JP2015197245A - Evaporative cooling device - Google Patents

Evaporative cooling device Download PDF

Info

Publication number
JP2015197245A
JP2015197245A JP2014075057A JP2014075057A JP2015197245A JP 2015197245 A JP2015197245 A JP 2015197245A JP 2014075057 A JP2014075057 A JP 2014075057A JP 2014075057 A JP2014075057 A JP 2014075057A JP 2015197245 A JP2015197245 A JP 2015197245A
Authority
JP
Japan
Prior art keywords
porous body
metal porous
heat
cooling device
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014075057A
Other languages
Japanese (ja)
Other versions
JP6353682B2 (en
Inventor
泰造 栗林
Taizo Kuribayashi
泰造 栗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2014075057A priority Critical patent/JP6353682B2/en
Publication of JP2015197245A publication Critical patent/JP2015197245A/en
Application granted granted Critical
Publication of JP6353682B2 publication Critical patent/JP6353682B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an evaporative cooling device that can improve a cooling effect.SOLUTION: An evaporative cooling device 1 includes: a refrigerant inclusion body 2 that has a hollow heat receiving section 3 for receiving heat from outside, a hollow heat release section 4 arranged above the heat receiving section 3 and discharging heat to outside and a refrigerant flowing section 5 for communicating inside of the heat receiving section 3 with inside of the heat release section 4; and a refrigerant 6 included in the refrigerant inclusion body 2 and transporting heat as latent heat. A heat generating body mounting section 7 is provided on an outer surface of a bottom wall 3a of the heat receiving section 3, and a metallic porous body 8 is integrally formed on the inner surface of the bottom wall 3a so as to protrude upwards from the inner surface of the bottom wall 3a and is fully immersed in the refrigerant 6. An air bubble rising section 13 is arranged along an air bubble emitting surface 12a arranged on the surface of the metallic porous body 8. A liquid phase refrigerant passage 16 leading from the upper end surface to the end on the side of the heat generating body mounting section 7 and guiding a liquid phase refrigerant from the upper end surface of the metallic porous body 8 to the side of the heat generating body mounting section 7 by using capillary force is formed in the metallic porous body 8.

Description

この発明は、冷媒の相変化を利用して発熱体を冷却する沸騰冷却装置に関する。   The present invention relates to a boiling cooling device that cools a heating element by using a phase change of a refrigerant.

たとえば、半導体素子や、半導体素子およびその制御回路が一体化されたパワー半導体モジュールを冷却する冷却装置として、冷媒の相変化を利用して発熱体を冷却する沸騰冷却装置を用いることが考えられている。   For example, as a cooling device that cools a semiconductor element or a power semiconductor module in which a semiconductor element and its control circuit are integrated, it is considered to use a boiling cooling device that cools a heating element using a phase change of a refrigerant. Yes.

この種の沸騰冷却装置として、箱状のケーシングの1つの側壁外面の上部に発熱体取付部が設けられ、ケーシングにおける発熱体取付部が設けられた側壁と対向する側壁が放熱壁とされ、ケーシングにおける発熱体取付部が設けられた側壁内面に金属多孔質体が形成され、ケーシング内に潜熱として熱を輸送する冷媒が所定量封入されており、金属多孔質体が、ケーシングの前記側壁のほぼ全高にわたって設けられたものが知られている(特許文献1参照)。   As a boiling cooling apparatus of this type, a heating element mounting portion is provided on the upper surface of one side wall of a box-shaped casing, and a side wall of the casing opposite to the side wall provided with the heating element mounting portion is a heat dissipation wall. A porous metal body is formed on the inner surface of the side wall provided with the heating element mounting portion, and a predetermined amount of a refrigerant that transports heat as latent heat is sealed in the casing, and the porous metal body is substantially the same as the side wall of the casing. What was provided over the whole height is known (refer patent document 1).

特許文献1記載の沸騰冷却装置によれば、ケーシングの下部に貯まった液相冷媒が、金属多孔質体の毛細管現象により発熱体取付部の近傍に運搬され、発熱体取付部に取り付けられた発熱体から発せられる熱により沸騰させられ、気相冷媒の有する熱がケーシングの放熱壁から凝縮潜熱を放熱して凝縮し、ケーシングの下部に還流するようになっている。   According to the boiling cooling device described in Patent Document 1, the liquid-phase refrigerant stored in the lower portion of the casing is transported to the vicinity of the heating element mounting portion by the capillary phenomenon of the metal porous body, and the heat generated by being attached to the heating element mounting portion. It is boiled by the heat generated from the body, and the heat of the gas-phase refrigerant is condensed by releasing the latent heat of condensation from the heat radiating wall of the casing and returning to the lower part of the casing.

しかしながら、特許文献1記載の沸騰冷却装置によれば、相変化を伴う冷媒の循環がスムーズに行われず、十分な冷却効果が得られないという問題がある。   However, according to the boiling cooling apparatus described in Patent Document 1, there is a problem that the circulation of the refrigerant accompanying the phase change is not smoothly performed and a sufficient cooling effect cannot be obtained.

特開2000−49266号公報JP 2000-49266 A

この発明の目的は、上記問題を解決し、特許文献1記載の沸騰冷却装置に比較して冷却効果を向上しうる沸騰冷却装置を提供することにある。   An object of the present invention is to provide a boiling cooling device that solves the above-described problems and can improve the cooling effect as compared with the boiling cooling device described in Patent Document 1.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)外部からの熱を受ける中空状受熱部、受熱部の上方に設けられ、かつ外部に熱を放出する中空状放熱部、および受熱部内と放熱部内とを通じさせる冷媒流通部を有する冷媒封入体と、冷媒封入体内に封入されかつ潜熱として熱を輸送する冷媒とを備えた沸騰冷却装置において、
受熱部の底壁外面または側壁外面に発熱体取付部が設けられ、受熱部の発熱体取付部が設けられた壁の内面に、金属多孔質体が、前記壁の内面から受熱部内方に突出し、かつ全体が冷媒中に浸漬されるように一体に形成され、金属多孔質体の表面が気泡放出面となるとともに、金属多孔質体の気泡放出面に沿うように気泡上昇部が設けられ、金属多孔質体に、突出端面から発熱体取付部側にのび、かつ毛細管力により液相冷媒を金属多孔質体の突出端面から発熱体取付部側に導く液相冷媒通路が形成され、液相冷媒通路内の液相冷媒が、金属多孔質体における液相冷媒通路を囲繞する囲繞部に流入して沸騰気化するとともに、生成した気泡が気泡放出面に至るようになされている沸騰冷却装置。
1) A refrigerant enclosure having a hollow heat receiving portion that receives heat from the outside, a hollow heat radiating portion that is provided above the heat receiving portion, and that releases heat to the outside, and a refrigerant circulation portion that allows the heat receiving portion and the heat radiating portion to pass through. And a boiling cooling device comprising a refrigerant enclosed in a refrigerant enclosure and transporting heat as latent heat,
A heating element mounting portion is provided on the outer surface of the bottom wall or the side wall of the heat receiving portion, and a metal porous body projects inward from the inner surface of the wall to the inner surface of the heat receiving portion. And the whole is formed so as to be immersed in the refrigerant, the surface of the metal porous body becomes a bubble discharge surface, and a bubble rising portion is provided along the bubble discharge surface of the metal porous body, A liquid phase refrigerant passage is formed in the metal porous body, extending from the protruding end surface to the heating element mounting portion side, and leading the liquid phase refrigerant from the protruding end surface of the metal porous body to the heating element mounting portion side by capillary force. A boiling cooling device in which the liquid phase refrigerant in the refrigerant passage flows into an enclosure portion surrounding the liquid phase refrigerant passage in the metal porous body to evaporate, and the generated bubbles reach the bubble discharge surface.

2)受熱部の底壁外面に発熱体取付部が設けられ、金属多孔質体が、受熱部の底壁内面に、底壁内面から上方に突出するように一体に形成され、金属多孔質体に、突出端面である上端面から発熱体取付部側にのびる液相冷媒通路が形成されている上記1)記載の沸騰冷却装置。   2) A heating element mounting portion is provided on the outer surface of the bottom wall of the heat receiving portion, and the metal porous body is integrally formed on the inner surface of the bottom wall of the heat receiving portion so as to protrude upward from the inner surface of the bottom wall. The boiling cooling device according to 1) above, wherein a liquid-phase refrigerant passage extending from the upper end surface, which is a protruding end surface, to the heating element mounting portion side is formed.

3)液相冷媒通路が、金属多孔質体の上端面から発熱体取付部側端部に至っている上記2)記載の沸騰冷却装置。   3) The boiling cooling device according to 2) above, wherein the liquid-phase refrigerant passage extends from the upper end surface of the metal porous body to the end portion on the heating element mounting portion side.

4)金属多孔質体がブロック状であって、上端面から下方にのびる複数の空間が形成されており、当該空間の内周面および金属多孔質体の外周面が気泡放出面となり、前記空間内および金属多孔質体の周りの部分が、金属多孔質体の気泡放出面に沿う気泡上昇部となっている上記2)または3)記載の沸騰冷却装置。   4) The metal porous body is in a block shape, and a plurality of spaces extending downward from the upper end surface are formed, and the inner peripheral surface of the space and the outer peripheral surface of the metal porous body serve as bubble discharge surfaces, and the space The boiling cooling device according to 2) or 3) above, wherein the inner and surrounding portions of the metal porous body are bubble rising portions along the bubble discharge surface of the metal porous body.

5)金属多孔質体の空間が水平断面方形である上記4)記載の沸騰冷却装置。   5) The boiling cooling device according to 4) above, wherein the space of the metal porous body has a horizontal cross-sectional square shape.

6)金属多孔質体の空間が水平断面六角形である上記4)記載の沸騰冷却装置。   6) The boiling cooling device according to 4) above, wherein the space of the metal porous body has a hexagonal shape in the horizontal section.

7)金属多孔質体の空間が水平断面円形である上記4)記載の沸騰冷却装置。   7) The boiling cooling device according to 4) above, wherein the space of the metal porous body has a circular horizontal cross section.

8)金属多孔質体の内部における前記空間を囲繞する壁部分に、受熱部の底壁と一体に形成されて上方にのびる熱拡散部が、液相冷媒通路を避けるように設けられており、熱拡散部の空孔率が、金属多孔質体における熱拡散部の周りの部分の空孔率よりも小さくなっている上記4)〜7)のうちのいずれかに記載の沸騰冷却装置。   8) In the wall portion surrounding the space inside the metal porous body, a heat diffusion portion formed integrally with the bottom wall of the heat receiving portion and extending upward is provided so as to avoid the liquid refrigerant passage, The boiling cooling device according to any one of the above 4) to 7), wherein the porosity of the thermal diffusion portion is smaller than the porosity of the portion around the thermal diffusion portion in the metal porous body.

9)熱拡散部が板状であって、金属多孔質体における空間を囲繞する壁部分に、当該壁部分の厚み方向に間隔をおいて形成されており、両熱拡散部間に液相冷媒通路が形成されている上記8)記載の沸騰冷却装置。   9) The heat diffusion part is plate-shaped, and is formed on the wall part surrounding the space in the metal porous body with an interval in the thickness direction of the wall part. The boiling cooling device according to 8) above, wherein a passage is formed.

10)前記空間が、金属多孔質体の上端面から発熱体取付部側端部に至っている上記4)〜9)のうちのいずれかに記載の沸騰冷却装置。   10) The boiling cooling device according to any one of 4) to 9), wherein the space extends from the upper end surface of the metal porous body to the end portion on the heating element mounting portion side.

11)受熱部の底壁内面における前記空間に臨む部分に、金属多孔質体の空孔率および空孔径よりも大きな空孔率および空孔径を有する発泡起点層が設けられている上記10)記載の沸騰冷却装置。   11) The above-mentioned 10), wherein a foaming origin layer having a porosity and a pore diameter larger than the porosity and the pore diameter of the metal porous body is provided in a portion facing the space on the inner surface of the bottom wall of the heat receiving portion. Boiling cooling system.

12)金属多孔質体が上下方向にのびるピン状であって、互いに間隔をおいて複数設けられており、金属多孔質体の外周面が気泡放出面となり、金属多孔質体の周りの部分が、金属多孔質体の気泡放出面に沿う気泡上昇部となっている上記2)または3)記載の沸騰冷却装置。   12) The metal porous body has a pin-like shape extending in the vertical direction, and a plurality of the porous metal bodies are provided at intervals. The outer peripheral surface of the metal porous body is a bubble discharge surface, and the portion around the metal porous body is The boiling cooling device according to 2) or 3) above, which is a bubble rising portion along the bubble discharge surface of the metal porous body.

