JP2003282342A - Coil sealed dust core - Google Patents

Coil sealed dust core

Info

Publication number
JP2003282342A
JP2003282342A JP2002086075A JP2002086075A JP2003282342A JP 2003282342 A JP2003282342 A JP 2003282342A JP 2002086075 A JP2002086075 A JP 2002086075A JP 2002086075 A JP2002086075 A JP 2002086075A JP 2003282342 A JP2003282342 A JP 2003282342A
Authority
JP
Japan
Prior art keywords
coil
dust core
green compact
powder
compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002086075A
Other languages
Japanese (ja)
Inventor
Kazuhiko Shibata
和彦 柴田
Takanori Hayakawa
隆範 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2002086075A priority Critical patent/JP2003282342A/en
Publication of JP2003282342A publication Critical patent/JP2003282342A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Coils Or Transformers For Communication (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent heat generation caused by a current flowing between terminal electrodes via a green compact, in a coil sealed dust core where the two terminal electrodes are buried in the green compact. <P>SOLUTION: In the coil sealed dust core where a coil 1 is buried in a magnetic powder, composed of ferromagnetic metal particles coated with an insulating material having a weight ratio of 1-8 wt.%, the relation among a maximum voltage Vmax (V) applied between the two terminal electrodes 5 buried in the green compact 20 of the magnetic powder, a minute current i (A) flowing between the terminal electrodes via the green compact 20 when the maximum voltage is applied, and the volume C (cm<SP>3</SP>) of the coil sealed dust core is set as Vmax×i/C<0.02 (W/cm<SP>3</SP>). <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁芯を一体化した
インダクタ、その他の電子機器に用いるコイル封入圧粉
磁芯に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inductor in which a magnetic core is integrated and a coil-encapsulated dust core used in other electronic devices.

【0002】[0002]

【従来の技術】近年、電気、電子機器の小型化が進み、
小型(低背)で大電流に対応した圧粉磁芯が要求されて
いる。圧粉磁芯の材料には、フェライト粉末や強磁性金
属粉末が用いられている。
2. Description of the Related Art In recent years, miniaturization of electric and electronic devices has advanced,
There is demand for a compact (low profile) dust core that can handle large currents. Ferrite powder or ferromagnetic metal powder is used as the material of the dust core.

【0003】強磁性金属粉末は、フェライト粉末に比較
して飽和磁束密度が大きいため、直流重畳特性が高磁界
まで保たれ、大電流を必要とする用途に適している。
Since the ferromagnetic metal powder has a larger saturation magnetic flux density than the ferrite powder, the direct current superposition characteristic is maintained up to a high magnetic field, and it is suitable for applications requiring a large current.

【0004】コアの小型化(低背)をさらに推進するた
め、コイルと磁性粉が一体になったコイルが提案されて
いる。この構造のインダクタを、本明細書では、コイル
封入圧粉磁芯と呼ぶ。
In order to further promote the miniaturization (low profile) of the core, a coil in which a coil and magnetic powder are integrated has been proposed. In this specification, the inductor having this structure is referred to as a coil-encapsulated dust core.

【0005】従来より表面実装型のインダクタの構造が
提案されている。例えば、特開平5−291046号公
報には、絶縁被覆した市販電線に外部電極を接続し、巻
線全体を絶縁被膜で覆い、さらにそれらを包み込むよう
に磁性粉末とともに成形することが開示されている。こ
の場合、導体と磁性粉末の間の絶縁、端子と磁性粉末間
の絶縁、及び磁性粉末を成形した磁性部表面に絶縁塗装
膜を形成する必要があり、製造工程が複雑となりコスト
アップとなっていた。
Conventionally, a structure of a surface mount type inductor has been proposed. For example, JP-A-5-291046 discloses connecting an external electrode to a commercially available electric wire coated with insulation, covering the entire winding with an insulation coating, and molding the magnetic wire together with the magnetic powder so as to wrap them. . In this case, it is necessary to insulate between the conductor and the magnetic powder, insulate between the terminal and the magnetic powder, and to form an insulating coating film on the surface of the magnetic part formed by molding the magnetic powder, which complicates the manufacturing process and increases the cost. It was

【0006】また、特開2001−267160号公報
には、絶縁材をコーティングした強磁性金属粒子からな
る磁性粉末中に、平角導線をエッジワイズ巻きしたコイ
ルを埋め込んだ例が示されている(図1と同様の構
成)。このコイル封入圧粉磁芯は、圧粉体とコイルと圧
粉体に埋め込まれた端子電極のみから構成されているた
め、小型化ができ、かつ高飽和磁束密度の強磁性金属粒
子を使用しているため、良好な直流重畳特性が得られて
いる。
Further, Japanese Patent Laid-Open No. 2001-267160 discloses an example in which a coil in which a rectangular conductor is edgewise wound is embedded in a magnetic powder composed of ferromagnetic metal particles coated with an insulating material (FIG. The same configuration as 1.). This coil-encapsulated dust core consists only of the compact and the coil and the terminal electrode embedded in the compact, so it can be downsized and uses ferromagnetic metal particles with high saturation magnetic flux density. Therefore, good DC superposition characteristics are obtained.

