JP2015204337A - Electronic component, method of manufacturing electronic component and electronic apparatus - Google Patents

Electronic component, method of manufacturing electronic component and electronic apparatus Download PDF

Info

Publication number
JP2015204337A
JP2015204337A JP2014082210A JP2014082210A JP2015204337A JP 2015204337 A JP2015204337 A JP 2015204337A JP 2014082210 A JP2014082210 A JP 2014082210A JP 2014082210 A JP2014082210 A JP 2014082210A JP 2015204337 A JP2015204337 A JP 2015204337A
Authority
JP
Japan
Prior art keywords
electronic component
insulating layer
layer
magnetic member
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014082210A
Other languages
Japanese (ja)
Other versions
JP6434709B2 (en
Inventor
小林 茂
Shigeru Kobayashi
茂 小林
川瀬 恭一
Kyoichi Kawase
恭一 川瀬
勝 桜井
Masaru Sakurai
勝 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Green Devices Co Ltd
Original Assignee
Alps Green Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Green Devices Co Ltd filed Critical Alps Green Devices Co Ltd
Priority to JP2014082210A priority Critical patent/JP6434709B2/en
Priority to TW104102586A priority patent/TWI591662B/en
Priority to KR1020150033180A priority patent/KR101667140B1/en
Priority to CN201710372434.8A priority patent/CN107256773B/en
Priority to CN201510144704.0A priority patent/CN104979082A/en
Publication of JP2015204337A publication Critical patent/JP2015204337A/en
Application granted granted Critical
Publication of JP6434709B2 publication Critical patent/JP6434709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/324Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/323Insulation between winding turns, between winding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/327Encapsulating or impregnating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings

Abstract

PROBLEM TO BE SOLVED: To provide an electronic component whose insulation properties on the surface of a magnetic member while suppressing the influence on magnetic characteristics.SOLUTION: An electronic component includes: a magnetic member 1 which is equipped with a compact containing ferromagnetic metal powder and an insulation layer formed on the surface of the compact; a conductive member 2 having a portion which is positioned in the inside of the magnetic member 1; and conductive connection ends 3a, 3b which are formed on the surface of the magnetic member 1 in a state being electrically connected to the conductive member 2. The insulation layer is made of an inorganic material.

Description

本発明は、磁性部材、導電性部材および接続端部を備える電子部品、当該電子部品の製造方法および当該電子部品を実装した電子機器に関する。   The present invention relates to an electronic component including a magnetic member, a conductive member, and a connection end, a method for manufacturing the electronic component, and an electronic device on which the electronic component is mounted.

近年、電子機器の小型化が進み、電子部品の実装スペースは小さくなる傾向がある。その一方で、電子機器に求められる性能は、高速化、多機能化、省電力化など多様化している。これらの要求に応えられるように、電子機器に実装されるべき電子部品の数は増大する傾向にある。それゆえ、電子部品を小型化することに対する要求は、近時、特に高まっている。   In recent years, electronic devices have been miniaturized, and the mounting space for electronic components tends to be small. On the other hand, the performance required for electronic devices is diversifying, such as high speed, multi-function, and power saving. In order to meet these requirements, the number of electronic components to be mounted on an electronic device tends to increase. Therefore, the demand for downsizing electronic components has recently been particularly increased.

このような要求に適切に応えるべく、電子部品が小型化されることによって機能低下しないように、電子部品を構成する材料の見直しが積極的に行われている。例えば、電子部品の一種であるインダクタンス素子が備える磁性部材に含まれる磁性材料として、従来、フェライト粉末が用いられてきたが、最近は、フェライト粉末に比較して飽和磁束密度が大きく、直流重畳特性が高磁界まで保たれる強磁性金属粉末が用いられているようになってきた。   In order to appropriately respond to such a demand, the materials constituting the electronic component are actively reviewed so that the function of the electronic component is not reduced by downsizing. For example, ferrite powder has conventionally been used as a magnetic material included in a magnetic member included in an inductance element, which is a type of electronic component. Recently, however, the saturation magnetic flux density is larger than that of ferrite powder, and the DC superposition characteristics. However, ferromagnetic metal powders that maintain a high magnetic field have been used.

このような強磁性金属粉末として、Fe基非晶質合金粉末、Fe−Ni系合金粉末、Fe−Si系合金粉末、純鉄粉末(高純度鉄粉)等の軟磁性合金粉末が例示される。具体例として、特許文献1には、組成式が、Fe100-a-b-c-x-y-z-tNiaSnbCrcxyzSitで示され、0at%≦a≦10at%、0at%<c≦3at%、6.8at%≦x≦10.8at%、2.2at%≦y≦9.8at%、0at%≦z≦4at%、0at%≦t≦1at%であり、(Bの添加量z+Siの添加量t)は、1at%〜4at%の範囲内であり、ガラス遷移温度(Tg)が710K以下であるFe基非晶質合金が開示されている。また、特許文献2には、Ni:41wt%以上45wt%未満、添加物A:1wt%以上5wt%以下、残部:Feおよび不可避的不純物の組成を有し、前記添加物Aは、Al,Si,Mn,Mo,Cr,Cuのうち少なくとも1種であるFe−Ni系軟磁性合金粉末が開示されている。 Examples of such ferromagnetic metal powders include soft magnetic alloy powders such as Fe-based amorphous alloy powders, Fe—Ni alloy powders, Fe—Si alloy powders, and pure iron powders (high purity iron powders). . As a specific example, Patent Document 1, the composition formula is represented by Fe 100-abcxyzt Ni a Sn b Cr c P x C y B z Si t, 0at% ≦ a ≦ 10at%, 0at% <c ≦ 3at %, 6.8 at% ≦ x ≦ 10.8 at%, 2.2 at% ≦ y ≦ 9.8 at%, 0 at% ≦ z ≦ 4 at%, 0 at% ≦ t ≦ 1 at%, and (B addition amount z + Si A Fe-based amorphous alloy having a glass transition temperature (Tg) of 710 K or less is disclosed in which the addition amount t) is in the range of 1 at% to 4 at%. Patent Document 2 has a composition of Ni: 41 wt% or more and less than 45 wt%, additive A: 1 wt% or more and 5 wt% or less, balance: Fe and unavoidable impurities, and the additive A includes Al, Si , Mn, Mo, Cr, Cu, Fe—Ni-based soft magnetic alloy powder is disclosed.

特許第5419302号公報Japanese Patent No. 5419302 特開2007−254814号公報JP 2007-254814 A

上記の特許文献に開示されるような強磁性金属粉末を含む成形体を有する磁性部材を備え、導電性の接続端部をその表面に複数備える電子部品は、これらの接続端部間で短絡が生じないように、磁性部材の表面が適切な絶縁性を有していることが求められる。   An electronic component including a magnetic member having a molded body containing a ferromagnetic metal powder as disclosed in the above patent document and having a plurality of conductive connection end portions on the surface thereof is short-circuited between these connection end portions. In order not to occur, the surface of the magnetic member is required to have appropriate insulating properties.

特に、導電性の接続端部を構成する部材を電気めっきにより形成しようとする場合には、次に説明するように、磁性部材の表面が十分な絶縁性を有していることが好ましい。すなわち、磁性部材の表面上に電気めっきによりめっき層を形成する場合には、電気めっきを行う前に、磁性部材の表面の一部の領域上に導電性ペーストなどからなるメタライズ層を形成してその領域を通電領域とすることが行われる。磁性部材の表面が十分な絶縁性を有していれば、電気めっきを行った際に、アノードからの電気力線は磁性部材の表面のうち通電領域に到達して、この通電領域上に選択的にめっき層を形成することができる。   In particular, when the member constituting the conductive connection end is to be formed by electroplating, it is preferable that the surface of the magnetic member has sufficient insulation as described below. That is, when a plating layer is formed on the surface of the magnetic member by electroplating, a metallized layer made of a conductive paste or the like is formed on a part of the surface of the magnetic member before electroplating. The area is set as an energized area. If the surface of the magnetic member has sufficient insulation, the electric lines of force from the anode will reach the current-carrying region on the surface of the magnetic member and be selected on this current-carrying region when electroplating is performed. Thus, a plating layer can be formed.

ところが、磁性部材が十分な絶縁性を有していないときには、電気めっきを行った際に、アノードからの電気力線が、磁性部材の表面における上記の通電領域に隣接する領域(隣接領域)にも到達してしまう。その結果、めっき層は、通電領域をはみ出して、この隣接領域にも形成されてしまう。   However, when the magnetic member does not have sufficient insulation, when the electroplating is performed, the electric lines of force from the anode are in a region (adjacent region) adjacent to the current-carrying region on the surface of the magnetic member. Will also reach. As a result, the plating layer protrudes from the energized region and is also formed in this adjacent region.

このような、いわゆる、「めっき伸び」現象が生じると、導電性層の平面視形状はメタライズ層の平面視形状とは異なってしまうため、電子部品に外観不良が生じる。めっき伸び量が多い場合には、互いに接しないように磁性部材の表面に設けられていた通電領域間を電気的に短絡させるようにめっき層が形成されて、電子部品はその機能を適切に果たすことができなくなってしまう。   When such a so-called “plating elongation” phenomenon occurs, the planar view shape of the conductive layer differs from the planar view shape of the metallized layer, resulting in poor appearance of the electronic component. When the amount of plating elongation is large, a plating layer is formed so as to electrically short-circuit between current-carrying regions provided on the surface of the magnetic member so as not to contact each other, and the electronic component performs its function appropriately. It becomes impossible to do.

かかる現状を鑑み、本発明は、磁性部材の表面の絶縁性が高められた電子部品を提供することを目的とする。また、本発明は、上記の電子部品を製造する方法、および上記の電子部品を実装した電子機器を提供することを目的とする。   In view of the current situation, an object of the present invention is to provide an electronic component having an improved surface insulation of a magnetic member. It is another object of the present invention to provide a method for manufacturing the above electronic component and an electronic device on which the above electronic component is mounted.

本発明者らが検討した結果、磁性部材の表層に位置する絶縁層が、無機系の材料を含む無機絶縁層を備えることにより、上記課題を解決しうるとの新たな知見を得た。   As a result of investigations by the present inventors, a new finding has been obtained that the above-mentioned problems can be solved by providing the insulating layer located on the surface layer of the magnetic member with an inorganic insulating layer containing an inorganic material.

以上の新たな知見に基づき提供される本発明は、次のとおりである。
(1)強磁性金属粉末を含む成形体および前記成形体の表面部上に形成された絶縁層を備える磁性部材と、前記磁性部材の内部に位置する部分を有する導電性部材と、前記導電性部材に対して電気的に接続された状態で前記磁性部材の表面上に形成された導電性の接続端部とを備え、前記絶縁層は無機系の材料からなる無機絶縁層を備えること
を特徴とする電子部品。
The present invention provided on the basis of the above new findings is as follows.
(1) A molded body including a ferromagnetic metal powder, a magnetic member including an insulating layer formed on a surface portion of the molded body, a conductive member having a portion located inside the magnetic member, and the conductive A conductive connection end formed on the surface of the magnetic member in a state of being electrically connected to the member, and the insulating layer includes an inorganic insulating layer made of an inorganic material. Electronic parts.