13)金属多孔質体の内部に、受熱部の底壁と一体に形成されて上方にのびる熱拡散部が、液相冷媒通路を避けるように設けられており、熱拡散層の空孔率が、金属多孔質体における熱拡散部の周りの部分の空孔率よりも小さくなっている上記12)記載の沸騰冷却装置。   13) Inside the metal porous body, a heat diffusion part formed integrally with the bottom wall of the heat receiving part and extending upward is provided so as to avoid the liquid refrigerant passage, and the porosity of the heat diffusion layer is The boiling cooling device as described in 12) above, which is smaller than the porosity of the portion around the thermal diffusion portion in the metal porous body.

14)受熱部の底壁内面における金属多孔質体間に臨む部分に、金属多孔質体の空孔率および空孔径よりも大きな空孔率および空孔径を有する発泡起点層が設けられている上記12)または13)記載の沸騰冷却装置。   14) The foaming origin layer having a porosity and a pore diameter larger than the porosity and the pore diameter of the metal porous body is provided in a portion facing the metal porous body on the inner surface of the bottom wall of the heat receiving portion. The boiling cooling device according to 12) or 13).

15)受熱部の側壁外面に発熱体取付部が設けられ、金属多孔質体が、受熱部の側壁内面に、側壁内面から当該側壁と直角をなす方向に突出するように一体に形成され、金属多孔質体に、突出端面から発熱体取付部側にのびる液相冷媒通路が形成されている上記1)記載の沸騰冷却装置。   15) A heating element mounting portion is provided on the outer surface of the side wall of the heat receiving portion, and the metal porous body is integrally formed on the inner surface of the side wall of the heat receiving portion so as to protrude from the inner surface of the side wall in a direction perpendicular to the side wall. The boiling cooling device according to 1) above, wherein a liquid phase refrigerant passage extending from the protruding end surface to the heating element mounting portion side is formed in the porous body.

16)液相冷媒通路が、金属多孔質体の突出端面から発熱体取付部側端部に至っている上記15)記載の沸騰冷却装置。   16) The boiling cooling device according to 15) above, wherein the liquid-phase refrigerant passage extends from the protruding end surface of the metal porous body to the end portion on the heating element mounting portion side.

17)金属多孔質体が、長手方向を上下方向に向けた垂直板状であって、受熱部の側壁の幅方向に間隔をおいて複数設けられており、金属多孔質体の両側面が気泡放出面となり、金属多孔質体の両側部分が、金属多孔質体の気泡放出面に沿う気泡上昇部となっている上記15)または16)記載の沸騰冷却装置。   17) The metal porous body has a vertical plate shape with the longitudinal direction oriented in the vertical direction, and a plurality of metal porous bodies are provided at intervals in the width direction of the side wall of the heat receiving part. The boiling cooling device as described in 15) or 16) above, wherein the both sides of the porous metal body are discharge surfaces, which are bubble rising portions along the bubble discharge surface of the metal porous body.

18)金属多孔質体の内部に、受熱部の側壁と一体に形成されて金属多孔質体と平行な方向に突出した熱拡散部が、液相冷媒通路を避けるように設けられており、熱拡散部の空孔率が、金属多孔質体における熱拡散部の周りの部分の空孔率よりも小さくなっている上記17)記載の沸騰冷却装置。   18) Inside the metal porous body, a heat diffusion part formed integrally with the side wall of the heat receiving part and projecting in a direction parallel to the metal porous body is provided so as to avoid the liquid refrigerant passage, The boiling cooling device as described in 17) above, wherein the porosity of the diffusion portion is smaller than the porosity of the portion around the thermal diffusion portion in the metal porous body.

19)熱拡散部が板状であって、金属多孔質体に、上下方向および厚み方向に間隔をおいて形成されており、金属多孔質体の厚み方向に間隔をおいて形成された両熱拡散部間に液相冷媒通路が形成されている上記18)記載の沸騰冷却装置。   19) The heat diffusion part is plate-shaped, and is formed in the metal porous body at intervals in the vertical direction and the thickness direction, and both heats formed at intervals in the thickness direction of the metal porous body. The boiling cooling device according to 18) above, wherein a liquid-phase refrigerant passage is formed between the diffusion portions.

20)受熱部の側壁内面における隣り合う金属多孔質体間の部分に、金属多孔質体の空孔率および空孔径よりも大きな空孔率および空孔径を有する発泡起点層が設けられている上記17)〜19)のうちのいずれかに記載の沸騰冷却装置。   20) The foaming origin layer having a porosity and a pore diameter larger than the porosity and the pore diameter of the metal porous body is provided in a portion between adjacent metal porous bodies on the inner surface of the side wall of the heat receiving portion. The boiling cooling device according to any one of 17) to 19).

21)金属多孔質体が横方向にのびるピン状であって、互いに間隔をおいて複数設けられており、金属多孔質体の外周面が気泡放出面となり、金属多孔質体の周りの部分が、金属多孔質体の気泡放出面に沿う気泡上昇部となっていいる上記15)または16)記載の沸騰冷却装置。   21) The metal porous body has a pin-like shape extending in the lateral direction, and a plurality of the porous metal bodies are provided at intervals. The outer peripheral surface of the metal porous body is a bubble discharge surface, and the portion around the metal porous body is The boiling cooling device according to 15) or 16) above, which is a bubble rising portion along a bubble discharge surface of the metal porous body.

22)金属多孔質体の内部に、受熱部の側壁と一体に形成されて金属多孔質体と平行な方向に突出した熱拡散部が、液相冷媒通路を避けるように設けられており、熱拡散部の空孔率が、金属多孔質体における熱拡散部の周りの部分の空孔率よりも小さくなっている上記21)記載の沸騰冷却装置。   22) Inside the metal porous body, a heat diffusion part formed integrally with the side wall of the heat receiving part and protruding in a direction parallel to the metal porous body is provided so as to avoid the liquid-phase refrigerant passage, The boiling cooling device as described in 21) above, wherein the porosity of the diffusion portion is smaller than the porosity of the portion around the thermal diffusion portion in the metal porous body.

23)受熱部の側壁内面における隣り合う金属多孔質体間の部分に、金属多孔質の空孔率および空孔径よりも大きな空孔率および空孔径を有する発泡起点層が設けられている上記21)または22)記載の沸騰冷却装置。   23) The foam starting point layer having a porosity and a pore diameter larger than the porosity and the pore diameter of the metal porous is provided in a portion between adjacent metal porous bodies on the inner surface of the side wall of the heat receiving portion. ) Or 22).

24)金属多孔質体の表面に、他の部分の空孔率および空孔径よりも大きな空孔率および空孔径を有する発泡起点層が設けられており、発泡起点層の表面が気泡放出面となっている上記1)〜23)のうちのいずれかに記載の沸騰冷却装置。   24) On the surface of the metal porous body, a foaming origin layer having a porosity and a pore diameter larger than the porosity and pore diameter of other portions is provided, and the surface of the foaming origin layer is a bubble release surface. The boiling cooling device according to any one of 1) to 23) above.

25)冷媒封入体が、受熱部、放熱部および冷媒流通部を含めて全体が一体に設けられており、放熱部内に、冷却流体を冷媒封入体の外部から供給するとともに冷媒封入体の外部に戻す冷却流体循環管が配置されている上記1)〜24)のうちのいずれかに記載の沸騰冷却装置。   25) The refrigerant enclosure is integrally provided, including the heat receiving section, the heat radiating section, and the refrigerant circulation section, and the cooling fluid is supplied from the outside of the refrigerant enclosure to the outside of the refrigerant enclosure. The boiling cooling device according to any one of 1) to 24) above, wherein a cooling fluid circulation pipe to be returned is arranged.

上記1)〜25)の沸騰冷却装置によれば、受熱部の底壁外面または側壁外面に発熱体取付部が設けられ、受熱部の発熱体取付部が設けられた壁の内面に、金属多孔質体が、前記壁の内面から受熱部内方に突出し、かつ全体が冷媒中に浸漬されるように一体に形成され、金属多孔質体の表面が気泡放出面となるとともに、金属多孔質体の気泡放出面に沿うように気泡上昇部が設けられ、金属多孔質体に、突出端面から発熱体取付部側にのび、かつ毛細管力により液相冷媒を金属多孔質体の突出端面から発熱体取付部側に導く液相冷媒通路が形成され、液相冷媒通路内の液相冷媒が、金属多孔質体における液相冷媒通路を囲繞する囲繞部に流入して沸騰気化するとともに、生成した気泡が気泡放出面に至るようになされているので、冷媒封入体の受熱部の発熱体取付部に取り付けられた発熱体から発せられる熱が、受熱部の発熱体取付部が設けられた壁を経て金属多孔質体に伝わり、金属多孔質体内における液相冷媒通路を囲繞する囲繞部に存在する冷媒が、当該囲繞部において沸騰気化してガス状になるとともに、生成した気泡が気泡放出面に至り、液相冷媒中に放出される。液相冷媒中に放出されたガス状冷媒からなる気泡は気泡上昇部に沿って液相冷媒中を上昇し、冷媒封入体の冷媒流通部を経て放熱部に至り、放熱部において放熱して再液化し、冷媒流通部を経て受熱部に戻る。受熱部に溜められている液相冷媒は、金属多孔質体に設けられている液相冷媒通路を通って金属多孔質体の囲繞部に戻る。このような動作を繰り返すことによって、発熱体から発せられる熱が、冷媒により潜熱として放熱部に輸送され、放熱部から放熱される。したがって、 相変化を伴う冷媒の循環がスムーズに行われることになり、冷却効果が向上する。   According to the boiling cooling device of the above 1) to 25), a heating element mounting part is provided on the bottom wall outer surface or side wall outer surface of the heat receiving part, and the inner surface of the wall provided with the heating element mounting part of the heat receiving part has a metal porous The porous body protrudes from the inner surface of the wall to the inside of the heat receiving portion and is integrally formed so that the entire body is immersed in the refrigerant, and the surface of the metal porous body becomes a bubble discharge surface, and the metal porous body A bubble rising part is provided along the bubble discharge surface, the metal porous body is extended from the protruding end surface to the heating element mounting side, and the liquid phase refrigerant is attached to the heating element from the protruding end face of the metal porous body by capillary force. A liquid-phase refrigerant passage leading to the portion side is formed, and the liquid-phase refrigerant in the liquid-phase refrigerant passage flows into the surrounding portion surrounding the liquid-phase refrigerant passage in the metal porous body and evaporates to the boil. Because it reaches the bubble discharge surface, the heat received by the refrigerant enclosure The heat generated from the heating element attached to the heating element mounting part is transmitted to the metal porous body through the wall provided with the heating element mounting part of the heat receiving part, and surrounds the liquid phase refrigerant passage in the metal porous body. The refrigerant present in the surrounding portion is boiled and vaporized in the surrounding portion and becomes gaseous, and the generated bubbles reach the bubble discharge surface and are released into the liquid-phase refrigerant. Bubbles made of gaseous refrigerant released into the liquid phase refrigerant rise in the liquid phase refrigerant along the bubble riser, reach the heat radiating part through the refrigerant circulation part of the refrigerant enclosure, and radiate heat again in the heat radiating part. It liquefies and returns to a heat receiving part through a refrigerant distribution part. The liquid phase refrigerant stored in the heat receiving portion returns to the surrounding portion of the metal porous body through the liquid phase refrigerant passage provided in the metal porous body. By repeating such an operation, the heat generated from the heating element is transported to the heat radiating portion as latent heat by the refrigerant, and is radiated from the heat radiating portion. Therefore, the refrigerant is circulated smoothly with a phase change, and the cooling effect is improved.

上記8)の沸騰冷却装置によれば、発熱体取付部に取り付けられた発熱体から発せられる熱が、熱拡散部を通って速やかに金属多孔質体に伝えられる。   According to the boiling cooling device of the above 8), the heat generated from the heating element attached to the heating element attachment part is quickly transferred to the metal porous body through the thermal diffusion part.

上記18)の沸騰冷却装置によれば、発熱体取付部に取り付けられた発熱体から発せられる熱が、熱拡散部を通って速やかに金属多孔質体に伝えられる。    According to the boiling cooling device of the above 18), the heat generated from the heating element attached to the heating element attachment part is quickly transferred to the metal porous body through the thermal diffusion part.

上記22)の沸騰冷却装置によれば、発熱体取付部に取り付けられた発熱体から発せられる熱が、熱拡散部を通って速やかに金属多孔質体に伝えられる。   According to the boiling cooling device of the above 22), the heat generated from the heating element attached to the heating element attachment part is quickly transferred to the metal porous body through the thermal diffusion part.

