記範囲内で変化することができ。又周方向で隣り合う外周分割線7o、7oにおいて、一方の外周分割線7oの角度θと、他方の外周分割線7oの角度θとを相違させるのが、ユニフォーミティの低下抑制の観点から好ましい。   At this time, the angle θ of the outer circumferential dividing line 7o with respect to the tire axial direction line X is preferably in the range of 10 to 60 degrees. When the angle θ is less than 10 degrees, the effect of suppressing the decrease in uniformity is not sufficiently exhibited. If the angle θ exceeds 60 degrees, there is a possibility that the core body 2 cannot be disassembled by sequentially pulling it out from the first core segment 5A. The angle θ need not be constant and can vary within the range. In addition, in the outer peripheral dividing lines 7o and 7o adjacent in the circumferential direction, it is preferable from the viewpoint of suppressing reduction in uniformity to make the angle θ of one outer peripheral dividing line 7o different from the angle θ of the other outer peripheral dividing line 7o. .

又前記分割面6は、平面であっても良いが、捻れ面からなることが、設計の自由度を高める上で好ましい。分割面6が捻れ面からなる場合、タイヤ軸心iと直交する任意の断面Kにおいて分割面6が直線をなすことが、中子本体2の分解性を高める上で好ましい。   The dividing surface 6 may be a flat surface, but is preferably a twisted surface in order to increase the degree of design freedom. In the case where the dividing surface 6 is a twisted surface, it is preferable that the dividing surface 6 is a straight line in an arbitrary cross section K orthogonal to the tire axis i in order to improve the resolvability of the core body 2.

又分解性の観点から、図3に示すように、タイヤ軸心iと直交する任意の断面Kにおいて、以下の条件Aを充足することが必要である。即ち、
・第1の中子セグメント5Aの両側の分割面6、6が中子セグメント5Aの内周面Siと交差する両側の内周分割点をPi、Pi、
・両側の分割面6、6が中子セグメント5Aの外周面Soと交差する両側の外周分割点をPo、Po
・前記両側の外周分割点をPo、Poを通って引抜き方向Fと平行な基準線をJ、Jとしたとき、
前記内周分割点Pi、Piが、両側の基準線J、Jよりも外側に位置することが必要である。これによって、第1の中子セグメント5Aを引抜き方向Fに引き出しでき、中子本体2を分解することが可能となる。なお分割面6と内周面Siとが交差する内周分割線7iについては、前記条件Aを満たしていれば、特に規制されることがない。
Further, from the viewpoint of decomposability, as shown in FIG. 3, it is necessary to satisfy the following condition A in an arbitrary cross section K orthogonal to the tire axis i. That is,
Pi, Pi, the inner peripheral dividing points on both sides where the dividing surfaces 6, 6 on both sides of the first core segment 5A intersect the inner peripheral surface Si of the core segment 5A
-Po and Po are the outer peripheral dividing points on both sides where the dividing surfaces 6 and 6 on both sides intersect the outer peripheral surface So of the core segment 5A.
-When the reference lines parallel to the drawing direction F through Po and Po through the outer peripheral dividing points on both sides are J and J,
The inner peripheral dividing points Pi and Pi need to be located outside the reference lines J and J on both sides. Thus, the first core segment 5A can be pulled out in the pulling direction F, and the core body 2 can be disassembled. The inner circumferential dividing line 7i where the dividing surface 6 and the inner circumferential surface Si intersect is not particularly restricted as long as the condition A is satisfied.

図6に中子本体2の他の例を示す。本例では、周方向で隣り合う一方、他方の外周分割線7o1、7o2において、一方の外周分割線7o1のタイヤ軸方向一方側(本例では下側)の端点ELは、他方の外周分割線7o2のタイヤ軸方向他方側(本例では上側)の端点EUを通るタイヤ軸方向線X上に位置している。これにより、外周分割線7oが一周に亘って連続して配される。その結果、ユニフォーミティの低下抑制をより効果的に発揮することができる。   FIG. 6 shows another example of the core body 2. In this example, in the other peripheral dividing line 7o1, 7o2 adjacent in the circumferential direction, an end point EL on one side (lower side in this example) of one outer peripheral dividing line 7o1 is the other outer peripheral dividing line. 7o2 is located on the tire axial direction line X passing through the end point EU on the other side in the tire axial direction (upper side in this example). Thereby, the outer periphery dividing line 7o is continuously arranged over the circumference. As a result, the reduction in uniformity can be more effectively exhibited.