(2)前記接続端部はめっき層を備える、上記(1)に記載の電子部品。 (2) The electronic component according to (1), wherein the connection end includes a plating layer.

(3)前記めっき層は、前記絶縁層上に設けられたメタライズ層上に電気めっきにより形成されたものである、上記(2)に記載の電子部品。 (3) The electronic component according to (2), wherein the plating layer is formed by electroplating on a metallized layer provided on the insulating layer.

(4)前記無機絶縁層は絶縁性の酸化物系材料を含む、上記(1)から(3)のいずれかに記載される電子部品。 (4) The electronic component according to any one of (1) to (3), wherein the inorganic insulating layer includes an insulating oxide-based material.

(5)前記絶縁層の表面抵抗は、1×1012Ω/□以上である、上記(1)から(4)のいずれかに記載される電子部品。 (5) The electronic component according to any one of (1) to (4), wherein the surface resistance of the insulating layer is 1 × 10 12 Ω / □ or more.

(6)前記絶縁層は、前記成形体の表面部を構成する前記強磁性金属粉末を覆うように設けられている、上記(1)から(5)のいずれかに記載される電子部品。 (6) The electronic component according to any one of (1) to (5), wherein the insulating layer is provided so as to cover the ferromagnetic metal powder constituting the surface portion of the molded body.

(7)前記絶縁層は、前記無機絶縁層と前記成形体との間に含浸コート層を備える、上記(1)から(6)のいずれかに記載される電子部品。 (7) The electronic component according to any one of (1) to (6), wherein the insulating layer includes an impregnated coat layer between the inorganic insulating layer and the molded body.

(8)前記含浸コート層はシリコーン樹脂を含む、上記(7)に記載の電子部品。 (8) The electronic component according to (7), wherein the impregnated coat layer includes a silicone resin.

(9)前記成形体は有機系成分を含む、上記(1)から(8)のいずれかに記載される電子部品。 (9) The electronic component according to any one of (1) to (8), wherein the molded body includes an organic component.

(10)前記磁性部材は空孔を有する、上記(1)から(9)のいずれかに記載される電子部品。 (10) The electronic component according to any one of (1) to (9), wherein the magnetic member has holes.

(11)成形体と絶縁層とを備える磁性部材および導電性の接続端部を備える電子部品の製造方法であって、前記強磁性金属粉末およびバインダー成分を含む混合体を成形する成形工程;前記成形工程を経て得られた前記成形体上に無機系の材料からなる無機絶縁層を含む絶縁層を形成して、前記磁性部材を得る無機絶縁層形成工程;および前記磁性部材の前記絶縁層上に前記接続端部を形成する接続端部形成工程を備えることを特徴とする電子部品の製造方法。 (11) A method of manufacturing an electronic component including a magnetic member including a molded body and an insulating layer and a conductive connection end, wherein the molding step includes molding the mixture containing the ferromagnetic metal powder and a binder component; Forming an insulating layer including an inorganic insulating layer made of an inorganic material on the molded body obtained through the molding step to obtain the magnetic member; and on the insulating layer of the magnetic member; The manufacturing method of the electronic component characterized by including the connection end part formation process which forms the said connection end part in.

(12)前記成形工程により得られた成形製造物に対してアニール処理を行う前記アニール工程を備える、上記(11)に記載の電子部品の製造方法。 (12) The method for manufacturing an electronic component according to (11), including the annealing step of performing an annealing process on the molded product obtained by the molding step.

(13)前記無機絶縁層形成工程はドライ成膜プロセスを含む、上記(11)または(12)に記載の電子部品の製造方法。 (13) The method for manufacturing an electronic component according to (11) or (12), wherein the inorganic insulating layer forming step includes a dry film forming process.

(14)前記無機絶縁層形成工程はウエット成膜プロセスを含む、上記(11)または(12)に記載の電子部品の製造方法。 (14) The method for manufacturing an electronic component according to (11) or (12), wherein the inorganic insulating layer forming step includes a wet film forming process.

(15)前記成形工程終了後、前記無機絶縁層形成工程開始前に、前記磁性部材上に含浸コート層を形成する含浸コーティング工程をさらに備える、上記(11)から(14)のいずれかに記載される電子部品の製造方法。 (15) The method according to any one of (11) to (14), further comprising an impregnation coating step of forming an impregnation coating layer on the magnetic member after the molding step is completed and before the inorganic insulating layer formation step is started. Manufacturing method for electronic parts.

(16)前記含浸コート層はシリコーン樹脂を含む、上記(15)に記載の電子部品。 (16) The electronic component according to (15), wherein the impregnated coat layer includes a silicone resin.

(17)前記導電性層は導電ペーストから形成されたメタライズ層と前記メタライズ層上に形成されためっき層とを備え、前記接続端部形成工程は、前記導電性ペーストを前記絶縁層上に塗布してメタライズ層を形成すること、および電気めっき処理を行って前記メタライズ層上に前記めっき層を形成することを含む、上記(11)から(16)のいずれかに記載される電子部品の製造方法。 (17) The conductive layer includes a metallized layer formed from a conductive paste and a plating layer formed on the metallized layer, and the connection end forming step applies the conductive paste onto the insulating layer. Forming the metallized layer, and performing the electroplating process to form the plated layer on the metallized layer, manufacturing the electronic component according to any one of (11) to (16) above Method.

(18)前記磁性部材はその内部に導電性部材を有するものであって、前記接続端部形成工程では、前記導電性部材に電気的に接続するように前記接続端部は形成される、上記(11)から(17)のいずれかに記載される電子部品の製造方法。 (18) The magnetic member has a conductive member therein, and in the connection end forming step, the connection end is formed so as to be electrically connected to the conductive member. (11) The manufacturing method of the electronic component as described in any one of (17).

(19)上記(1)から(10)のいずれかに記載される電子部品を実装した電子機器。 (19) An electronic device on which the electronic component according to any one of (1) to (10) is mounted.

(20)上記(11)から(18)に記載される製造方法により製造された電子部品を実装した電子機器。 (20) An electronic device on which an electronic component manufactured by the manufacturing method described in (11) to (18) is mounted.

上記の発明に係る電子部品は、磁性部材の絶縁層が無機絶縁層を有するため、磁性部材の表面の絶縁性を高めることができる。本発明によれば、かかる電子部品を製造する方法が提供される。また、本発明によれば、上記の電子部品を実装した電子機器も提供される。   In the electronic component according to the above invention, since the insulating layer of the magnetic member has an inorganic insulating layer, the insulation of the surface of the magnetic member can be improved. According to the present invention, a method of manufacturing such an electronic component is provided. Moreover, according to this invention, the electronic device which mounted said electronic component is also provided.

本発明の一実施形態に係るインダクタンス素子の全体構成を一部透視して示す斜視図である。1 is a perspective view showing a part of the entire configuration of an inductance element according to an embodiment of the present invention. 実施例1により製造された電子部品の1つの断面観察の結果を示す図である。FIG. 6 is a diagram illustrating a result of observation of one cross section of an electronic component manufactured according to Example 1. 図1における白枠(a)を拡大して観察した結果を示す図であり、図中の数値は無機絶縁層の厚さを示している。It is a figure which shows the result of having expanded and observed the white frame (a) in FIG. 1, and the numerical value in a figure has shown the thickness of the inorganic insulating layer. 図1における白枠(b)を拡大して観察した結果を示す図であり、図中の数値は無機絶縁層の厚さを示している。It is a figure which shows the result of having expanded and observed the white frame (b) in FIG. 1, and the numerical value in a figure has shown the thickness of the inorganic insulating layer. 図1における白枠(c)を拡大して観察した結果を示す図であり、図中の数値は無機絶縁層の厚さを示している。It is a figure which shows the result of having expanded and observed the white frame (c) in FIG. 1, and the numerical value in a figure has shown the thickness of the inorganic insulating layer. 比較例1により製造された電子部品の1つの外観観察の結果を示す図であり、白丸枠内が「めっき伸び」現象が生じた部分である。It is a figure which shows the result of one external appearance observation of the electronic component manufactured by the comparative example 1, and the inside of a white circle frame is a part which the "plating elongation" phenomenon produced. 実施例1により製造された電子部品の1つの外観観察の結果を示す図である。FIG. 5 is a diagram showing the result of one appearance observation of an electronic component manufactured according to Example 1. 試験例5の結果を示すグラフである。10 is a graph showing the results of Test Example 5.

以下、本発明の実施形態について、電子部品が、図1に示されるインダクタンス素子10である場合を具体例として説明する。   Hereinafter, the embodiment of the present invention will be described by taking a case where the electronic component is the inductance element 10 shown in FIG. 1 as a specific example.

1.インダクタンス素子
図1に示されるように、本発明の一実施形態に係るインダクタンス素子10は、磁性部材1、導電性部材2および2つの接続端部3a,3bを備える。磁性部材1は、成形体および絶縁層を備える。導電性部材2は、磁性部材1の内部に位置する部分を有する。具体的には、図1に示されるインダクタンス素子10では、磁性部材1の成形体の内部にコイルが埋設されている。導電性の接続端部3a,3bは、導電性部材2に対して電気的に接続された状態で、磁性部材1の表面上に形成されたものである。
1. Inductance Element As shown in FIG. 1, an inductance element 10 according to an embodiment of the present invention includes a magnetic member 1, a conductive member 2, and two connection ends 3a and 3b. The magnetic member 1 includes a molded body and an insulating layer. The conductive member 2 has a portion located inside the magnetic member 1. Specifically, in the inductance element 10 shown in FIG. 1, a coil is embedded in the molded body of the magnetic member 1. The conductive connection ends 3 a and 3 b are formed on the surface of the magnetic member 1 while being electrically connected to the conductive member 2.

本発明の一実施形態に係るインダクタンス素子10の大きさは限定されない。後述するように、本発明の一実施形態に係るインダクタンス素子10の磁性部材1の表面の絶縁性は十分に高いことから、その大きさは、2mm×2mm、高さ1mm程度の、特に小型であってもよい。また、接続端部3a,3bの離間距離は、1mm以下であってもよい。   The magnitude | size of the inductance element 10 which concerns on one Embodiment of this invention is not limited. As will be described later, since the insulation of the surface of the magnetic member 1 of the inductance element 10 according to an embodiment of the present invention is sufficiently high, the size is particularly small, about 2 mm × 2 mm and about 1 mm in height. There may be. Further, the distance between the connection end portions 3a and 3b may be 1 mm or less.

以下、磁性部材1が備える成形体および絶縁層、導電性部材2ならびに接続端部3a,3bについて説明する。   Hereinafter, the molded body and the insulating layer, the conductive member 2, and the connection end portions 3a and 3b included in the magnetic member 1 will be described.