この発明の実施形態1の沸騰冷却装置を概略的に示す垂直断面図である。1 is a vertical sectional view schematically showing a boiling cooling device according to Embodiment 1 of the present invention. 図1の沸騰冷却装置に用いられる金属多孔質体を示す斜視図である。It is a perspective view which shows the metal porous body used for the boiling cooling device of FIG. 図2のA−A線断面図である。It is the sectional view on the AA line of FIG. 図3の部分拡大図である。FIG. 4 is a partially enlarged view of FIG. 3. 図1の沸騰冷却装置に用いられる金属多孔質体の第1の変形例を示す図4相当の図である。FIG. 5 is a view corresponding to FIG. 4 showing a first modification of the metal porous body used in the boiling cooling device of FIG. 1. 図1の沸騰冷却装置に用いられる金属多孔質体の第2の変形例を示す図3相当の図である。It is a figure equivalent to FIG. 3 which shows the 2nd modification of the metal porous body used for the boiling cooling apparatus of FIG. 図6の部分拡大図である。It is the elements on larger scale of FIG. 図1の沸騰冷却装置に用いられる金属多孔質体の第3の変形例を示す図7相当の図である。It is a figure equivalent to FIG. 7 which shows the 3rd modification of the metal porous body used for the boiling cooling apparatus of FIG. 図1の沸騰冷却装置に用いられる金属多孔質体の第4の変形例を示す図3相当の図である。It is a figure equivalent to FIG. 3 which shows the 4th modification of the metal porous body used for the boiling cooling apparatus of FIG. 図9の部分拡大図である。FIG. 10 is a partially enlarged view of FIG. 9. 図1の沸騰冷却装置に用いられる金属多孔質体の第5の変形例を示す図10相当の図である。It is a figure equivalent to FIG. 10 which shows the 5th modification of the metal porous body used for the boiling cooling apparatus of FIG. 図2〜図11に示される金属多孔質体が用いられる沸騰冷却装置の変形例を示す図1相当の図である。It is a figure equivalent to FIG. 1 which shows the modification of the boiling cooling device in which the metal porous body shown by FIGS. 2-11 is used. この発明の実施形態2の沸騰冷却装置を概略的に示す垂直断面図である。It is a vertical sectional view which shows roughly the boiling cooling device of Embodiment 2 of this invention. 図13の沸騰冷却装置に用いられる金属多孔質体を示す斜視図である。It is a perspective view which shows the metal porous body used for the boiling cooling device of FIG. 図14のB−B線断面図である。It is the BB sectional drawing of FIG. 図15の部分拡大図である。It is the elements on larger scale of FIG. 図13の沸騰冷却装置に用いられる金属多孔質体の第1の変形例を示す図16相当の図である。It is a figure equivalent to FIG. 16 which shows the 1st modification of the metal porous body used for the boiling cooling apparatus of FIG. 図13の沸騰冷却装置に用いられる金属多孔質体の第2の変形例を示す図15相当の図である。FIG. 16 is a view corresponding to FIG. 15 and showing a second modification of the metal porous body used in the boiling cooling device of FIG. 13. 図18の部分拡大図である。It is the elements on larger scale of FIG. 図13の沸騰冷却装置に用いられる金属多孔質体の第3の変形例を示す図19相当の図である。FIG. 20 is a view corresponding to FIG. 19 and showing a third modification of the metal porous body used in the boiling cooling device of FIG. 13. 図13の沸騰冷却装置に用いられる金属多孔質体の第4の変形例を示す図15相当の図である。FIG. 16 is a view corresponding to FIG. 15 and showing a fourth modification of the metal porous body used in the boiling cooling device of FIG. 13. 図21の部分拡大図である。It is the elements on larger scale of FIG. 図13の沸騰冷却装置に用いられる金属多孔質体の第5の変形例を示す図22相当の図である。FIG. 23 is a view corresponding to FIG. 22 showing a fifth modification of the metal porous body used in the boiling cooling device of FIG. 13.

以下、この発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

また、全図面を通じて同一物および同一部分には同一符号を付す。   Moreover, the same code | symbol is attached | subjected to the same thing and the same part through all drawings.

実施形態1
この実施形態は図1〜図4に示すものである。
Embodiment 1
This embodiment is shown in FIGS.

図1はこの発明の実施形態1の沸騰冷却装置の全体構成を概略的に示し、図2〜図4は図1の沸騰冷却装置に用いられる金属多孔質体を示す。   FIG. 1 schematically shows the overall configuration of a boiling cooling apparatus according to Embodiment 1 of the present invention, and FIGS. 2 to 4 show a metal porous body used in the boiling cooling apparatus of FIG.

図1において、沸騰冷却装置(1)は、外部からの熱を受ける中空状受熱部(3)、外部に熱を放出する中空状放熱部(4)、および受熱部(3)内と放熱部(4)内とを通じさせる冷媒流通部(5)を有するアルミニウム製の冷媒封入体(2)と、冷媒封入体(2)内に封入されて受熱部(3)に貯留されておりかつ潜熱として熱を輸送する冷媒(6)とを備えている。冷媒(6)は、たとえばハイドロフルオロエーテルからなり、冷媒封入体(2)内を真空状態として封入されている。   In FIG. 1, the boiling cooling device (1) includes a hollow heat receiving part (3) that receives heat from the outside, a hollow heat radiating part (4) that releases heat to the outside, and the heat receiving part (3) and the heat radiating part. (4) An aluminum refrigerant enclosure (2) having a refrigerant circulation section (5) that passes through the interior, and is stored in the heat receiving section (3) enclosed in the refrigerant enclosure (2) and stored as latent heat. And a refrigerant (6) for transporting heat. The refrigerant (6) is made of, for example, hydrofluoroether, and is enclosed with the refrigerant enclosure (2) in a vacuum state.

冷媒封入体(2)は、受熱部(3)、放熱部(4)および冷媒流通部(5)を含めて全体がアルミニウムにより直方体状に形成されており、冷媒封入体(2)の受熱部(3)の底壁(3a)外面に発熱体取付部(7)が設けられている。発熱体取付部(7)に、たとえば半導体素子からなるパワーデバイスを備えたパワーモジュールなどからなる発熱体(P)が、図示しない熱伝導性グリスを介して取り付けられるようになっている。また、冷媒封入体(2)の受熱部(3)の底壁(3a)内面における発熱体取付部(7)と合致した位置に、アルミニウム製金属多孔質体(8)が、底壁(3a)内面から受熱部(3)内方(上方)に突出し、かつ全体が冷媒(6)中に浸漬されるように一体に形成されている。冷媒封入体(2)の放熱部(4)内に、冷却流体を冷媒封入体(2)の外部から供給するとともに冷媒封入体(2)の外部に戻す冷却流体循環管(9)が配置されている。   The refrigerant enclosure (2), including the heat receiving section (3), the heat radiating section (4), and the refrigerant circulation section (5), is entirely formed in a rectangular parallelepiped shape with aluminum, and the heat receiving section of the refrigerant enclosure (2). A heating element mounting portion (7) is provided on the outer surface of the bottom wall (3a) of (3). A heating element (P) made of, for example, a power module including a power device made of a semiconductor element is attached to the heating element attachment portion (7) via a heat conductive grease (not shown). In addition, the aluminum porous metal body (8) is placed on the bottom wall (3a) at the position matching the heating element mounting part (7) on the inner surface of the bottom wall (3a) of the heat receiving part (3) of the refrigerant enclosure (2). ) The heat receiving portion (3) protrudes inward (upward) from the inner surface, and is integrally formed so as to be immersed in the refrigerant (6). A cooling fluid circulation pipe (9) for supplying cooling fluid from the outside of the refrigerant enclosure (2) and returning it to the outside of the refrigerant enclosure (2) is disposed in the heat radiating section (4) of the refrigerant enclosure (2). ing.

図2〜図4に示すように、金属多孔質体(8)はブロック状であって、上端面から下方(発熱体取付部(7)側)にのびる水平断面方形の空間(14)が縦横に並んで複数形成されている。また、金属多孔質体(8)の周面には、上下方向にのびる角溝(11)が、空間(14)と並ぶように形成されている。ここでは、空間(14)および角溝(11)は、金属多孔質体(8)の上端面から下端まで至っているが、これに限定されるものではなく、金属多孔質体(8)の上端面から高さ方向の下部、たとえば下端寄りの部分までのびていればよい。   As shown in FIGS. 2 to 4, the porous metal body (8) is in a block shape, and a horizontal space (14) having a horizontal section extending downward (from the heating element mounting part (7) side) from the upper end surface is vertically and horizontally. Are formed side by side. In addition, square grooves (11) extending in the vertical direction are formed on the circumferential surface of the metal porous body (8) so as to be aligned with the space (14). Here, the space (14) and the square groove (11) extend from the upper end surface to the lower end of the metal porous body (8), but the present invention is not limited to this, and the upper surface of the metal porous body (8). What is necessary is just to extend from the end surface to the lower part in the height direction, for example, the part near the lower end.

金属多孔質体(8)の上端面、金属多孔質体(8)の空間(14)の内周面、金属多孔質体(8)の角溝(11)の内周面、および金属多孔質体(8)の外周面の隣り合う角溝(11)間の部分における表面から一定の深さの範囲には、他の部分の空孔率および空孔径よりも大きい空孔率および空孔径を有する発泡起点層(12)が設けられており、金属多孔質体(8)の表面、すなわち発泡起点層(12)の表面が気泡放出面(12a)となっている。また、金属多孔質体(8)の空間(14)内、および角溝(11)を含む金属多孔質体(8)の周りの部分が、気泡放出面(12a)に沿う気泡上昇部(13)となっている。   The upper end surface of the metal porous body (8), the inner peripheral surface of the space (14) of the metal porous body (8), the inner peripheral surface of the square groove (11) of the metal porous body (8), and the metal porous In the range of a certain depth from the surface in the portion between the adjacent square grooves (11) on the outer peripheral surface of the body (8), the porosity and the pore diameter are larger than the porosity and the pore diameter of the other portion. The foaming origin layer (12) is provided, and the surface of the metal porous body (8), that is, the surface of the foaming origin layer (12) is the bubble discharge surface (12a). Further, in the space (14) of the metal porous body (8) and around the metal porous body (8) including the angular groove (11), the bubble rising portion (13 ).

金属多孔質体(8)に、突出端面(上端面)から発熱体取付部(7)側端部(下端部)に至り、かつ毛細管力により液相冷媒を金属多孔質体(8)の突出端面から発熱体取付部(7)側に導く複数の液相冷媒通路(16)が形成されている。液相冷媒通路(16)は、金属多孔質体(8)の内部における空間(14)および角溝(11)を囲繞する部分に形成されており、毛細管力により液相冷媒(6)を金属多孔質体(8)の上端面から発熱体取付部(7)側に導くようになっている。すなわち、液相冷媒通路(16)は、水平断面において、金属多孔質体(8)における空間(14)の辺となる部分、空間(14)の辺となる部分どうしの交差部、ならびに角溝(11)の底壁および側壁となる部分に形成されている。液相冷媒通路(16)の断面積を、この面積と等しい円の直径で表した円相当径は、使用する液相冷媒(6)の毛細管距離が10以上となるような大きさとすることが好ましい。たとえば、液相冷媒(6)としてハイドロフルオロエーテルの用いる場合、上述した円相当径は、100μm以下であることが好ましい。そして、液相冷媒通路(16)内の液相冷媒が、金属多孔質体(8)における液相冷媒通路(16)を囲繞する囲繞部に流入して沸騰気化するとともに、生成した気泡が気泡放出面(12a)に至るようになされている。   From the protruding end surface (upper end surface) to the heating element mounting portion (7) side end portion (lower end portion) of the metal porous body (8), liquid phase refrigerant is projected from the metal porous body (8) by capillary force. A plurality of liquid-phase refrigerant passages (16) leading from the end face to the heating element mounting portion (7) side are formed. The liquid-phase refrigerant passage (16) is formed in a portion surrounding the space (14) and the square groove (11) inside the metal porous body (8), and the liquid-phase refrigerant (6) is made into metal by capillary force. It is led from the upper end surface of the porous body (8) to the heating element mounting portion (7) side. That is, in the horizontal cross section, the liquid-phase refrigerant passage (16) is a portion that becomes a side of the space (14) in the metal porous body (8), a crossing portion between portions that become the sides of the space (14), and a square groove. It is formed in the part which becomes the bottom wall and side wall of (11). The equivalent circle diameter in which the cross-sectional area of the liquid-phase refrigerant passage (16) is represented by the diameter of a circle equal to this area may be set such that the capillary distance of the liquid-phase refrigerant (6) to be used is 10 or more. preferable. For example, when hydrofluoroether is used as the liquid phase refrigerant (6), the above-described equivalent circle diameter is preferably 100 μm or less. Then, the liquid phase refrigerant in the liquid phase refrigerant passage (16) flows into the surrounding portion surrounding the liquid phase refrigerant passage (16) in the metal porous body (8) and evaporates, and the generated bubbles are bubbled. It reaches the discharge surface (12a).