又タイヤ製造方法は、生タイヤ形成工程と加硫工程とを具える。生タイヤ形成工程では、前記剛性中子1における中子本体2のタイヤ成形面部2S上に、カーカスプライ、ベルトプライ、サイドウォールゴム、トレッドゴム等のタイヤ構成部材を順次貼り付けることにより、仕上がりタイヤとほぼ同形状の生タイヤTが形成される。又加硫工程では、前記生タイヤTを、剛性中子1ごと加硫金型B内に投入し、中子本体2と加硫金型Bとの間で前記生タイヤTを加熱加圧することで加硫成形が行われる。   The tire manufacturing method includes a green tire forming process and a vulcanizing process. In the green tire forming process, tire constituent members such as carcass ply, belt ply, sidewall rubber, and tread rubber are sequentially pasted on the tire molding surface portion 2S of the core body 2 in the rigid core 1 to obtain a finished tire. A green tire T having substantially the same shape is formed. In the vulcanization step, the raw tire T is put together with the rigid core 1 into the vulcanization mold B, and the raw tire T is heated and pressurized between the core body 2 and the vulcanization mold B. Vulcanization molding is performed.

以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。   As mentioned above, although especially preferable embodiment of this invention was explained in full detail, this invention is not limited to embodiment of illustration, It can deform | transform and implement in a various aspect.

本発明の効果を確認するため、タイヤサイズ205/65R15の空気入りタイヤ形成用の中子本体を、表1の仕様に基づき試作した。そして、この中子本体を用いて製造された空気入りタイヤのユニフォーミティをテストし、互いに比較した。各中子本体とも中子セグメントの分割数は8であり、又分割面の上縁の位置は各中子本体とも同一である。表1に記載以外は実質的に同仕様である。   In order to confirm the effect of the present invention, a core body for forming a pneumatic tire having a tire size of 205 / 65R15 was prototyped based on the specifications shown in Table 1. And the uniformity of the pneumatic tire manufactured using this core main body was tested, and it mutually compared. In each core body, the number of divisions of the core segment is 8, and the position of the upper edge of the dividing surface is the same in each core body. Except for the description in Table 1, the specifications are substantially the same.

(1)ユニフォーミティ:
ユニフォーミティ試験機を用いて、JASO C607:2000のユニフォミティ試験条件に準拠して、試供タイヤ(各10本)のラジアルフォースバリエーション(RFV)を測定し、その平均値を互いに比較した。測定条件は、リム(15×6J)、内圧(200kPa)、速度(120km/h)である。
(1) Uniformity:
Using a uniformity testing machine, the radial force variation (RFV) of the sample tires (10 tires each) was measured in accordance with JASO C607: 2000 uniformity testing conditions, and the average values were compared with each other. The measurement conditions are a rim (15 × 6 J), an internal pressure (200 kPa), and a speed (120 km / h).

Figure 2015208858
Figure 2015208858

表に示すように、実施例のタイヤは、RFVが減じユニフォーミティが向上しているのが確認できる。   As shown in the table, it can be confirmed that the tires of the examples have reduced RFV and improved uniformity.

1 剛性中子
2 中子本体
2S タイヤ成形面部
5 中子セグメント
5A 第1の中子セグメント
5B 第2の中子セグメント
6 分割面
7o 外周分割線
B 加硫金型
EU、EL 端点
F 引き抜き方向
i タイヤ軸心
K、K1、K2 断面
So 外周面
T 生タイヤ
X タイヤ軸方向線
DESCRIPTION OF SYMBOLS 1 Rigid core 2 Core body 2S Tire shaping | molding surface part 5 Core segment 5A 1st core segment 5B 2nd core segment 6 Split surface 7o Peripheral parting line B Vulcanization metal mold EU, EL End point F Pull-out direction i Tire axis K, K1, K2 Cross section So Outer peripheral surface T Raw tire X Tire axial line