(1)磁性部材
(1−1)成形体
成形体は、強磁性金属粉末を含む。強磁性金属粉末の種類は限定されない。前述のように、強磁性金属粉末として、Fe基非晶質合金粉末、Fe−Ni系合金粉末、Fe−Si系合金粉末、純鉄粉末(高純度鉄粉)等の軟磁性合金粉末が例示される。強磁性金属粉末は導電性が高いため、成形体の最表面が強磁性金属粉末の面からなる場合には、成形体の表面の絶縁性を確保することは困難である。
(1) Magnetic member (1-1) Molded body The molded body contains a ferromagnetic metal powder. The kind of ferromagnetic metal powder is not limited. As described above, examples of the ferromagnetic metal powder include soft magnetic alloy powders such as Fe-based amorphous alloy powder, Fe-Ni alloy powder, Fe-Si alloy powder, and pure iron powder (high purity iron powder). Is done. Since the ferromagnetic metal powder has high conductivity, it is difficult to ensure the insulation of the surface of the molded body when the outermost surface of the molded body is composed of the surface of the ferromagnetic metal powder.

成形体は、有機系成分を含んでいてもよい。有機系成分は、強磁性金属粉末を互いに結着させることができることが好ましい。かかる結着機能を有する有機系成分の具体的な組成は限定されない。有機系成分は樹脂材料を含んでいてもよく、樹脂材料として、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、アクリル樹脂、オレフィン樹脂などが例示される。有機系成分は上記のような樹脂材料が熱処理を受けて形成された物質を含んでいてもよい。かかる物質の組成は、熱処理を受ける樹脂材料の組成、熱処理条件などにより調整されうる。有機系成分は、成形体に含まれる強磁性金属粉末を互いに電気的に独立にすることができることが好ましい。有機系成分に係る樹脂材料は1種類から構成されていてもよいし、複数種類から構成されていてもよい。例えば、有機系成分に係る樹脂材料は、フェノール樹脂のような熱硬化性の樹脂と、アクリル樹脂のような熱可塑性樹脂との混合体であってもよい。   The molded body may contain an organic component. The organic component is preferably capable of binding the ferromagnetic metal powder to each other. The specific composition of the organic component having such a binding function is not limited. The organic component may contain a resin material, and examples of the resin material include silicone resin, epoxy resin, phenol resin, melamine resin, urea resin, acrylic resin, and olefin resin. The organic component may include a substance formed by subjecting the resin material as described above to a heat treatment. The composition of such a substance can be adjusted by the composition of the resin material that is subjected to heat treatment, the heat treatment conditions, and the like. It is preferable that the organic component can make the ferromagnetic metal powder contained in the compact electrically independent from each other. The resin material related to the organic component may be composed of one type or a plurality of types. For example, the resin material related to the organic component may be a mixture of a thermosetting resin such as a phenol resin and a thermoplastic resin such as an acrylic resin.

成形体が有機系成分を含有する場合において、成形体における有機系成分の含有量は限定されない。有機系成分が結着機能を有する場合には、その機能が適切に発揮される量を含有させることが好ましい。なお、有機系成分の含有量が過度に高い場合には、成形体を備える磁性部材1の磁気的特性が低下する傾向がみられる場合があることを考慮して、成形体における有機系成分の含有量を設定することが好ましい。   When a molded object contains an organic component, content of the organic component in a molded object is not limited. In the case where the organic component has a binding function, it is preferable to contain an amount capable of appropriately exhibiting the function. It should be noted that when the content of the organic component is excessively high, there is a tendency that the magnetic properties of the magnetic member 1 provided with the molded body tend to be reduced. It is preferable to set the content.

成形体は、強磁性金属粉末および有機系成分以外の物質を含有してもよい。かかる物質として、ガラス、アルミナ等の絶縁性の無機系成分;シランカップリング剤等の、強磁性金属粉末および有機系成分との密着性を向上するためのカップリング剤などが挙げられる。これらの物質の成形体における含有量は限定されない。   The molded body may contain substances other than the ferromagnetic metal powder and the organic component. Examples of such substances include insulating inorganic components such as glass and alumina; coupling agents for improving adhesion to ferromagnetic metal powders and organic components such as silane coupling agents. The content of these substances in the molded body is not limited.

成形体は空孔を有していてもよい。この空孔の形成過程は限定されない。成形後のスプリングバックによって形成されたものであってもよいし、後述するように、成形により得られた成形製造物に対してアニール処理が行われたことにより形成されたものであってもよい。成形体が空孔を有している場合には、成形体内の強磁性粉末間の絶縁が良好になって磁性部材1の磁気特性が向上する傾向を有する。ただし、成形体内の空孔の存在密度が過度に高いと、成形体内の強磁性粉末間の結着の程度が低下して磁性部材1の機械的強度が低下するおそれが高まる。したがって、成形体が空孔を有している場合には、成形体の空隙率(成形体において固体物質が存在しない部分として定義される空隙部の体積の、成形体全体の体積に対する百分率)は、3%以下であることが好ましく、1%以下であることがより好ましい。   The molded body may have pores. The formation process of this hole is not limited. It may be formed by a springback after molding, or may be formed by performing an annealing process on a molded product obtained by molding, as will be described later. . When the molded body has pores, the insulation between the ferromagnetic powders in the molded body tends to be good, and the magnetic properties of the magnetic member 1 tend to be improved. However, when the existence density of the voids in the molded body is excessively high, the degree of binding between the ferromagnetic powders in the molded body is lowered, and the mechanical strength of the magnetic member 1 is likely to be lowered. Therefore, when the molded body has pores, the porosity of the molded body (percentage of the volume of the void portion defined as a portion where no solid substance exists in the molded body with respect to the volume of the entire molded body) is It is preferably 3% or less, and more preferably 1% or less.

(1−2)絶縁層
絶縁層は、磁性部材1の表面が絶縁性を有するように、成形体の表面および必要に応じて表面近傍の部分(本明細書において、これらを「表面部」と総称する。)上に形成される。本発明の一実施形態に係る磁性部材1は、その絶縁層が無機系の材料からなる無機絶縁層を備える。無機絶縁層を構成する材料は適切な絶縁性を有する限り限定されない。酸化物系材料、炭化物系材料、窒化物系材料などが例示される。酸化物系材料の具体例として、シリコンの酸化物、アルミニウムの酸化物、より具体的にはSiO、Alなどが例示される。但し、成膜時の簡便さを考慮すると、SiOがより好ましい。こうした絶縁性の酸化物系材料は体積抵抗率が高いため、比較的薄膜であっても単独で優れた絶縁性の膜となりうる。
(1-2) Insulating layer The insulating layer is formed so that the surface of the magnetic member 1 is insulative, and the part near the surface as necessary (in the present specification, these are referred to as “surface part”). Generically)) formed on. The magnetic member 1 according to an embodiment of the present invention includes an inorganic insulating layer whose insulating layer is made of an inorganic material. The material which comprises an inorganic insulating layer is not limited as long as it has appropriate insulation. Examples thereof include oxide materials, carbide materials, and nitride materials. Specific examples of the oxide-based material include silicon oxide, aluminum oxide, and more specifically SiO 2 , Al 2 O 3, and the like. However, considering the simplicity during film formation, SiO 2 is more preferable. Since such an insulating oxide-based material has a high volume resistivity, even if it is a relatively thin film, it can be an excellent insulating film alone.

無機絶縁層の厚さは限定されない。絶縁層が所望の絶縁性を有するように適宜設定される。無機絶縁層の厚さの範囲を例示すれば、0.1μm以上100μm以下であり、絶縁層の絶縁性と無機絶縁層の生産性とのバランスを良好にする観点から、無機絶縁層の厚さは1μm以上10μm以下とすることが好ましい。   The thickness of the inorganic insulating layer is not limited. The insulating layer is appropriately set so as to have a desired insulating property. For example, the thickness range of the inorganic insulating layer is 0.1 μm or more and 100 μm or less, and the thickness of the inorganic insulating layer is from the viewpoint of improving the balance between the insulating properties of the insulating layer and the productivity of the inorganic insulating layer. Is preferably 1 μm or more and 10 μm or less.

無機絶縁層の製造方法は限定されない。ドライプロセス、ウエットプロセスのいずれであってもよい。ドライプロセスとして、CVD(化学気相成長法、Chemical Vapor Deposition)、スパッタリング、蒸着、イオンプレーティングなどが例示される。ウエットプロセスとして、ゾルゲル法、化成処理などが例示される。無機絶縁層の厚さの均一性および絶縁性を高める観点から、無機絶縁層は、表面反応により緻密な無機系皮膜を形成することが可能なCVDにより形成されることが好ましい。   The manufacturing method of an inorganic insulating layer is not limited. Either a dry process or a wet process may be used. Examples of the dry process include CVD (Chemical Vapor Deposition), sputtering, vapor deposition, and ion plating. Examples of the wet process include a sol-gel method and a chemical conversion treatment. From the viewpoint of improving the uniformity of the thickness and the insulating property of the inorganic insulating layer, the inorganic insulating layer is preferably formed by CVD capable of forming a dense inorganic film by a surface reaction.

絶縁層は、成形体の最表面に位置する強磁性金属粉末(以下、「表面粉末」ともいう。)を覆うように設けられていることが好ましい。表面粉末は、成形後のスプリングバックにより成形金型から取り出す際に金型表面と擦れたり、成形工程後の製造過程において他の部材と接触したりすることにより、金属性材料からなる表面が露出してしまう場合がある。そのような場合であっても、表面粉末を覆うように絶縁層が形成されることにより、磁性部材1の表面の絶縁性を高めることが可能となる。   The insulating layer is preferably provided so as to cover a ferromagnetic metal powder (hereinafter also referred to as “surface powder”) located on the outermost surface of the molded body. When the surface powder is removed from the molding die by the spring back after molding, the surface made of a metallic material is exposed by rubbing against the mold surface or coming into contact with other members in the manufacturing process after the molding process. May end up. Even in such a case, the insulating property of the surface of the magnetic member 1 can be improved by forming the insulating layer so as to cover the surface powder.

絶縁層の表面抵抗は、1×1012Ω/□以上であることが好ましい。この程度の表面抵抗であれば、電気めっき処理によって磁性部材1上にめっき層を形成する場合において、メタライズ層などによって磁性部材1上に設けられた通電領域以外にめっき材料が析出しにくくなり、「めっき伸び」現象が生じる可能性をより安定的に低減させることができる。「めっき伸び」現象の発生をさらに安定的に抑制する観点から、絶縁層の表面抵抗は、5×1012Ω/□以上であることが好ましく、1×1013Ω/□以上であることがより好ましい。 The surface resistance of the insulating layer is preferably 1 × 10 12 Ω / □ or more. With this level of surface resistance, when a plating layer is formed on the magnetic member 1 by electroplating, the plating material is less likely to deposit in areas other than the current-carrying region provided on the magnetic member 1 by a metallized layer or the like. The possibility that the “plating elongation” phenomenon occurs can be more stably reduced. From the viewpoint of further stably suppressing the occurrence of the “plating elongation” phenomenon, the surface resistance of the insulating layer is preferably 5 × 10 12 Ω / □ or more, and preferably 1 × 10 13 Ω / □ or more. More preferred.

