JP2015190401A - 回転式圧縮機 - Google Patents

回転式圧縮機 Download PDF

Info

Publication number
JP2015190401A
JP2015190401A JP2014069061A JP2014069061A JP2015190401A JP 2015190401 A JP2015190401 A JP 2015190401A JP 2014069061 A JP2014069061 A JP 2014069061A JP 2014069061 A JP2014069061 A JP 2014069061A JP 2015190401 A JP2015190401 A JP 2015190401A
Authority
JP
Japan
Prior art keywords
compression mechanism
cylinder
blade
piston
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014069061A
Other languages
English (en)
Inventor
岡本 哲也
Tetsuya Okamoto
哲也 岡本
熊倉 英二
Eiji Kumakura
英二 熊倉
古庄 和宏
Kazuhiro Kosho
和宏 古庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2014069061A priority Critical patent/JP2015190401A/ja
Publication of JP2015190401A publication Critical patent/JP2015190401A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

【課題】圧縮機構(40)の軸方向へのブレード(24,34)の高さ寸法がブレード(24,34)の径方向内側端と径方向外側端で異なり、ブレード(24,34)の径方向外側端の寸法が径方向内側端の寸法よりも大きく形成された偏心回転型の圧縮機構(40)を備えた回転式圧縮機において、ブレード(24,34)の背面の押し付け荷重が大きくなることによる摺動損失や焼き付きによる信頼性の低下を防止する。
【解決手段】ブレード背圧空間(21g,31g)と圧縮機構(40)の中間圧力部分である第4吸入流路(74)とを接続する中間圧連通路(58b)を設ける。
【選択図】図9