Claims (6)

生タイヤを形成するタイヤ成形面部を外表面に有する環状の中子本体を具え、かつ生タイヤごと加硫金型内に投入されることにより、該加硫金型と中子本体との間で前記生タイヤを加硫成形する剛性中子であって、
前記中子本体は、分割面により周方向に分割される複数の中子セグメントからなり、
かつ前記中子セグメントは、
タイヤ軸心と直交する任意の断面において、周方向両端の分割面間の周方向巾が、タイヤ半径方向内側に向かって増加することにより、タイヤ軸心に向く引き抜き方向に引き抜き可能な第1の中子セグメントと、
タイヤ軸心と直交する任意の断面において、周方向両端の分割面間の周方向巾が、タイヤ半径方向内側に向かって減少するとともに、前記第1のセグメントとは周方向に交互に配される第2の中子セグメントとからなり、
しかも、前記分割面と中子セグメントの外周面とが交差する外周分割線は、それぞれタイヤ軸方向線に対して傾斜することを特徴とするタイヤ形成用の剛性中子。
An annular core body having a tire molding surface portion for forming a raw tire on the outer surface is provided, and the raw tire is inserted into the vulcanization mold so that the vulcanization mold and the core body are interposed between the vulcanization mold and the core body. A rigid core for vulcanizing the green tire,
The core body is composed of a plurality of core segments divided in the circumferential direction by a dividing surface;
And the core segment is
In an arbitrary cross section orthogonal to the tire axis, the circumferential width between the divided surfaces at both ends in the circumferential direction increases toward the inner side in the tire radial direction, whereby the first pullable in the pulling direction toward the tire axis The core segment,
In an arbitrary cross section orthogonal to the tire axis, the circumferential width between the divided surfaces at both ends in the circumferential direction decreases toward the inner side in the tire radial direction, and the first segments are alternately arranged in the circumferential direction. The second core segment,
In addition, the tire-forming rigid core is characterized in that the outer peripheral dividing lines where the dividing surface and the outer peripheral surface of the core segment intersect with each other are inclined with respect to the tire axial direction line.
各前記外周分割線は、タイヤ軸方向線に対する角度θが10〜60度の範囲であることを特徴とする請求項1記載のタイヤ形成用の剛性中子。   2. The rigid core for forming a tire according to claim 1, wherein each of the outer circumferential dividing lines has an angle θ of 10 to 60 degrees with respect to a tire axial line. 各前記分割面は、タイヤ軸心と直交する任意の断面において直線をなすことを特徴とする請求項1又は2記載のタイヤ形成用の剛性中子。   The rigid core for forming a tire according to claim 1 or 2, wherein each of the dividing surfaces forms a straight line in an arbitrary cross section perpendicular to the tire axis. 各前記分割面は、捻れ面からなることを特徴とする請求項3記載のタイヤ形成用の剛性中子。   The rigid core for forming a tire according to claim 3, wherein each of the divided surfaces includes a twisted surface. 周方向で隣り合う一方、他方の外周分割線において、一方の外周分割線のタイヤ軸方向一方側の端点は、他方の外周分割線のタイヤ軸方向他方側の端点を通るタイヤ軸方向線上に位置することを特徴とする請求項1〜4の何れかに記載のタイヤ形成用の剛性中子。   In the other peripheral dividing line adjacent in the circumferential direction, the end point on one side in the tire axial direction of one outer peripheral dividing line is positioned on the tire axial line passing through the end point on the other side in the tire axial direction of the other outer peripheral dividing line The rigid core for forming a tire according to any one of claims 1 to 4, wherein: 請求項1〜5に記載の剛性中子を用いて生タイヤを形成する生タイヤ形成工程と、形成された前記生タイヤを剛性中子ごと加硫金型内に投入して生タイヤを加熱加硫する加硫工程とを具えることを特徴とするタイヤの製造方法。
A raw tire forming step of forming a raw tire using the rigid core according to claim 1, and the formed raw tire together with the rigid core is placed in a vulcanization mold to heat the raw tire. A tire manufacturing method comprising: a vulcanizing step of vulcanizing.
JP2014089437A 2014-04-23 2014-04-23 Rigid core for forming tire and method of manufacturing tire using the same Active JP6454082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014089437A JP6454082B2 (en) 2014-04-23 2014-04-23 Rigid core for forming tire and method of manufacturing tire using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014089437A JP6454082B2 (en) 2014-04-23 2014-04-23 Rigid core for forming tire and method of manufacturing tire using the same