上記において、液相冷媒通路(16)は、金属多孔質体(8)の上端面から発熱体取付部(7)側端部に至っているが、これに限定されるものではなく、金属多孔質体(8)の上端面から高さ方向の中間部、たとえば下端部近傍までのびていればよい。   In the above, the liquid-phase refrigerant passage (16) extends from the upper end surface of the metal porous body (8) to the end of the heating element mounting portion (7), but is not limited thereto, and the metal porous body What is necessary is just to extend from the upper end surface of a body (8) to the intermediate part of a height direction, for example, the lower end part vicinity.

金属多孔質体(8)は、発泡起点層(12)を含んだ全体が、たとえばアルミニウム粉末を用いて3次元造型機、たとえば3Dプリンタにより受熱部(3)の底壁(3a)と一体に形成される。   The entire porous metal body (8) including the foaming origin layer (12) is integrated with the bottom wall (3a) of the heat receiving part (3) by a three-dimensional molding machine, for example, a 3D printer, using, for example, aluminum powder. It is formed.

上述した沸騰冷却装置(1)において、発熱体(P)から発せられる熱が冷媒封入体(2)の受熱部(3)の底壁(3a)を経て金属多孔質体(8)に伝わり、金属多孔質体(8)内における液相冷媒通路(16)を囲繞する囲繞部に存在する冷媒が、当該囲繞部において沸騰気化してガス状になるとともに、生成した気泡が気泡放出面(12a)に至り、液相冷媒(6)中に放出される。液相冷媒(6)中に放出されたガス状冷媒からなる気泡は気泡上昇部(13)に沿って液相冷媒(6)中を上昇し、冷媒封入体(2)の冷媒流通部(5)を経て放熱部(4)に至り、放熱部(4)において冷却流体循環管(9)内を流れる冷却流体に放熱して再液化し、冷媒流通部(4)を経て受熱部(3)に戻る。受熱部(3)に溜められている液相冷媒(6)は、毛細管力により液相冷媒通路(16)を通って金属多孔質体(8)の上端面から下端側に導かれ、金属多孔質体(8)に戻る。このような動作を繰り返すことによって、発熱体(P)から発せられる熱が、冷媒により潜熱として放熱部(4)に輸送され、放熱部(4)から放熱される。したがって、 相変化を伴う冷媒の循環がスムーズに行われることになり、冷却効果が向上する。   In the boiling cooling device (1) described above, the heat generated from the heating element (P) is transmitted to the porous metal body (8) through the bottom wall (3a) of the heat receiving portion (3) of the refrigerant enclosure (2), The refrigerant present in the surrounding portion surrounding the liquid-phase refrigerant passage (16) in the porous metal body (8) is boiled and vaporized in the surrounding portion to become a gaseous state, and the generated bubbles are bubble-release surfaces (12a ) And released into the liquid-phase refrigerant (6). Bubbles made of gaseous refrigerant released into the liquid phase refrigerant (6) rise in the liquid phase refrigerant (6) along the bubble rising part (13), and the refrigerant circulation part (5) of the refrigerant enclosure (2) ) To the heat radiating section (4), in the heat radiating section (4), radiates heat to the cooling fluid flowing in the cooling fluid circulation pipe (9) and liquefies again, and passes through the refrigerant circulation section (4) to the heat receiving section (3). Return to. The liquid phase refrigerant (6) stored in the heat receiving part (3) is guided to the lower end side from the upper end surface of the metal porous body (8) through the liquid phase refrigerant passage (16) by capillary force, and is porous to the metal. Return to mass (8). By repeating such an operation, the heat generated from the heating element (P) is transported as latent heat by the refrigerant to the heat radiating section (4) and is radiated from the heat radiating section (4). Therefore, the refrigerant is circulated smoothly with a phase change, and the cooling effect is improved.

図5〜図11は実施形態1の沸騰冷却装置に用いられる金属多孔質体の変形例を示す。   5-11 shows the modification of the metal porous body used for the boiling cooling device of Embodiment 1. FIG.

図5に示す金属多孔質体(20)の場合、金属多孔質体(20)における空間(14)を囲繞する部分、ならびに角溝(11)の底壁および側壁となる部分の内部に、受熱部(3)の底壁(3a)と一体に形成されて上方にのびる板状の熱拡散部(21)が、液相冷媒通路(16)を避けるように設けられており、熱拡散部(21)の空孔率および空孔径が、金属多孔質体(20)における熱拡散部(21)の周りの部分の空孔率および空孔径よりも小さくなっている。なお、熱拡散部(21)の空孔率は0であってもよい。   In the case of the metal porous body (20) shown in FIG. 5, heat is received in the portion surrounding the space (14) in the metal porous body (20) and in the portions serving as the bottom wall and the side wall of the square groove (11). A plate-like heat diffusion part (21) formed integrally with the bottom wall (3a) of the part (3) and extending upward is provided so as to avoid the liquid-phase refrigerant passage (16), and the heat diffusion part ( The porosity and the pore diameter of 21) are smaller than the porosity and the pore diameter of the portion around the thermal diffusion portion (21) in the metal porous body (20). The porosity of the thermal diffusion part (21) may be zero.

熱拡散部(21)は、水平断面において、金属多孔質体(8)の空間(14)の辺となる部分、ならびに角溝(11)の底壁および側壁においては、そのの厚み方向に間隔をおくとともに、縦横の同一位置に来るように2つ設けられている。   The thermal diffusion part (21) is spaced apart in the thickness direction in the horizontal cross section, in the part that becomes the side of the space (14) of the metal porous body (8), and the bottom wall and side wall of the square groove (11). And two are provided so as to be in the same vertical and horizontal positions.

その他の構成は、図2〜図4に示す金属多孔質体(8)と同様である。   Other configurations are the same as those of the metal porous body (8) shown in FIGS.

図5に示す金属多孔質体(20)を用いた場合、発熱体取付部(7)に取り付けられた発熱体(P)から発せられる熱が、熱拡散部(21)を通って速やかに金属多孔質体(8)の全体に伝えられることになり、発熱体(P)の冷却効果が向上する。   When the porous metal body (20) shown in FIG. 5 is used, the heat generated from the heating element (P) attached to the heating element attachment part (7) is quickly transferred to the metal through the thermal diffusion part (21). This is transmitted to the entire porous body (8), and the cooling effect of the heating element (P) is improved.

図6および図7において、受熱部(3)の底壁(3a)内面における発熱体取付部(7)と合致した位置に上方突出状に一体に形成された金属多孔質体(22)はブロック状であって、上端面から下方にのびる水平断面六角形の空間(23)が、金属多孔質体(22)全体がハニカム状となるように複数形成されている。また、金属多孔質体(22)の周面には、上下方向にのびる水平断面台形状の複数の台形溝(24)が形成されている。空間(23)および台形溝(24)は、金属多孔質体(22)の上端面から下端まで至っていてもよく、あるいは上端面から高さ方向の下部、たとえば下端寄りの部分までのびていてもよい。   6 and 7, the porous metal body (22) integrally formed in an upward projecting manner at a position matching the heating element mounting part (7) on the inner surface of the bottom wall (3a) of the heat receiving part (3) is a block. A plurality of horizontal hexagonal spaces (23) extending downward from the upper end surface are formed so that the entire metal porous body (22) has a honeycomb shape. Further, a plurality of trapezoidal grooves (24) having a trapezoidal horizontal cross section extending in the vertical direction are formed on the peripheral surface of the metal porous body (22). The space (23) and the trapezoidal groove (24) may extend from the upper end surface to the lower end of the metal porous body (22), or may extend from the upper end surface to a lower portion in the height direction, for example, a portion closer to the lower end. Good.

金属多孔質体(22)の内部における空間(23)および台形溝(24)を囲繞する部分に液相冷媒通路(16)が形成されている。また、金属多孔質体(22)の上端面、金属多孔質体(22)の空間(23)の内周面、金属多孔質体(22)の台形溝(24)の内周面、および金属多孔質体(22)の外周面の隣り合う台形溝(24)間の部分における表面から一定の深さの範囲に、表面が気泡放出面(12a)となる発泡起点層(12)が設けられている。また、金属多孔質体(22)の空間(23)内、および台形溝(24)を含む金属多孔質体(22)の周りの部分が、気泡放出面(12a)に沿う気泡上昇部(13)となっている。   A liquid phase refrigerant passage (16) is formed in a portion surrounding the space (23) and the trapezoidal groove (24) inside the metal porous body (22). Further, the upper end surface of the metal porous body (22), the inner peripheral surface of the space (23) of the metal porous body (22), the inner peripheral surface of the trapezoidal groove (24) of the metal porous body (22), and the metal A foaming origin layer (12) whose surface is a bubble discharge surface (12a) is provided in a range of a certain depth from the surface in the portion between adjacent trapezoidal grooves (24) on the outer peripheral surface of the porous body (22). ing. In addition, the portion in the space (23) of the porous metal body (22) and the periphery of the porous metal body (22) including the trapezoidal groove (24) is a bubble rising portion (13) along the bubble discharge surface (12a). ).

図8に示す金属多孔質体(25)の場合、空間(23)を囲繞する部分、ならびに台形溝(24)の底壁および側壁となる部分の内部に、受熱部(3)の底壁(3a)と一体に形成されて上方にのびる板状の熱拡散部(21)が、液相冷媒通路(16)を避け、かつ2つの熱拡散部(21)が互いに間隔をおいて対をなすように設けられている。   In the case of the metal porous body (25) shown in FIG. 8, the bottom wall (3) of the heat receiving portion (3) is formed inside the portion surrounding the space (23) and the bottom wall and the side wall of the trapezoidal groove (24). The plate-like heat diffusion part (21) formed integrally with 3a) and extending upward avoids the liquid-phase refrigerant passage (16), and the two heat diffusion parts (21) form a pair with a space between each other. It is provided as follows.

その他の構成は、図6および図7に示す金属多孔質体(22)と同様である。   Other configurations are the same as those of the porous metal body (22) shown in FIGS.

図9および図10において、受熱部(3)の底壁(3a)内面における発熱体取付部(7)と合致した位置に上方突出状に一体に形成された金属多孔質体(26)はブロック状であって、上端面から下方にのびる水平断面円形の空間(27)が複数形成されている。また、金属多孔質体(26)の周面には、上下方向にのびる水平断面半円形の複数の円弧溝(28)が形成されている。空間(27)および円弧溝(28)は、金属多孔質体(26)の上端面から下端まで至っていてもよく、あるいは上端面から高さ方向の下部、たとえば下端寄りの部分までのびていてもよい。   9 and 10, the metal porous body (26) integrally formed in an upward projecting manner at a position matching the heating element mounting part (7) on the inner surface of the bottom wall (3 a) of the heat receiving part (3) is a block. A plurality of circular spaces (27) having a horizontal cross section extending downward from the upper end surface are formed. A plurality of arc grooves (28) having a semicircular horizontal section extending in the vertical direction are formed on the peripheral surface of the metal porous body (26). The space (27) and the circular groove (28) may extend from the upper end surface to the lower end of the metal porous body (26), or may extend from the upper end surface to a lower portion in the height direction, for example, a portion closer to the lower end. Good.

金属多孔質体(26)における空間(27)および円弧溝(28)を囲繞する部分に液相冷媒通路(16)が形成されている。また、金属多孔質体(26)の上端面、金属多孔質体(26)の空間(27)の内周面、金属多孔質体(26)の円弧溝(28)の内周面、および金属多孔質体(26)の外周面の隣り合う円弧溝(28)間の部分における表面から一定の深さの範囲に、表面が気泡放出面(12a)となる発泡起点層(12)が設けられている。また、金属多孔質体(26)の空間(227)内、および円弧溝(28)を含む金属多孔質体(26)の周りの部分が、気泡放出面(12a)に沿う気泡上昇部(13)となっている。   A liquid-phase refrigerant passage (16) is formed in a portion surrounding the space (27) and the arc groove (28) in the metal porous body (26). Further, the upper end surface of the metal porous body (26), the inner peripheral surface of the space (27) of the metal porous body (26), the inner peripheral surface of the arc groove (28) of the metal porous body (26), and the metal A foaming origin layer (12) whose surface is a bubble discharge surface (12a) is provided in a range of a certain depth from the surface in the portion between the adjacent arc grooves (28) on the outer peripheral surface of the porous body (26). ing. In addition, the portion in the space (227) of the metal porous body (26) and the periphery of the metal porous body (26) including the circular groove (28) is a bubble rising portion (13) along the bubble discharge surface (12a). ).