Description

本発明は、複数のシリンダ室がピストンとシリンダの間に形成された偏心回転型の圧縮機構を備え、圧縮機構の軸方向へのブレードの高さ寸法が該ブレードの径方向内側端よりも径方向外側端において大きく形成された回転式圧縮機に関するものである。
従来、シリンダが有する環状のシリンダ室の内部に環状のピストンを配置することにより、圧縮機構に複数のシリンダ室を形成するようにした回転式圧縮機が提案されている(例えば、特許文献1参照)。特許文献1の圧縮機の圧縮機構では、シリンダとピストンの間に4つのシリンダ室が形成されている。そして、この回転式圧縮機は、上記4つのシリンダ室で冷媒を4段圧縮するように構成されている。この圧縮機は、空気調和装置などの冷凍装置の冷媒回路に設けられている。
上記圧縮機構では、具体的には、環状のピストンの鏡板の上面側の3室と、該鏡板の外周面側の1室とから、4室のシリンダ室が形成されている。上記圧縮機構は最外周のシリンダ室が第1段で低圧の圧縮室であり、最内周のシリンダ室が第4段で高圧の圧縮室であり、中間の2つのシリンダ室が第2段と第3段で中間圧の圧縮室になっている。この圧縮機構には、これらの4つの圧縮室を高圧側と低圧側に仕切るように形成されたブレードが設けられている。
図12(A),(B)に示すように、このブレード(100)は、ブレード本体部(101)と揺動ブッシュ部(102)とを備え、揺動ブッシュ部(102)がピストン(103)に連結されている。また、ブレード(100)は、圧縮機構の軸方向への高さ寸法が径方向内側端と径方向外側端とで異なり、径方向外側端の高さ寸法(H2)の方が径方向内側端の高さ寸法(H1)よりも大きく形成されている。
特開2013−139729号公報
上記圧縮機構では、ブレード(100)の背面側に背圧空間(104)が形成されている。図示していないが、圧縮機構のケーシング内には、その底部に、高圧の潤滑油(冷凍機油)を貯留する油溜まりが設けられていて、この油溜まりから上記背圧空間(104)に高圧の潤滑油が供給されるようになっている。そして、上記背圧空間(104)からブレード(100)の周りに潤滑油を供給して、ブレード(100)の潤滑を行うようになっている。したがって、ブレード(100)の背面(100c)には高圧圧力が作用する。
一方、最内周の第4段圧縮室を区画するブレード(100)の第1端部(100a)には高圧圧力が作用し、最外周の第1段圧縮室を区画するブレード(100)の第2端部(100b)には低圧圧力が作用する。
以上の構成において、いずれも高圧圧力が作用するブレード(100)の径方向外側端の高さ寸法(H2)が径方向内側端の高さ寸法(H1)よりも大きいため、図12(A)に矢印で示すように、径方向外側から径方向内側に向かって作用する押し付け力が強くなる。
その結果、例えば図12(A)において上記荷重を支えるブッシュ部の面圧が異常に上昇してブッシュ孔(105)が摩耗するおそれがある。そうすると、ブレード(100)の先端部がピストン(106)に対して本来は非接触となる構造であるにもかかわらず、上記のブッシュ孔(105)の摩耗のために接触してしまうおそれがあった。その結果、摺動損失の発生に伴う性能低下、またはブレード(100)の先端部の面圧上昇による焼き付きが発生して、圧縮機の信頼性が大きく低下してしまうおそれがあった。
本発明は、このような問題点に鑑みてなされたものであり、その目的は、圧縮機構の軸方向へのブレードの高さ寸法が径方向内側端よりも径方向外側端において大きく形成された偏心回転型の回転式圧縮機において、ブレード背面の押し付け荷重が大きくなることによる摺動損失や焼き付きによる信頼性の低下を防止することである。
第1の発明は、シリンダ(21,31)と、該シリンダ(21,31)内で偏心回転動作をするピストン(22,32)と、該シリンダ(21,31)とピストン(22,32)との間に形成されるとともに径方向の内側端及び外側端とその中間部に位置する複数のシリンダ室(23a,23b,23c,23d,33a,33b,33c,33d)と、上記シリンダ(21,31)の径方向へ摺動可能でピストン(22,32)が揺動可能に連結されるブレード(24,34)とを有する圧縮機構(40)と、該圧縮機構(40)が収納されるケーシング(10)とを備え、上記圧縮機構(40)の軸方向への上記ブレード(24,34)の高さ寸法が、該ブレード(24,34)の径方向内側端よりも径方向外側端において大きい寸法に設定されている回転式圧縮機を前提としている。
そして、この回転式圧縮機は、上記圧縮機構(40)に設けられて上記ブレード(24,34)の径方向外側端を受け入れるブレード背圧空間(21g,31g)と、圧縮機構(40)の中間圧力部分(74)とを接続する中間圧連通路(58b)を備えていることを特徴としている。
この第1の発明では、ブレード背圧空間(21g,31g)が中間圧になるので、ブレード(24,34)の背面の押し付け荷重が高圧圧力である場合よりも弱められる。
第2の発明は、第1の発明において、上記圧縮機構(40)が、4つのシリンダ室(23a,23b,23c,23d,33a,33b,33c,33d)を有し、4段階の圧縮動作が行われる4段圧縮機構(40)であることを特徴としている。
この第2の発明では、ブレード背圧空間(21g,31g)の圧力を、4段圧縮機構(40)における中間圧(第2段吸入圧、第3段吸入圧、第4段吸入圧など)に設定することができる。そうすることにより、ブレード背圧空間(21g,31g)の圧力を高圧圧力(第4段吐出圧)にするよりも弱められる。
第3の発明は、第2の発明において、上記ブレード背圧空間(21g,31g)に中間圧連通路(58b)を介して接続されている圧縮機構(40)の中間圧力部分(74)が、上記圧縮機構(40)の第4段吸入部(例えば第4段の吸入流路)であることを特徴としている。
この第3の発明では、ブレード背圧空間(21g,31g)の圧力が4段圧縮機構(40)の第4段吸入部の圧力に設定されるので、ブレード背圧空間(21g,31g)の圧力を高圧圧力(第4段吐出圧)にするよりも弱められる。
第4の発明は、第1から第3の発明の何れか1つにおいて、上記ブレード(24,34)には、上記ケーシング(10)内に設けられている油溜まり(10a)から高圧の潤滑油を該ブレード(24,34)と上記圧縮機構(40)との摺動部に供給するための油供給通路(59)と、該油供給通路(59)が上記ブレード背圧空間(21g,31g)に連通するのを阻止するシール部(24s,34s)とが設けられていることを特徴としている。
この第4の発明では、油供給路からブレード(24,34)に高圧の潤滑油が供給される一方、シール部(24s,34s)により、ブレード背圧空間(21g,31g)に高圧油が入るのは阻止される。従って、ブレード背圧空間(21g,31g)が高圧圧力になることを防止し、中間圧力に維持することができる。
本発明によれば、ブレード背圧空間(21g,31g)が中間圧になるので、ブレード(24,34)の背面の押し付け荷重がブレード背圧空間(21g,31g)を高圧圧力にする場合よりも弱められるので、圧縮機構(40)の軸方向への上記ブレード(24,34)の高さ寸法が該ブレード(24,34)の径方向内側端よりも径方向外側端において大きい寸法に設定された構成において、ブレード(24,34)の背面の押し付け荷重が大きくなることによる摺動損失や焼き付きによる信頼性の低下を抑えられる。また、ブレード背圧空間(21g,31g)を中間圧にしてもブレード(24,34)摺動部の潤滑性能を損なうことはない。
上記第2の発明によれば、ブレード背圧空間(21g,31g)の圧力を4段圧縮機構(40)の中間圧に設定することにより、ブレード(24,34)の背面の押し付け荷重が大きくなることによる摺動損失や焼き付きによる信頼性の低下を確実に抑えられる。
上記第3の発明によれば、ブレード背圧空間(21g,31g)の圧力を4段圧縮機構(40)の第4段吸入部(74)の圧力に設定することにより、ブレード(24,34)の背面の押し付け荷重が大きくなることによる摺動損失や焼き付きによる信頼性の低下を抑えられる。また、ブレード背圧空間(21g,31g)を中間圧にする構造を比較的容易時に実現できる。
上記第4の発明によれば、油供給路からブレード(24,34)に高圧の潤滑油が供給される一方、ブレード(24,34)の周りからブレード背圧空間(21g,31g)に高圧油が入るのがシール部(24s,34s)により阻止されるので、ブレード背圧空間(21g,31g)が高圧圧力にはならず、中間圧力に維持される。したがって、ブレード(24,34)の背面の押し付け荷重が大きくなることによる摺動損失や焼き付きによる信頼性の低下を確実に抑えられる。
図1は、本発明の実施形態に係る回転式圧縮機の縦断面図である。 図2は、図1における圧縮機構周辺の拡大図である。 図3(A)は、圧縮機構部の横断面図であり、図3(B)は、圧縮機構部の他の横断面図である。 図4は、ブレードの斜視図である。 図5は、圧縮機構部の部分拡大図である。 図6は、圧縮機構部の動作状態図である。 図7は、圧縮機構部の動作状態図である。 図8は、ミドルプレートの本体部の横断面図である。 図9は、圧縮機構の拡大縦断面図であり、ブレードへの給油構造と、ブレード背圧空間の圧力設定構造を示す図である。 図10は、冷房運転時の冷凍サイクルを表したp−h線図である。 図11は、ブレードの変形例を示す斜視図である。 図12は、従来の圧縮機構におけるブレード背圧空間の圧力の作用を示す図であり、図12(A)は平面図、図12(B)は側面図である。
以下、本発明の実施形態を図面に基づいて詳細に説明する。
<全体構造>
実施形態に係る圧縮機(1)は回転式圧縮機であり、図1に示すように、ケーシング(10)内に、2つの圧縮機構部(第1圧縮機構部(20)及び第2圧縮機構部(30))が駆動軸(53)の軸方向に積み重ねられた圧縮機構(40)と、駆動機構としての電動機(50)とが収納され、全密閉型に構成されている。この圧縮機(1)は、例えば、空気調和装置の冷媒回路において、蒸発器から吸入した冷媒(作動流体)を圧縮して凝縮器へ吐出するために用いられる。上記第1圧縮機構部(20)と第2圧縮機構部(30)の間には、後述するミドルプレート(25)が配置されている。
上記ケーシング(10)は、円筒状の胴部(11)と、該胴部(11)の上端部に固定された上部鏡板(12)と、胴部(11)の下端部に固定された下部鏡板(13)とから構成されている。胴部(11)には、詳細について後述する第1圧縮機構部(20)及び第2圧縮機構部(30)のシリンダ室(23a,…,23d,33a,…,33d)に冷媒を導くための吸入管(60,61,62,63)と、シリンダ室(23b,23c,23d,33b,33c,33d)において圧縮された冷媒を吐出するための吐出管(64,65,66)とが貫通して設けられている。また、上部鏡板(12)にも、シリンダ室(23a,33a)において圧縮された冷媒を吐出するための吐出管(67)が貫通して設けられている。上記ケーシング(10)の底部には、潤滑油(冷凍機油)が貯留される油溜まり(10a)が形成されている。
電動機(50)は、ケーシング(10)内における上部鏡板(12)寄りに配置されている。電動機(50)は、ステータ(51)とロータ(52)と駆動軸(53)とを備えている。ステータ(51)は、ケーシング(10)の胴部(11)の内周面に固定されている。一方、ロータ(52)には駆動軸(53)が一体となって回転するように連結されている。
駆動軸(53)は、ロータ(52)から下方に延伸し、下部には第1偏心部(53a)及び第2偏心部(53b)が形成されている。第1偏心部(53a)は、該第1偏心部(53a)の上方の主軸部分よりも大径に形成され、駆動軸(53)の軸心から所定量だけ偏心している。一方、第2偏心部(53b)は、第1偏心部(53a)と同径に形成され、第1偏心部(53a)と同じ量だけ駆動軸(53)の軸心から偏心している。第1偏心部(53a)と第2偏心部(53b)とは、駆動軸(53)の軸心を中心として互いに180°位相がずれている。
第1圧縮機構部(20)及び第2圧縮機構部(30)は、ケーシング(10)内において電動機(50)よりも下方に配置されている。第1圧縮機構部(20)及び第2圧縮機構部(30)は、上下二段に重ねられて、ケーシング(10)に固定されたフロントヘッド(14)からリアヘッド(17)までの間に構成されている。第1圧縮機構部(20)が電動機(50)側(図1の上側)に配置され、第2圧縮機構部(30)がケーシング(10)の底部側(図1の下側)に配置されている。なお、フロントヘッド(14)の上側には、該フロントヘッド(14)の上面との間にマフラー空間(27a)を形成するためのマフラー部材(27)が取り付けられている。
<第1圧縮機構部>
第1圧縮機構部(20)は、図2から図5に示すように、ケーシング(10)の胴部(11)の内周面に固定された第1シリンダ(21)と、駆動軸(53)の第1偏心部(53a)に取り付けられて第1シリンダ(21)に対して偏心回転をする第1ピストン(22)と、これら第1シリンダ(21)と第1ピストン(22)との間に形成される4つのシリンダ室(23a,23b,23c,23d)を高圧室(23aH,23bH,23cH,23dH)と低圧室(23aL,23bL,23cL,23dL)とに区画する第1ブレード(24)とを備えている。
