JP2015185341A - 導光体及び照明装置 - Google Patents

導光体及び照明装置 Download PDF

Info

Publication number
JP2015185341A
JP2015185341A JP2014060271A JP2014060271A JP2015185341A JP 2015185341 A JP2015185341 A JP 2015185341A JP 2014060271 A JP2014060271 A JP 2014060271A JP 2014060271 A JP2014060271 A JP 2014060271A JP 2015185341 A JP2015185341 A JP 2015185341A
Authority
JP
Japan
Prior art keywords
light guide
polymer
light
ferrandylene
ferrandylene polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014060271A
Other languages
English (en)
Inventor
上垣外 正己
Masami Uegakito
正己 上垣外
佐藤 浩太郎
Kotaro Sato
浩太郎 佐藤
郡 悌之
Tomoyuki Kori
悌之 郡
江口 勇司
Yuji Eguchi
勇司 江口
白土 斉
Hitoshi Shirato
斉 白土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Sekisui Chemical Co Ltd
Original Assignee
Nagoya University NUC
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Sekisui Chemical Co Ltd filed Critical Nagoya University NUC
Priority to JP2014060271A priority Critical patent/JP2015185341A/ja
Publication of JP2015185341A publication Critical patent/JP2015185341A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Planar Illumination Modules (AREA)

Abstract

【課題】カーボンニュートラルな材料として微生物や植物等から得ることも可能な材料である、βフェランドレンをモノマーとする重合体を使用した導光体、及びその導光体を備えた照明装置を提供する。【解決手段】(1)厚みが0.01mm〜10mmである導光体であって、比重が0.85以上、1.0未満であり、ガラス転移温度が100℃以上であるβフェランドレン重合体が、前記導光体の総質量に対して50〜100質量%含まれる導光体。(2)前記βフェランドレン重合体の数平均分子量Mnが4万以上である前記導光体。(3)前記βフェランドレン重合体が有するオレフィン性炭素−炭素二重結合の少なくとも一部が水素化されている前記導光体。(4)前記βフェランドレン重合体の水素添加率が、70%以上である前記導光体。(5)前記導光体の一部又は全部の表面に、光反射処理、光拡散処理又は集光処理が施されている前記導光体。【選択図】なし

Description

本発明は、βフェランドレン重合体を使用した導光体及び、その導光体を備えた照明装置に関する。
従来、ポリメチルメタクリレート(PMMA)などの透明樹脂からなる成形体の内面反射を利用して、成形体の一方から入射した光を他方へ導く機能を備えた導光体が、液晶モニターやスキャナー装置などの光源を備えた機器に使用されている。
このような導光体を構成する樹脂の性質として、輝度斑が少なく、色温度が高いことが一般に望まれているため、PMMAやポリカーボネート(PC)が使用されることが多い。しかし、PMMAは吸湿性が大きく、耐熱性が小さいため、使用環境における湿気や温度変化によって導光体に変形が生じたり、光学特性が変化したりする等の問題がある。また、PCを使用した導光体の場合には、吸湿による変形は抑制できるものの、透明性及び耐光性が低い等の問題がある。