【0007】[0007]

【発明が解決しようとする課題】従来のインダクタでは
端子電極とコアの間の絶縁は必須条件とされ、上記特開
平5−291046号公報のように絶縁されるか、また
はコアにNi−Znフェライトのような絶縁抵抗が10
Ω・mと非常に大きなコアを用いることが一般的であ
った。
In the conventional inductor, insulation between the terminal electrode and the core is an indispensable condition, and insulation is performed as in the above-mentioned JP-A-5-291046, or the core is made of Ni-Zn ferrite. Insulation resistance like 10
It was common to use a very large core of 5 Ω · m.

【0008】しかし、前者の場合、絶縁材料が必要なた
め、コア体積をその分減らす必要があり、また後者の場
合、Ni−Znフェライトの飽和磁束密度が小さいた
め、どちらの場合も良好な直流重畳特性を得ることがで
きなかった。
However, in the former case, an insulating material is required, so that the core volume needs to be reduced accordingly. In the latter case, the saturation magnetic flux density of Ni-Zn ferrite is small, and therefore in both cases, a good direct current is required. The superposition characteristic could not be obtained.

【0009】一方、直流重畳特性を向上させるために、
上記特開2001−267160号公報に開示されてい
るような絶縁材をコーティングした強磁性金属粒子から
なる磁性粉末中にコイルを埋め込んだコイル封入圧粉磁
芯が知られており、このコイル封入圧粉磁芯は、圧粉体
とコイルと圧粉体に埋め込まれた端子電極のみから構成
されているため、小型化ができ、かつ高飽和磁束密度の
強磁性金属粒子を使用しているため、良好な直流重畳特
性が得られている。しかし、強磁性金属粒子と絶縁材の
配合比、端子電極間の距離、及びコイル封入圧粉磁芯が
組み込まれたDC/DCコンバータの入力電圧によって
は、コイルの導線の抵抗及び圧粉体の磁気損失からは説
明できない損失分があることが判明した。この原因を調
査した結果、端子電極間に圧粉体を介して電流が流れ、
圧粉体の発熱を生じていることが分かった。その発熱量
が多い場合には、コイル損失による電源効率の低下が問
題となる。
On the other hand, in order to improve the DC superposition characteristic,
There is known a coil-encapsulated dust core in which a coil is embedded in a magnetic powder composed of ferromagnetic metal particles coated with an insulating material as disclosed in JP-A-2001-267160. Since the powder magnetic core is composed only of the powder compact, the coil, and the terminal electrode embedded in the powder compact, it can be miniaturized and uses the ferromagnetic metal particles of high saturation magnetic flux density. Good DC superposition characteristics are obtained. However, depending on the mixing ratio of the ferromagnetic metal particles and the insulating material, the distance between the terminal electrodes, and the input voltage of the DC / DC converter incorporating the coil-encapsulated dust core, the resistance of the coil conductor and the It was revealed from the magnetic loss that there was a loss that could not be explained. As a result of investigating the cause, an electric current flows between the terminal electrodes through the green compact,
It was found that the green compact was generating heat. When the amount of heat generation is large, there is a problem that the power supply efficiency is lowered due to the coil loss.

【0010】本発明は、上記の点に鑑み、2つの端子電
極を圧粉体に埋め込んだコイル封入圧粉磁芯において、
圧粉体を経由して端子電極間を流れる電流に起因する発
熱を防止したコイル封入圧粉磁芯を提供することを目的
とする。
In view of the above points, the present invention provides a coil-encapsulated dust core in which two terminal electrodes are embedded in a compact.
An object of the present invention is to provide a coil-encapsulated dust core that prevents heat generation due to a current flowing between terminal electrodes via a dust compact.

【0011】本発明のその他の目的や新規な特徴は後述
の実施の形態において明らかにする。
Other objects and novel features of the present invention will be clarified in the embodiments described later.

【0012】[0012]

【課題を解決するための手段】上記したように、絶縁材
をコーティングした強磁性金属粒子からなる磁性粉末中
に、コイルを埋め込んだコイル封入圧粉磁芯は、コイル
の導線の抵抗及び圧粉体の磁気損失からは説明できない
損失分があり、その原因は端子電極間に圧粉体を介して
電流が流れ、圧粉体が発熱するからであることが判っ
た。
As described above, the coil-encapsulated dust core in which the coil is embedded in the magnetic powder made of the ferromagnetic metal particles coated with the insulating material is the resistance of the coil conductor and the dust. It has been found that there is a loss that cannot be explained from the magnetic loss of the body, and the cause is that current flows between the terminal electrodes through the green compact, causing the green compact to generate heat.

【0013】本発明者等は、コイル封入圧粉磁芯の設計
に当たり、今までのインダクタではタブーとされてきた
端子電極間に圧粉体(コア)を介して電流が流れる場合
でも、2つの端子電極間に印加される電圧の最大値Vma
x(ボルト)と、その最大電圧が印加された時に前記圧
粉体を経由して端子電極間に流れる微小電流i(アンペ
ア)と、当該コイル封入圧粉磁芯の体積C(cm)との
間の関係が、 Vmax×i/C<0.02 (W/cm) ならば、圧粉体に流れる電流による温度上昇は無視でき
る程度であり、実用上問題がないことを見いだした。
The inventors of the present invention designed the coil-encapsulated powder magnetic core so that even if a current flows through the powder compact (core) between the terminal electrodes, which has been a taboo in the conventional inductors, there are two Maximum value Vma of voltage applied between terminal electrodes
x (volt), a minute current i (ampere) flowing between the terminal electrodes via the green compact when the maximum voltage is applied, and the volume C (cm 3 ) of the coil-enclosed dust core. It has been found that if the relationship between the two is Vmax × i / C <0.02 (W / cm 3 ), the temperature rise due to the current flowing through the green compact is negligible and there is no practical problem.