第1シリンダ(21)は、内部にシリンダ空間(S1)を形成し上下方向に開口する円筒状のシリンダ本体部(21c)と、該シリンダ本体部(21c)の上側の開口部を閉塞するヘッド部としてのフロントヘッド(14)と、環状に形成され駆動軸(53)の回転軸と同心上に配置される複数のシリンダ部(21a,21b,21c)と、前記シリンダ本体部(21c)の下側の開口部に配置される上記ミドルプレート(25)とを備えている。
フロントヘッド(14)は、シリンダ空間側ヘッド部としてのシリンダ空間側フロントヘッド(15)と、軸受部側ヘッド部としての軸受部側フロントヘッド(16)とを備えている。
シリンダ空間側フロントヘッド(15)は、シリンダ本体部(21c)の上側の開口部を覆う円板状に形成される閉塞部(15a)を備えている。シリンダ空間側フロントヘッド(15)は、シリンダ本体部(21c)と一体に形成されている。閉塞部(15a)の中央部には、駆動軸(53)が挿通される貫通孔(15b)が形成されている。この貫通孔(15b)は、駆動軸(53)よりも僅かに大径となるように形成されている。
軸受部側フロントヘッド(16)は、シリンダ空間側フロントヘッド(15)とは別体に形成され、シリンダ空間側フロントヘッド(15)の上側に配置されている。軸受部側フロントヘッド(16)は、シリンダ空間側フロントヘッド(15)の上面に重ねられる円板状の積層部(16a)と、該積層部(16a)と一体に形成される軸受部(16b)とを備えている。積層部(16a)の中央部には、駆動軸(53)が挿通される貫通孔(16c)が形成されている。軸受部(16b)は、積層部(16a)の貫通孔(16c)の開口端部から上方へ延びる円筒状に形成されている。軸受部(16b)の内周面には、駆動軸(53)を回転自在に支持するための円筒状の軸受メタル(16d)が挿通固定されている。
複数のシリンダ部(21a,21b,21c)は、シリンダ空間側フロントヘッド(15)の下面に、該シリンダ空間側フロントヘッド(15)と一体に形成されている。この複数のシリンダ部は、最内側に形成される環状の内側シリンダ部(21a)と、該内側シリンダ部(21a)よりも径方向外方に形成される環状の外側シリンダ部(21b)と、該外側シリンダ部(21b)の外側に位置し該外側シリンダ部(21b)の外周部から下方に延伸する円筒状の最外側シリンダ部(21c)とで構成されている。内側シリンダ部(21a)は円環の一部分が分断されている(図3(A)参照)。内側シリンダ部(21a)の分断箇所にはスライド溝(21g)が形成されている。最外側シリンダ部(21c)は、前記シリンダ本体部(21c)で構成されている。
ミドルプレート(25)は、駆動軸(53)の軸方向に並ぶ2つの部材によって形成されている。具体的には、ミドルプレート(25)は、シリンダ本体部(21c)の下側の開口部を覆う肉厚な円板状の本体部(25a)と、該本体部(25a)の下面に重ねられる円板状の蓋部(25b)とを備えている。ミドルプレート(25)の中心部には、駆動軸(53)が貫通する貫通孔(25c)が形成されている。この貫通孔(25c)は、駆動軸(53)の第1偏心部(53a)及び第2偏心部(53b)の直径よりも内径が少し大きな孔である。なお、ミドルプレート(25)は、第2圧縮機構部(30)の一部も構成している。
第1ピストン(22)は、筒状のシリンダ本体部(21c)の内部に形成されるシリンダ室(S1)に収容されている。第1ピストン(22)は、第1偏心部(53a)に嵌合して該第1偏心部(53a)と同心上に位置する内側ピストン部(22a)と、該内側ピストン部(22a)の外周側に該内側ピストン部(22a)と同心上に位置する外側ピストン部(22b)と、該2つのピストン部(22a,22b)の下端部を連結するとともに外周面が内側ピストン部(22a)及び外側ピストン部(22b)と同心上に位置するピストン側鏡板部(22c)とを備えている。内側ピストン部(22a)は、内側シリンダ部(21a)の内部に配置され、外側ピストン部(22b)は、内側シリンダ部(21a)と外側シリンダ部(21b)との間に配置され、ピストン側鏡板部(22c)は、最外側シリンダ部(21c)の内部に配置されている。内側ピストン部(22a)は、外周面に切欠部(n1)が形成され、外側ピストン部(22b)は円環の一部分が分断されている(図3(A)参照)。また、ピストン側鏡板部(22c)の外周部には切欠部(n2)が形成されている(図3(B)参照)。
上述のようにシリンダ空間(S1)に配置された第1ピストン(22)は、第1シリンダ(21)との間に複数のシリンダ室を形成する。具体的には、内側ピストン部(22a)と内側シリンダ部(21a)との間には最内側シリンダ室(23a)が形成され、外側ピストン部(22b)と内側シリンダ部(21a)との間には内側シリンダ室(23b)が形成され、外側ピストン部(22b)と外側シリンダ部(21b)との間には外側シリンダ室(23c)が形成され、ピストン側鏡板部(22c)と最外側シリンダ部(21c)との間には最外側シリンダ室(23d)が形成されている。つまり、第1圧縮機構部(20)内には、径方向内側から径方向外側に向かって順に、最内側シリンダ室(23a)、内側シリンダ室(23b)、外側シリンダ室(23c)最外側シリンダ室(23d)が形成されている。
このように、第1圧縮機構部(20)は、4つのシリンダ室(23a,23b,23c,23d)を有するように構成されている。
<第2圧縮機構部>
第2圧縮機構部(30)は、第1圧縮機構部(20)の下側に配置されている。第2圧縮機構部(30)は、図2から図5に示すように、ケーシング(10)の胴部(11)の内周面に固定された第2シリンダ(31)と、駆動軸(53)の第2偏心部(53b)に取り付けられて第2シリンダ(31)に対して偏心回転をする第2ピストン(32)と、これら第2シリンダ(31)と第2ピストン(32)との間に形成される4つのシリンダ室(33a,33b,33c,33d)を高圧室(33aH,33bH,33cH,33dH)と低圧室(33aL,33bL,33cL,33dL)とに区画する第2ブレード(34)とを備えている。
第2シリンダ(31)は、内部にシリンダ空間(S2)を形成し上下方向に開口する円筒状のシリンダ本体部(31c)と、該シリンダ本体部(31c)の下側の開口部を閉塞するヘッド部としてのリアヘッド(17)と、環状に形成され駆動軸(53)の回転軸と同心上に配置される複数のシリンダ部(31a,31b,31c)と、前記シリンダ本体部(31c)の上側の開口部に配置されるミドルプレート(25)とを備えている。
リアヘッド(17)は、シリンダ空間側ヘッド部としてのシリンダ空間側リアヘッド(18)と、軸受部側ヘッド部としての軸受部側リアヘッド(19)とを備えている。
シリンダ空間側リアヘッド(18)は、シリンダ本体部(31c)の下側の開口部を覆う円板状に形成される閉塞部(18a)を備えている。シリンダ空間側リアヘッド(18)は、シリンダ本体部(31c)と一体に形成されている。閉塞部(18a)の中央部には、駆動軸(53)が挿通される貫通孔(18b)が形成されている。この貫通孔(18b)は、駆動軸(53)よりも僅かに大径となるように形成されている。
軸受部側リアヘッド(19)は、シリンダ空間側リアヘッド(18)とは別体に形成され、シリンダ空間側リアヘッド(18)の下側に配置されている。軸受部側リアヘッド(19)は、シリンダ空間側リアヘッド(18)の下面に重ねられる円板状の積層部(19a)と、該積層部(19a)と一体に形成される軸受部(19b)とを備えている。積層部(19a)の中央部には、駆動軸(53)が挿通される貫通孔(19c)が形成されている。軸受部(19b)は、積層部(19a)の貫通孔(19c)の開口端部から下方へ延びる円筒状に形成されている。軸受部(19b)の内周面には、駆動軸(53)を回転自在に支持するための円筒状の軸受メタル(19d)が挿通固定されている。
複数のシリンダ部(31a,31b,31c)は、シリンダ空間側リアヘッド(18)の上面に、該シリンダ空間側リアヘッド(18)と一体に形成されている。この複数のシリンダ部は、最内側に形成される環状の内側シリンダ部(31a)と、該内側シリンダ部(31a)よりも径方向外方に形成される環状の外側シリンダ部(31b)と、該外側シリンダ部(31b)の外側に位置し該外側シリンダ部(31b)の外周部から上方に延伸する円筒状の最外側シリンダ部(31c)とで構成されている。内側シリンダ部(31a)は円環の一部分が分断されている(図3(A)参照)。内側シリンダ部(31a)の分断箇所にはスライド溝(31g)が形成されている。最外側シリンダ部(31c)は、前記シリンダ本体部(31c)で構成されている。
第2ピストン(32)は、筒状のシリンダ本体部(31c)の内部に形成されるシリンダ室(S2)に収容されている。第2ピストン(32)は、第2偏心部(53b)に嵌合して該第2偏心部(53b)と同心上に位置する内側ピストン部(32a)と、該内側ピストン部(32a)の外周側に該内側ピストン部(32a)と同心上に位置する外側ピストン部(32b)と、該2つのピストン部(32a,32b)の上端部を連結するとともに外周面が内側ピストン部(32a)及び外側ピストン部(32b)と同心上に位置するピストン側鏡板部(32c)とを備えている。内側ピストン部(32a)は、内側シリンダ部(31a)の内部に配置され、外側ピストン部(32b)は、内側シリンダ部(31a)と外側シリンダ部(31b)との間に配置され、ピストン側鏡板部(32c)は、最外側シリンダ部(31c)の内部に配置されている。内側ピストン部(32a)は、外周面に切欠部(n1)が形成され、外側ピストン部(32b)は円環の一部分が分断されている(図3(A)参照)。また、ピストン側鏡板部(32c)の外周部には切欠部(n2)が形成されている(図3(B)参照)。
上述のようにシリンダ空間(S2)に配置された第2ピストン(32)は、第2シリンダ(31)との間に複数のシリンダ室を形成する。具体的には、内側ピストン部(32a)と内側シリンダ部(31a)との間には最内側シリンダ室(33a)が形成され、外側ピストン部(32b)と内側シリンダ部(31a)との間には内側シリンダ室(33b)が形成され、外側ピストン部(32b)と外側シリンダ部(31b)との間には外側シリンダ室(33c)が形成され、ピストン側鏡板部(32c)と最外側シリンダ部(31c)との間には最外側シリンダ室(33d)が形成されている。つまり、第2圧縮機構部(30)内には、径方向内側から径方向外側に向かって順に、最内側シリンダ室(33a)、内側シリンダ室(33b)、外側シリンダ室(33c)最外側シリンダ室(33d)が形成されている。
このように、第2圧縮機構部(30)は、4つのシリンダ室(33a,33b,33c,33d)を有するように構成されている。
そして、第1圧縮機構部(20)及び第2圧縮機構部(30)は、シリンダ(第1シリンダ(21)及び第2シリンダ(31))と、該シリンダ(21,31)に対して偏心回転可能に構成されるとともに上記ミドルプレート(25)に面する鏡板部(ピストン側鏡板部(22c,32c))を有するピストン(第1ピストン(21)及び第2ピストン(22))と、シリンダ(第1シリンダ(21)及び第2シリンダ(31))とピストン(第1ピストン(21)及び第2ピストン(22))との間に形成された複数のシリンダ室(23a,23b,23c,23d)(33a,33b,33c,33d)とを備えている。
<圧縮機構部の詳細構造>
次に、第1、第2圧縮機構部(20,30)の内部構造について詳しく説明するが、第1、第2圧縮機構部(20,30)は、第1,第2ピストン(22,32)の軸方向長さ寸法とそれに対応するシリンダ(21,31)の軸方向長さ寸法も含めて互いに実質的に同一の構成であるため、第1圧縮機構部(20)を代表例として説明する。
第1ブレード(24)は、図4及び図5に示すように、厚みを有する板状の長尺部(24a)及び短尺部(24b)と、断面形状が略半円形状の一対の揺動ブッシュ部(24c)とを有している。これら3つの部分(24a,24b,24c)は一体に形成されている。第1ブレード(24)において、図4にL1で示す先端側部分は圧縮機構(40)の軸方向寸法(高さ寸法)(H1)が小さく、L2で示す後端側部分は先端側部分よりも圧縮機構(40)の軸方向寸法(高さ寸法)(H2)が大きく設定されている。
長尺部(24a)は、シリンダ空間側ヘッド部(15)の閉塞部(15a)とピストン側鏡板部(22c)との間において径方向に延びるように配置されている。長尺部(24a)は、該長尺部(24a)における径方向内側の部分を構成する内側ブレード部(B1)と、該内側ブレード部(B1)よりも外側の部分を構成する外側第1ブレード部(B2)とで構成されている。内側ブレード部(B1)は、内側シリンダ部(21a)の分断箇所に形成されているスライド溝(21g)に径方向へ摺動可能に挿入され、外側第1ブレード部(B2)の外端部は、外側シリンダ部(21b)に形成された溝(スライド溝)(21f)に径方向へ摺動自在に収容されている。内側ブレード部(B1)によって、最内側シリンダ室(23a)及び内側シリンダ室(23b)が、それぞれ、吸入側と吐出側とに区画され、外側第1ブレード部(B2)によって、外側シリンダ室(23c)が吸入側と吐出側とに区画される。内側ブレード部(B1)の内端部は、内側ピストン部(22a)の切欠部(n1)にミクロンオーダーの微細隙間を挟んで対向している(図5参照)。