その他、光学特性の優れた熱可塑性樹脂としては、脂環式ポリオレフィンや環状ポリオレフィンが知られている。例えばジシクロペンタジエン系の開環重合水添体や、ノルボルネン若しくはジシクロペンタジエンとオレフィンとの付加共重合体(特許文献1参照)、やビニルシクロヘキサン系重合体(特許文献2参照)が挙げられる。そのなかでビニルシクロヘキサン系重合体は、高耐熱性、低吸水性、低比重、低複屈折であるが、側鎖にかさ高い置換基を有しているために、脆く、耐光性も充分ではない問題がある。更に、ビニルシクロヘキサン系重合体以外の環状ポリオレフィンは、高耐熱性、低吸水性であるが、比重が大きく、耐光性も充分ではなかった。
このような脂環式炭化水素系重合体の原料となるモノマーは石油由来の化合物であるため、二酸化炭素の排出を抑えたカーボンニュートラルな材料を用いた製品が求められている今日のニーズに合致しているとはいえない。
カーボンニュートラルなポリマーの材料として、生物体内の生合成経路で生産されうる化合物が注目されている。例えば、マツ等から抽出したテルペン油由来のβピネンを重合して得られた、ガラス転移点が80℃の重合体が提案されている(特許文献3)。しかしながら、βピネンをモノマーとして使用して実用的な強度を発現する高重合度の重合体を得るには、2官能性ビニル化合物の存在下において重合せしめる必要があった。さらには重合温度を−80℃〜0℃と極低温にする必要があり、安価に製造するためおよび昨今の環境問題の観点から、更なる反応条件の向上や、重合特性の良好な天然材料の利用が望まれていた。
特開2000−221328号公報 特開昭63−43910号公報 特許第5275633号公報
本発明は、上記事情に鑑みてなされたものであり、カーボンニュートラルな材料として微生物や植物等から得ることも可能な材料である、βフェランドレンをモノマーとする重合体を使用した導光体、及びその導光体を備えた照明装置を提供する。
<1> 厚みが0.01mm〜10mmである導光体であって、比重が0.85以上、1.0未満であり、ガラス転移温度が100℃以上であるβフェランドレン重合体が、前記導光体の総質量に対して50〜100質量%含まれることを特徴とする導光体。
<2> 前記βフェランドレン重合体が、下記化学式(I)及び(II)で表されるβフェランドレンの少なくとも何れか一方が重合してなることを特徴とする前記<1>に記載の導光体。
Figure 2015185341
<3> 前記βフェランドレン重合体に、下記化学式(I−1)、(I−2)、(II−1)及び(II−2)で表されるβフェランドレン単位が合計50質量%以上含有されていることを特徴とする前記<1>又は<2>に記載の導光体。
Figure 2015185341
<4> 前記βフェランドレン重合体の数平均分子量Mnが4万以上であることを特徴とする前記<1>〜<3>の何れか一項に記載の導光体。
<5> 前記βフェランドレン重合体が有するオレフィン性炭素−炭素二重結合の少なくとも一部が水素化されていることを特徴とする前記<1>〜<4>の何れか一項に記載の導光体。
<6> 前記βフェランドレン重合体の水素添加率が、70%以上であることを特徴とする前記<5>に記載の導光体。
<7> 前記導光体の一部又は全部の表面に、光反射処理、光拡散処理又は集光処理が施されていることを特徴とする前記<1>〜<6>の何れか一項に記載の導光体。
<8> 光源と、前記<1>〜<7>の何れか一項に記載の導光体とを備えることを特徴とする照明装置。
本発明によれば、透明性、軽量性、耐熱性及び機械的強度に優れ、さらに、高耐光性、低吸水性、低複屈折及び低光弾性等の優れた性質を有する導光体を提供できる。
本発明の照明装置の一例を説明する分解図である。 本発明の照明装置の一例を説明する分解図である。
本発明の第一態様は導光体である。本発明の第二態様は、第一態様の導光体を部材として使用した照明装置である。
まず、本発明の材料であるβフェランドレン重合体の製造方法を説明する。
<βフェランドレン重合体の製造方法>
βフェランドレン重合体を構成するモノマーであるβフェランドレンは、生物から抽出及び精製されていてもよいし、石油由来の化合物から化学合成されていてもよい。例えば植物の種子や根から水蒸気蒸留によって得られたエッセンシャルオイルに含まれるβフェランドレンを用いてもよいし、既存の化学物質を原料として、公知の化学合成法によって得られたβフェランドレンを用いてもよい。