絶縁層は、無機絶縁層と成形体との間に含浸コート層を備えてもよい。表面粉末からなる、または表面粉末が有機系成分などによって結着された構造を有する成形体の表面は、強磁性金属粉末の粒度分布によっては凹凸の程度が大きくなっている場合がある。このような場合には、表面粉末を覆うように無機絶縁層を形成することは容易でない。そこで、成形体の表面にまず含浸コート層を形成して、無機絶縁層の形成対象(含浸コートが形成された成形体)の表面の凹凸の程度を小さくした後、無機絶縁層を形成することにより、無機絶縁層によって表面粉末を覆うことが容易になる。したがって、含浸コート層は、表面粉末の表面の全てを覆うように形成されていてもよいし、表面粉末の表面に含浸コート層により覆われていない部分があってもよい。いずれにしても、含浸コート層を形成することによって、無機絶縁層の形成対象の表面の凹凸の程度を小さくできればよい。   The insulating layer may include an impregnation coat layer between the inorganic insulating layer and the molded body. Depending on the particle size distribution of the ferromagnetic metal powder, the surface of the molded body made of the surface powder or having a structure in which the surface powder is bound by an organic component or the like may have a large degree of unevenness. In such a case, it is not easy to form the inorganic insulating layer so as to cover the surface powder. Therefore, an impregnation coat layer is first formed on the surface of the molded body, and after the degree of unevenness on the surface of the inorganic insulating layer formation target (molded body on which the impregnation coat is formed) is reduced, the inorganic insulating layer is formed. Thus, it becomes easy to cover the surface powder with the inorganic insulating layer. Therefore, the impregnation coat layer may be formed so as to cover the entire surface of the surface powder, or there may be a portion not covered with the impregnation coat layer on the surface of the surface powder. In any case, it is only necessary that the degree of unevenness on the surface on which the inorganic insulating layer is formed can be reduced by forming the impregnated coat layer.

含浸コート層の種類は限定されない。シリコーン樹脂、アクリル樹脂、ブチラールフェノール樹脂などが例示される。無機絶縁層を形成するための処理(特にドライプロセス)において冒される可能性が比較的低いことから、含浸コート層はシリコーン樹脂を含むことが好ましい。   The kind of impregnation coat layer is not limited. Examples include silicone resin, acrylic resin, butyral phenol resin, and the like. The impregnation coat layer preferably contains a silicone resin because it is relatively unlikely to be affected in the treatment for forming the inorganic insulating layer (particularly the dry process).

従来技術においては、絶縁層は、このような含浸コートのみにより構成される場合があった。しかしながら、図1に示されるインダクタンス素子10のような電子部品が特に小型化された場合(具体例として2mm×2mm、高さ1mm程度またはそれ以下の大きさが挙げられる。)には、含浸コーティング組成物の塗れ性を高めても、成形体の表面部に均一性高く含浸コート層を形成することは困難である。また、上述したように成形体が空孔を有している場合、含浸コーティング組成物は、この空孔に浸み込んでしまい、成形体の表面が一部露出し、成形体の表面部に含浸コート層を均一に形成できず、電子部品が備える磁性部材の表面に十分な絶縁性を有しない領域(本明細書において「低絶縁性領域」ともいう。)が生じてしまうことがあった。このような低絶縁性領域が「めっき伸び」現象の原因となりうることは前述のとおりである。そこで、低絶縁性領域が生じる可能性を低減させるべく、含浸コート層を形成するための含浸コーティング組成物の使用量を増やすと、含浸コーティング組成物から含浸コート層が形成される際の収縮量が多くなる。その結果、この収縮に起因して電子部品内の強磁性金属粉末に歪が生じやすくなることがあった。この強磁性金属粉末に生じた歪は、電子部品の磁気特性を低下させる原因となりうる。   In the prior art, the insulating layer may be constituted only by such an impregnation coat. However, when an electronic component such as the inductance element 10 shown in FIG. 1 is particularly miniaturized (specific examples include a size of 2 mm × 2 mm and a height of about 1 mm or less), impregnation coating. Even if the wettability of the composition is improved, it is difficult to form an impregnated coat layer with high uniformity on the surface of the molded body. In addition, as described above, when the molded body has pores, the impregnated coating composition is soaked in the pores, and the surface of the molded body is partially exposed to the surface portion of the molded body. In some cases, the impregnated coat layer cannot be formed uniformly, and a region (also referred to as “low insulation region” in this specification) that does not have sufficient insulation on the surface of the magnetic member included in the electronic component may occur. . As described above, such a low insulating region can cause a “plating elongation” phenomenon. Therefore, if the amount of the impregnated coating composition used to form the impregnated coating layer is increased in order to reduce the possibility of the formation of a low insulating region, the amount of shrinkage when the impregnated coat layer is formed from the impregnated coating composition. Will increase. As a result, distortion may easily occur in the ferromagnetic metal powder in the electronic component due to the shrinkage. The strain generated in the ferromagnetic metal powder can cause a decrease in the magnetic characteristics of the electronic component.

これに対し、本発明の一実施形態に係る電子部品10は、絶縁層が無機絶縁層を備えることから、磁性部材1の表面に低絶縁性領域が生じる可能性は十分に低減されている。したがって、電子部品(インダクタンス素子10)の大きさが特に小型化された場合であっても、「磁性部材1の表面にめっき伸び」現象のような不具合が生じにくい。   On the other hand, in the electronic component 10 according to an embodiment of the present invention, since the insulating layer includes an inorganic insulating layer, the possibility that a low insulating region is generated on the surface of the magnetic member 1 is sufficiently reduced. Therefore, even when the size of the electronic component (inductance element 10) is particularly reduced, problems such as the “plating elongation on the surface of the magnetic member 1” phenomenon hardly occur.

(2)導電性部材
導電性部材2は、磁性部材1の内部に埋設可能であれば、その形状および組成は限定されない。図1に示されるインダクタンス素子10の場合には、導電性部材2はコイル形状の部分を有する。このコイルの具体的な形状は限定されない。例えば、コイルはエッジワイズコイルであってもよい。導電性部材2は、銅、アルミニウムなどを含有する導電率が高い材料から構成されていることが好ましい。
(2) Conductive Member The shape and composition of the conductive member 2 are not limited as long as the conductive member 2 can be embedded in the magnetic member 1. In the case of the inductance element 10 shown in FIG. 1, the conductive member 2 has a coil-shaped portion. The specific shape of this coil is not limited. For example, the coil may be an edgewise coil. The conductive member 2 is preferably made of a material having a high conductivity containing copper, aluminum and the like.

(3)接続端部
接続端部3a,3bは、導電性部材2の端部2a,2bに対して電気的に接続された状態で、磁性部材1の表面上に形成された導電性の部材である。接続端部3a,3bは、通常、磁性部材1の表面の複数の領域上に形成される。図1に示されるインダクタンス素子10では、2つの接続端部3a,3bを備える。接続端部3a,3bの形状および組成は、接続端部3a,3bが適切な導電性を有し、磁性部材1の表面上の複数の接続端部3a,3bが短絡しない限り、限定されない。
(3) Connection end portion The connection end portions 3a and 3b are electrically conductive members formed on the surface of the magnetic member 1 while being electrically connected to the end portions 2a and 2b of the conductive member 2. It is. The connection end portions 3 a and 3 b are usually formed on a plurality of regions on the surface of the magnetic member 1. The inductance element 10 shown in FIG. 1 includes two connection ends 3a and 3b. The shape and composition of the connection ends 3a and 3b are not limited as long as the connection ends 3a and 3b have appropriate conductivity and the plurality of connection ends 3a and 3b on the surface of the magnetic member 1 are not short-circuited.

図1に示されるインダクタンス素子10では、接続端部3a,3bは、生産性に優れる観点から、銀ペーストなどの導電ペーストから形成されたメタライズ層とこのメタライズ層上に形成されためっき層とを備える。このめっき層を形成する材料は限定されない。当該材料が含有する金属元素として、銅、アルミ、亜鉛、ニッケル、鉄、スズなどが例示される。   In the inductance element 10 shown in FIG. 1, the connection end portions 3 a and 3 b include a metallized layer formed from a conductive paste such as a silver paste and a plating layer formed on the metallized layer from the viewpoint of excellent productivity. Prepare. The material for forming the plating layer is not limited. Examples of the metal element contained in the material include copper, aluminum, zinc, nickel, iron, and tin.

上記のめっき層が電気めっきにより形成される場合であっても、本発明の一実施形態に係る磁性部材1の表面は十分な絶縁性を有するため、「めっき伸び」現象が生じにくい。   Even in the case where the plating layer is formed by electroplating, the surface of the magnetic member 1 according to an embodiment of the present invention has sufficient insulation, so that the “plating elongation” phenomenon is unlikely to occur.

接続端部3a,3bの厚さや大きさ(形状)は、適宜設定されるべきものである。上記のように、接続端部3a,3bがメタライズ層とめっき層とを備える場合には、メタライズ層を形成するための導電ペーストの塗布量として0.05g/cm程度が例示され、めっき層の厚さの範囲として5〜10μm程度が例示される。 The thickness and size (shape) of the connection ends 3a and 3b should be set as appropriate. As described above, when the connection end portions 3a and 3b include the metallized layer and the plating layer, the application amount of the conductive paste for forming the metallized layer is exemplified by about 0.05 g / cm 2. As the thickness range, about 5 to 10 μm is exemplified.

2.電子部品の製造方法
本発明の一実施形態に係る電子部品の製造方法は特に限定されない。次に説明する製造方法により製造すれば、本発明の一実施形態に係る電子部品、具体的には、インダクタンス素子10を効率的に製造することが実現される。
2. Manufacturing method of electronic component The manufacturing method of the electronic component which concerns on one Embodiment of this invention is not specifically limited. If manufactured by the manufacturing method described below, it is possible to efficiently manufacture the electronic component according to the embodiment of the present invention, specifically, the inductance element 10.

一例において、本発明の一実施形態に係る電子部品(インダクタンス素子10)の製造方法は、成形工程、無機絶縁層形成工程、および接続端部形成工程を備え、好ましい一例において、成形工程と無機絶縁層形成工程との間に、アニール工程および含浸コーティング工程を備える。   In one example, a method for manufacturing an electronic component (inductance element 10) according to an embodiment of the present invention includes a molding process, an inorganic insulating layer forming process, and a connection end forming process, and in a preferred example, the molding process and inorganic insulation. An annealing step and an impregnation coating step are provided between the layer forming step and the layer forming step.