【0014】そこで、本発明に係るコイル封入圧粉磁芯
は、重量比率で1〜8%の絶縁材をコーティングした強
磁性金属粒子からなる磁性粉末中に、コイルを埋め込ん
だ構成を持ち、前記磁性粉末の圧粉体に埋め込まれた2
つの端子電極間に印加される電圧の最大値Vmax(ボル
ト)と、その最大電圧が印加された時に前記圧粉体を経
由して端子電極間に流れる微小電流i(アンペア)と、
前記コイル及び前記圧粉体の和の体積C(cm)との間
の関係が、 Vmax×i/C<0.02 (W/cm) を満足するものとしている。
Therefore, the coil-embedded dust core according to the present invention has a structure in which a coil is embedded in a magnetic powder composed of ferromagnetic metal particles coated with an insulating material in a weight ratio of 1 to 8%. 2 embedded in a magnetic powder compact
A maximum value Vmax (volt) of a voltage applied between two terminal electrodes, and a minute current i (ampere) flowing between the terminal electrodes via the green compact when the maximum voltage is applied,
The relationship between the total volume C (cm 3 ) of the coil and the green compact is to satisfy Vmax × i / C <0.02 (W / cm 3 ).

【0015】また、前記コイル封入圧粉磁芯において、
前記圧粉体に樹脂を含浸させた構成とし、圧粉体の端子
電極間の絶縁耐圧を向上させるようにしてもよい。
In the above-mentioned coil-encapsulated dust core,
The powder compact may be impregnated with a resin to improve the dielectric strength between the terminal electrodes of the powder compact.

【0016】[0016]

【発明の実施の形態】以下、本発明に係るコイル封入圧
粉磁芯の実施の形態を図面に従って説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a coil-embedded dust core according to the present invention will be described below with reference to the drawings.

【0017】図1は本発明に係るコイル封入圧粉磁芯の
第1の実施の形態であって、図1(A)はコイル上側の
圧粉磁芯部を省略した平面図、(B)は正断面図であ
る。図において、1はコイル、20は圧粉体(圧粉磁芯
部)であり、圧粉体20はコイル1に継線された電極端
子5の外部導出部分を除き当該コイル1及び電極端子5
の周囲を覆っている。
FIG. 1 shows a first embodiment of a coil-embedded dust core according to the present invention. FIG. 1A is a plan view in which the dust core on the upper side of the coil is omitted, and FIG. Is a front sectional view. In the figure, 1 is a coil, 20 is a powder compact (powder magnetic core portion), and the powder compact 20 is the coil 1 and the electrode terminal 5 except for the externally derived portion of the electrode terminal 5 connected to the coil 1.
Covering the perimeter of.

【0018】前記コイル1は、絶縁被膜された平角導線
2(平角銅線)をエッジワイズ状に数ターン巻線したも
の、すなわち、厚さ方向に積層しかつ幅方向に湾曲状に
曲げて筒状に数ターン巻回したものである。コイル1の
両端部にはそれぞれ電極端子5(合計2個)が電気的に
接続されている。ここで2個の電極端子5は絶縁被覆を
設けないで用いる。なお、コイル1の端部の絶縁被覆を
除去して圧粉体20の外部に導出して直接電極端子とし
て用いる継線レス構造としても差し支えない。
The coil 1 is formed by winding an insulating coated flat conductor wire 2 (flat copper wire) for several turns in an edgewise manner, that is, by stacking in a thickness direction and bending in a width direction into a cylinder. It is wound several times in a shape. Electrode terminals 5 (two in total) are electrically connected to both ends of the coil 1. Here, the two electrode terminals 5 are used without providing an insulating coating. It should be noted that a wireless structure may be used in which the insulating coating on the end of the coil 1 is removed and the coil 1 is led to the outside of the powder compact 20 and used directly as an electrode terminal.

【0019】前記圧粉体20に用いる強磁性金属粒子と
しては、Fe、Fe−Ni合金、Fe−Si合金等があ
り、これらから適宜選択すればよい。
As the ferromagnetic metal particles used for the green compact 20, there are Fe, Fe-Ni alloys, Fe-Si alloys, etc., which may be appropriately selected.