例えば、既存の化学物質を原料とする場合は、4-Isopropylcyclohexanoneを出発原料としCrypronを経由して合成する公知の化学合成法(Organic & Biomolecular Chemistry, 9(7), 2433-2451, 2011)によって得られたβフェランドレンを使用することができる。
生物から抽出した化学物質を材料として使用する場合は、例えばβフェランドレンが含有される植物として、トドマツ、ジンジャー、フェンネル、ネロリ、ローズウッド、トマト、ラベンダー、カナダバルサム、アンジェリカ、などの葉または種子からの抽出物を精製して用いてもよい。特に高純度のβフェランドレンを使用することが好ましく、その場合は精密蒸留やシリカゲルカラムによる分離等の方法により純度(純分)を上げることができる。
カーボンニュートラルな材料として生物由来のβフェランドレンを用いることにより、製造過程における環境負荷を下げ、二酸化炭素の排出を低減することができる。
βフェランドレン重合体の数平均分子量Mnを高めることによって、耐熱性に関するガラス転移温度Tgを高め、優れた光透過性及び機械的強度を得る目的を達成するために、βフェランドレン重合体を合成する反応系において、βフェランドレンを含む反応液中のβフェランドレンの純度(純分)をなるべく高くすることが好ましい。また、前記反応系は、βフェランドレンの重合に干渉する二重結合を有する化合物をなるべく排除した反応系であることがより好ましい。
特に好ましくは、例えば、ディールスアルダー反応試薬等のシス型の共役二重結合と反応する物質を添加し、βフェランドレン以外のシス型の共役二重結合物質を不溶性の物質として除去し、純分を高くすることがよく、精密蒸留やシリカゲルカラムによる分離と組み合わせることにより純分をあげるのが好ましい。
具体的には、前記反応液中の重合性化合物の総質量に対して、βフェランドレンの含有量、即ちβフェランドレンの純度(純分)は、70質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上が更に好ましく、50質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましく、90質量%以上が特に好ましく、95質量%以上が最も好ましい。前記含有量は100質量%であってもよい。ここで、「純度」とは、βフェランドレンの光学異性体を区別した光学的な純度を意味しておらず、βフェランドレンの光学異性体を区別しない単なる化学的な純度を意味する。また、前記「重合性化合物」とは、βフェランドレンと重合可能な二重結合を有する化合物を意味する。
本明細書および特許請求の範囲において、前記反応に使用するβフェランドレンの純度はガスクロマトグラフィー(GC)法またはGC−MSの方法によって、βフェランドレンのピーク面積百分率で求められた値である。
例えば、βフェランドレン反応用液を1質量%となるようにクロロホルム溶液(和光純薬社製高速液体クロマトグラフ用、純度99.7%)に希釈し、ガスクロマトグラフ分析装置(HEWLETT PACKARD社製 HP6890 Series GC System)を用いて測定することができる。この時、成分分離用のカラムとしてはDB−5(アジレント・テクノロジー社製キャピラリーカラム、30m×0.25mmID×0.25μ)、を用い、カラム温度:開始50℃、最終300℃、昇温速度 15℃/分、インジェクション温度:300℃で測定することが好ましい。βフェランドレンのピークはβフェランドレン標準液またはMSスペクトルより同定することができる。βフェランドレンの純分はGC分析において観測された面積値1000以上のピークの全面積の合計を100としたときのβフェランドレンの面積比率で算出することが好ましい。
前記反応液を構成する有機溶媒に、触媒としてのルイス酸を添加してよく分散させた後、高純度のβフェランドレンをゆっくり滴下して、カチオン重合を開始し、所定時間反応させることにより、目的のβフェランドレン重合体を得ることができる。
このような溶液重合法によってカチオン重合を行うに際しては、モノマーであるβフェランドレンの濃度は、前記反応溶液の総質量に対して、好ましくは1〜90質量%、より好ましくは10〜80質量%、更に好ましくは10〜50質量%に調製することができる。前記濃度が1質量%未満では生産性が低くなり、一方、90質量%を超えると重合熱の除去が困難になる。