図11に示す金属多孔質体(29)の場合、空間(27)を囲繞する部分、および円弧溝(28)の周壁となる部分の内部に、受熱部(3)の底壁(3a)と一体に形成されて上方にのびる板状の熱拡散部(21)が、液相冷媒通路(16)を避け、かつ2つの熱拡散部(21)が互いに間隔をおいて対をなすように設けられている。   In the case of the metal porous body (29) shown in FIG. 11, the bottom wall (3a) of the heat receiving part (3) and the part surrounding the space (27) and the part serving as the peripheral wall of the arc groove (28) A plate-shaped heat diffusion part (21) that is integrally formed and extends upward is provided so as to avoid the liquid-phase refrigerant passage (16), and the two heat diffusion parts (21) are paired at a distance from each other. It has been.

その他の構成は、図9および図10に示す金属多孔質体(26)と同様である。   Other configurations are the same as those of the porous metal body (26) shown in FIGS.

上述した金属多孔質体(8)(20)(22)(25)(26)(29)を用いる場合、図12に示すように、受熱部(3)の底壁(3a)内面における空間(14)(23)(27)および溝(11)(24)(28)に臨む部分に、金属多孔質体(8)(20)(22)(25)(26)(29)の空孔率および空孔径よりも大きな空孔率および空孔径を有する発泡起点層(12)が設けられていてもよい。   When using the metal porous body (8), (20), (22), (25), (26), and (29) described above, as shown in FIG. 12, the space on the inner surface of the bottom wall (3a) of the heat receiving portion (3) ( 14) (23) (27) and porosity of the metal porous body (8) (20) (22) (25) (26) (29) in the part facing the groove (11) (24) (28) In addition, a foaming origin layer (12) having a porosity and a pore diameter larger than the pore diameter may be provided.

図6、図7、図9および図10に示す金属多孔質体(22)(26)は、発泡起点層(12)を含んだ全体が、たとえばアルミニウム粉末を用いて3次元造型機により受熱部(3)の底壁(3a)と一体に形成される。   The porous metal bodies (22) and (26) shown in FIGS. 6, 7, 9, and 10 are formed of a heat receiving portion by using a three-dimensional molding machine using, for example, aluminum powder. It is formed integrally with the bottom wall (3a) of (3).

また、図5、図8および図11に示す金属多孔質体(20)(25)(29)は、発泡起点層(12)および熱拡散部(21)を含んだ全体が、たとえばアルミニウム粉末を用いて3次元造型機により受熱部(3)の底壁(3a)と一体に形成される。   Further, the porous metal bodies (20), (25), and (29) shown in FIGS. 5, 8, and 11 are made of, for example, aluminum powder as a whole including the foaming origin layer (12) and the heat diffusion portion (21). It is formed integrally with the bottom wall (3a) of the heat receiving part (3) using a three-dimensional molding machine.

実施形態2
この実施形態は図13〜図16に示すものである。
Embodiment 2
This embodiment is shown in FIGS.

図13はこの発明の実施形態2の沸騰冷却装置の全体構成を概略的に示し、図14〜図16は図13の沸騰冷却装置に用いられる金属多孔質体を示す。   FIG. 13 schematically shows the overall configuration of the boiling cooling apparatus according to Embodiment 2 of the present invention, and FIGS. 14 to 16 show a porous metal body used in the boiling cooling apparatus of FIG.

図13において、沸騰冷却装置(30)の冷媒封入体(2)の受熱部(3)における1つの側壁(3b)外面の下部に発熱体取付部(31)が設けられており、発熱体取付部(31)に、たとえば半導体素子からなるパワーデバイスを備えたパワーモジュールなどからなる発熱体(P)が、図示しない熱伝導性グリスを介して取り付けられるようになっている。また、冷媒封入体(2)の受熱部(3)の側壁(3b)内面における発熱体取付部(31)と合致した位置に、アルミニウム製金属多孔質体(32)が、側壁(3b)内面から当該側壁(3b)と直角をなす方向に受熱部(3)内側方に突出し、かつ全体が冷媒(6)中に浸漬されるように一体に形成されている。   In FIG. 13, a heating element mounting portion (31) is provided below the outer surface of one side wall (3b) of the heat receiving section (3) of the refrigerant enclosure (2) of the boiling cooling device (30). A heating element (P) made of, for example, a power module including a power device made of a semiconductor element is attached to the part (31) via heat conductive grease (not shown). Further, the aluminum porous metal body (32) is located on the inner surface of the side wall (3b) at a position matching the heating element mounting portion (31) on the inner surface of the side wall (3b) of the heat receiving portion (3) of the refrigerant enclosure (2). Are integrally formed so as to protrude inward of the heat receiving portion (3) in a direction perpendicular to the side wall (3b) and to be entirely immersed in the refrigerant (6).

図14〜図16に示すように、金属多孔質体(32)は長手方向を上下方向に向けた垂直板状であり、受熱部(3)の側壁(3b)の幅方向に間隔をおいて複数設けられている。金属多孔質体(32)の上下両端面および両側面における表面から一定の深さの範囲には、他の部分の空孔率および空孔径よりも大きい空孔率および空孔径を有する発泡起点層(12)が設けられており、金属多孔質体(32)の表面、すなわち発泡起点層(12)の表面が気泡放出面(12a)となっている。また、金属多孔質体(32)の両側面、すなわち隣り合う金属多孔質体(32)どうしの間の空間(36A)および両端の垂直壁(34)の外側の空間(36B)が、気泡放出面(12a)に沿う気泡上昇部(34)となっている。   As shown in FIGS. 14 to 16, the metal porous body (32) has a vertical plate shape whose longitudinal direction is directed in the vertical direction, and is spaced in the width direction of the side wall (3b) of the heat receiving portion (3). A plurality are provided. A foaming origin layer having a porosity and a pore diameter larger than the porosity and the pore diameter of other portions in a range of a certain depth from the surface on both upper and lower end faces and both side faces of the metal porous body (32) (12) is provided, and the surface of the metal porous body (32), that is, the surface of the foaming origin layer (12) is the bubble discharge surface (12a). Further, both sides of the metal porous body (32), that is, the space (36A) between the adjacent metal porous bodies (32) and the space (36B) outside the vertical walls (34) at both ends, are released. It is a bubble rising part (34) along the surface (12a).

金属多孔質体(32)に、突出端面から発熱体取付部(31)側端部に至り、かつ毛細管力により液相冷媒を金属多孔質体(32)の突出端面から発熱体取付部(31)側に導く複数の液相冷媒通路(35)が形成されている。液相冷媒通路(35)の断面積を、この面積と等しい円の直径で表した円相当径は、使用する液相冷媒(6)の毛細管距離が10以上となるような大きさとすることが好ましい。たとえば、液相冷媒(6)としてハイドロフルオロエーテルの用いる場合、上述した円相当径は、100μm以下であることが好ましい。そして、液相冷媒通路(35)内の液相冷媒が、金属多孔質体(32)における液相冷媒通路(35)を囲繞する囲繞部に流入して沸騰気化するとともに、生成した気泡が気泡放出面(12a)に至るようになされている。   The metal porous body (32) reaches the heating element mounting part (31) side end from the protruding end surface, and the liquid phase refrigerant is supplied from the protruding end surface of the metal porous body (32) by capillary force (31). A plurality of liquid-phase refrigerant passages (35) leading to the) side are formed. The equivalent circle diameter in which the cross-sectional area of the liquid-phase refrigerant passage (35) is represented by the diameter of a circle equal to this area may be set such that the capillary distance of the liquid-phase refrigerant (6) to be used is 10 or more. preferable. For example, when hydrofluoroether is used as the liquid phase refrigerant (6), the above-described equivalent circle diameter is preferably 100 μm or less. Then, the liquid phase refrigerant in the liquid phase refrigerant passage (35) flows into the surrounding portion surrounding the liquid phase refrigerant passage (35) in the metal porous body (32) to be boiled and vaporized, and the generated bubbles are bubbled. It reaches the discharge surface (12a).

上記において、液相冷媒通路(35)は、金属多孔質体(32)の突出端面から発熱体取付部(31)側端部に至っているが、これに限定されるものではなく、金属多孔質体(32)の突出端面から突出高さ方向の中間部、たとえば基端部近傍までのびていればよい。   In the above, the liquid-phase refrigerant passage (35) extends from the protruding end surface of the metal porous body (32) to the end of the heating element mounting portion (31), but is not limited thereto, and the metal porous body What is necessary is just to extend from the protrusion end surface of the body (32) to the intermediate part of the protrusion height direction, for example, the base end part vicinity.

金属多孔質体(32)は、発泡起点層(12)を含んだ全体が、たとえばアルミニウム粉末を用いて3次元造型機により受熱部(3)の側壁(3b)と一体に形成される。   The entire porous metal body (32) including the foaming origin layer (12) is integrally formed with the side wall (3b) of the heat receiving section (3) by using a three-dimensional molding machine using, for example, aluminum powder.

上述した沸騰冷却装置(30)において、発熱体(P)から発せられる熱が冷媒封入体(2)の受熱部(3)の側壁(3b)を経て金属多孔質体(32)に伝わり、金属多孔質体(32)内における液相冷媒通路(35)を囲繞する囲繞部に存在する冷媒が、当該囲繞部において沸騰気化してガス状になるとともに、生成した気泡が気泡放出面(12a)に至り、液相冷媒(6)中に放出される。液相冷媒(6)中に放出されたガス状冷媒からなる気泡は気泡上昇部(34)に沿って液相冷媒(6)中を上昇し、冷媒流通部(5)を経て放熱部(4)に至り、放熱部(4)において冷却流体循環管(9)内を流れる冷却流体に放熱して再液化し、冷媒流通部(4)を経て受熱部(3)に戻る。受熱部(3)に溜められている液相冷媒(6)は、毛細管力により液相冷媒通路(35)を通って金属多孔質体(32)の突出端面から側壁(3b)側に導かれて垂直壁(33)に戻る。このような動作を繰り返すことによって、発熱体(P)から発せられる熱が、冷媒により潜熱として放熱部(4)に輸送され、放熱部(4)から放熱される。したがって、 相変化を伴う冷媒の循環がスムーズに行われることになり、冷却効果が向上する。   In the boiling cooling device (30) described above, the heat generated from the heating element (P) is transmitted to the metal porous body (32) through the side wall (3b) of the heat receiving portion (3) of the refrigerant enclosure (2), and the metal The refrigerant present in the surrounding portion surrounding the liquid refrigerant passage (35) in the porous body (32) is boiled and vaporized in the surrounding portion to become a gaseous state, and the generated bubbles are bubble releasing surfaces (12a). To be released into the liquid-phase refrigerant (6). Bubbles made of gaseous refrigerant released into the liquid-phase refrigerant (6) rise in the liquid-phase refrigerant (6) along the bubble rising part (34), pass through the refrigerant circulation part (5), and the heat dissipation part (4 ), The heat dissipating part (4) dissipates heat to the cooling fluid flowing in the cooling fluid circulation pipe (9) and reliquefies, and returns to the heat receiving part (3) through the refrigerant circulation part (4). The liquid phase refrigerant (6) stored in the heat receiving section (3) is guided to the side wall (3b) side from the protruding end surface of the metal porous body (32) through the liquid phase refrigerant passage (35) by capillary force. Return to the vertical wall (33). By repeating such an operation, the heat generated from the heating element (P) is transported as latent heat by the refrigerant to the heat radiating section (4) and is radiated from the heat radiating section (4). Therefore, the refrigerant is circulated smoothly with a phase change, and the cooling effect is improved.

図17〜図20は実施形態2の沸騰冷却装置に用いられる金属多孔質体の変形例を示す。   17-20 shows the modification of the metal porous body used for the boiling cooling device of Embodiment 2. FIG.