【0020】強磁性金属粒子をコーティングする絶縁材
としては、シリコーン(シリコン樹脂)、エポキシ樹脂
等があり、これらの絶縁材を用いて前記強磁性金属粒子
はコーティングされている。前記絶縁材の混合割合は、
当該絶縁材をコーティングした強磁性金属粒子からなる
磁性粉末に対する重量比率で1〜8%とする。なお、コ
ーティングに使用する絶縁材の重量比を8%より多くす
ると、成形して得た圧粉体20の透磁率が低下し、大き
なインダクタンスを得ることができず、また絶縁材の重
量比を1%未満にすると各強磁性金属粒子相互間の絶縁
が不充分となり、磁芯としての特性が大幅に低下するた
め、コーティングに使用する絶縁材の重量比は1〜8%
が適している。
As the insulating material for coating the ferromagnetic metal particles, there are silicone (silicon resin), epoxy resin and the like, and the ferromagnetic metal particles are coated with these insulating materials. The mixing ratio of the insulating material is
The weight ratio to the magnetic powder made of ferromagnetic metal particles coated with the insulating material is 1 to 8%. If the weight ratio of the insulating material used for the coating is more than 8%, the magnetic permeability of the green compact 20 obtained by molding is lowered, a large inductance cannot be obtained, and the weight ratio of the insulating material is reduced. If it is less than 1%, the insulation between the ferromagnetic metal particles will be insufficient and the characteristics as a magnetic core will be significantly reduced. Therefore, the weight ratio of the insulating material used for coating is 1 to 8%.
Is suitable.

【0021】そして、上記のように重量比率で1〜8%
の絶縁材をコーティングした強磁性金属粒子からなる磁
性粉末中に、前記コイル1及び電極端子5の一部を設け
た状態で粉末成形機にて圧粉体20を成形一体化する。
圧粉体20の成形方法としては、例えば、前記磁性粉末
を成形金型内に充填して圧縮成形することで、図1
(A)のように圧粉体20の下部磁芯部20aを成形金
型内に作製しておき、その上にコイル1を載置した後、
コイル1が埋まるように再度磁性粉末を成形金型内に充
填して、下部磁芯部20a及びコイル1が積層された方
向に加圧して圧縮成形(コイルを磁性粉末でインサート
成形)する方法(特開2001−267160号公報に
開示された方法)等を採用可能である。
And, as described above, the weight ratio is 1 to 8%.
In the magnetic powder made of ferromagnetic metal particles coated with the insulating material, the powder compact 20 is molded and integrated by a powder molding machine with the coil 1 and a part of the electrode terminal 5 provided.
As a method of molding the green compact 20, for example, the magnetic powder is filled in a molding die and compression-molded, as shown in FIG.
As shown in (A), the lower magnetic core portion 20a of the green compact 20 is prepared in a molding die, and the coil 1 is placed on the lower magnetic core portion 20a.
A method in which the magnetic powder is filled in the molding die again so that the coil 1 is filled, and is pressed in the direction in which the lower magnetic core portion 20a and the coil 1 are laminated to perform compression molding (coil insert molding with magnetic powder) ( The method disclosed in JP 2001-267160 A) can be adopted.

【0022】本実施の形態では、2つの電極端子5には
絶縁被膜は設けておらず、コイル封入圧粉磁芯の設計に
当たり、今までのインダクタではタブーとされてきた端
子電極間にコアを介して電流が流れる場合でも、2つの
端子電極間に印加される電圧の最大値Vmax(ボルト)
と、その最大電圧が印加された時に前記圧粉体を経由し
て端子電極間に流れる微小電流i(アンペア)と、当該
コイル封入圧粉磁芯の体積C(cm)との間の関係が、 Vmax×i/C<0.02 (W/cm) …(1) を満足するように設定する。
In the present embodiment, no insulating coating is provided on the two electrode terminals 5, and when designing a coil-encapsulated dust core, a core is placed between the terminal electrodes, which has been a taboo in conventional inductors. Maximum value Vmax (volt) applied between two terminal electrodes even when current flows through
And the relationship between the minute current i (ampere) flowing between the terminal electrodes via the powder compact when the maximum voltage is applied and the volume C (cm 3 ) of the coil-encapsulated dust core. Is set so that Vmax × i / C <0.02 (W / cm 3 ) ... (1) is satisfied.

【0023】上記(1)式のように設定する理由を以下の
表1及び図2乃至図6を用いて説明する。
The reason for setting as in the above equation (1) will be described with reference to Table 1 below and FIGS. 2 to 6.

【0024】[0024]

【表1】 [Table 1]

【0025】上記表1は試料(コイル封入圧粉磁芯)の
温度上昇の測定結果を示すものであり、試料No.1〜
No.3は圧粉体、コイルの構成及び外形寸法は互いに
同一であるが、電極端子の構造が互いに異なる。試料N
o.4〜No.6も圧粉体、コイルの構成及び外形寸法は
互いに同一であるが、電極端子の構造が互いに異なる。
試料No.7〜No.9も圧粉体、コイルの構成及び外形
寸法は互いに同一であるが、電極端子の構造が互いに異
なる。
Table 1 above shows the measurement results of the temperature rise of the sample (powder magnetic core packed with coil).
No. 3 has the same structure and outer dimensions of the green compact and the coil, but has different electrode terminal structures. Sample N
o.4 to No. 6 also have the same configuration and outer dimensions of the green compact and the coil, but have different electrode terminal structures.
Samples No. 7 to No. 9 also have the same configuration and outer dimensions of the green compact and the coil, but have different electrode terminal structures.