前記反応液を構成する有機溶媒の種類はβフェランドレンを溶解可能であれば特に制限されず、従来のカチオン重合で使用される溶媒が適用できる。なかでも連鎖移動の少ない溶媒であることが好ましい。このような溶媒としては、ポリマーの重合条件下での溶解性や反応性等の観点から、例えばハロゲン化炭化水素、芳香族炭化水素、及び脂肪族炭化水素等が挙げられる。より具体的には、例えば、塩化メチレン、クロロホルム、1,1−ジクロロエタン、1,2−ジクロルエタン、n−プロピルクロライド、1−クロロ−n−ブタン、2−クロロ−n−ブタン等のハロゲン化炭化水素系溶媒;ベンゼン、トルエン、キシレン、アニソール等の芳香族炭化水素系溶媒;ペンタン、ヘキサン、ヘプタン、オクタン、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、デカリン等の脂肪族炭化水素系溶媒等が挙げられる。
前記有機溶媒として、1種の有機溶媒を単独で用いてもよいし、2種以上の有機溶媒を併用してもよい。
前記有機溶媒は、非極性溶媒であってもよいし、極性溶媒であってもよい。
βフェランドレン重合体の重合度を一層高めて、高靭性の重合体を得るためには、非極性溶媒を用いる方が特に好ましい。ハロゲン化脂肪族炭化水素、ハロゲン化芳香族炭化水素等の塩素系溶媒(塩素原子有する化合物からなる溶媒)は使用可能である。しかし、廃棄溶剤の処理、重合製品の脱塩処理および昨今のVOC規制の観点から使用不可能な塩素系溶剤もあるため、環境問題の観点からは好ましいとは限らない。
前記ルイス酸としては、従来のカチオン重合で使用されるルイス酸が適用可能であり、例えばEtAlCl、AlCl、EtAlCl、EtAlCl、BCl、SnCl、TiCl、Ti(OR)4−yCl[Rはアルキル基又はアリール基を表し、yは1〜3の整数を表す。]が、反応性及び選択性が高いため、好ましい。これらの他、BF、BBr、AlF、AlBr、TiBr、TiI、FeCl、FeCl、SnCl、WCl、MoCl、SbCl、TeCl、ZnCl等の金属ハロゲン化物、(i−Bu)Al、(i−Bu)AlCl、(i−Bu)AlCl、MeSn、EtSn、BuSn、BuSnCl等の金属アルキル化合物[Meはメチル基を表し、Etはエチル基を表し、Buはブチル基を表す。]、Al(OR)3−xCl[Rはアルキル基又はアリール基を表し、xは1又は2の整数を表す。]等の金属アルコキシ化合物が挙げられる。
前記ルイス酸として、1種のルイス酸を単独で用いてもよいし、2種以上のルイス酸を併用してもよい。
重合触媒としては上述のルイス酸のみでもよいが、ルイス酸として組み合わせて用いられる開始剤を利用してもよい。この場合、開始剤とはルイス酸と反応して炭素カチオンを発生するものであり、そのような特質を有するものであればどんなものでもよい。具体的には、アルキルビニルエーテル−塩化水素付加体、クロロアルキルビニルエーテル−塩化水素付加体、α−クロロエチルベンゼン、α―クロロイソプロピルベンゼン、1,3−ビス(α―クロロイソプロピル)ベンゼン、1,4−ビス(α―クロロイソプロピル)ベンゼン、1,3−ビス(α―クロロイソプロピル)−5−t−ブチルベンゼン、1,3,5−トリス(α−クロロイソプロピル)ベンゼン、t−ブチルクロライド、2−クロロ−2,4,4−トリメチルペンタン等の塩素系開始剤:アルキルビニルエーテル−酢酸付加体、α―アセトキシエチルベンゼン、α―アセトキシイソプロピルベンゼン、1,3−ビス(α−アセトキシイソプロピル)ベンゼン、1,4−ビス(α−アセトキシイソプロピル)ベンゼン等のエステル系開始剤、α−ヒドロキシエチルベンゼン、α−ヒドロキシイソプロピルベンゼン、1,3−ビス(α−ヒドロキシイソプロピル)ベンゼン、1,4−ビス(α−ヒドロキシイソプロピル)ベンゼン等のアルコール系開始剤等が挙げられる。