短尺部(24b)は、長尺部(24a)とミドルプレート(25)との間において径方向に延びるように配置されている。短尺部(24b)は、外側第2ブレード部(B3)で構成されている。短尺部(24b)における径方向外側の部分は、最外側シリンダ部(21c)に形成された溝(スライド溝)(21f)に径方向に摺動自在に収容されている。この短尺部(24b)によって、後述する最外側シリンダ室(23d)が吸入側と吐出側とに区画される。短尺部(24b)の内端は、ピストン側鏡板部(22c)の切欠部(n2)にミクロンオーダーの微細隙間を挟んで対向している(図5参照)。
一対の揺動ブッシュ部(24c)は、長尺部(24a)の長手方向の中央部付近において、長尺部(24a)の両側に膨出するように形成されている。一対の揺動ブッシュ部(24c)の外周面は、所定半径の円筒の外周面の一部を構成している。そして、一対の揺動ブッシュ部(24c)は、外側ピストン部(22b)の分断箇所に形成されたブッシュ溝(C1,C2)に揺動自在に収容されている。一対の揺動ブッシュ部(24c)は、外側ピストン部(22b)が第1ブレード(24)に対して揺動するように構成されている。
なお、図5に示すように、上記溝(21f)の後端側には、第1ブレード(24)に後端面から圧力をかけることにより、該第1ブレード(24)を圧縮機構(40)の中心部に向かって付勢する第1ブレード背圧空間(21g)が形成されている。この第1ブレード背圧空間(21g)の圧力により、揺動ブッシュ部(24c)の外面におけるブレード(24)の先端側がブッシュ溝(C1,C2)の内面に圧接するようになっている。
図5において、切欠部(n1)は、揺動ブッシュ部(24c)を中心とする内側ブレード部(B1)の相対的な揺動動作を許容する第1揺動許容面を構成している。この第1揺動許容面(n1)は、揺動ブッシュ部(24c)を中心とする内側ブレード部(B1)の相対的な揺動動作の軌跡よりもわずかに大きい径寸法の円弧形状を基準にして形成され、内側ブレード部(B1)が揺動動作をする際にその先端が描く軌跡と第1揺動許容面(n1)との間に微細隙間が形成されるようになっている。なお、図5では微細隙間を誇張して表している。
また、切欠部(n2)は、揺動ブッシュ部(24c)を中心とする外側第2ブレード部(B3)の相対的な揺動動作を許容する第2揺動許容面を構成している。この第2揺動許容面(n2)は、揺動ブッシュ部(24c)を中心とする外側第2ブレード部(B3)の相対的な揺動動作の軌跡よりもわずかに小さい径寸法の円弧形状を基準にして形成され、外側第2ブレード部(B3)が揺動動作をする際にその先端が描く軌跡と第2揺動許容面(n2)との間に微細隙間が形成されるようになっている。なお、図5では微細隙間を誇張して表している。
上述のような構成により、第1ピストン(22)は、第1偏心部(53a)の偏心回転に伴って、第1ブレード(24)に対して一対の揺動ブッシュ部(24c)の中心点を揺動中心として揺動すると共に、上記溝(21f)及び上記内側シリンダ部(21a)のスライド溝(21g)に対する第1ブレード(24)の長手方向への摺動に伴って同方向に進退する。
第1圧縮機構部(20)と第2圧縮機構部(30)の内側ピストン部(22a,32a)と内側シリンダ部(21a,31a)は、内側ピストン部(22a,32a)の外周面と内側シリンダ部(21a,31a)の内周面とが1点(第1接点)で実質的に接する状態(厳密にはミクロンオーダーの隙間があるが、その隙間での冷媒の漏れが問題にならない状態)において、その接点と位相が180°異なる位置で、内側シリンダ部(21a,31a)の外周面と外側ピストン部(22b,32b)の内周面とが1点(第2接点)で実質的に接し、その接点と位相が180°異なる位置(第1接点と位相が同じ位置)で、外側ピストン部(22b,32b)の外周面と外側シリンダ部(21b,31b)の内周面とが1点(第3接点)で実質的に接すると共に、ピストン側鏡板部(22c,32c)の外周面と最外側シリンダ部(21c,31c)の内周面とが1点(第4接点)で実質的に接するようになっている。
以上の構成において、駆動軸(53)が回転すると、第1ピストン(22)は、揺動ブッシュ部(24c)の中心点を揺動中心として揺動し、第1ブレード(24)と共に該第1ブレード(24)の長手方向へ進退する。また、駆動軸(53)が回転すると、第2ピストン(32)は、揺動ブッシュ部(34c)の中心点を揺動中心として揺動し、第2ブレード(34)と共に該第2ブレード(34)の長手方向へ進退する。
上記動作により、第1ピストン(22)と第1シリンダ(21)の各接点(第1接点〜第4接点)がそれぞれ図6(A)〜(D)、図7(A)〜(D)へ順に移動する。一方、第2ピストン(32)と第2シリンダ(31)の各接点(第1接点〜第4接点)は、第1ピストン(22)と第1シリンダ(21)の対応する接点に対して駆動軸(53)の軸心回りに180°ずれている。つまり、駆動軸(53)の上側から見て、第1圧縮機構部(20)の動作状態が図6(A)及び図7(A)のとき、第2圧縮機構部(30)の動作状態は図6(C)及び図7(C)となる。
また、本実施形態では、圧縮機構(40)は、8つのシリンダ室(23a,…,23d,33a,…,33d)において冷媒を4段階に圧縮する4段圧縮機構になっている。
具体的には、第1圧縮機構部(20)及び第2圧縮機構部(30)の最外側シリンダ室(23d,33d)によって第1段圧縮機構のシリンダ室が形成されている。また、第2圧縮機構部(30)の外側シリンダ室(33c)と内側シリンダ室(33b)とによって第2段圧縮機構のシリンダ室が形成され、第1圧縮機構部(20)の外側シリンダ室(23c)と内側シリンダ室(23b)とによって第3段圧縮機構のシリンダ室が形成されている。さらに、第1圧縮機構部(20)及び第2圧縮機構部(30)の最内側シリンダ室(23a,33a)によって第4段圧縮機構のシリンダ室が形成されている。本実施形態では、第1、第2圧縮機構部(20,30)の外側ピストン部(22,32)の軸方向長さ寸法とそれに対応するシリンダ(21,31)の軸方向長さ寸法が互いに同一であるため、上記第2段圧縮機構のシリンダ容積と第3段圧縮機構のシリンダ容積は実質的に等しい。
このように、本実施形態の圧縮機(1)は、環状のシリンダ空間を有するシリンダ(21,31)と、該シリンダ(21,31)に対して偏心して配置された環状のピストン(22,32)とを有し、該シリンダ(21,31)とピストン(22,32)の間に複数のシリンダ室(23a,…,23d,33a,…,33d)が形成されるとともに、下記のように各シリンダ室(23a,…,23d,33a,…,33d)に連通する吸入ポートと吐出ポートが一つずつ形成された圧縮機構(20,30)を有する回転式圧縮機であって、一組のシリンダ(21,31)とピストン(22,32)の間に4つのシリンダ室(23a,…,23d,33a,…,33d)が形成され、これらのシリンダ室(23a,…,23d,33a,…,33d)により、低圧冷媒を第1段圧縮する第1段圧縮機構のシリンダ室(23d,33d)、第1段圧縮機構の吐出冷媒を第2段圧縮する第2段圧縮機構のシリンダ室(33c,33b)、第2段圧縮機構の吐出冷媒を第3段圧縮する第3段圧縮機構のシリンダ室(23c,23b)、及び第3段圧縮機構の吐出冷媒を第4段圧縮する第4段圧縮機構のシリンダ室(23a,33a)が形成されているものである。なお、冷媒回路は、第1段圧縮機構と第2段圧縮機構の間、第2段圧縮機構と第3段圧縮機構の間、そして第3段圧縮機構と第4段圧縮機構の間において、冷媒を冷却機構で冷却できるように構成するとよい。
<吸入通路と吐出流路>
圧縮機構(40)には、吸入管(60〜63)からの冷媒を各シリンダ室(23a,…,23d,33a,…,33d)へ案内するための第1から第4の吸入流路(71〜74)が形成されている。第1から第4の吸入流路(71〜74)は、それぞれ、第1段圧縮機構から第4段圧縮機構の吸入流路を構成している。これらの吸入流路(71〜74)は、互いに交わらないように、且つ、圧縮機構(40)内に形成される他の部品(各ブレード(24,34)や、吐出弁(88)等)と干渉しないように、圧縮機構(40)に形成されている。
第1吸入流路(71)は、流入端が吸入管(62)と接続し、吸入ポート(P1,P1)で構成される流出端が第1圧縮機構部(20)の最外側シリンダ室(23d)及び第2圧縮機構部(30)の最外側シリンダ室(33d)に接続している。第2吸入流路(72)は、流入端が吸入管(63)と接続し、吸入ポート(P2)で構成される流出端が第2圧縮機構部(30)の内側シリンダ室(33b)及び外側シリンダ室(33c)に接続している。第3吸入流路(73)は、流入端が吸入管(60)と接続し、吸入ポート(P2)で構成される流出端が第1圧縮機構部(20)の内側シリンダ室(23b)及び外側シリンダ室(23c)に接続している。圧縮機構の第4段吸入部である第4吸入流路(74)は、流入端が吸入管(61)と接続し、吸入ポート(P3,P3)で構成される流出端が第1圧縮機構部(20)の最内側シリンダ室(23a)及び第2圧縮機構部(30)の最内側シリンダ室(33a)に接続している。
前記第4吸入流路(74)は、圧縮機構(40)内を上下方向に延びる吸入管側流路(74a)と、圧縮機構(40)内を水平方向に延びる吸入ポート側流路(74b)とで形成されている。この吸入ポート側流路(74b)は、軸受部側フロントヘッド(16)の積層部(16a)におけるシリンダ空間側フロントヘッド(15)の対向面、及び軸受部側リアヘッド(19)の積層部(19a)におけるシリンダ空間側リアヘッド(18)の対向面を溝状に切り欠くことにより、容易に形成できる。
また、圧縮機構(40)には、各シリンダ室(23a,…,23d,33a,…,33d)で圧縮された冷媒を圧縮機構(40)の外部へ案内するための第1から第4の吐出流路(81〜84)が形成されている。第1から第4の吐出流路(81〜84)は、それぞれ、第1段圧縮機構から第4段圧縮機構の吐出流路を構成している。これらの吐出流路(81〜84)は、互いに交わらないように、且つ、圧縮機構(40)内に形成される他の部品(各ブレード(24,34)や、吐出弁(88)等)と干渉しないように、圧縮機構(40)に形成されている。
第1段圧縮機構の吐出部である第1吐出流路(81)は、吐出ポート(P11,P11)で構成される流入端が第1圧縮機構部(20)の最外側シリンダ室(23d)及び第2圧縮機構部(30)の最外側シリンダ室(33d)に接続し、流出端が吐出管(65)に接続している。第2吐出流路(82)は、吐出ポート(P12,P13)で構成される流入端が第2圧縮機構部(30)の内側シリンダ室(33b)及び外側シリンダ室(33c)に接続し、流出端が吐出管(66)に接続している。第3吐出流路(83)は、吐出ポート(P12,P13)で構成される流入端が第1圧縮機構部(20)の内側シリンダ室(23b)及び外側シリンダ室(23c)に接続し、流出端が吐出管(64)に接続している。第4吐出流路(84)は、吐出ポート(P14,P14)で構成される流入端が第1圧縮機構部(20)の最内側シリンダ室(23a)及び第2圧縮機構部(30)の最内側シリンダ室(33a)に接続している。
第1圧縮機構部(20)の最内側シリンダ室(23a)に接続される第4吐出流路(84)からの冷媒は、マフラー空間(27a)を通じてケーシング(10)内を上方へ流れ、吐出管(67)を通ってケーシング(10)外へ吐出される。第2圧縮機構部(30)の最内側シリンダ室(33a)に接続される第4吐出流路(84)からの冷媒は、圧縮機構(40)に形成された吐出合流通路(29)を通ってマフラー空間(27a)に流入し、第1圧縮機構部(20)の吐出冷媒と合流して吐出管(67)からケーシング(10)外へ吐出される。
圧縮機構(40)は、複数の吐出弁(88,88,…)を備えている。吐出弁は、例えばリード弁で構成されている。この吐出弁(88,88,…)は、各吐出ポート(P11,P11,…P14,P14)を覆っており、各シリンダ室(23a,…,23d,33a,…,33d)内の圧力が所定値よりも低い場合には吐出ポート(P11,P11,…P14,P14)を閉塞する一方、各シリンダ室(23a,…,23d,33a,…,33d)内の圧力が所定値よりも高くなった場合には吐出ポート(P11,P11,…P14,P14)を開放する。
図2に示すように、上記ミドルプレート(25)には、中間圧の冷媒が流れる流体通路である第4吸入流路(74)と第1吐出流路(81)とが形成されている。第4吸入流路(74)は、第4段圧縮機構のシリンダ室(第1圧縮機構部(20)及び第2圧縮機構部(30)の最内側シリンダ室(23a,33a))に対する冷媒吸入側の流体通路である。第1吐出流路(81)は、第1段圧縮機構のシリンダ室(第1圧縮機構部(20)及び第2圧縮機構部(30)の最外側シリンダ室(23d,33d))に対する冷媒吐出側の流体通路である。第4吸入流路(74)と第1吐出流路(81)には、第4段圧縮機構の前と第1段圧縮機構の後とで互いに圧力が異なる中間圧の冷媒が流れるようになっている。