成形工程では、強磁性金属粉末およびバインダー成分を含む混合体を成形する。バインダー成分は限定されず、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、アクリル樹脂、オレフィン樹脂などの樹脂材料が例示される。混合体は、絶縁性の無機系成分、カップリング剤、潤滑剤(ステアリン酸亜鉛、ステアリン酸アルミニウム等が例示される。)などをさらに含んでいてもよい。混合体の調製方法も任意である。ボールミルなどを用いて混合してもよいし、各成分を含む分散液を調整して、この分散液を乾燥・粉砕して、強磁性金属粉末を含む造粒粉として混合体を得てもよい。成形条件も限定されない。0.1GPa〜5GPa程度の範囲で常温にて加圧することが例示される。   In the forming step, a mixture containing the ferromagnetic metal powder and the binder component is formed. The binder component is not limited, and examples thereof include resin materials such as silicone resin, epoxy resin, phenol resin, melamine resin, urea resin, acrylic resin, and olefin resin. The mixture may further contain an insulating inorganic component, a coupling agent, a lubricant (such as zinc stearate and aluminum stearate), and the like. The method for preparing the mixture is also arbitrary. It may be mixed using a ball mill or the like, or a dispersion containing each component may be prepared, and the dispersion may be dried and pulverized to obtain a mixture as a granulated powder containing a ferromagnetic metal powder. . The molding conditions are not limited. The pressurization at room temperature is exemplified in the range of about 0.1 GPa to 5 GPa.

成形工程において、成形金型のキャビティ内にコイルなどの導電性部材2を配置して成形を行うことにより、成形製造物内に導電性部材2を埋設させることができる。   In the molding step, the conductive member 2 such as a coil is placed in the cavity of the molding die and molded, whereby the conductive member 2 can be embedded in the molded product.

成形工程により得られた成形製造物を、必要に応じてアニール処理するアニール工程を行ってもよい。アニール処理をすることにより、成形工程によって生じた強磁性金属粉末内の歪が緩和されて、磁性部材1の磁気特性を向上させることができる。アニール処理の条件は、強磁性金属粉末内に生じた歪の程度や、バインダー成分の熱的特性を考慮して適宜設定される。一例を挙げれば、昇温速度20℃/分〜50℃/分程度で、室温から400℃〜500℃程度に加熱して、加熱温度にて0.5時間〜5時間程度保持することが挙げられる。   You may perform the annealing process which anneal-processes the molded product obtained by the shaping | molding process as needed. By performing the annealing treatment, the strain in the ferromagnetic metal powder generated by the molding process is relaxed, and the magnetic characteristics of the magnetic member 1 can be improved. The conditions for the annealing treatment are appropriately set in consideration of the degree of strain generated in the ferromagnetic metal powder and the thermal characteristics of the binder component. For example, heating from room temperature to about 400 ° C. to about 500 ° C. at a rate of temperature increase of about 20 ° C./min to 50 ° C./min and holding at the heating temperature for about 0.5 hours to 5 hours. It is done.

アニール工程を経て得られた成形体に対して、無機絶縁層形成工程を実施する前に、含浸コーティング工程を行ってもよい。含浸コーティング工程では、含浸コーティング組成物と成形体とを接触させることにより、当該組成物を成形体の表層に含浸させる。接触方法は限定されない。含浸コーティング組成物中に成形体を浸漬させてもよいし、含浸コーティング組成物を成形体に塗布してもよい。含浸コーティング組成物中に成形体を浸漬させる場合には、真空排気しながら浸漬させることにより、含浸コーティング組成物を成形体内に入り込みやすくすることができる。成形体の表層に含浸した含浸コーティング組成物を乾燥したり、必要に応じて加熱などの処理を行ったりすることにより、含浸コート層が得られる。含浸コート層が形成されることにより、無機絶縁層形成工程の対象物である、含浸コート層が形成された成形体の表面の凹凸の程度は小さくなり、無機絶縁層形成工程において絶縁性に優れる無機絶縁層が形成されやすくなる。含浸コーティング組成物の組成は限定されない。シリコーン樹脂、アクリル樹脂、ブチラールフェノール樹脂など樹脂系材料を含有していてもよい。   An impregnation coating process may be performed on the molded body obtained through the annealing process before the inorganic insulating layer forming process is performed. In the impregnation coating step, the surface layer of the molded body is impregnated with the impregnated coating composition by contacting the molded body. The contact method is not limited. The molded body may be immersed in the impregnated coating composition, or the impregnated coating composition may be applied to the molded body. When the molded body is immersed in the impregnated coating composition, the impregnated coating composition can easily enter the molded body by being immersed while being evacuated. The impregnated coating layer can be obtained by drying the impregnated coating composition impregnated in the surface layer of the molded body or by performing a treatment such as heating as necessary. By forming the impregnated coat layer, the degree of unevenness on the surface of the molded body on which the impregnated coat layer is formed, which is an object of the inorganic insulating layer forming step, is reduced, and the insulating property is excellent in the inorganic insulating layer forming step. An inorganic insulating layer is easily formed. The composition of the impregnation coating composition is not limited. A resin material such as a silicone resin, an acrylic resin, or a butyral phenol resin may be contained.

無機絶縁層形成工程では、成形体上に無機系の材料からなる無機絶縁層を含む絶縁層を形成して、成形体と絶縁層とを備える磁性部材1を得る。上記のように、アニール工程が行われた場合には、成形体は、成形工程により得られた成形製造物に対してアニール処理が施されたものからなり、アニール工程が行われない場合には、成形体は成形工程により得られた成形製造物からなる。また、上記のように、含浸コーティング工程が行われた場合には、無機絶縁層は含浸コート層が形成された成形体上に形成される。したがって、この場合には、絶縁層は、含浸コート層および無機絶縁層を備える。含浸コーティング工程が行われない場合には、絶縁層は無機絶縁層を備える。   In the inorganic insulating layer forming step, an insulating layer including an inorganic insulating layer made of an inorganic material is formed on the molded body to obtain the magnetic member 1 including the molded body and the insulating layer. As described above, when the annealing process is performed, the molded body is formed by annealing the molded product obtained by the molding process, and when the annealing process is not performed. The molded body consists of a molded product obtained by the molding process. Further, as described above, when the impregnation coating step is performed, the inorganic insulating layer is formed on the molded body on which the impregnation coating layer is formed. Therefore, in this case, the insulating layer includes an impregnation coat layer and an inorganic insulating layer. When the impregnation coating process is not performed, the insulating layer includes an inorganic insulating layer.

前述のように、無機絶縁層を形成するための方法は限定されない。ドライプロセスであってもよいし、ウエットプロセスであってもよい。無機絶縁層の製造方法を適切に選択することにより、成形体の表面粉末を覆うように絶縁層を形成することが可能である。   As described above, the method for forming the inorganic insulating layer is not limited. It may be a dry process or a wet process. By appropriately selecting the method for manufacturing the inorganic insulating layer, it is possible to form the insulating layer so as to cover the surface powder of the molded body.

無機絶縁層形成工程後に絶縁層を構成する部材を形成するための工程が行われてもよい。そのような工程として、例えば、有機系のコート層を形成するための工程が行われてもよいし、フッ素系のコート層を形成するための工程が行われてもよい。   The process for forming the member which comprises an insulating layer may be performed after an inorganic insulating layer formation process. As such a process, for example, a process for forming an organic coat layer may be performed, or a process for forming a fluorine coat layer may be performed.

こうして、その表層に絶縁層を備える磁性部材1が得られたら、磁性部材1内に配置された導電性部材2に対して電気的に接続する接続端部3a,3bを、磁性部材1の絶縁層上に形成する接続端部形成工程を行う。接続端部3a,3bがメタライズ層とめっき層とから構成される場合には、まず、銀ペーストなどの導電性ペーストを絶縁層上に塗布する。塗布方法は任意である。印刷、ディスペンサーなどが好適に使用される。必要に応じて乾燥を行うことにより絶縁層上にメタライズ層を形成する。続いて、電気めっき処理を行ってメタライズ層上にめっき層を形成する。電気めっきの方法は限定されない。前述のように電子部品のサイズが特に小さい場合には、バレルめっきを行うことが好ましい。本発明の一実施形態に係る電子部品の製造方法では、絶縁層が無機絶縁層を備えるため、電気めっきを行った際に、めっき層が、メタライズ層をはみ出して磁性部材1の絶縁層上に形成される不具合(「めっき伸び」現象)生じにくい。   Thus, when the magnetic member 1 having the insulating layer on the surface layer is obtained, the connection ends 3 a and 3 b that are electrically connected to the conductive member 2 disposed in the magnetic member 1 are insulated from the magnetic member 1. A connection end forming process is performed on the layer. When the connection end portions 3a and 3b are composed of a metallized layer and a plating layer, first, a conductive paste such as a silver paste is applied on the insulating layer. The application method is arbitrary. Printing, a dispenser, etc. are used suitably. A metallized layer is formed on the insulating layer by drying as necessary. Subsequently, an electroplating process is performed to form a plating layer on the metallized layer. The method of electroplating is not limited. As described above, when the size of the electronic component is particularly small, barrel plating is preferably performed. In the method for manufacturing an electronic component according to an embodiment of the present invention, since the insulating layer includes an inorganic insulating layer, when electroplating is performed, the plating layer protrudes from the metallized layer onto the insulating layer of the magnetic member 1. Failure to form ("plating elongation" phenomenon) hardly occurs.

3.電子機器
本発明の一実施形態に係る電子部品(インダクタンス素子10)は、当該電子部品(インダクタンス素子10)が特に小型である場合であっても、接続端部3a,3bにおいて短絡が生じにくい。したがって、本発明の一実施形態に係る電子部品(インダクタンス素子10)は、特に小型であっても動作安定性に優れる。それゆえ、本発明の一実施形態に係る電子部品(インダクタンス素子10)を実装した電子機器は小型化が容易となる。また、電子機器の実装スペースに、多数の電子部品を実装することが可能となる。この点に関し、本発明の一実施形態に係る電子部品がインダクタンス素子10である場合には、インダクタンス素子10が小型であることにより、電源スイッチング回路、電圧昇降回路、平滑回路、高周波電流を阻止する回路などを小型化することが可能である。それゆえ、電子機器の電源供給回路を増やすことが容易となる。その結果、より精密な電源制御が可能となって、電子機器の消費電力を抑えることが可能となる。
3. Electronic device In the electronic component (inductance element 10) according to an embodiment of the present invention, even when the electronic component (inductance element 10) is particularly small, a short circuit is unlikely to occur at the connection end portions 3a and 3b. Therefore, the electronic component (inductance element 10) according to an embodiment of the present invention is excellent in operational stability even if it is particularly small. Therefore, the electronic device on which the electronic component (inductance element 10) according to the embodiment of the present invention is mounted can be easily downsized. In addition, a large number of electronic components can be mounted in the mounting space of the electronic device. In this regard, when the electronic component according to an embodiment of the present invention is the inductance element 10, the inductance element 10 is small, thereby preventing a power switching circuit, a voltage raising / lowering circuit, a smoothing circuit, and a high-frequency current. A circuit or the like can be reduced in size. Therefore, it is easy to increase the power supply circuit of the electronic device. As a result, more precise power supply control is possible, and the power consumption of the electronic device can be suppressed.

以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。   The embodiment described above is described for facilitating understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

例えば、上記の説明では、導電性部材は成形体の製造段階でその内部に埋設されるが、導電性部材を内包するように複数の成形体を配置してもよい。具体的には、1つの成形体が導電性部材を配置しうる溝部を有し、その溝部内に導電性部材を配置し、その後、導電性部材を覆うように別の成形体を配置することにより、複数の成形体に導電性部材が内包された構造体を得ることができる。   For example, in the above description, the conductive member is embedded in the molded body at the manufacturing stage, but a plurality of molded bodies may be arranged so as to enclose the conductive member. Specifically, one molded body has a groove part in which a conductive member can be arranged, a conductive member is arranged in the groove part, and then another molded body is arranged so as to cover the conductive member. Thus, a structure in which a conductive member is included in a plurality of molded bodies can be obtained.