また、リビングカチオン重合触媒と共に用いられる電子供与剤を用いてもよい。そのような電子供与剤としては、公知のものを使用することができる。具体的にはジエチルエーテル(Et2O)、メチル−t−ブチルエーテル、ジブチルエーテル等のエーテル類:酢酸エチル(EtOAc)、酢酸メチル、酢酸イソプロピル、酢酸ブチル、イソ酪酸メチル、イソ酪酸エチル、イソ酪酸プロピル等のエステル類;ピリジン、2−メチルピリジン、2,6−ジメチルピリジン、2,6−ジーブチルピリジン、2,6−ジフェニルピリジン、2,6−ジ−t−ブチルピリジン、2,6−ジーt−ブチル−4−メチルピリジン等のピリジン類;トリメチルアミン、トリエチルアミン、トリブチルアミン等のアミン類;ジメチルアセトアミド、ジエチルアセトアミド等のアミド類;ジメチルスルホキシド等のスルホキシド類等を、挙げることができる。特に、ジエチルエーテルや酢酸メチル等が、経済性及び反応後の除去が容易であることから、好適に使用される。
これらのルイス酸の前記反応液中の濃度としては、後で添加するβフェランドレン100重量部に対して、0.001〜100重量部が好ましく、0.01〜50重量部がより好ましく、0.1〜10重量部が更に好ましい。ルイス酸触媒の使用量が少な過ぎると反応が重合の完了前に停止してしまう恐れがあり、逆に多過ぎると不経済である。
前記滴下するβフェランドレンは、前記反応液を構成する有機溶媒と同じ種類の有機溶媒に予め溶解しておいてもよい。前記滴下する際の前記反応液の温度は、通常、−120℃〜150℃に設定することができ、−90℃〜100℃に設定することが好ましい。反応温度が高過ぎると反応の制御が困難となって再現性が得られ難くなる恐れがあり、低過ぎると製造コストが高くなる。
βフェランドレン重合体の製造方法においては、低温で反応させる方が重合度を高める点で有利であり、例えば−80〜70℃で反応させることにより、数平均分子量Mnが100,000以上、例えば140,000程度のβフェランドレン重合体を容易に得ることができる。また、−15〜40℃で反応させてもよく、この温度においては数平均分子量Mnが50,000〜100,000程度のβフェランドレン重合体を容易に得ることができる。
カチオン重合の反応時間は特に制限されず、重合触媒の種類や量、反応温度、反応設備等の条件に応じて、所望の特性を有するβフェランドレン重合体が得られるように適宜調整することができる。通常は、1秒〜100時間程度、好ましくは10秒〜1時間程度、より好ましくは30秒〜10分程度で反応させることにより、所望の特性を有するβフェランドレン重合体を得ることができる。
本発明で使用されるβフェランドレン重合体はβフェランドレンの単独重合体であってもよいし、βフェランドレンと他の共重合可能な単量体の1種以上との共重合体であってもよい。
また反応を終了させるために、所定時間反応後に停止剤を添加してもよい。停止剤としては、メタノール、エタノール、1−プロパノール、イソプロパノール、1−ブタノール、2−ブタノール、イソブタノール、t−ブタノール等のアルコール類が好適に使用される。停止剤の添加量は厳密に規定されるものでは無いが、通常、反応溶媒量の0.01〜10倍容量であり、好ましくは0.1〜1倍容量である。
前記反応液中で重合して得られたβフェランドレン重合体を溶媒から分離する方法としては、例えば再沈殿、加熱による溶媒の留去、減圧による溶媒の除去、水蒸気による溶媒の除去(コアギュレーション)、押出し機による脱気溶媒除去等の公知方法が適用可能である。
重合体を溶媒から分離する際に塩素系のルイス酸触媒を中和除去する必要がある場合は、適時アルカリ性の中和剤例えば、水酸化ナトリウム、炭酸水素ナトリウム、アンモニア等の一般的に公知な中和剤を用いることができ、特に限定されるものではない。更に透明性や熱安定性の要求が厳しい用途においては、得られる重合体の不純物として残留する塩素、中和塩の十分な除去が望まれる。その除去方法としては特に限定されるものではないが、例えば、重合体の再枕時に適時加水等の処理により精製することが好ましい。特に光学特性や電気絶縁性を向上させるためには、残留の中和塩の含有率は重合体の質量に対し、100ppm以下とすることが好ましい。特に好ましくは10ppm以下である。
<βフェランドレン重合体>
上記のようにして得られたβフェランドレン重合体の数平均分子量Mnは、重合溶液の粘度や溶融粘度、成形性、成形された導光体の強度、耐熱性を高める観点から、1万〜100万が好ましい。本発明に使用されるβフェランドレン重合体の数平均分子量Mnは、2万〜50万に調製することもできるし、3万〜40万に調製することもできるし、4万〜30万に調製することもできるし、5万〜25万に調製することもできるし、6万〜20万に調製することもできるし、7万〜15万に調製することもできるし、8万〜12万に調製することもできる。重合体の分子量が大き過ぎると、重合溶液の粘度が高くなって重合体の生産性が悪くなり、又は、重合体の溶融粘度が高くなって成形性が悪くなる恐れがある。一方、分子量が小さ過ぎると、重合体を用いて得られる導光体の強度が低下すると共に、ガラス転移温度が80℃未満となり、十分な耐熱性を発揮し得ない恐れがある。