図17に示す金属多孔質体(40)の場合、金属多孔質体(40)の内部に、受熱部(3)の側壁(3b)内面から当該側壁(3b)と直角をなす方向に受熱部(3)内側方に突出した板状の熱拡散部(41)が一体に設けられており、熱拡散部(41)の空孔率および空孔径が、金属多孔質体(40)における熱拡散部(41)の周りの部分の空孔率および空孔径よりも小さくなっている。なお、熱拡散部(41)の空孔率は0であってもよい。   In the case of the metal porous body (40) shown in FIG. 17, the heat receiving portion is formed in the metal porous body (40) from the inner surface of the side wall (3b) of the heat receiving portion (3) in a direction perpendicular to the side wall (3b). (3) The plate-like heat diffusion part (41) protruding inward is integrally provided, and the porosity and the hole diameter of the heat diffusion part (41) are the heat diffusion in the metal porous body (40). It is smaller than the porosity and hole diameter of the portion around the portion (41). Note that the porosity of the thermal diffusion part (41) may be zero.

熱拡散部(41)は、金属多孔質体(40)の厚み方向に間隔をおくとともに、上下方向に間隔をおいて設けられており、液相冷媒通路(35)は、各金属多孔質体(40)の厚み方向に間隔をおいた両熱拡散部(41)どうしの間に設けられている。なお、各金属多孔質体(40)の厚み方向に間隔をおいて設けられた2つの熱拡散部(41)は、各金属多孔質体(40)の上下方向の同一位置にある。   The thermal diffusion part (41) is spaced apart in the thickness direction of the metal porous body (40) and spaced in the vertical direction, and the liquid-phase refrigerant passage (35) is provided for each metal porous body. It is provided between the two heat diffusion portions (41) spaced in the thickness direction of (40). In addition, the two thermal diffusion parts (41) provided at intervals in the thickness direction of each metal porous body (40) are at the same position in the vertical direction of each metal porous body (40).

その他の構成は、図14〜図16に示す金属多孔質体(32)と同様である。   Other configurations are the same as those of the metal porous body (32) shown in FIGS.

図18および図19において、受熱部(3)の側壁(3b)内面における発熱体取付部(31)と合致した位置に内向きに突出するように一体に形成された金属多孔質体(43)は横断面円形の水平なピン状であって、千鳥配置状に複数設けられている。   18 and 19, the porous metal body (43) integrally formed so as to protrude inward at a position matching the heating element mounting portion (31) on the inner surface of the side wall (3b) of the heat receiving portion (3). Is a horizontal pin shape with a circular cross section, and a plurality of pins are provided in a staggered arrangement.

金属多孔質体(43)に、突出端面から発熱体取付部(31)側端部に至り、かつ毛細管力により液相冷媒を金属多孔質体(32)の突出端面から発熱体取付部(31)側に導く複数の液相冷媒通路(35)が形成されている。金属多孔質体(43)の先端面および外周面における表面から一定の深さの範囲には、他の部分の空孔率および空孔径よりも大きい空孔率および空孔径を有する発泡起点層(12)が設けられており、金属多孔質体(43)の表面、すなわち発泡起点層(12)の表面が気泡放出面(12a)となっている。また、隣り合う金属多孔質体(43)どうしの間の空間(44)が、気泡放出面に沿う気泡上昇部(34)となっている。   The metal porous body (43) reaches the heating element mounting part (31) side end from the protruding end surface, and the liquid phase refrigerant is transferred from the protruding end surface of the metal porous body (32) by capillary force (31). A plurality of liquid-phase refrigerant passages (35) leading to the) side are formed. In the range of a certain depth from the surface on the front end surface and the outer peripheral surface of the metal porous body (43), the foaming origin layer having a porosity and a pore diameter larger than the porosity and the pore diameter of other portions ( 12) is provided, and the surface of the metal porous body (43), that is, the surface of the foaming origin layer (12) is the bubble discharge surface (12a). Further, a space (44) between adjacent metal porous bodies (43) is a bubble rising portion (34) along the bubble discharge surface.

図20に示す金属多孔質体(45)の場合、金属多孔質体(45)の内部に、受熱部(3)の側壁(3b)と一体に形成されて側方にのびる板状の熱拡散部(41)が、液相冷媒通路(35)を避け、かつ周方向に等角度間隔をおいて設けられている。   In the case of the metal porous body (45) shown in FIG. 20, a plate-like heat diffusion formed integrally with the side wall (3b) of the heat receiving portion (3) and extending laterally inside the metal porous body (45). The part (41) is provided at an equiangular interval in the circumferential direction while avoiding the liquid-phase refrigerant passage (35).

その他の構成は、図18および図19に示す金属多孔質体(43)と同様である。   Other configurations are the same as those of the metal porous body (43) shown in FIGS.

図21および図22において、受熱部(3)の側壁(3b)内面における発熱体取付部(31)と合致した位置に、内向きに突出するように一体に形成された金属多孔質体(47)は横断面方形の水平なピン状であって、千鳥配置状に複数設けられている。   21 and 22, a porous metal body (47) integrally formed so as to protrude inward at a position matching the heating element mounting portion (31) on the inner surface of the side wall (3b) of the heat receiving portion (3). ) Is a horizontal pin shape having a square cross section, and a plurality of pins are provided in a staggered arrangement.

その他の構成は図18および図19の金属多孔質体(43)と同様である。   The other structure is the same as that of the metal porous body (43) of FIG. 18 and FIG.

図23に示す金属多孔質体(48)の場合、金属多孔質体(48)の内部に、受熱部の側壁(3b)と一体に形成されて側方にのびる複数の板状熱拡散部(41)が、液相冷媒通路(35)を避けて設けられている。   In the case of the metal porous body (48) shown in FIG. 23, a plurality of plate-like heat diffusing parts (in the metal porous body (48), which are formed integrally with the side wall (3b) of the heat receiving part and extend laterally) 41) is provided avoiding the liquid-phase refrigerant passage (35).

その他の構成は図21および図22の金属多孔質体(43)と同様である。   The other structure is the same as that of the metal porous body (43) of FIG. 21 and FIG.

上述した金属多孔質体(32)(40)(43)(45)(47)(48)を用いる場合、受熱部(3)の側壁(3b)内面の発熱体取付部(31)に対応する部分における金属多孔質体(32)(40)(43)(45)(47)(48)を避けた部分に、金属多孔質体(32)(40)(43)(45)(47)(48)の空孔率および空孔径よりも大きな空孔率および空孔径を有する発泡起点層(12)が設けられていてもよい。   When the metal porous body (32) (40) (43) (45) (47) (48) described above is used, it corresponds to the heating element mounting portion (31) on the inner surface of the side wall (3b) of the heat receiving portion (3). Porous metal body (32) (40) (43) (45) (47) (48) in the part avoiding the metal porous body (32) (40) (43) (45) (47) (48) in the part ( The foaming origin layer (12) having a porosity and a pore diameter larger than the porosity and the pore diameter of 48) may be provided.

図18、図19、図21および図22に示す複数の金属多孔質体(43)(47)は、発泡起点層(12)を含んだ全体が、たとえばアルミニウム粉末を用いて3次元造型機により受熱部(3)の側壁(3b)と一体に形成される。   The plurality of porous metal bodies (43) and (47) shown in FIG. 18, FIG. 19, FIG. 21 and FIG. 22 are entirely formed by a three-dimensional molding machine using, for example, aluminum powder including the foaming origin layer (12). It is formed integrally with the side wall (3b) of the heat receiving part (3).

図20および図23に示す複数の金属多孔質体(45)(48)は、発泡起点層(12)および熱拡散部(41)を含んだ全体が、たとえばアルミニウム粉末を用いて3次元造型機により受熱部(3)の側壁(3b)と一体に形成される。   The plurality of porous metal bodies (45) and (48) shown in FIG. 20 and FIG. 23 include a foaming origin layer (12) and a thermal diffusion part (41) as a whole using, for example, aluminum powder as a three-dimensional molding machine. Is formed integrally with the side wall (3b) of the heat receiving portion (3).

上述した金属多孔質体(32)(40)(43)(45)(47)(48)において、液相冷媒通路(35)は、金属多孔質体(32)(40)(45)(47)(48)の突出端面から発熱体取付部(31)側端部まで至っているが、これに限定されるものではなく、金属多孔質体(32)(40)(43)(45)(47)(48)の突出端面から突出高さ方向の中間部、たとえば基端部近傍までのびていればよい。   In the metal porous body (32) (40) (43) (45) (47) (48) described above, the liquid-phase refrigerant passage (35) is formed of the metal porous body (32) (40) (45) (47 ) (48) from the projecting end surface to the heating element mounting portion (31) side end, but is not limited to this, the metal porous body (32) (40) (43) (45) (47 ) (48) may extend from the projecting end surface to the middle in the projecting height direction, for example, near the base end.

また、図18〜図23に示す金属多孔質体(43)(45)(47)(48)は、実施形態1の沸騰冷却装置の場合と同様に、受熱部(3)の底壁(3a)内面における発熱体取付部(7)と合致した位置に上方突出状に一体に形成されて用いられる場合もある。   Further, the porous metal bodies (43), (45), (47), and (48) shown in FIGS. 18 to 23 are similar to the boiling cooling device of Embodiment 1 in the bottom wall (3a) of the heat receiving section (3). ) In some cases, it is integrally formed in an upward projecting manner at a position matching the heating element mounting portion (7) on the inner surface.

上記2つの実施形態においては、冷媒封入体(2)は、受熱部(3)、放熱部(4)および冷媒流通部(5)を含めて全体がアルミニウムにより直方体状に形成されているが、これに限定されるものではなく、別個に設けられた受熱部と放熱部とが冷媒流通部によって通じさせられることによって冷媒封入体が形成されていてもよい。   In the above two embodiments, the refrigerant enclosure (2) is formed in a rectangular parallelepiped shape with aluminum, including the heat receiving part (3), the heat radiating part (4) and the refrigerant circulation part (5). It is not limited to this, The refrigerant | coolant enclosure may be formed by making the heat-receiving part and heat dissipation part which were provided separately communicate with each other by the refrigerant circulation part.

この発明による沸騰冷却装置は、たとえば半導体素子からなるパワーデバイスを備えたパワーモジュールなどからなる発熱体を冷却するのに好適に用いられる。   The boiling cooling device according to the present invention is suitably used for cooling a heating element including a power module including a power device including a semiconductor element, for example.

(1)(30):沸騰冷却装置
(2):冷媒封入体
(3):受熱部
(3a):底壁
(3b):側壁
(4):放熱部
(5):冷媒流通部
(6):冷媒
(7)(31):発熱体取付部
(8)(20)(22)(25)(26)(29)(32)(40)(43)(45)(47)(48):金属多孔質体
(9):冷媒循環管
(12):発泡起点層
(12a):気泡放出面
(13)(34):気泡上昇部
(14)(23)(27):空間
(11)(24)(28):溝
(16)(35):液相冷媒通路
(21)(41):熱拡散部
(1) (30): Boiling cooler
(2): Refrigerant enclosure
(3): Heat receiving part
(3a): Bottom wall
(3b): Side wall
(4): Heat radiation part
(5): Refrigerant distribution department
(6): Refrigerant
(7) (31): Heating element mounting part
(8) (20) (22) (25) (26) (29) (32) (40) (43) (45) (47) (48): Metal porous body
(9): Refrigerant circulation pipe
(12): Foam origin layer
(12a): Bubble release surface
(13) (34): Bubble rising part
(14) (23) (27): Space
(11) (24) (28): Groove
(16) (35): Liquid phase refrigerant passage
(21) (41): Thermal diffusion part

Claims (25)