以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。
(実施例1)
水アトマイズ法を用いて、Fe74.43at%Cr1.96at%9.04at%2.16at%7.54at%Si4.87at%なる組成になるように秤量して得られたFe基非晶質軟磁性粉末を強磁性金属粉末として作製した。得られた軟磁性粉末の粒度分布は、日機装社製「マイクロトラック粒度分布測定装置 MT3300EX」を用いて体積分布で測定した。その結果、平均粒径(D50)は10.6μmであった。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to these examples.
(Example 1)
Fe obtained by weighing to obtain a composition of Fe 74.43 at% Cr 1.96 at% P 9.04 at% C 2.16 at% B 7.54 at% Si 4.87 at% using the water atomization method. A base amorphous soft magnetic powder was prepared as a ferromagnetic metal powder. The particle size distribution of the obtained soft magnetic powder was measured by volume distribution using “Microtrack particle size distribution measuring device MT3300EX” manufactured by Nikkiso Co., Ltd. As a result, the average particle diameter (D50) was 10.6 μm.

上記の軟磁性粉末100質量部、熱可塑性樹脂であるアクリル系樹脂および熱硬化性樹脂であるフェノール系樹脂を含む樹脂系材料を含有するバインダー2質量部、およびステアリン酸亜鉛からなる潤滑剤0.3質量部を溶媒としてのキシレンに混合して、スラリーを得た。   A lubricant comprising 100 parts by mass of the soft magnetic powder, 2 parts by mass of a binder containing a resin material including an acrylic resin as a thermoplastic resin and a phenol resin as a thermosetting resin, and zinc stearate. 3 parts by mass was mixed with xylene as a solvent to obtain a slurry.

得られたスラリーを乾燥後に粉砕し、目開き300μmのふるいおよび850μmのふるいを用いて、300μm以下の微細な粉末および850μm以上の粗大な粉末を除去して、造粒粉を得た。   The obtained slurry was pulverized after drying, and fine powder of 300 μm or less and coarse powder of 850 μm or more were removed using a sieve having an opening of 300 μm and a sieve of 850 μm to obtain granulated powder.

上記の方法により得られた造粒粉を、絶縁被覆された銅製コイル(ターン数:5)がキャビティ内にあらかじめ配置された金型に充填し、金型温度23℃、面圧1.5GPaで加圧する条件にて加圧成形し、成形製造物を得た。   The granulated powder obtained by the above method is filled in a mold in which an insulation-coated copper coil (turn number: 5) is arranged in advance in the cavity, and the mold temperature is 23 ° C. and the surface pressure is 1.5 GPa. The molded product was obtained by pressure molding under pressure.

得られた成形製造物を、窒素気流雰囲気の炉内に載置し、炉内温度を、室温(23℃)から昇温速度40℃/分で372℃まで加熱し、この温度にて60分間保持し、その後、炉内で室温まで冷却する熱処理を行った。こうして、2mm×2mm、厚さ1mmの直方体の成形体として得た。   The obtained molded product was placed in a furnace in a nitrogen stream atmosphere, and the furnace temperature was heated from room temperature (23 ° C.) to 372 ° C. at a rate of temperature increase of 40 ° C./min. Then, heat treatment was performed to cool to room temperature in the furnace. In this way, it was obtained as a rectangular parallelepiped shaped body having a size of 2 mm × 2 mm and a thickness of 1 mm.

シリコーン樹脂を含有する含浸コーティング組成物を用意し、真空排気しながら、当該組成物中に上記の成形体を10分間浸漬させた。その後、含浸コーティング組成物から成形体を取り出し、150℃で30分間乾燥させた。得られた部材を、真空排気しながら、上記の含浸コーティング組成物中に、さらに4.5分間浸漬させ、その後、含浸コーティング組成物から取り出して、150℃で30分間乾燥させることにより、含浸コート層が形成された成形体を得た。   An impregnated coating composition containing a silicone resin was prepared, and the molded article was immersed in the composition for 10 minutes while evacuating. Thereafter, the molded body was taken out from the impregnated coating composition and dried at 150 ° C. for 30 minutes. The obtained member was immersed in the above impregnated coating composition for another 4.5 minutes while being evacuated, and then taken out from the impregnated coating composition and dried at 150 ° C. for 30 minutes. A molded body in which a layer was formed was obtained.

こうして得られた含浸コート層が形成された成形体に対して、CVD装置を用いて処理を行うことにより、シリコンの酸化物、より具体的にはSiOからなる無機絶縁層を形成した。こうして、成形体およびその表面部に無機絶縁層および含浸コート層からなる絶縁層を備える磁性部材を得た。 The molded body on which the impregnated coating layer thus obtained was formed was treated using a CVD apparatus to form an inorganic insulating layer made of silicon oxide, more specifically SiO 2 . In this way, a magnetic member provided with a molded body and an insulating layer composed of an inorganic insulating layer and an impregnated coating layer on the surface thereof was obtained.

磁性部材の2mm×1mmの大きさを有し対向する面のそれぞれに、平面視形状が2mm×約0.5mmの長方形であって銀ペーストからなるメタライズ層を、印刷により形成した。   On each of the opposing surfaces of the magnetic member having a size of 2 mm × 1 mm, a metallized layer made of silver paste having a rectangular shape of 2 mm × about 0.5 mm in plan view was formed by printing.

得られたメタライズ層が形成された磁性部材に対して、バレルめっき金属:銅)を行い、約3μmの厚さの銅めっき層を形成した。   Barrel-plated metal (copper) was applied to the obtained magnetic member on which the metallized layer was formed to form a copper-plated layer having a thickness of about 3 μm.

こうして、非晶質軟磁性粉末からなる強磁性金属粉末および有機系成分を含む成形体と、成形体の表面部上に形成された、含浸コート層およびシリコンの酸化物からなる無機絶縁層を有する絶縁層とを備える磁性部材;磁性部材が備える成形体の内部に位置する部分(コイル)を有する導電性部材;およびこの磁性部材の表面上に形成された、銀ペーストに基づくメタライズ層と銅めっき層とを有する導電性の接続端部を備え、図1に示される外観を有する、電子部品としてのインダクタンス素子を得た。   Thus, it has a molded body containing a ferromagnetic metal powder made of amorphous soft magnetic powder and an organic component, and an impregnated coat layer and an inorganic insulating layer made of silicon oxide formed on the surface of the molded body. A magnetic member comprising an insulating layer; a conductive member having a portion (coil) located inside a molded body of the magnetic member; and a metallized layer based on a silver paste and copper plating formed on the surface of the magnetic member An inductance element as an electronic component having a conductive connection end portion having a layer and having an appearance shown in FIG. 1 was obtained.

(比較例1)
含浸コート層が形成された成形品上に無機絶縁層を形成しなかったこと以外は、実施例1と同様にして、インダクタンス素子を製造した。
(Comparative Example 1)
An inductance element was manufactured in the same manner as in Example 1 except that the inorganic insulating layer was not formed on the molded article on which the impregnation coating layer was formed.

(試験例1)無機絶縁層の観察
実施例により製造されたインダクタンス素子を樹脂に埋め込んで切断し、切断面を研磨して、電子顕微鏡にて観察した。図2から5に示されるように、無機絶縁層は成形体の全面を覆うように形成されていることが確認された。また、図3から5に示されるように、無機絶縁層の厚さは2.5μmから3.5μm程度であり、均一性に優れた無機絶縁層が形成されていることも確認された。
(Test Example 1) Observation of Inorganic Insulating Layer The inductance element manufactured according to the example was embedded in a resin and cut, the cut surface was polished, and observed with an electron microscope. As shown in FIGS. 2 to 5, it was confirmed that the inorganic insulating layer was formed so as to cover the entire surface of the molded body. Further, as shown in FIGS. 3 to 5, the thickness of the inorganic insulating layer was about 2.5 μm to 3.5 μm, and it was confirmed that an inorganic insulating layer having excellent uniformity was formed.

(試験例2)表面抵抗の測定
実施例および比較例により製造されたインダクタンス素子(それぞれ50個)について、表面抵抗(単位:Ω/□)を測定して平均値を求めた。その結果を表1に示す。表1に示されるように、無機絶縁層の有無により、表面抵抗値は10倍以上の相違が生じることが確認された。
(Test Example 2) Measurement of surface resistance For the inductance elements (50 each) manufactured according to the examples and comparative examples, the surface resistance (unit: Ω / □) was measured to obtain an average value. The results are shown in Table 1. As shown in Table 1, it was confirmed that the surface resistance value differs by 10 times or more depending on the presence or absence of the inorganic insulating layer.

(試験例3)「めっき伸び」現象の評価
実施例および比較例により製造されたインダクタンス素子(それぞれ50個)について、外観の観察を行い、「めっき伸び」現象が生じているか否かを確認した。その結果、図6に示されるように、比較例により製造されたインダクタンス素子には「めっき伸び」現象(図6における白丸内)が生じているものが認められた。これに対し、図7に示されるように、実施例により製造されたインダクタンス素子には「めっき伸び」現象が生じているものが認められなかった。
(Test Example 3) Evaluation of “Plating Elongation” Phenomenon The appearance of the inductance elements (50 each) manufactured according to the examples and comparative examples was observed to confirm whether or not the “plating elongation” phenomenon occurred. . As a result, as shown in FIG. 6, the inductance element manufactured by the comparative example was found to have a “plating elongation” phenomenon (inside the white circle in FIG. 6). On the other hand, as shown in FIG. 7, no inductance element produced according to the example had a “plating elongation” phenomenon.

(試験例4)リアクタンスの測定
実施例および比較例により製造されたインダクタンス素子(それぞれ50個)について、リアクタンス(単位:μH)を測定して平均値を求めた。その結果を表2に示す。表1に示されるように、無機絶縁層の有無により、リアクタンスの変化は実質的に認められなかった。
(Test Example 4) Measurement of reactance For the inductance elements (50 each) manufactured according to the examples and comparative examples, the reactance (unit: μH) was measured to obtain an average value. The results are shown in Table 2. As shown in Table 1, no substantial change in reactance was observed depending on the presence or absence of the inorganic insulating layer.

本発明に係る実施例1により製造されたインダクタンス素子は、無機絶縁層を有する絶縁層を備えることから、磁気特性に実質的な影響を与えることなく、磁性部材の表面の絶縁性が高められたことが確認された。その結果として、実施例1のインダクタンス素子には、「めっき伸び」現象の発生が認められなかった。これに対して、比較例1により製造されたインダクタンス素子には、「めっき伸び」現象の発生が認められた。   Since the inductance element manufactured according to the first embodiment of the present invention includes the insulating layer having the inorganic insulating layer, the surface insulation of the magnetic member is improved without substantially affecting the magnetic characteristics. It was confirmed. As a result, the “plating elongation” phenomenon was not observed in the inductance element of Example 1. On the other hand, in the inductance element manufactured according to Comparative Example 1, the occurrence of the “plating elongation” phenomenon was observed.