【0026】図2(A)は表1中の圧粉体に流れる電流
(表1中ではコアに流れる電流iと表示)の測定方法を
示し、電極端子のみを圧粉体に埋め込んだ試料(本来の
試料No.1〜No.9からコイル部分を除去したもの)
を作製し、端子電極間に直流電源により電圧を印加し、
圧粉体に直列に挿入された電流計にて電流値を測定す
る。なお、図2(B)は前記試料の底面側を示す。
FIG. 2A shows a method for measuring the current flowing through the green compact in Table 1 (indicated as the current i flowing through the core in Table 1), in which only the electrode terminals were embedded in the green compact ( Original sample No. 1 to No. 9 with the coil part removed)
And apply a voltage between the terminal electrodes with a DC power supply,
The current value is measured with an ammeter inserted in series in the green compact. Note that FIG. 2B shows the bottom surface side of the sample.

【0027】図3はコイル封入圧粉磁芯の温度上昇測定
回路であり、入力電圧VinをDC−DCコンバータで降
圧し、試料となるインダクタンスLのコイル封入圧粉磁
芯を平滑用チョークコイルとして用いたLC平滑回路を
通して負荷Zに出力電圧Voutを印加し、出力電流Iout
を流す構成である。ここで、DC−DCコンバータのス
イッチング周波数は300kHzである。
FIG. 3 shows a temperature rise measuring circuit for a coil-embedded dust core, in which an input voltage Vin is stepped down by a DC-DC converter, and a coil-embedded dust core having an inductance L as a sample is used as a smoothing choke coil. The output voltage Vout is applied to the load Z through the used LC smoothing circuit, and the output current Iout is output.
It is a composition that flows. Here, the switching frequency of the DC-DC converter is 300 kHz.

【0028】図4は試料No.1のときのコイル電流I
とコイル電圧(端子電極間電圧)Vの波形図を示
す。この場合、コイル電流Iの平均値が22A、コイ
ル電圧(端子電極間電圧)Vの最大値Vmaxが3.4V
となっている。
FIG. 4 shows the coil current I for sample No. 1.
The waveform diagram of L and coil voltage (voltage between terminal electrodes) VL is shown. In this case, the average value of the coil current I L is 22 A, and the maximum value Vmax of the coil voltage (terminal electrode voltage) V L is 3.4 V.
Has become.

【0029】図5はコイル封入圧粉磁芯の圧粉体に流れ
る電流を変化させる方法を示し、2つの端子電極間の距
離を接近させて行くことによって、インダクタンスは同
じでも圧粉体に流れる平均電流を変えることができる。
例えば、表1の試料No.1〜No.3は、圧粉体が同一
であっても、試料No.1は図5(A)のように端子電
極間の距離が大きく、試料No.2は図5(B)のよう
に端子電極間の距離が中位であり、試料No.3は図5
(C)のように端子電極同士が接近している。
FIG. 5 shows a method of changing the current flowing through the powder compact of the coil-encapsulated powder magnetic core, by making the distance between the two terminal electrodes closer to each other, even if the inductance is the same, the current flows through the powder compact. The average current can be changed.
For example, in Samples No. 1 to No. 3 of Table 1, even if the green compacts are the same, the distance between the terminal electrodes is large in Sample No. 1 as shown in FIG. The distance between the terminal electrodes is medium as shown in FIG. 5B, and the sample No. 3 is shown in FIG.
The terminal electrodes are close to each other as shown in (C).

【0030】図6(A)は本実施の形態の場合で、コイ
ル1の両端部に継線された端子電極5の絶縁が無い構成
(表1の「試料温度上昇」の欄の「端子絶縁無」に対
応)、同図(B)は比較例であり、端子電極5を絶縁物
6で完全に覆って圧粉体20に電流が流れないようにし
た場合(表1の「試料温度上昇」の欄の「端子絶縁有」
に対応)である。
FIG. 6 (A) shows the case of this embodiment, in which the terminal electrodes 5 connected to both ends of the coil 1 are not insulated (see "Terminal Insulation" in the column "Sample temperature rise" in Table 1). (Corresponding to "no"), FIG. 6B is a comparative example, in which the terminal electrode 5 is completely covered with the insulator 6 so that the current does not flow to the green compact 20 ("Sample temperature rise in Table 1"). "With terminal insulation"
It corresponds to).

【0031】上記表1で試料No.1〜No.9の温度上
昇の測定結果を見ると、上記式(1)の左辺(Vmax×i/
C)の値を示す表1の係数が0.009の試料No.1、
前記係数が0.018の試料No.4、及び前記係数が
0.008の試料No.7が「端子絶縁有」、「端子絶縁
無」にかかわらず試料温度上昇が同じであり、いずれも
上記(1)式を満足する。これに反し、上記式(1)の左辺
(Vmax×i/C)の値が0.02を超える値となる試料
No.2,No.3,No.5,No.6,No.8,No.
9では「端子絶縁有」よりも「端子絶縁無」の温度上昇
が大きく、圧粉体に流れる電流による発熱を無視できな
くなっている。
Looking at the measurement results of the temperature rise of samples No. 1 to No. 9 in Table 1, the left side of the above formula (1) (Vmax × i /
Sample No. 1 whose coefficient in Table 1 showing the value of C) is 0.009,
The sample No. 4 having the coefficient of 0.018 and the sample No. 7 having the coefficient of 0.008 have the same sample temperature rise regardless of “with terminal insulation” and “without terminal insulation”. (1) is satisfied. On the contrary, the sample No. 2, No. 3, No. 5, No. 6, No. 8, in which the value of the left side (Vmax × i / C) of the above formula (1) exceeds 0.02, No.
In No. 9, the temperature rise of "without terminal insulation" is larger than that of "with terminal insulation", and the heat generation due to the current flowing through the green compact cannot be ignored.