外部からの熱を受ける中空状受熱部、受熱部の上方に設けられ、かつ外部に熱を放出する中空状放熱部、および受熱部内と放熱部内とを通じさせる冷媒流通部を有する冷媒封入体と、冷媒封入体内に封入されかつ潜熱として熱を輸送する冷媒とを備えた沸騰冷却装置において、
受熱部の底壁外面または側壁外面に発熱体取付部が設けられ、受熱部の発熱体取付部が設けられた壁の内面に、金属多孔質体が、前記壁の内面から受熱部内方に突出し、かつ全体が冷媒中に浸漬されるように一体に形成され、金属多孔質体の表面が気泡放出面となるとともに、金属多孔質体の気泡放出面に沿うように気泡上昇部が設けられ、金属多孔質体に、突出端面から発熱体取付部側にのび、かつ毛細管力により液相冷媒を金属多孔質体の突出端面から発熱体取付部側に導く液相冷媒通路が形成され、液相冷媒通路内の液相冷媒が、金属多孔質体における液相冷媒通路を囲繞する囲繞部に流入して沸騰気化するとともに、生成した気泡が気泡放出面に至るようになされている沸騰冷却装置。
A hollow heat receiving portion that receives heat from the outside, a hollow heat radiating portion that is provided above the heat receiving portion and that releases heat to the outside, and a refrigerant enclosure having a refrigerant circulation portion that allows the heat receiving portion and the heat radiating portion to pass through, In a boiling cooling device comprising a refrigerant enclosed in a refrigerant enclosure and transporting heat as latent heat,
A heating element mounting portion is provided on the outer surface of the bottom wall or the side wall of the heat receiving portion, and a metal porous body projects inward from the inner surface of the wall to the inner surface of the heat receiving portion. And the whole is formed so as to be immersed in the refrigerant, the surface of the metal porous body becomes a bubble discharge surface, and a bubble rising portion is provided along the bubble discharge surface of the metal porous body, A liquid phase refrigerant passage is formed in the metal porous body, extending from the protruding end surface to the heating element mounting portion side, and leading the liquid phase refrigerant from the protruding end surface of the metal porous body to the heating element mounting portion side by capillary force. A boiling cooling device in which the liquid phase refrigerant in the refrigerant passage flows into an enclosure portion surrounding the liquid phase refrigerant passage in the metal porous body to evaporate, and the generated bubbles reach the bubble discharge surface.
受熱部の底壁外面に発熱体取付部が設けられ、金属多孔質体が、受熱部の底壁内面に、底壁内面から上方に突出するように一体に形成され、金属多孔質体に、突出端面である上端面から発熱体取付部側にのびる液相冷媒通路が形成されている請求項1記載の沸騰冷却装置。 A heating element mounting portion is provided on the outer surface of the bottom wall of the heat receiving portion, and the metal porous body is integrally formed on the inner surface of the bottom wall of the heat receiving portion so as to protrude upward from the inner surface of the bottom wall. The boiling cooling device according to claim 1, wherein a liquid phase refrigerant passage extending from an upper end surface which is a projecting end surface to the heating element mounting portion side is formed. 液相冷媒通路が、金属多孔質体の上端面から発熱体取付部側端部に至っている請求項2記載の沸騰冷却装置。 The boiling cooling device according to claim 2, wherein the liquid-phase refrigerant passage extends from the upper end surface of the metal porous body to the end portion on the heating element mounting portion side. 金属多孔質体がブロック状であって、上端面から下方にのびる複数の空間が形成されており、当該空間の内周面および金属多孔質体の外周面が気泡放出面となり、前記空間内および金属多孔質体の周りの部分が、金属多孔質体の気泡放出面に沿う気泡上昇部となっている請求項2または3記載の沸騰冷却装置。 The metal porous body has a block shape, and a plurality of spaces extending downward from the upper end surface are formed, and the inner peripheral surface of the space and the outer peripheral surface of the metal porous body serve as bubble release surfaces, and the space and The boiling cooling device according to claim 2 or 3, wherein a portion around the metal porous body is a bubble rising portion along a bubble discharge surface of the metal porous body. 金属多孔質体の空間が水平断面方形である請求項4記載の沸騰冷却装置。 The boiling cooling device according to claim 4, wherein the space of the metal porous body is a square in a horizontal section. 金属多孔質体の空間が水平断面六角形である請求項4記載の沸騰冷却装置。 The boiling cooling device according to claim 4, wherein the space of the metal porous body has a horizontal cross section of a hexagon. 金属多孔質体の空間が水平断面円形である請求項4記載の沸騰冷却装置。 The boiling cooling device according to claim 4, wherein the space of the metal porous body has a circular horizontal cross section. 金属多孔質体の内部における前記空間を囲繞する壁部分に、受熱部の底壁と一体に形成されて上方にのびる熱拡散部が、液相冷媒通路を避けるように設けられており、熱拡散部の空孔率が、金属多孔質体における熱拡散部の周りの部分の空孔率よりも小さくなっている請求項4〜7のうちのいずれかに記載の沸騰冷却装置。 A heat diffusion part formed integrally with the bottom wall of the heat receiving part and extending upward is provided on the wall part surrounding the space inside the metal porous body so as to avoid the liquid phase refrigerant passage. The boiling cooling device according to any one of claims 4 to 7, wherein a porosity of the portion is smaller than a porosity of a portion around the thermal diffusion portion in the metal porous body. 熱拡散部が板状であって、金属多孔質体における空間を囲繞する壁部分に、当該壁部分の厚み方向に間隔をおいて形成されており、両熱拡散部間に液相冷媒通路が形成されている請求項8記載の沸騰冷却装置。 The heat diffusion part is plate-shaped, and is formed in the wall part surrounding the space in the metal porous body with a space in the thickness direction of the wall part, and a liquid-phase refrigerant passage is formed between the two heat diffusion parts. The boiling cooling device according to claim 8 formed. 前記空間が、金属多孔質体の上端面から発熱体取付部側端部に至っている請求項4〜9のうちのいずれかに記載の沸騰冷却装置。 The boiling cooling device according to any one of claims 4 to 9, wherein the space extends from an upper end surface of the metal porous body to an end portion on the heating element mounting portion side. 受熱部の底壁内面における前記空間に臨む部分に、金属多孔質体の空孔率および空孔径よりも大きな空孔率および空孔径を有する発泡起点層が設けられている請求項10記載の沸騰冷却装置。 The boiling point according to claim 10, wherein a foaming origin layer having a porosity and a pore diameter larger than the porosity and the pore diameter of the metal porous body is provided in a portion facing the space in the inner surface of the bottom wall of the heat receiving portion. Cooling system. 金属多孔質体が上下方向にのびるピン状であって、互いに間隔をおいて複数設けられており、金属多孔質体の外周面が気泡放出面となり、金属多孔質体の周りの部分が、金属多孔質体の気泡放出面に沿う気泡上昇部となっている請求項2または3記載の沸騰冷却装置。 The porous metal body has a pin-like shape extending in the vertical direction, and a plurality of the porous metal bodies are provided at intervals, the outer peripheral surface of the porous metal body becomes a bubble discharge surface, and the portion around the porous metal body is a metal The boiling cooling device according to claim 2 or 3, wherein the boiling cooling device is a bubble rising portion along a bubble discharge surface of the porous body. 金属多孔質体の内部に、受熱部の底壁と一体に形成されて上方にのびる熱拡散部が、液相冷媒通路を避けるように設けられており、熱拡散層の空孔率が、金属多孔質体における熱拡散部の周りの部分の空孔率よりも小さくなっている請求項12記載の沸騰冷却装置。 Inside the porous metal body, a heat diffusion part formed integrally with the bottom wall of the heat receiving part and extending upward is provided so as to avoid the liquid-phase refrigerant passage, and the porosity of the heat diffusion layer is The boiling cooling device according to claim 12, wherein the boiling cooling device is smaller than a porosity of a portion around the thermal diffusion portion in the porous body. 受熱部の底壁内面における金属多孔質体間に臨む部分に、金属多孔質体の空孔率および空孔径よりも大きな空孔率および空孔径を有する発泡起点層が設けられている請求項12または13記載の沸騰冷却装置。 13. A foaming origin layer having a porosity and a pore diameter larger than a porosity and a pore diameter of the metal porous body is provided in a portion facing the metal porous body on the inner surface of the bottom wall of the heat receiving portion. Or the boiling cooling device of 13. 受熱部の側壁外面に発熱体取付部が設けられ、金属多孔質体が、受熱部の側壁内面に、側壁内面から当該側壁と直角をなす方向に突出するように一体に形成され、金属多孔質体に、突出端面から発熱体取付部側にのびる液相冷媒通路が形成されている請求項1記載の沸騰冷却装置。 A heating element mounting portion is provided on the outer surface of the side wall of the heat receiving portion, and the metal porous body is integrally formed on the inner surface of the side wall of the heat receiving portion so as to protrude from the inner surface of the side wall in a direction perpendicular to the side wall. The boiling cooling device according to claim 1, wherein a liquid phase refrigerant passage extending from the protruding end surface to the heating element mounting portion side is formed in the body. 液相冷媒通路が、金属多孔質体の突出端面から発熱体取付部側端部に至っている請求項15記載の沸騰冷却装置。 The boiling cooling device according to claim 15, wherein the liquid-phase refrigerant passage extends from the protruding end surface of the metal porous body to the end portion on the heating element mounting portion side. 金属多孔質体が、長手方向を上下方向に向けた垂直板状であって、受熱部の側壁の幅方向に間隔をおいて複数設けられており、金属多孔質体の両側面が気泡放出面となり、金属多孔質体の両側部分が、金属多孔質体の気泡放出面に沿う気泡上昇部となっている請求項15または16記載の沸騰冷却装置。 The metal porous body has a vertical plate shape whose longitudinal direction is directed vertically, and a plurality of metal porous bodies are provided at intervals in the width direction of the side wall of the heat receiving portion, and both side surfaces of the metal porous body are bubble discharge surfaces. The boiling cooling device according to claim 15 or 16, wherein both side portions of the metal porous body are bubble rising portions along the bubble discharge surface of the metal porous body. 金属多孔質体の内部に、受熱部の側壁と一体に形成されて金属多孔質体と平行な方向に突出した熱拡散部が、液相冷媒通路を避けるように設けられており、熱拡散部の空孔率が、金属多孔質体における熱拡散部の周りの部分の空孔率よりも小さくなっている請求項17記載の沸騰冷却装置。 Inside the metal porous body, a heat diffusion part that is formed integrally with the side wall of the heat receiving part and protrudes in a direction parallel to the metal porous body is provided so as to avoid the liquid phase refrigerant passage, and the heat diffusion part The boiling cooling device according to claim 17, wherein the porosity of the metal porous body is smaller than the porosity of a portion around the thermal diffusion portion in the metal porous body. 熱拡散部が板状であって、金属多孔質体に、上下方向および厚み方向に間隔をおいて形成されており、金属多孔質体の厚み方向に間隔をおいて形成された両熱拡散部間に液相冷媒通路が形成されている請求項18記載の沸騰冷却装置。 The heat diffusion part is plate-like, and is formed in the metal porous body with an interval in the vertical direction and the thickness direction, and both heat diffusion parts formed with an interval in the thickness direction of the metal porous body The boiling cooling device according to claim 18, wherein a liquid phase refrigerant passage is formed therebetween. 受熱部の側壁内面における隣り合う金属多孔質体間の部分に、金属多孔質体の空孔率および空孔径よりも大きな空孔率および空孔径を有する発泡起点層が設けられている請求項17〜19のうちのいずれかに記載の沸騰冷却装置。 18. A foaming origin layer having a porosity and a pore diameter larger than the porosity and the pore diameter of the metal porous body is provided in a portion between adjacent metal porous bodies on the inner surface of the side wall of the heat receiving portion. The boiling cooling apparatus in any one of -19. 金属多孔質体が横方向にのびるピン状であって、互いに間隔をおいて複数設けられており、金属多孔質体の外周面が気泡放出面となり、金属多孔質体の周りの部分が、金属多孔質体の気泡放出面に沿う気泡上昇部となっていいる請求項15または16記載の沸騰冷却装置。 The porous metal body has a pin-like shape extending in the lateral direction, and a plurality of the porous metal bodies are spaced apart from each other. The outer peripheral surface of the porous metal body becomes a bubble discharge surface, and the portion around the porous metal body is made of metal. The boiling cooling device according to claim 15 or 16, wherein the boiling cooling device is a bubble rising portion along a bubble discharge surface of the porous body. 金属多孔質体の内部に、受熱部の側壁と一体に形成されて金属多孔質体と平行な方向に突出した熱拡散部が、液相冷媒通路を避けるように設けられており、熱拡散部の空孔率が、金属多孔質体における熱拡散部の周りの部分の空孔率よりも小さくなっている請求項21記載の沸騰冷却装置。 Inside the metal porous body, a heat diffusion part that is formed integrally with the side wall of the heat receiving part and protrudes in a direction parallel to the metal porous body is provided so as to avoid the liquid phase refrigerant passage, and the heat diffusion part The boiling cooling device according to claim 21, wherein the porosity of the metal porous body is smaller than the porosity of a portion around the thermal diffusion portion in the metal porous body. 受熱部の側壁内面における隣り合う金属多孔質体間の部分に、金属多孔質の空孔率および空孔径よりも大きな空孔率および空孔径を有する発泡起点層が設けられている請求項21または22記載の沸騰冷却装置。 The foaming origin layer having a porosity and a pore diameter larger than the porosity and the pore diameter of the metal porous is provided in a portion between adjacent metal porous bodies on the inner surface of the side wall of the heat receiving portion. The boiling cooling apparatus according to 22. 金属多孔質体の表面に、他の部分の空孔率および空孔径よりも大きな空孔率および空孔径を有する発泡起点層が設けられており、発泡起点層の表面が気泡放出面となっている請求項1〜23のうちのいずれかに記載の沸騰冷却装置。 The surface of the metal porous body is provided with a foaming origin layer having a porosity and a pore diameter larger than the porosity and pore diameter of other portions, and the surface of the foaming origin layer becomes a bubble discharge surface. The boiling cooling device according to any one of claims 1 to 23. 冷媒封入体が、受熱部、放熱部および冷媒流通部を含めて全体が一体に設けられており、放熱部内に、冷却流体を冷媒封入体の外部から供給するとともに冷媒封入体の外部に戻す冷却流体循環管が配置されている請求項1〜24のうちのいずれかに記載の沸騰冷却装置。 The cooling medium is integrally provided including the heat receiving part, the heat radiating part and the refrigerant circulation part, and cooling fluid is supplied into the heat radiating part from the outside of the cooling medium and returned to the outside of the cooling medium. The boiling cooling device according to any one of claims 1 to 24, wherein a fluid circulation pipe is disposed.
JP2014075057A 2014-04-01 2014-04-01 Boiling cooler Active JP6353682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014075057A JP6353682B2 (en) 2014-04-01 2014-04-01 Boiling cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014075057A JP6353682B2 (en) 2014-04-01 2014-04-01 Boiling cooler