βフェランドレン重合体のガラス転移温度Tgは、耐熱性、成形性、成形された導光体の強度を高める観点から、80〜350℃程度が好ましく、85〜250℃がより好ましく、90〜200℃が更に好ましい。本発明に使用されるβフェランドレン重合体のガラス転移温度Tgは、80℃以上200℃以下に調製することもできるし、85℃以上200℃以下に調製することもできるし、90℃以上200℃以下に調製することもできるし、95℃以上200℃以下に調製することもできるし、100℃以上200℃以下に調製することもできるし、110℃以上200℃以下に調製することもできるし、120℃以上200℃以下に調製することもできるし、125℃以上200℃以下に調製することもできるし、130℃以上200℃以下に調製することもできる。ガラス転移温度Tgが高過ぎると、βフェランドレン重合体の溶融粘度が高くなり、成形性が悪くなる恐れがある。一方、ガラス転移温度Tgが低過ぎると、成形された導光体の耐熱使用温度が低くなるために、実用的ではない。通常、βフェランドレン重合体の分子量を高めることにより、及び、βフェランドレン重合体を水素添加することにより、そのガラス転移温度Tg及び耐熱性を向上させることができる。
本明細書及び特許請求の範囲において、βフェランドレン重合体の数平均分子量Mnは、JIS−K−0124−2002にて規定されているサイズ排除クロマトグラフィーの手法に従って求められるものであって、ゲルパーミエーションクロマトグラフィー(GPC)によって測定される示差屈折検出器の値と、標準ポリスチレンの校正曲線とから求められるものである。また、ガラス転移温度Tgは、JIS−K−7121−1987「プラスチックの転移温度測定方法」に規定されている手法に従って測定されたものであって、より詳細には、中間点ガラス転移温度(Tmg)として求められる温度が、本明細書及び特許請求の範囲におけるガラス転移温度Tgである。
<βフェランドレンの光学異性について>
本発明に使用されるβフェランドレン重合体の材料であるβフェランドレンは、下記化学式(I)及び(II)で表される互いに光学異性体(エナンチオマー)である化合物の混合物又はラセミ体であってもよいし、何れか一方の光学異性体のみであってもよい。化学合成されたβフェランドレンは、通常、前記混合物又はラセミ体である。何れか一方の光学異性体のみからなるβフェランドレンの材料を用いる場合、例えばキラルカラムを用いたクロマトグラフィー、光学分割剤を用いたジアステレオマ法等の手法を用いることにより、光学異性分離をして得られた材料を用いてもよい。
Figure 2015185341
βフェランドレンの前記混合物又はラセミ体を材料として使用して得られたβフェランドレン重合体には、下記化学式(I−1)、(I−2)、(II−1)及び(II−2)で表されるモノマー単位(繰り返し単位)のうち何れか1種以上が含まれる。なお、各化学式中、括弧は重合(結合)している隣のモノマー単位との結合を表す。
Figure 2015185341
本発明に使用されるβフェランドレン重合体は、上記の各化学式で表されるモノマー単位のうち、1種を有していてもよいし、2種を有していてもよいし、3種を有していてもよいし、4種を有していてもよい。
本発明に使用されるβフェランドレン重合体には、上記化学式(I)及び(II)の混合物又はラセミ体をその材料として用いた場合、上記化学式(I−1)、(I−2)、(II−1)及び(II−2)で表されるβフェランドレン単位が、当該βフェランドレン重合体の総質量に対して合計で50質量%以上含有されていると考えられる。この含有量は、50〜100質量%が好ましく、70〜100質量%がより好ましく、80〜100質量%がさらに好ましく、90〜100質量%が最も好ましい。
<βフェランドレン重合体に対する水素添加>