上記ミドルプレート(25)と各ピストン側鏡板部(22c,32c)との間には、作動流体の圧力でピストン(22,32)をシリンダ(21,31)に押し付ける押し付け機構(90)が設けられている。この押し付け機構(90)は、上記ピストン(22,32)の回転中心の周りに配置された第1シールリング(91)と、該第1シールリング(91)よりも大径で該第1シールリング(91)の外周側に配置された第2シールリング(92)と、第1シールリング(91)と第2シールリング(92)の間に形成されて作動流体が導入される環状部(環状溝)(93a,93b)とを有している。この環状部(93a,93b)は、ミドルプレート(25)の本体部(25a)の上面において第1シールリング(91)と第2シールリング(92)の間に形成された第1環状部(93a)と、ミドルプレート(25)の蓋部(25b)の下面において第1シールリング(91)と第2シールリング(92)の間に形成された第2環状部(93b)とを含んでいる。
この圧縮機構(40)では、上述したように、上記ミドルプレート(25)に、中間圧の冷媒が流れる流体通路として、第4吸入流路(74)と第1吐出流路(81)が形成されている。また、ミドルプレート(25)には、これらの流体通路(74,81)を流れる冷媒の一部を上記環状部(93a,93b)に導入する中間圧導入路(96a,96b)が形成されている。この中間圧導入路(96a,96b)には、第1圧縮機構部(20)において第4段圧縮機構の吸入部である第4吸入流路(74)と第1環状部(93a)とに連通する第1中間圧導入路(96a)と、第2圧縮機構部(30)において第1段圧縮機構の吐出部である第1吐出流路(81)と第2環状部(93b)とに連通する第2中間圧導入路(96b)とが含まれている。
上記流体通路(74,81)の詳細な構成について、ミドルプレート(25)の本体部(25a)の横断面図である図8を用いて説明する。第1吐出流路(81)は、図2及び図8に示すように、ミドルプレート(25)の本体部(25a)と蓋部(25b)とに跨って形成された直方体形状の吐出空間(81a)を有し、この第1段圧縮機構の吐出空間(81a)と吐出管(65)とが連通している。吐出空間(81a)は、第1段圧縮機構のシリンダ室(23d,33d)に吐出ポート(P11,P11)を介して連通している。また、ミドルプレート(25)の蓋部(25b)には、第1吐出流路(吐出部)(81)の一部を構成する第1段吐出空間(81a)と第2環状部(93b)に連通する上記第2中間圧導入路(96b)が形成されている。
第4吸入流路(74)の吸入管側流路(74a)は、第4段圧縮機構の吸入管(61)の位置に対して周方向に所定角度変位した位置に形成されている。そして、上記吸入管(61)と吸入管側流路(74a)とは、湾曲した連通路(74c)により接続されている。ミドルプレート(25)には、この連通路(74c)を介して第4段圧縮機構の吸入部(74)と第1環状溝(93a)とに連通する上記第1中間圧導入路(96a)が形成されている。なお、第4段圧縮機構の吸入管(61)と第1段圧縮機構の吸入管(62)は、実際には図1及び図2において同じ高さに形成されているが、図1,2では各流体通路(74,81)の接続関係を明瞭に示すために、吸入管(61)と吸入管(62)の位置を上下にずらして表し、且つ通路形状を簡略化して表している。
図2に示すように、第3吐出流路(83)は、軸受け部側フロントヘッド(16)に形成された第3段圧縮機構の吐出空間(83a)を含み、この吐出空間(83a)及び第3吐出流路(83)と吐出管(64)とが連通している。また、第4吐出流路(84)は、軸受け部側フロントヘッド(16)に形成された第4段圧縮機構の吐出空間(84a)になっている。そして、本実施形態では、第4段圧縮機構に対して低段の圧縮機構である第3段圧縮機構の吐出空間(83a)が、リリーフ機構(41)を介してマフラー空間(27a)と連通し、最高段圧縮機構である第4段圧縮機構の吐出空間(84a)もマフラー空間(27a)と連通している。したがって、この実施形態では第3段圧縮機構の吐出空間(83a)と第4段圧縮機構の吐出空間(84a)とが互いに連通している。
上記ミドルプレート(25)と、ミドルプレート(25)を挟んで上側に配置された第1圧縮機構部(20)及び下側に配置された第2圧縮機構部(30)とを備えている上記圧縮機構(40)において、上記リリーフ機構(41)は、上側に位置する第1圧縮機構部(20)に設けられている。
このリリーフ機構(41)は、第3段圧縮機構の吐出空間(83a)とマフラー空間(27a)とに連通するリリーフポート(42)と、このリリーフポート(42)に装着されたリリーフ弁(43)とから構成されている。リリーフ弁(43)には、例えばリード弁を用いることができる。このリリーフ弁(43)は、冷媒回路の高圧圧力が低下して、その高圧圧力よりも第3段圧縮機構の吐出圧力の方が高くなるような運転条件では開放されることになる。
したがって、本実施形態では、第3段圧縮機構の吐出圧力がシステム(冷媒回路)の高圧圧力を超えるような運転条件のときには、第4段圧縮機構では吐出弁(88)が常に開いた状態になるので、第4段圧縮機構では冷媒は通過するだけで圧縮されなくなる。そして、第3段圧縮機構の吐出圧力が冷媒回路の高圧圧力に均圧化してそれ以上は上昇しなくなるので、圧縮機(1)の吐出圧力が上昇しすぎるのを防止できる。
<ブレードへの給油構造とブレード背圧空間の圧力設定構造>
図9に示すように、上記駆動軸(53)の下端部には給油ポンプ(54)が設けられている。駆動軸(53)の内部には、給油ポンプ(54)と連通する給油通路(55)が駆動軸(53)の軸心に沿って形成されている。給油通路(55)は、駆動軸(53)の下端部で給油ポンプ(54)と連通する一方、第1偏心部(53a)の上端よりもわずかに上方が上端位置になっている。そして、駆動軸(53)には、第1偏心部(53a)の上下方向の中間部で外周面に開口する第1給油孔(55a)と、第2偏心部(53b)の上下方向の中間部で外周面に開口する第2給油孔(55b)とが形成されている。また、駆動軸(53)には、第1偏心部(53a)のすぐ上方で該駆動軸(53)の外周面に開口する第3給油孔(55c)と、第2偏心部(53b)のすぐ下方で該駆動軸の外周面に開口する第4給油孔(55d)とが形成されている。第1給油孔(55a)、第2給油孔(55b)、第3給油孔(55c)及び第4給油孔(55d)は、それぞれ給油通路(55)に連通している。
上記シリンダ空間側フロントヘッド(15)には、第3給油孔(55c)から駆動軸(53)の外周へ流出した潤滑油を該シリンダ空間側フロントヘッド(15)の径方向外側へ向かって第1ブレード(24)まで案内する第1油供給路(56)が形成されている。また、上記シリンダ空間側リアヘッド(18)には、第4給油孔(55d)から駆動軸(53)の外周へ流出した潤滑油を該シリンダ空間側リアヘッド(18)の径方向外側へ向かって第2ブレード(34)まで案内する第2油供給路(57)が形成されている。
第1油供給路(56)と第2油供給路(57)は、それぞれ、主溝(56a,56b)と連通孔(56b,57b)とから構成されている。第1油供給路(56)の主溝(56a)は、シリンダ空間側フロントヘッド(15)の上面に形成された径方向へのびる溝であり、連通孔(56b)は、主溝(56a)の径方向外側端から第1ブレード(24)に連通する小孔である。第2油供給路(57)の主溝(57a)は、シリンダ空間側リアヘッド(18)の下面に形成された径方向へのびる溝であり、連通孔(57b)は、主溝(57a)の径方向外側端から第2ブレード(34)に連通する小孔である。
図3,5,9に示すように、上記第1シリンダ(21)のシリンダ本体部(21c)には、溝(スライド溝)(21f)に対して第1シリンダ(21)の径方向外側で連通する上述の第1ブレード背圧空間(21g)が設けられている。また、上記第2シリンダ(31)のシリンダ本体部(31c)には、溝(スライド溝)(31f)に対して第2シリンダ(31)の径方向外側で連通する第2ブレード背圧空間(31g)が設けられている。図9に示すように、第1ブレード背圧空間(21g)と第2ブレード背圧空間(31g)とは、ミドルプレート(25)に形成された背圧連通路(58a)を介して互いに連通している。また、ミドルプレート(25)の本体部(25a)には、図8,9に示すように、背圧連通路(58a)と第4吸入流路(74)とを接続する中間圧連通路(58b)が形成されている。このことにより、背圧連通路(58a)が中間圧(4段圧縮機構の第4段吸入圧)になるので、第1ブレード背圧空間(21g)と第2ブレード背圧空間(31g)も、4段圧縮機構の第4段吸入部(第4吸入流路(74))の圧力となる。
一方、上述したように、本実施形態の圧縮機構(40)は、シリンダ(21,31)とピストン(22,32)との間に形成されるとともに径方向の内側端及び外側端とその中間部に位置する複数のシリンダ室(23a,23b,23c,23d)(33a,33b,33c,33d)と、上記シリンダの径方向へ摺動可能でピストン(22,32)が揺動可能に連結される第1,第2ブレード(24,34)とを有している。そして、上記第1,第2ブレード(22,32)は、径方向外側端における圧縮機構(40)の軸方向への高さ寸法(H2)が、径方向内側端における圧縮機構(40)の軸方向への高さ寸法(H1)よりも大きい寸法に設定されている。このような寸法構成をしていることにより、各ブレード(24,34)の径方向外側端の受圧面積は径方向内側端の受圧面積よりも大きくなっているが、ブレード背圧空間(21g,31g)を中間圧にしているため、各ブレード(24,34)を径方向内側へ押し付ける力は従来よりも小さくなる。なお、ブレード(24,34)の先端側部分(図4のL1の部分)の端部である第1端部(24d)には第4段圧縮機構内の圧力(高圧圧力)が作用するが、後端側部分(図4のL2の部分)の端部である第2端部(24e)には第1段圧縮機構の吸入圧(低圧圧力)が作用するので、ブレード背圧空間(21g,31g)の背圧による押し付け力に対するこの部分の押し返し力は小さい。
上記第1ブレード(24)及び第2ブレード(34)には、図4に示すように、上記ケーシング(10)内に設けられている油溜まり(10a)から、高圧の潤滑油を該ブレード(24,34)と上記圧縮機構(40)との摺動部に供給するための油供給通路(59)が形成されている。具体的には、上記各ブレード(24,34)には、図4における長尺部(24a)の上面に、上記シリンダ空間側フロントヘッド(15)及びシリンダ空間側リアヘッド(18)の上記連通孔(56b,57b)とつながる第1給油溝(59a)が形成されるとともに、短尺部(24b)の下面に第2給油溝(59b)が形成されている。また、上記ブレード(24,34)の後端側部分には、第1給油溝(59a)と第2給油溝(59b)に連通する連通孔(59c)が形成されている。各ブレード(24,34)には、連通孔(59c)と交差してブレード(24,34)の後端部を厚さ方向に貫通する2本の貫通孔(59d)が形成されている。
各ブレード(24,34)には、上記油供給通路(59)が上記各ブレード背圧空間(21g,31g)に連通するのを阻止するシール部(24s,34s)が設けられている。具体的には、第1,第2ブレード(24,34)の後端側部分の上面において第1給油溝(59a)が形成されていない部分と、第1,第2ブレードの後端側部分の下面において第2給油溝(59b)が形成されていない部分が、シール部(24s,34s)になっている。そして、第1給油溝(59a)と第2給油溝(59b)が第1,第2ブレード(24,34)の後端に開放されないように形成することにより、第1給油溝(59a)と第2給油溝(59b)の高圧の潤滑油が各ブレード背圧空間(21g,31g)に流入するのを防止して、各ブレード背圧空間(21g,31g)が中間圧(第4段の吸入圧力)に保持されるようにしている。
−運転動作−
次に、圧縮機(1)の運転動作について説明する。ここで、第1、第2圧縮機構部(20,30)の動作は、位相が互いに180°異なる状態で行われる。
電動機(50)を起動すると、第1圧縮機構部(20)では、ロータ(52)の回転が駆動軸(53)の第1偏心部(53a)を介して第1ピストン(22)に伝達され、該第1ピストン(22)は、揺動ブッシュ部(24c)の中心点を揺動中心として揺動すると共に、第1ブレード(24)と共に該第1ブレード(24)の長手方向へ進退する。これにより、第1ピストン(22)が第1シリンダ(21)に対して揺動しながら公転し、第1圧縮機構部(20)の4つのシリンダ室(23a,23b,23c,23d)において所定の圧縮動作が行われる。