Publications (2)

Publication Number Publication Date
JP2015197245A true JP2015197245A (en) 2015-11-09
JP6353682B2 JP6353682B2 (en) 2018-07-04

Family

ID=54547049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014075057A Active JP6353682B2 (en) 2014-04-01 2014-04-01 Boiling cooler

Country Status (1)

Country Link
JP (1) JP6353682B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019504984A (en) * 2016-02-03 2019-02-21 リム, ジョンソLIM, Jongsoo Heat exchanger
WO2020054752A1 (en) * 2018-09-14 2020-03-19 古河電気工業株式会社 Cooling device and cooling system using same
JP2020063895A (en) * 2018-09-14 2020-04-23 古河電気工業株式会社 Cooling device and cooling system using cooling device
WO2020137473A1 (en) * 2018-12-26 2020-07-02 株式会社巴川製紙所 Temperature control unit and temperature control device
JP2021025667A (en) * 2019-07-31 2021-02-22 古河電気工業株式会社 Boiling heat transfer member, cooler comprising boiling heat transfer member, and cooling device comprising boiling heat transfer member
JP2021042896A (en) * 2019-09-10 2021-03-18 古河電気工業株式会社 Cooling device and cooling system using the same
WO2021152668A1 (en) * 2020-01-27 2021-08-05 三菱電機株式会社 Heat-pipe-type cooler, and method for manufacturing heat-pipe-type cooler
JP2021165628A (en) * 2017-06-06 2021-10-14 公立大学法人山陽小野田市立山口東京理科大学 Ebullition cooling device structure
US11337336B2 (en) * 2019-04-11 2022-05-17 Furukawa Electric Co., Ltd. Cooling device
US20220187023A1 (en) * 2020-12-14 2022-06-16 Aavid Thermalloy, Llc Shrouded powder patch
WO2022244621A1 (en) * 2021-05-18 2022-11-24 株式会社ロータス・サーマル・ソリューション Ebullition cooling device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220138110A (en) * 2021-04-05 2022-10-12 삼성전자주식회사 Electronic device comprising heat management chamber using boiling

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3613778A (en) * 1969-03-03 1971-10-19 Northrop Corp Flat plate heat pipe with structural wicks
JPS5438771A (en) * 1977-09-02 1979-03-23 Toshiba Corp Cooling fin
JPS61176141A (en) * 1985-01-31 1986-08-07 Fujitsu Ltd Cooling device of solid state integrated circuit part
JPH07106478A (en) * 1993-10-07 1995-04-21 Nippondenso Co Ltd Boiling and cooling apparatus and its manufacture
JPH0888491A (en) * 1994-09-19 1996-04-02 Toshiba Corp Electronic apparatus
JP2001077257A (en) * 1999-09-07 2001-03-23 Denso Corp Boiling cooling device
JP2001349682A (en) * 2000-06-05 2001-12-21 Toshiba Corp Boiling cooler
JP2002314013A (en) * 2001-04-13 2002-10-25 Hitachi Cable Ltd Heat dissipating material and method for manufacturing the same
JP2005032881A (en) * 2003-07-09 2005-02-03 Toyota Industries Corp Electrical equipment system, cooling device thereof, and porous heat radiator for cooling device
JP2005300038A (en) * 2004-04-13 2005-10-27 Sony Corp Heat transport device, process for manufacturing the heat transport device and electronic device
US20050280996A1 (en) * 2004-06-16 2005-12-22 Hakan Erturk Heat dissipating device with enhanced boiling/condensation structure
JP2008116180A (en) * 2006-11-07 2008-05-22 Denso Corp Boil cooling device, and manufacturing method for the same
JP2008147482A (en) * 2006-12-12 2008-06-26 Nec Corp Device for cooling boiled gas medium and electronic apparatus for mounting its apparatus
JP2008281253A (en) * 2007-05-09 2008-11-20 Denso Corp Cooling device
JP2009139005A (en) * 2007-12-05 2009-06-25 Yokohama National Univ Cooler and cooling apparatus including the cooler
JP2011047616A (en) * 2009-08-28 2011-03-10 Hitachi Ltd Cooling system and electronic device using the same
JP2012172866A (en) * 2011-02-18 2012-09-10 Showa Denko Kk Ebullient cooling apparatus
JP2013243249A (en) * 2012-05-21 2013-12-05 Denso Corp Heat transfer surface for ebullient cooling and ebullient cooling device
JP2015019076A (en) * 2008-11-18 2015-01-29 日本電気株式会社 Boiling and cooling device

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3613778A (en) * 1969-03-03 1971-10-19 Northrop Corp Flat plate heat pipe with structural wicks
JPS5438771A (en) * 1977-09-02 1979-03-23 Toshiba Corp Cooling fin
JPS61176141A (en) * 1985-01-31 1986-08-07 Fujitsu Ltd Cooling device of solid state integrated circuit part
JPH07106478A (en) * 1993-10-07 1995-04-21 Nippondenso Co Ltd Boiling and cooling apparatus and its manufacture
JPH0888491A (en) * 1994-09-19 1996-04-02 Toshiba Corp Electronic apparatus
JP2001077257A (en) * 1999-09-07 2001-03-23 Denso Corp Boiling cooling device
JP2001349682A (en) * 2000-06-05 2001-12-21 Toshiba Corp Boiling cooler
JP2002314013A (en) * 2001-04-13 2002-10-25 Hitachi Cable Ltd Heat dissipating material and method for manufacturing the same
JP2005032881A (en) * 2003-07-09 2005-02-03 Toyota Industries Corp Electrical equipment system, cooling device thereof, and porous heat radiator for cooling device
JP2005300038A (en) * 2004-04-13 2005-10-27 Sony Corp Heat transport device, process for manufacturing the heat transport device and electronic device
US20050280996A1 (en) * 2004-06-16 2005-12-22 Hakan Erturk Heat dissipating device with enhanced boiling/condensation structure
JP2008116180A (en) * 2006-11-07 2008-05-22 Denso Corp Boil cooling device, and manufacturing method for the same
JP2008147482A (en) * 2006-12-12 2008-06-26 Nec Corp Device for cooling boiled gas medium and electronic apparatus for mounting its apparatus
JP2008281253A (en) * 2007-05-09 2008-11-20 Denso Corp Cooling device
JP2009139005A (en) * 2007-12-05 2009-06-25 Yokohama National Univ Cooler and cooling apparatus including the cooler
JP2015019076A (en) * 2008-11-18 2015-01-29 日本電気株式会社 Boiling and cooling device
JP2011047616A (en) * 2009-08-28 2011-03-10 Hitachi Ltd Cooling system and electronic device using the same
JP2012172866A (en) * 2011-02-18 2012-09-10 Showa Denko Kk Ebullient cooling apparatus
JP2013243249A (en) * 2012-05-21 2013-12-05 Denso Corp Heat transfer surface for ebullient cooling and ebullient cooling device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019504984A (en) * 2016-02-03 2019-02-21 リム, ジョンソLIM, Jongsoo Heat exchanger
JP7220434B2 (en) 2017-06-06 2023-02-10 公立大学法人山陽小野田市立山口東京理科大学 Boiling cooling structure
JP2021165628A (en) * 2017-06-06 2021-10-14 公立大学法人山陽小野田市立山口東京理科大学 Ebullition cooling device structure
WO2020054752A1 (en) * 2018-09-14 2020-03-19 古河電気工業株式会社 Cooling device and cooling system using same
JP2020063895A (en) * 2018-09-14 2020-04-23 古河電気工業株式会社 Cooling device and cooling system using cooling device
JP2020115077A (en) * 2018-09-14 2020-07-30 古河電気工業株式会社 Cooling device and cooling system using cooling device
JP7189903B2 (en) 2018-09-14 2022-12-14 古河電気工業株式会社 Chillers and cooling systems using chillers
WO2020137473A1 (en) * 2018-12-26 2020-07-02 株式会社巴川製紙所 Temperature control unit and temperature control device
TWI768320B (en) * 2019-04-11 2022-06-21 日商古河電氣工業股份有限公司 cooling device
US11337336B2 (en) * 2019-04-11 2022-05-17 Furukawa Electric Co., Ltd. Cooling device
JP2021025667A (en) * 2019-07-31 2021-02-22 古河電気工業株式会社 Boiling heat transfer member, cooler comprising boiling heat transfer member, and cooling device comprising boiling heat transfer member
JP7233336B2 (en) 2019-07-31 2023-03-06 古河電気工業株式会社 Boiling heat transfer member, cooler with boiling heat transfer member, and cooling device with boiling heat transfer member
JP7072547B2 (en) 2019-09-10 2022-05-20 古河電気工業株式会社 Cooling device and cooling system using cooling device
TWI738499B (en) * 2019-09-10 2021-09-01 日商古河電氣工業股份有限公司 Cooling device and cooling system using the cooling device
WO2021049096A1 (en) * 2019-09-10 2021-03-18 古河電気工業株式会社 Cooling device and cooling system using cooling device
JP2021042896A (en) * 2019-09-10 2021-03-18 古河電気工業株式会社 Cooling device and cooling system using the same
WO2021152668A1 (en) * 2020-01-27 2021-08-05 三菱電機株式会社 Heat-pipe-type cooler, and method for manufacturing heat-pipe-type cooler
US20220187023A1 (en) * 2020-12-14 2022-06-16 Aavid Thermalloy, Llc Shrouded powder patch
WO2022244621A1 (en) * 2021-05-18 2022-11-24 株式会社ロータス・サーマル・ソリューション Ebullition cooling device

Also Published As

Publication number Publication date
JP6353682B2 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
JP6353682B2 (en) Boiling cooler
JP6623296B2 (en) Vapor chamber
JP2007266153A (en) Plate-shape heat transport device and electronic device
JP2010251755A (en) Heat dissipation device
JP2015132399A (en) vapor chamber
JP6413306B2 (en) Heat pipe built-in frame plate and electronic equipment
JP2013243249A (en) Heat transfer surface for ebullient cooling and ebullient cooling device
JPWO2012115214A1 (en) Cooling device and manufacturing method thereof
WO2015146110A1 (en) Phase-change cooler and phase-change cooling method
JP2018004177A (en) Vapor chamber and electronic equipment
JP3181289U (en) Heat dissipation device
JP2013007501A (en) Cooling device
WO2016117342A1 (en) Cooling device and electronic device in which same is installed
JP5696466B2 (en) Loop heat pipe and information processing apparatus
WO2016051569A1 (en) Evaporator, cooling device, and electronic device
JP2017166710A (en) Cooling device and electronic equipment mounted with the same
JP2019194512A (en) Integrated vapor chamber module allowing communication between multiple vapor chambers with extended capillary layer
JP6376967B2 (en) Boiling heat transfer member and boiling cooling device using the same
JP2021156517A (en) Heat dissipating structure and electronic device
JP6406892B2 (en) Cooling system
JP2016138740A (en) Cooling apparatus and electronic equipment
JP2016125693A (en) Cooling component and information processing device
TWI534402B (en) Heat sink with impinging cooling mechanism and micro-channel cooling mechanism and chip heat sink having the same
JP3169367U (en) Heat dissipation device
WO2017046986A1 (en) Cooling device and electronic device equipped with same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170908

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180611

R150 Certificate of patent or registration of utility model

Ref document number: 6353682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350