【0032】従って、この表1より上記(1)を満足する
コイル封入圧粉磁芯であれば、圧粉体を経由して端子電
極間を流れる電流に起因する発熱を防止可能であると言
える。この場合、端部電極の表面絶縁処理が不要であ
り、コスト低減を図ることができる。
Therefore, from Table 1, it can be said that the coil-encapsulated dust core satisfying the above (1) can prevent heat generation due to the current flowing between the terminal electrodes via the dust compact. . In this case, the surface insulation treatment of the end electrodes is unnecessary, and the cost can be reduced.

【0033】本発明に係るコイル封入圧粉磁芯の第2の
実施の形態の構成も図1(A),(B)に示す通りであ
るが、絶縁材をコーティングした強磁性金属粒子からな
る磁性粉末を圧縮成形して圧粉体(圧粉磁芯部)20を
作製した後、さらに、粘度の低い樹脂を圧粉体に含浸さ
せた点が第1の実施の形態と異なる。使用する樹脂は、
例えばエポキシ系2液型樹脂である。圧粉体への含浸を
確実に行うため、真空含浸とし、120℃、2時間の乾
燥硬化後、図2と同じ測定回路で、圧粉体に流れる電流
(表2中、コア電流iと表示)と、端子間耐電圧を測定
し、その結果を以下の表2に示す。
The structure of the second embodiment of the coil-encapsulated dust core according to the present invention is also as shown in FIGS. 1 (A) and 1 (B), but is composed of ferromagnetic metal particles coated with an insulating material. This is different from the first embodiment in that a magnetic powder is compression-molded to produce a green compact (powder magnetic core portion) 20, and then a resin having a low viscosity is impregnated into the green compact. The resin used is
For example, it is an epoxy two-component resin. In order to ensure the impregnation of the green compact, vacuum impregnation was performed, and after drying and hardening at 120 ° C. for 2 hours, the current flowing through the green compact in the same measurement circuit as in FIG. 2 (indicated as core current i in Table 2). ) And the withstand voltage between terminals were measured, and the results are shown in Table 2 below.

【0034】[0034]

【表2】 [Table 2]

【0035】上記表2に示すように、コア電流は著しく
減少し、電流計では測定出来ないほど小さかった。ま
た、耐電圧は著しく向上し、カットオフカレントを0.
5mAとしたときに、耐電圧は全てDCl00V以上の
値を示した。
As shown in Table 2 above, the core current was remarkably reduced and was too small to be measured by an ammeter. In addition, the withstand voltage is remarkably improved and the cutoff current is reduced to 0.
When it was set to 5 mA, all the withstand voltages showed a value of DCl00V or more.

【0036】この第2の実施の形態に係る樹脂含浸した
コイル封入圧粉磁芯の試料No.1〜No.9(第1の実
施の形態の試料の圧粉体にエポキシ樹脂を含浸したも
の)を作製し、図3の回路で各試料の温度上昇を調べた
結果を以下の表3に示す。
Sample No. 1 to No. 9 of the resin-impregnated coil-encapsulated dust core according to the second embodiment (the compact of the sample of the first embodiment impregnated with epoxy resin) ) Was prepared and the temperature rise of each sample was examined by the circuit of FIG. 3 is shown in Table 3 below.

【0037】[0037]

【表3】 [Table 3]

【0038】表3中、試料No.1〜No.9の全てにお
いて温度上昇は、「端子絶縁無」であっても「端子絶縁
有」と同じ値を示し、圧粉体にはほとんど電流が流れて
いないことが確認された(表3中、コア平均電流が
0)。ちなみに、上記式(1)の左辺(Vmax×i/C)の
値を示す表3の係数は試料No.1〜No.9の全てが0
となった。
In Table 3, in all the samples No. 1 to No. 9, the temperature rise shows the same value as "with terminal insulation" even if "without terminal insulation", and almost no current flows through the green compact. It was confirmed that no current was flowing (in Table 3, the core average current was 0). By the way, the coefficient of Table 3 showing the value of the left side (Vmax × i / C) of the above formula (1) is 0 for all samples No. 1 to No. 9.
Became.

【0039】この第2の実施の形態のように、圧粉体に
樹脂を含浸することで端子電極の絶縁処理が無くとも圧
粉体に流れる電流を無視できる程度に低減可能であり、
ひいては圧粉体発熱に起因する損失を回避でき、効率低
下を防止可能である。
As in the second embodiment, by impregnating the green compact with resin, the current flowing through the green compact can be reduced to a negligible level without insulation treatment of the terminal electrodes.
As a result, it is possible to avoid the loss due to the heat generation of the powder compact, and it is possible to prevent the efficiency from decreasing.