Publications (2)

Publication Number Publication Date
JP2015208858A true JP2015208858A (en) 2015-11-24
JP6454082B2 JP6454082B2 (en) 2019-01-16

Family

ID=54611492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014089437A Active JP6454082B2 (en) 2014-04-23 2014-04-23 Rigid core for forming tire and method of manufacturing tire using the same

Country Status (1)

Country Link
JP (1) JP6454082B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020023175A (en) * 2018-08-01 2020-02-13 住友ゴム工業株式会社 Mold, method for manufacturing tire, and tire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005231259A (en) * 2004-02-20 2005-09-02 Bridgestone Corp Tire vulcanizing molding mold and its manufacturing method
JP2007069497A (en) * 2005-09-08 2007-03-22 Yokohama Rubber Co Ltd:The Rigid core for vulcanization molding of tire, and manufacturing method for pneumatic tire
JP2011131526A (en) * 2009-12-25 2011-07-07 Sumitomo Rubber Ind Ltd Rigid core for tire vulcanization

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005231259A (en) * 2004-02-20 2005-09-02 Bridgestone Corp Tire vulcanizing molding mold and its manufacturing method
JP2007069497A (en) * 2005-09-08 2007-03-22 Yokohama Rubber Co Ltd:The Rigid core for vulcanization molding of tire, and manufacturing method for pneumatic tire
JP2011131526A (en) * 2009-12-25 2011-07-07 Sumitomo Rubber Ind Ltd Rigid core for tire vulcanization

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020023175A (en) * 2018-08-01 2020-02-13 住友ゴム工業株式会社 Mold, method for manufacturing tire, and tire
JP7290082B2 (en) 2018-08-01 2023-06-13 住友ゴム工業株式会社 Mold, tire manufacturing method and tire

Also Published As

Publication number Publication date
JP6454082B2 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
JP5226970B2 (en) Pneumatic tire and manufacturing method thereof
US8757995B2 (en) Tire vulcanization mold
JP2013146905A (en) Rigid core for tire formation
JP5698694B2 (en) Rigid core for tire formation
JP2013154660A (en) Pneumatic tire and method of manufacturing the same
JP5667433B2 (en) Tire vulcanization mold and method for manufacturing pneumatic tire
JP6454082B2 (en) Rigid core for forming tire and method of manufacturing tire using the same
JP5681685B2 (en) Rigid core and method for manufacturing pneumatic tire using the same
JP4263755B1 (en) Pneumatic tire manufacturing method
JP2018012218A (en) Method of manufacturing pneumatic tire of sot structure
JP5667606B2 (en) Rigid core for tire formation
JP5486622B2 (en) Rigid core for tire formation
JP6212413B2 (en) Rigid core for tire formation
JP2007160699A (en) Mold for tire and tire production method
JP6363886B2 (en) Tire molding drum and method for producing run-flat tire using the same
JP5066220B2 (en) Pneumatic tire and manufacturing method thereof
JP2008093952A (en) Manufacturing method of pneumatic tire
US10328651B2 (en) Rigid core mold and method for manufacturing pneumatic tire using the same
JP2015229438A (en) Pneumatic tire
WO2015190027A1 (en) Pneumatic tire and mold for vulcanizing tire
JP2017226313A (en) Pneumatic tire, tire vulcanization forming metal mold and tire manufacturing method
JP6422634B2 (en) Rigid core and pneumatic tire vulcanization molding equipment
JP6567406B2 (en) Pneumatic tire
JP2015054408A (en) Mold for tire vulcanization molding, pneumatic tire produced with the mold for tire vulcanization molding and method of producing the pneumatic tire
JP2024104232A (en) Raw tire manufacturing method, pneumatic tire manufacturing method, raw tire manufacturing apparatus, and pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181214

R150 Certificate of patent or registration of utility model

Ref document number: 6454082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250