(試験例5)
実施例および比較例により製造されたインダクタンス素子(それぞれ50個)について、次の条件のリフロー試験を行った。
ピーク温度:270℃
ピーク温度の保持時間:180秒
リフロー試験を1回または3回行った後、試験例2と同様にして表面抵抗を測定して平均値を求めた。その結果を表3および図8に示す。
(Test Example 5)
A reflow test under the following conditions was performed on the inductance elements (50 each) manufactured according to the examples and comparative examples.
Peak temperature: 270 ° C
Retention time of peak temperature: 180 seconds After performing the reflow test once or three times, the surface resistance was measured in the same manner as in Test Example 2 to obtain the average value. The results are shown in Table 3 and FIG.

表3および図8に示されるように、実施例1により製造されたインダクタンス素子は、リフロー試験を行っても磁性部材の表面の絶縁性は低下しなかった。これに対し、比較例1により製造されたインダクタンス素子は、リフロー試験を経ることによって磁性部材の表面の絶縁性が顕著に低下した。インダクタンス素子などの電子部品は基板に実装された状態でリフローなどの熱履歴を受ける場合がある。特にリフローの際には、はんだが溶融するため、実装された電子部品が小型であると、その電子部品の基板に対する位置が変動してしまうことがある。スマートフォンなどのように実装空間が狭い電子機器の場合には、この電子部品の位置変動の程度が大きいと、電子部品が電子機器の筐体に接触する状態となってしまうこともある。このような状態となったときでも、本発明の一実施形態に係る電子部品は、磁気部材の表面抵抗が高いため、ショートなどの事故が発生しにくい。また、無機絶縁層の熱的安定性が高いことから、外部環境下において耐環境性も向上することが期待できる。   As shown in Table 3 and FIG. 8, the inductance of the inductance element manufactured according to Example 1 did not decrease the insulation of the surface of the magnetic member even when the reflow test was performed. On the other hand, the inductance of the inductance element manufactured according to Comparative Example 1 significantly decreased the insulating property of the surface of the magnetic member through the reflow test. An electronic component such as an inductance element may receive a thermal history such as reflow while mounted on a substrate. In particular, during reflow, the solder melts, and if the mounted electronic component is small, the position of the electronic component relative to the substrate may fluctuate. In the case of an electronic device with a small mounting space such as a smartphone, if the degree of position fluctuation of the electronic component is large, the electronic component may come into contact with the housing of the electronic device. Even in such a state, the electronic component according to the embodiment of the present invention is less likely to cause an accident such as a short circuit because the surface resistance of the magnetic member is high. Further, since the thermal stability of the inorganic insulating layer is high, it can be expected that the environmental resistance is also improved in the external environment.

本発明の電子部品は、携帯電話、スマートフォン、ノートパソコンなどの電子機器に実装される部品として好適であり、特に、これらの電子機器の電源供給回路に使用されるインダクタンス素子として好適である。   The electronic component of the present invention is suitable as a component that is mounted on an electronic device such as a mobile phone, a smartphone, or a laptop computer, and is particularly suitable as an inductance element used in a power supply circuit of these electronic devices.

Claims (20)

強磁性金属粉末を含む成形体および前記成形体の表面部上に形成された絶縁層を備える磁性部材と、
前記磁性部材の内部に位置する部分を有する導電性部材と、
前記導電性部材に対して電気的に接続された状態で前記磁性部材の表面上に形成された導電性の接続端部とを備え、
前記絶縁層は無機系の材料からなる無機絶縁層を備えること
を特徴とする電子部品。
A magnetic member comprising a molded body containing a ferromagnetic metal powder and an insulating layer formed on the surface of the molded body;
A conductive member having a portion located inside the magnetic member;
A conductive connection end formed on the surface of the magnetic member in a state of being electrically connected to the conductive member;
The electronic component comprising an inorganic insulating layer made of an inorganic material.
前記接続端部はめっき層を備える、請求項1に記載の電子部品。   The electronic component according to claim 1, wherein the connection end portion includes a plating layer. 前記めっき層は、前記絶縁層上に設けられたメタライズ層上に電気めっきにより形成されたものである、請求項2に記載の電子部品。   The electronic component according to claim 2, wherein the plating layer is formed by electroplating on a metallized layer provided on the insulating layer. 前記無機絶縁層は絶縁性の酸化物系材料を含む、請求項1から3のいずれか一項に記載される電子部品。   The electronic component according to any one of claims 1 to 3, wherein the inorganic insulating layer includes an insulating oxide-based material. 前記絶縁層の表面抵抗は、1×1012Ω/□以上である、請求項1から4のいずれか一項に記載される電子部品。 5. The electronic component according to claim 1, wherein a surface resistance of the insulating layer is 1 × 10 12 Ω / □ or more. 前記絶縁層は、前記成形体の表面部を構成する前記強磁性金属粉末を覆うように設けられている、請求項1から5のいずれか一項に記載される電子部品。   The electronic component according to claim 1, wherein the insulating layer is provided so as to cover the ferromagnetic metal powder constituting the surface portion of the molded body. 前記絶縁層は、前記無機絶縁層と前記成形体との間に含浸コート層を備える、請求項1から6のいずれか一項に記載される電子部品。   The electronic component according to any one of claims 1 to 6, wherein the insulating layer includes an impregnated coat layer between the inorganic insulating layer and the molded body. 前記含浸コート層はシリコーン樹脂を含む、請求項7に記載の電子部品。   The electronic component according to claim 7, wherein the impregnated coat layer includes a silicone resin. 前記成形体は有機系成分を含む、請求項1から8のいずれか一項に記載される電子部品。   The electronic component according to claim 1, wherein the molded body includes an organic component. 前記磁性部材は空孔を有する、請求項1から9のいずれか一項に記載される電子部品。   The electronic component according to claim 1, wherein the magnetic member has a hole. 成形体と絶縁層とを備える磁性部材および導電性の接続端部を備える電子部品の製造方法であって、
前記強磁性金属粉末およびバインダー成分を含む混合体を成形する成形工程;
前記成形工程を経て得られた前記成形体上に無機系の材料からなる無機絶縁層を含む絶縁層を形成して、前記磁性部材を得る無機絶縁層形成工程;および
前記磁性部材の前記絶縁層上に前記接続端部を形成する接続端部形成工程を備えること
を特徴とする電子部品の製造方法。
A method for producing an electronic component comprising a magnetic member comprising a molded body and an insulating layer and a conductive connecting end,
A molding step of molding a mixture containing the ferromagnetic metal powder and a binder component;
Forming an insulating layer including an inorganic insulating layer made of an inorganic material on the molded body obtained through the molding step to obtain the magnetic member; and the insulating layer of the magnetic member The manufacturing method of the electronic component characterized by including the connection edge part formation process which forms the said connection edge part on top.
前記成形工程により得られた成形製造物に対してアニール処理を行う前記アニール工程を備える、請求項11に記載の電子部品の製造方法。   The manufacturing method of the electronic component of Claim 11 provided with the said annealing process which anneals with respect to the molded product obtained by the said shaping | molding process. 前記無機絶縁層形成工程はドライ成膜プロセスを含む、請求項11または12に記載の電子部品の製造方法。   The method of manufacturing an electronic component according to claim 11, wherein the inorganic insulating layer forming step includes a dry film forming process. 前記無機絶縁層形成工程はウエット成膜プロセスを含む、請求項11または12に記載の電子部品の製造方法。   The method of manufacturing an electronic component according to claim 11, wherein the inorganic insulating layer forming step includes a wet film forming process. 前記成形工程終了後、前記無機絶縁層形成工程開始前に、前記磁性部材上に含浸コート層を形成する含浸コーティング工程をさらに備える、請求項11から14のいずれか一項に記載される電子部品の製造方法。   The electronic component according to any one of claims 11 to 14, further comprising an impregnation coating step of forming an impregnation coating layer on the magnetic member after the molding step is completed and before the inorganic insulating layer formation step is started. Manufacturing method. 前記含浸コート層はシリコーン樹脂を含む、請求項15に記載の電子部品。   The electronic component according to claim 15, wherein the impregnated coat layer includes a silicone resin. 前記導電性層は導電ペーストから形成されたメタライズ層と前記メタライズ層上に形成されためっき層とを備え、
前記接続端部形成工程は、前記導電性ペーストを前記絶縁層上に塗布してメタライズ層を形成すること、および電気めっき処理を行って前記メタライズ層上に前記めっき層を形成することを含む、請求項11から16のいずれか一項に記載される電子部品の製造方法。
The conductive layer comprises a metallized layer formed from a conductive paste and a plating layer formed on the metallized layer,
The connection end forming step includes applying the conductive paste on the insulating layer to form a metallized layer, and performing an electroplating process to form the plated layer on the metallized layer. The manufacturing method of the electronic component as described in any one of Claim 11 to 16.
前記磁性部材はその内部に導電性部材を有するものであって、前記接続端部形成工程では、前記導電性部材に電気的に接続するように前記接続端部は形成される、請求項11から17のいずれか一項に記載される電子部品の製造方法。   The magnetic member has a conductive member therein, and in the connection end forming step, the connection end is formed so as to be electrically connected to the conductive member. The electronic component manufacturing method according to any one of 17. 請求項1から10のいずれか一項に記載される電子部品を実装した電子機器。   The electronic device which mounted the electronic component as described in any one of Claim 1 to 10. 請求項11から18に記載される製造方法により製造された電子部品を実装した電子機器。   The electronic device which mounted the electronic component manufactured by the manufacturing method described in Claim 11-18.
JP2014082210A 2014-04-11 2014-04-11 Electronic component, method for manufacturing electronic component, and electronic device Active JP6434709B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014082210A JP6434709B2 (en) 2014-04-11 2014-04-11 Electronic component, method for manufacturing electronic component, and electronic device
TW104102586A TWI591662B (en) 2014-04-11 2015-01-26 Electronic parts, manufacturing method of electronic parts and electronic equipment
KR1020150033180A KR101667140B1 (en) 2014-04-11 2015-03-10 Electronic component, method of manufacturing the electronic component, and electronic apparatus
CN201710372434.8A CN107256773B (en) 2014-04-11 2015-03-30 Electronic component, the manufacturing method of electronic component and electronic equipment
CN201510144704.0A CN104979082A (en) 2014-04-11 2015-03-30 Electronic part, manufacturing method for electronic part, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014082210A JP6434709B2 (en) 2014-04-11 2014-04-11 Electronic component, method for manufacturing electronic component, and electronic device

Publications (2)

Publication Number Publication Date
JP2015204337A true JP2015204337A (en) 2015-11-16
JP6434709B2 JP6434709B2 (en) 2018-12-05

Family

ID=54275507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014082210A Active JP6434709B2 (en) 2014-04-11 2014-04-11 Electronic component, method for manufacturing electronic component, and electronic device