【0040】なお、各実施の形態の構造を示す図1では
平角導線を巻回してコイルを作製しているが、使用する
導線が平角導線に限定されないことは明らかである。
In FIG. 1 showing the structure of each embodiment, the rectangular conductor wire is wound to form the coil, but it is clear that the conductor wire used is not limited to the rectangular conductor wire.

【0041】以上本発明の実施の形態について説明して
きたが、本発明はこれに限定されることなく請求項の記
載の範囲内において各種の変形、変更が可能なことは当
業者には自明であろう。
Although the embodiment of the present invention has been described above, it is obvious to those skilled in the art that the present invention is not limited to this and various modifications and changes can be made within the scope of the claims. Ah

【0042】[0042]

【発明の効果】以上説明したように、本発明によれば、
重量比率で1〜8%の絶縁材をコーティングした強磁性
金属粒子からなる磁性粉末中に、コイルを埋め込んだコ
イル封入圧粉磁芯において、前記磁性粉末の圧粉体に埋
め込まれた2つの端子電極間に印加される電圧の最大値
Vmax(ボルト)と、その最大電圧が印加された時に前
記圧粉体を経由して端子電極間に流れる微小電流i(ア
ンペア)と、当該コイル封入圧粉磁芯の体積C(cm
との間の関係が、 Vmax×i/C<0.02 (W/cm) を満足するように設定したので、圧粉体に流れる電流に
起因する発熱を無視できる程度に低減し、損失低減を図
ることができる。また、コイル封入圧粉磁芯を電源装置
に使用した場合には電源効率の低下を防止できる。
As described above, according to the present invention,
In a coil-embedded dust core in which a coil is embedded in a magnetic powder composed of ferromagnetic metal particles coated with an insulating material in a weight ratio of 1 to 8%, two terminals embedded in the powder compact of the magnetic powder. The maximum value Vmax (volt) of the voltage applied between the electrodes, the minute current i (ampere) flowing between the terminal electrodes via the powder compact when the maximum voltage is applied, and the coil-encapsulated powder compact Magnetic core volume C (cm 3 )
Is set so as to satisfy Vmax × i / C <0.02 (W / cm 3 ), heat generation due to the current flowing through the green compact can be reduced to a negligible level, and loss It can be reduced. Further, when the coil-encapsulated dust core is used in the power supply device, it is possible to prevent a decrease in power supply efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るコイル封入圧粉磁芯の第1の実施
の形態であって、(A)はコイル上側の圧粉磁芯部を省
略した平面図、(B)は正断面図である。
FIG. 1 is a first embodiment of a coil-embedded powder magnetic core according to the present invention, in which (A) is a plan view in which the powder magnetic core portion on the upper side of the coil is omitted, and (B) is a front sectional view. Is.

【図2】コイル封入圧粉磁芯の圧粉体(圧粉磁芯部)に
流れる電流の測定方法であって、(A)は回路図、
(B)は試料の電極端子配置を示す底面図である。
FIG. 2 is a method for measuring an electric current flowing through a powder compact (powder magnetic core portion) of a coil-encapsulated powder magnetic core, in which (A) is a circuit diagram;
(B) is a bottom view showing the arrangement of the electrode terminals of the sample.

【図3】コイル封入圧粉磁芯の試料の温度上昇を測定す
る測定回路図である。
FIG. 3 is a measurement circuit diagram for measuring a temperature increase of a sample of a coil-embedded dust core.

【図4】図3の測定回路におけるコイル電流及び電極端
子間電圧を示す波形図である。
4 is a waveform diagram showing a coil current and a voltage between electrode terminals in the measurement circuit of FIG.

【図5】コイル封入圧粉磁芯の圧粉体に流れる電流を変
化させる方法を示し、(A)は電極端子間距離が大きい
場合の底面図、(B)は電極端子間距離が中位の場合の
底面図、(C)は電極端子同士が接近している場合の底
面図である。
FIG. 5 shows a method of changing the current flowing through the powder compact of the coil-encapsulated dust core, (A) is a bottom view when the distance between the electrode terminals is large, and (B) is a medium distance between the electrode terminals. And (C) is a bottom view when the electrode terminals are close to each other.

【図6】(A)は本実施の形態の場合で、端子電極の絶
縁が無い構成(表1の「試料温度上昇」の欄の「端子絶
縁無」に対応)の断面図、(B)は比較例であり、端子
電極を絶縁物で完全に覆って圧粉体に電流が流れないよ
うにした場合(表1の「試料温度上昇」の欄の「端子絶
縁有無」に対応)の断面図である。
FIG. 6A is a cross-sectional view of a configuration without terminal electrode insulation in the case of the present embodiment (corresponding to “without terminal insulation” in the column “Sample temperature rise” in Table 1); Is a comparative example, and is a cross section when the terminal electrode is completely covered with an insulator so that no current flows in the green compact (corresponding to "presence / absence of terminal insulation" in the "sample temperature rise" column of Table 1). It is a figure.