このとき、内側ブレード部(B1)の先端と内側ピストン部(22a)の切欠部(n1)の表面との間には、ミクロンオーダーの微細隙間が形成される状態となり、両者は非接触となる。また、外側第2ブレード部(B3)の先端とピストン側鏡板部(22c)の切欠部(n2)の表面との間にも、ミクロンオーダーの微細隙間が形成される状態となり、両者は非接触となる。上記の微細隙間には、潤滑油の油膜が形成される。したがって、シリンダ室(C1,C2)の高圧側から低圧側への冷媒の漏れは、実質的に問題にはならない。
最内側シリンダ室(23a)及び外側シリンダ室(23c)では、図6(A)の状態から駆動軸(53)が図の右回りに回転して図6(B)〜図6(D)の状態へ変化するのに伴い、低圧室(23aL,23cL)の容積が増大し、冷媒が吸入ポート(P3,P2)から低圧室(23aL,23cL)にそれぞれ吸入される。また、駆動軸(53)が一回転して再び図6(A)の状態になると、低圧室(23aL,23cL)への冷媒の吸入が完了する。そして、低圧室(23aL,23cL)は冷媒が圧縮される高圧室(23aH,23cH)となり、第1ブレード(24)を隔てて新たな低圧室(23aL,23cL)が形成される。駆動軸(53)がさらに回転すると、低圧室(23aL,23cL)において冷媒の吸入が繰り返される一方、高圧室(23aH,23cH)の容積が減少し、該高圧室(23aH,23cH)で冷媒が圧縮される。高圧室(23aH,23cH)の圧力が所定値となって吐出流路(84,83)との差圧が設定値に達すると、該高圧室(23aH,23cH)の冷媒の圧力によって吐出弁(88,88)が開き、冷媒が第4吐出流路(84)及び第3吐出流路(83)から第1圧縮機構部(20)の外部へ吐出される。
また、最外側シリンダ室(23d)では、図7(A)の状態から駆動軸(53)が図の右回りに回転して図7(B)〜図7(D)の状態へ変化するのに伴い、低圧室(23dL)の容積が増大し、冷媒が吸入ポート(P1)から低圧室(23dL)に吸入される。また、駆動軸(53)が一回転して再び図7(A)の状態になると、低圧室(23dL)への冷媒の吸入が完了する。そして、低圧室(23dL)は冷媒が圧縮される高圧室(23dH)となり、第1ブレード(24)を隔てて新たな低圧室(23dL)が形成される。駆動軸(53)がさらに回転すると、低圧室(23dL)において冷媒の吸入が繰り返される一方、高圧室(23dH)の容積が減少し、該高圧室(23dH)で冷媒が圧縮される。高圧室(23dH)の圧力が所定値となって吐出流路(81)との差圧が設定値に達すると、該高圧室(23dH)の冷媒の圧力によって吐出弁(88)が開き、冷媒が第1吐出流路(81)から第1圧縮機構部(20)の外部へ吐出される。
一方、内側シリンダ室(23b)では、図6(C)の状態から駆動軸(53)が図の右回りに回転して図6(D)〜図6(B)の状態へ変化するのに伴い、低圧室(23bL)の容積が増大し、冷媒が吸入ポート(P2)から低圧室(23bL)に吸入される。また、駆動軸(53)が一回転して再び図6(C)の状態になると、低圧室(23bL)への冷媒の吸入が完了する。そして、低圧室(23bL)は冷媒が圧縮される高圧室(23bH)となり、第1ブレード(24)を隔てて新たな低圧室(23bL)が形成される。駆動軸(53)がさらに回転すると、低圧室(23bL)において冷媒の吸入が繰り返される一方、高圧室(23bH)の容積が減少し、該高圧室(23bH)で冷媒が圧縮される。高圧室(23bH)の圧力が所定値となって吐出流路(83)との差圧が設定値に達すると、該高圧室(23bH)の冷媒の圧力によって吐出弁(88)が開き、冷媒が吐出流路(83)から第1圧縮機構部(20)の外部へ吐出される。
なお、外側シリンダ室(23c)と内側シリンダ室(23b)とでは、冷媒の吸入開始のタイミング及び吐出開始のタイミングがほぼ180°異なる。このことにより、吐出脈動が小さくなり、振動や騒音が低減される。
一方、第2圧縮機構部(30)では、ロータ(52)の回転が駆動軸(53)の第2偏心部(53b)を介して第2ピストン(32)に伝達され、該第2ピストン(32)は、揺動ブッシュ部(34c)の中心点を揺動中心として揺動すると共に、第2ブレード(34)と共に該第2ブレード(34)の長手方向へ進退する。これにより、第2ピストン(32)が第2シリンダ(31)に対して揺動しながら公転し、第2圧縮機構部(30)の4つのシリンダ室(33a,33b,33c,33d)において所定の圧縮動作が行われる。
第2圧縮機構部(30)における圧縮動作は、実質的に第1圧縮機構部(20)の圧縮動作と同じであり、冷媒が各シリンダ室(33a,33b,33c,33d)内で圧縮される。各シリンダ室(33a,33b,33c,33d)において、高圧室(33aH,33bH,33cH,33dH)の圧力が所定値となって各吐出流路(84,83,83,81)との差圧が設定値に達すると、該高圧室(33aH,33bH,33cH,33dH)の冷媒の圧力によって吐出弁(88,88,88,88)が開き、冷媒が各吐出流路(84,82,82,81)から第2圧縮機構部(30)の外部へ吐出される。
圧縮機構(40)の動作中に、冷媒は、吸入管(62)から第1段圧縮機構のシリンダ室である第1圧縮機構部(20)の最外側シリンダ室(23d)と第2圧縮機構部(30)の最外側シリンダ室(33d)に吸入されて圧縮され、第1段圧縮機構のシリンダ室から吐出管(65)を通って吐出される。例えば冷房運転中は、図10に示すように、第1段圧縮機構のシリンダ室から吐出された冷媒は、冷却された後、吸入管(63)から第2段圧縮機構のシリンダ室である第2圧縮機構部(30)の外側シリンダ室(33c)と内側シリンダ室(33b)に吸入されてさらに圧縮され、第2段圧縮機構のシリンダ室から吐出管(66)を通って吐出される。第2段圧縮機構のシリンダ室から吐出された冷媒は、冷却された後、吸入管(60)から第3段圧縮機構のシリンダ室である第1圧縮機構部(20)の外側シリンダ室(23c)と内側シリンダ室(23b)に吸入されてさらに圧縮され、第3段圧縮機構のシリンダ室から吐出管(64)を通って吐出される。第3段圧縮機構のシリンダ室から吐出された冷媒は、冷却された後、吸入管(61)から第4段圧縮機構のシリンダ室である第1圧縮機構部(20)の最内側シリンダ室(23a)と第2圧縮機構部(30)の最内側シリンダ室(33a)に吸入されてさらに圧縮され、第4段圧縮機構のシリンダ室から吐出管(67)を通って吐出される。
第4段圧縮機構のシリンダ室から吐出された冷媒は、図示していない冷媒回路の放熱器、膨張機構、蒸発器を順に流れ、再び圧縮機(1)に吸入される。そして、圧縮機(1)における圧縮行程、放熱器における放熱行程、膨張機構における膨張行程、蒸発器における蒸発行程を順に繰り返すことにより、冷凍サイクルが行われる。
圧縮機構(40)の運転中には、ケーシング(10)の底部の油溜まり(10a)に溜まっている潤滑油が給油ポンプ(54)で吸い上げられて、駆動軸(53)の給油通路(55)を上昇する。給油通路(55)を流れる潤滑油は、第1〜第4の給油孔(55a〜55d)に分流する。潤滑油は、第1給油孔(55a)からは、第1偏心部(53a)と第1ピストン(22)の内側ピストン部(22a)との間の摺動面に供給され、第2給油孔(55b)からは、第2偏心部(53b)と第2ピストン(32)の内側ピストン部(32a)との間の摺動面に供給される。
第3給油孔(55c)を流れる潤滑油は第1油供給路(56)から第1ブレード(24)へ向かい、第4給油孔(55d)を流れる潤滑油は第2油供給路(57)から第2ブレード(34)へ向かう。第1油供給路(56)及び第2油供給路(57)の潤滑油は、主溝(56a,57a)から連通孔(56b,57b)を通って各ブレード(24,34)の長尺部(24a,34a)に形成されている第1給油溝(59a)に流入し、さらに連通孔(59c)を通って短尺部(24b,34b)の第2給油溝(59b)に流入する。また、連通孔(59c)を流れる潤滑油は貫通孔(59d)からブレード(24,34)の表面に浸出する。以上のようにして各ブレード(24,34)の表面に潤滑油が供給されることにより、各ブレード(24,34)と各シリンダ(21,31)及び各ピストン(22,32)との摺動部が潤滑される。
一方、第1,第2ブレード背圧空間(21g,31g)の間の背圧連通路(58a)と第4吸入流路(74)とが中間圧連通路(58b)で接続されていて、第1,第2ブレード背圧空間(21,31g)の圧力が4段圧縮機構の第4段吸入圧に設定されている。また、ブレード(24,34)の後端部にはシール部(24s,34s)が設けられているため、高圧の潤滑油が第1,第ブレード2背圧空間(21g,31g)には流入しない。したがって、各ブレード背圧空間(21g,31g)の圧力は、上記設定圧力である4段圧縮機構の第4段吸入圧に維持され、それよりも上昇しない。このため、各ブレード背圧空間(21g,31g)の圧力による各ブレード(24,34)の押し付け力は当初設定された押し付け力に維持され、過度に強くなることはない。
仮に各ブレード(24,34)に供給された潤滑油が第1,第2ブレード背圧空間(21g,31g)に流入したとしても、その油は第4段圧縮室に吸い込まれた後、圧縮機(1)のケーシング(10)内に吐出されて冷媒から分離される。そして、この潤滑油はケーシング(10)の油溜まりに戻る。したがって、余剰の潤滑油が圧縮機外(システム側)に吐出されるのを防止できる。
−実施形態の効果−
本実施形態によれば、第1,第2ブレード背圧空間(21g,31g)を中間圧連通路(58b)で第4吸入流路(74)と接続することにより、4段圧縮機構の第4段吸入圧に維持できるようにしているので、ブレード背圧空間(21g,31g)の圧力によるブレード(24,34)に対する押し付け荷重を抑えられる。したがって、ブレード(24,34)が揺動ブッシュ部(24c,34c)でピストン(22,32)の外側ピストン部(22b,32b)に形成されているブッシュ溝(C1,C2)に強く押し付けられて摩耗したり、内側ブレード部(B1)の先端部で内側ピストン部(22a)に強く押し付けられて摩耗したり焼き付いたりするのを防止できる。このことにより、ブレード(24,34)の動作による機械損失(摺動損失)を抑えることが可能になる。
また、ブレード(24,34)に給油した後の余剰の潤滑油が第4段圧縮機構に吸入されたとしても、その油は圧縮機(1)のケーシング(10)内へ吐出されたときに冷媒から分離される。したがって、余剰の潤滑油が圧縮機外(システム側)に吐出されるのを防止できるので、余剰の潤滑油によるシステムの性能低下を抑えることができる。
《その他の実施形態》
上記実施形態については、以下のような構成としてもよい。
例えば、上記実施形態では4段圧縮機構について説明したが、本発明は、複数のシリンダ室がピストン(22,32)とシリンダ(21,31)の間に形成された偏心回転型の圧縮機構(40)を備え、圧縮機構(40)のブレード(24,34)の径方向内側端面より径方向外側端面の高さ寸法が大きな回転式圧縮機(1)であれば適用可能であり、その適用対象は4段圧縮機構に限定されるものではないし、ブレード背圧空間(21g,31g)に設定する中間圧も第4段吸入圧に限定するものではない。ブレード(24,34)の先端側や後端側の面積に応じて、ブレード背圧空間(21g,31g)に設定する中間圧を設定すればよい。
また、上記実施形態におけるケーシング(10)の油溜まり(10a)からブレード(24,34)への給油経路は一例に過ぎず、適宜変更してもよい。また、上記実施形態では揺動ブッシュ部(24c,34c)には油を直接には供給するようにしていないが、揺動ブッシュ部(24c,34c)に油を直接供給するようにしてもよい。
また、上記実施形態では、ブレード(24,34)に揺動ブッシュ部(24c,34c)を一体にする構造にしているが、図11に示すように、ブレード(24,34)の内側ブレード部(B1)に対して揺動ブッシュ部(24c,34c)を別体にする構成にしてもよい。その場合でも、ブレード(24,34)の先端がピストン(22,32)に強く押し付けられて摩耗したり焼き付いたりするのを防止できるので、圧縮機構(40)の機械損失が大きくなるのを防止できる。
なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
以上説明したように、本発明は、複数のシリンダ室がピストンとシリンダの間に形成された偏心回転型の圧縮機構を備え、圧縮機構のブレードの径方向内側端面より径方向外側端面の高さ寸法が大きな回転式圧縮機について有用である。
1 回転式圧縮機
10 ケーシング
10a 油溜まり
20 第1圧縮機構部
21 第1シリンダ
21g 第1ブレード背圧空間
22 第1ピストン
23a 最内側シリンダ室
23b 内側シリンダ室
23c 外側シリンダ室
23d 最外側シリンダ室
24 第1ブレード
24s シール部
30 第2圧縮機構部
31 第2シリンダ
31g 第2ブレード背圧空間
32 第2ピストン
33a 最内側シリンダ室
33b 内側シリンダ室
33c 外側シリンダ室
33d 最外側シリンダ室
34 第2ブレード
34s シール部
40 圧縮機構
58b 中間圧連通路
59 油供給通路
74 第4吸入流路(第4段吸入部)