Country Status (4)

Country Link
JP (1) JP6434709B2 (en)
KR (1) KR101667140B1 (en)
CN (2) CN104979082A (en)
TW (1) TWI591662B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017199801A (en) * 2016-04-27 2017-11-02 Tdk株式会社 Electronic component and method for manufacturing the same
WO2017200250A1 (en) * 2016-05-16 2017-11-23 주식회사 모다이노칩 Element for protecting circuit
JP2017208446A (en) * 2016-05-18 2017-11-24 Tdk株式会社 Laminated coil part
WO2018088264A1 (en) * 2016-11-08 2018-05-17 アルプス電気株式会社 Inductance element and method for manufacturing same
JP2018133490A (en) * 2017-02-16 2018-08-23 株式会社村田製作所 Coil component
JP2018170489A (en) * 2017-03-29 2018-11-01 サムソン エレクトロ−メカニックス カンパニーリミテッド. Electronic component and system-in-package
WO2019102726A1 (en) * 2017-11-22 2019-05-31 アルプスアルパイン株式会社 Chip inductor
US11476037B2 (en) 2016-09-08 2022-10-18 Moda-Innochips Co., Ltd. Power inductor
US11948725B2 (en) 2017-12-08 2024-04-02 Murata Manufacturing Co., Ltd. Electronic component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI588847B (en) * 2015-12-25 2017-06-21 達方電子股份有限公司 Inductor, magnetic material body used for the same, and manufacturing method of electronic component

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240334A (en) * 1992-09-14 1995-09-12 Tdk Corp Electronic parts and its manufacture
JP2001102207A (en) * 1999-09-30 2001-04-13 Tdk Corp Method for production of dust core
JP2002064027A (en) * 2000-08-22 2002-02-28 Daido Steel Co Ltd Method for manufacturing dust core
US20020113680A1 (en) * 2001-02-19 2002-08-22 Hidekazu Kato Coil component and method for manufacturing the same
JP2003282342A (en) * 2002-03-26 2003-10-03 Tdk Corp Coil sealed dust core
JP2005163134A (en) * 2003-12-04 2005-06-23 Sumitomo Electric Ind Ltd Pore structure, and its production method
JP2006060087A (en) * 2004-08-20 2006-03-02 Alps Electric Co Ltd Coil-encapsulating powder magnetic core
JP2007242995A (en) * 2006-03-10 2007-09-20 Matsushita Electric Ind Co Ltd Laminated ceramic electronic component and its manufacturing method
JP2010009977A (en) * 2008-06-27 2010-01-14 Toshiba Corp Electron tube
JP2010199328A (en) * 2009-02-25 2010-09-09 Toyota Motor Corp Method of manufacturing dust core
US20100259353A1 (en) * 2009-04-10 2010-10-14 Toko, Inc. Surface-Mount Inductor and Method of Producing the Same
JP2012089765A (en) * 2010-10-21 2012-05-10 Tdk Corp Coil component
JP2013045926A (en) * 2011-08-25 2013-03-04 Taiyo Yuden Co Ltd Electrode formation method of electronic component
US20130222101A1 (en) * 2010-10-21 2013-08-29 Tdk Corporation Coil component and method for producing same
JP2013197509A (en) * 2012-03-22 2013-09-30 Tdk Corp Ceramic electronic component
JP2013254917A (en) * 2012-06-08 2013-12-19 Taiyo Yuden Co Ltd Multilayer inductor
JP5419302B2 (en) * 2009-08-07 2014-02-19 アルプス・グリーンデバイス株式会社 Fe-based amorphous alloy, dust core using the Fe-based amorphous alloy, and coil-filled dust core

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200373A (en) * 2002-12-18 2004-07-15 Matsushita Electric Ind Co Ltd Electronic component and method of manufacturing the same
JP4899446B2 (en) * 2005-11-24 2012-03-21 Tdk株式会社 Composite electronic component and manufacturing method thereof
JP2007254814A (en) 2006-03-23 2007-10-04 Tdk Corp Fe-Ni-BASED SOFT MAGNETIC ALLOY POWDER, GREEN COMPACT, AND COIL-SEALED DUST CORE
KR101174327B1 (en) * 2008-09-30 2012-08-16 티디케이가부시기가이샤 Composite electronic device, manufacturing method thereof, and connection structure of composite electronic device
CN201749759U (en) * 2010-06-07 2011-02-16 佳邦科技股份有限公司 Laminated chip sensor

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240334A (en) * 1992-09-14 1995-09-12 Tdk Corp Electronic parts and its manufacture
JP2001102207A (en) * 1999-09-30 2001-04-13 Tdk Corp Method for production of dust core
JP2002064027A (en) * 2000-08-22 2002-02-28 Daido Steel Co Ltd Method for manufacturing dust core
US20020113680A1 (en) * 2001-02-19 2002-08-22 Hidekazu Kato Coil component and method for manufacturing the same
JP2002246242A (en) * 2001-02-19 2002-08-30 Murata Mfg Co Ltd Coil component and its manufacturing method
JP2003282342A (en) * 2002-03-26 2003-10-03 Tdk Corp Coil sealed dust core
JP2005163134A (en) * 2003-12-04 2005-06-23 Sumitomo Electric Ind Ltd Pore structure, and its production method
JP2006060087A (en) * 2004-08-20 2006-03-02 Alps Electric Co Ltd Coil-encapsulating powder magnetic core
JP2007242995A (en) * 2006-03-10 2007-09-20 Matsushita Electric Ind Co Ltd Laminated ceramic electronic component and its manufacturing method
JP2010009977A (en) * 2008-06-27 2010-01-14 Toshiba Corp Electron tube
JP2010199328A (en) * 2009-02-25 2010-09-09 Toyota Motor Corp Method of manufacturing dust core
US20100259353A1 (en) * 2009-04-10 2010-10-14 Toko, Inc. Surface-Mount Inductor and Method of Producing the Same
JP2010245473A (en) * 2009-04-10 2010-10-28 Toko Inc Method of manufacturing surface mounting inductor and the surface mounting inductor
JP5419302B2 (en) * 2009-08-07 2014-02-19 アルプス・グリーンデバイス株式会社 Fe-based amorphous alloy, dust core using the Fe-based amorphous alloy, and coil-filled dust core
JP2012089765A (en) * 2010-10-21 2012-05-10 Tdk Corp Coil component
US20130222101A1 (en) * 2010-10-21 2013-08-29 Tdk Corporation Coil component and method for producing same
JP2013045926A (en) * 2011-08-25 2013-03-04 Taiyo Yuden Co Ltd Electrode formation method of electronic component
JP2013197509A (en) * 2012-03-22 2013-09-30 Tdk Corp Ceramic electronic component
JP2013254917A (en) * 2012-06-08 2013-12-19 Taiyo Yuden Co Ltd Multilayer inductor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017199801A (en) * 2016-04-27 2017-11-02 Tdk株式会社 Electronic component and method for manufacturing the same
WO2017200250A1 (en) * 2016-05-16 2017-11-23 주식회사 모다이노칩 Element for protecting circuit
KR101825695B1 (en) * 2016-05-16 2018-02-05 주식회사 모다이노칩 Circuit protection device
US11081271B2 (en) * 2016-05-16 2021-08-03 Moda-Innochips Co., Ltd. Element for protecting circuit
EP3460812A4 (en) * 2016-05-16 2019-11-06 Moda-Innochips Co., Ltd. Element for protecting circuit
JP2017208446A (en) * 2016-05-18 2017-11-24 Tdk株式会社 Laminated coil part
US11476037B2 (en) 2016-09-08 2022-10-18 Moda-Innochips Co., Ltd. Power inductor
JPWO2018088264A1 (en) * 2016-11-08 2019-07-04 アルプスアルパイン株式会社 Inductance element and method of manufacturing the same
US11195651B2 (en) 2016-11-08 2021-12-07 Alps Alpine Co., Ltd. Inductance element
WO2018088264A1 (en) * 2016-11-08 2018-05-17 アルプス電気株式会社 Inductance element and method for manufacturing same
JP2018133490A (en) * 2017-02-16 2018-08-23 株式会社村田製作所 Coil component
US11322295B2 (en) 2017-02-16 2022-05-03 Murata Manufacturing Co., Ltd. Coil component
JP2018170489A (en) * 2017-03-29 2018-11-01 サムソン エレクトロ−メカニックス カンパニーリミテッド. Electronic component and system-in-package
JP7140312B2 (en) 2017-03-29 2022-09-21 サムソン エレクトロ-メカニックス カンパニーリミテッド. Electronic components and system-in-package
WO2019102726A1 (en) * 2017-11-22 2019-05-31 アルプスアルパイン株式会社 Chip inductor
US11948725B2 (en) 2017-12-08 2024-04-02 Murata Manufacturing Co., Ltd. Electronic component

Also Published As

Publication number Publication date
TW201541478A (en) 2015-11-01
TWI591662B (en) 2017-07-11
KR101667140B1 (en) 2016-10-17
KR20150118020A (en) 2015-10-21
JP6434709B2 (en) 2018-12-05
CN107256773B (en) 2019-11-26
CN104979082A (en) 2015-10-14
CN107256773A (en) 2017-10-17

Similar Documents

Publication Publication Date Title
JP6434709B2 (en) Electronic component, method for manufacturing electronic component, and electronic device
JP6339474B2 (en) Inductance element and electronic device
TWI684190B (en) Laminated coil type electronic components
CN107799260B (en) Magnetic powder and inductor containing the same
JP2017011042A (en) Inductance element and electronic/electrical equipment
JP2010062424A (en) Manufacturing method of electronic component
CN108735431B (en) Coil component
TWI631223B (en) Powder magnetic core, method for manufacturing the powder magnetic core, inductor provided with the powder magnetic core, and electronic / electrical equipment equipped with the inductor
TW201738908A (en) Powder core, manufacturing method of powder core, inductor including powder core, and electronic/electric device having inductor mounted therein
TW201712699A (en) Dust core, method for producing said dust core, electric/electronic component provided with said dust core, and electric/electronic device on which said electric/electronic component is mounted
JP2016145410A (en) Fe-BASED AMORPHOUS ALLOY, MAGNETIC METAL POWDER, MAGNETIC MEMBER, MAGNETIC COMPONENT AND ELECTRICAL AND ELECTRONIC EQUIPMENT
TWI652700B (en) Powder core, manufacturing method of the powder core, electric and electronic parts provided with the powder core, and electric and electronic equipment equipped with the electric and electronic parts
JP2018022916A (en) Electronic component and electronic device
CN110462764B (en) Powder magnetic core with terminal and method for manufacturing the same
JP2004319652A (en) Core and method of manufacturing the same
CN109791829A (en) Integrated inductance element and its manufacturing method
JP2021002535A (en) Dust core, manufacturing method of dust core, electric/electronic component provided with dust core, and electric/electronic device on which electric/electronic component is mounted
JP6428416B2 (en) Metal magnetic materials and electronic components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160927

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20161102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181109

R150 Certificate of patent or registration of utility model

Ref document number: 6434709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350