【符号の説明】[Explanation of symbols]

1 コイル 2 平角導線 5 電極端子 20 圧粉体 20a 下部磁芯部 1 coil 2 flat wire 5 electrode terminals 20 green compact 20a lower magnetic core

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量比率で1〜8%の絶縁材をコーティ
ングした強磁性金属粒子からなる磁性粉末中に、コイル
を埋め込んだコイル封入圧粉磁芯において、前記磁性粉
末の圧粉体に埋め込まれた2つの端子電極間に印加され
る電圧の最大値Vmax(ボルト)と、その最大電圧が印
加された時に前記圧粉体を経由して端子電極間に流れる
微小電流i(アンペア)と、当該コイル封入圧粉磁芯の
体積C(cm)との間の関係が、 Vmax×i/C<0.02 (W/cm) を満足することを特徴とするコイル封入圧粉磁芯。
1. A coil-embedded dust core in which a coil is embedded in a magnetic powder composed of ferromagnetic metal particles coated with an insulating material in a weight ratio of 1 to 8% and embedded in the powder compact of the magnetic powder. The maximum value Vmax (volt) of the voltage applied between the two terminal electrodes, and a minute current i (ampere) flowing between the terminal electrodes via the green compact when the maximum voltage is applied, The coil-encapsulated dust core has a relationship with the volume C (cm 3 ) of the coil-encapsulated dust core that satisfies Vmax × i / C <0.02 (W / cm 3 ). .
【請求項2】 前記圧粉体に樹脂を含浸させてなる請求
項1記載のコイル封入圧粉磁芯。
2. The coil-embedded dust core according to claim 1, wherein the compact is impregnated with a resin.
JP2002086075A 2002-03-26 2002-03-26 Coil sealed dust core Withdrawn JP2003282342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002086075A JP2003282342A (en) 2002-03-26 2002-03-26 Coil sealed dust core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002086075A JP2003282342A (en) 2002-03-26 2002-03-26 Coil sealed dust core

Publications (1)

Publication Number Publication Date
JP2003282342A true JP2003282342A (en) 2003-10-03

Family

ID=29232804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002086075A Withdrawn JP2003282342A (en) 2002-03-26 2002-03-26 Coil sealed dust core

Country Status (1)

Country Link
JP (1) JP2003282342A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081120A (en) * 2005-09-14 2007-03-29 Nec Tokin Corp Inductor
JP2015164173A (en) * 2014-01-29 2015-09-10 アルプス・グリーンデバイス株式会社 Electronic component and electronic device
JP2015204337A (en) * 2014-04-11 2015-11-16 アルプス・グリーンデバイス株式会社 Electronic component, method of manufacturing electronic component and electronic apparatus
JP2016076559A (en) * 2014-10-03 2016-05-12 アルプス・グリーンデバイス株式会社 Inductance element and electronic apparatus
CN111986881A (en) * 2019-05-23 2020-11-24 株式会社村田制作所 Coil component and method for manufacturing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081120A (en) * 2005-09-14 2007-03-29 Nec Tokin Corp Inductor
JP2015164173A (en) * 2014-01-29 2015-09-10 アルプス・グリーンデバイス株式会社 Electronic component and electronic device
JP2018022916A (en) * 2014-01-29 2018-02-08 アルプス電気株式会社 Electronic component and electronic device
JP2018022917A (en) * 2014-01-29 2018-02-08 アルプス電気株式会社 Inductance element and electronic device
JP2018022918A (en) * 2014-01-29 2018-02-08 アルプス電気株式会社 Electronic component and electronic device
JP2015204337A (en) * 2014-04-11 2015-11-16 アルプス・グリーンデバイス株式会社 Electronic component, method of manufacturing electronic component and electronic apparatus
JP2016076559A (en) * 2014-10-03 2016-05-12 アルプス・グリーンデバイス株式会社 Inductance element and electronic apparatus
CN111986881A (en) * 2019-05-23 2020-11-24 株式会社村田制作所 Coil component and method for manufacturing same

Similar Documents

Publication Publication Date Title
US11967446B2 (en) Packaging structure of a magnetic device
US7679482B2 (en) Inductor
JPWO2004019352A1 (en) Multi-phase magnetic element and manufacturing method thereof
JPH0696941A (en) Partial gap magnetic core device
TW200915363A (en) Inductor and manufacture method thereof
KR20050007450A (en) Low profile high current multiple gap inductor assembly
IL289478B2 (en) A low profile high current composite transformer
JP2009260116A (en) Molded coil and producing method of the same
JP2003188023A (en) Electronic circuit module
JP2003282342A (en) Coil sealed dust core
US6486763B1 (en) Inductive component and method for making same
JP2010258314A (en) Wire-wound inductor
JP2006165429A (en) Winding inductor
JPH06290975A (en) Coil part and manufacture thereof
JPH0547563A (en) Inductor and manufacture thereof
JP2005005644A (en) Wire wound electronic component and resin composition
JP2021158148A (en) Powder magnetic core
JP2016225590A (en) Inductor for current-limiting circuit
JP2006196731A (en) Winding-type inductor
CN218826625U (en) Power inductance element and device
KR101898834B1 (en) Metal magnetic materials and electronic parts
JP6706729B2 (en) Three-phase inductor and manufacturing method thereof
CN212434440U (en) Magnetic element
CN115440474A (en) Integrally formed inductor and manufacturing method thereof
JP2024504896A (en) Dual-mode electromagnetic interference filter and method of manufacturing a dual-mode electromagnetic interference filter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050607