Claims (4)

  1. シリンダ(21,31)と、該シリンダ(21,31)内で偏心回転動作をするピストン(22,32)と、該シリンダ(21,31)とピストン(22,32)との間に形成されるとともに径方向の内側端及び外側端とその中間部に位置する複数のシリンダ室(23a,23b,23c,23d,33a,33b,33c,33d)と、上記シリンダ(21,31)の径方向へ摺動可能でピストン(22,32)が揺動可能に連結されるブレード(24,34)とを有する圧縮機構(40)と、該圧縮機構(40)が収納されるケーシング(10)とを備え、
    上記圧縮機構(40)の軸方向への上記ブレード(24,34)の高さ寸法が、該ブレード(24,34)の径方向内側端よりも径方向外側端において大きい寸法に設定されている回転式圧縮機であって、
    上記圧縮機構(40)に設けられていて上記ブレード(24,34)の径方向外側端を受け入れるブレード背圧空間(21g,31g)と、圧縮機構(40)の中間圧力部分(74)とを接続する中間圧連通路(58b)を備えていることを特徴とする回転式圧縮機。
  2. 請求項1において、
    上記圧縮機構(40)は、4つのシリンダ室(23a,23b,23c,23d)(33a,33b,33c,33d)を有し、4段階の圧縮動作が行われる4段圧縮機構であることを特徴とする回転式圧縮機。
  3. 請求項2において、
    上記ブレード背圧空間(21g,31g)に中間圧連通路(58b)を介して接続されている圧縮機構(40)の中間圧力部分(74)が、上記圧縮機構(40)の第4段吸入部であることを特徴とする回転式圧縮機。
  4. 請求項1から3の何れか1つにおいて、
    上記ブレード(24,34)には、上記ケーシング(10)内に設けられている油溜まり(10c)から高圧の潤滑油を該ブレード(24,34)と上記圧縮機構(40)との摺動部に供給するための油供給通路(59)と、該油供給通路(59)が上記ブレード背圧空間(21g,31g)に連通するのを阻止するシール部(24s,34s)とが設けられていることを特徴とする回転式圧縮機。
JP2014069061A 2014-03-28 2014-03-28 回転式圧縮機 Pending JP2015190401A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014069061A JP2015190401A (ja) 2014-03-28 2014-03-28 回転式圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014069061A JP2015190401A (ja) 2014-03-28 2014-03-28 回転式圧縮機

Publications (1)

Publication Number Publication Date
JP2015190401A true JP2015190401A (ja) 2015-11-02

Family

ID=54425107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014069061A Pending JP2015190401A (ja) 2014-03-28 2014-03-28 回転式圧縮機

Country Status (1)

Country Link
JP (1) JP2015190401A (ja)

Similar Documents

Publication Publication Date Title
JP4962585B2 (ja) 回転式圧縮機
JP6394126B2 (ja) 回転式圧縮機
JP5413493B1 (ja) 回転式圧縮機
JP6102172B2 (ja) 回転式圧縮機
JP5861457B2 (ja) 回転式圧縮機
JP6459255B2 (ja) 回転式圧縮機
JP2015190401A (ja) 回転式圧縮機
JP6256643B2 (ja) 揺動ピストン式圧縮機
JP5724706B2 (ja) 回転式圧縮機
JP5494139B2 (ja) 回転式圧縮機
JP5494138B2 (ja) 回転式圧縮機
JP2010090789A (ja) 回転式圧縮機
JP4854633B2 (ja) ロータリ型流体機械および冷凍サイクル装置
US11674514B2 (en) Compressor with a fitted shaft portion having two sliding surfaces and an oil retainer
JP5921456B2 (ja) ベーン型圧縮機
JP6089571B2 (ja) 回転式圧縮機
JP5664380B2 (ja) 回転式圧縮機
JP2017008819A (ja) 回転式圧縮機
JP2018109372A (ja) 回転式圧縮機
JP5782765B2 (ja) 回転式圧縮機
JP5003085B2 (ja) 回転式流体機械
JP2017008818A (ja) 回転式圧縮機
JP2014129786A (ja) 回転式圧縮機
JP2011214573A (ja) 回転式圧縮機
JP2011214505A (ja) 回転式圧縮機