本発明に使用されるβフェランドレン重合体が有するオレフィン性炭素−炭素二重結合に対して水素化(水素添加)を行うことができる。水素添加を行うことによって、耐熱性が一層向上した重合体を得ることができる。
βフェランドレン重合体に対する水素添加の方法として、従来の高分子に水素を添加する公知の方法が適用可能である。この際に用いられる水素添加触媒としては、一般にオレフィン類や芳香族化合物の水素化反応に使用される触媒が適用可能であり、例えば、パラジウム、白金、ニッケル、ロジウム、ルテニウム等の遷移金属をカーボン、アルミナ、シリカ、ケイソウ土などの担体に担持してなる担持型金属触媒;チタン、コバルト、ニッケル等の有機遷移金属化合物とリチウム、マグネシウム、アルミニウム、スズ等の有機金属化合物からなる均一系触媒;ロジウム、ルテニウム等の金属錯体触媒等が挙げられる。
前記担持型金属触媒としては、例えば、ニッケル・シリカ、ニッケル・ケイソウ土、ニッケル・アルミナ、パラジウム・カーボン、パラジウム・シリカ、パラジウム・ケイソウ土、パラジウム・アルミナ、白金・シリカ、白金・アルミナ、ロジウム・シリカ、ロジウム・アルミナ、ルテニウム・シリカ、ルテニウム・アルミナ等の触媒を挙げることができる。
前記均一系触媒としては、例えば、酢酸・コバルトトリエチルアルミニウム、トリオクチル酸ニッケル・トリイソブチルアルミニウム、ニッケルアセチルアセトナート・トリイソブチルアルミニウム、チタノセンジクロリド・n−ブチルリチウム、ジルコノセンジクロリド・sec−ブチルリチウム、テトラブトキシチタネート・ジメチルマグネシウム等の組み合わせを挙げることができる。
前記金属錯体触媒としては、例えば、クロロトリス(トリフェニルホスフィン)ロジウム、ジヒドリドテトラ(トリフェニルホスフィン)ルテニウム、ヒドリド(アセトニトリル)トリス(トリフェニルホスフィン)ルテニウム、カルボニルクロロヒドリドトリス(トリフェニルホスフィン)ルテニウム、カルボニルジヒドリドトリス(トリフェニルホスフィン)ルテニウム等を挙げることができる。
ここで例示した水素化反応に用いる触媒のうち、前記担持型金属触媒は、水素化反応後に、重合触媒と共にろ過で容易に分離回収することができるため、特に好ましい。
前記触媒を1種単独で用いてもよいし、2種以上を併用してもよい。
前記水素添加を行う際の反応温度は、通常、−20℃〜250℃で行うことが可能であり、−10℃〜220℃が好ましく、0〜200℃がより好ましい。反応温度が高過ぎると、重合体が熱分解する恐れがあり、低過ぎると、反応速度が遅くなり、反応が完了しない恐れがある。
前記水素添加を行う際の水素圧力は、通常0.1〜100kgf/cmで行うことが可能であり、好ましくは0.5〜70kgf/cm、より好ましくは1〜50kgf/cmである。水素圧力が低過ぎると、水素化反応が遅くなり、高過ぎると高耐圧反応装置が必要となる。
前記水素添加を行う際の溶媒としては、重合体が溶解し、触媒不活性な有機溶媒であれば特に制限されない。重合体の水素添加物の溶解性や反応性の観点から、例えば、脂肪族炭化水素、ハロゲン化炭化水素、及び芳香族炭化水素等が挙げられる。具体的には、ベンゼン、トルエン等の芳香族炭化水素系溶媒;n−ペンタン、n−ヘキサン、n−ヘプタン、n−オクタン、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、デカリン等の脂肪族炭化水素系溶媒;テトラヒドロフラン、エチレングリコールジメチルエーテル等のエーテル系溶媒;塩化メチレン、クロロホルム、1,1−ジクロルエタン、1,2−ジクロルエタン、n−プロピルクロライド、1−クロロ−n−ブタン、2−クロロ−n−ブタン等のハロゲン化炭化水素系溶媒が挙げられる。これらの有機溶媒のうち、溶解性や反応性の観点から、特に炭化水素系溶媒が好ましい。
前記有機溶媒を1種単独で用いてもよいし、2種以上を併用してもよい。
前記水素添加は、βフェランドレンの重合反応が終了した後の前記反応液の溶媒を交換せずに、そのまま水素添加の反応を行うことも可能である。このように溶媒を置換せずに水素添加を行うと、製造プロセスから排出される廃液が減少するので、環境負荷を下げる観点から好ましい。
前記水素添加の反応時間は、通常0.1〜20時間程度で行うことができる。水素添加反応の終了の目安としては、例えば、水素添加前の重合体が有するオレフィン性炭素−炭素二重結合(不飽和結合)のうち、好ましくは70%以上、より好ましくは80%以上、更に好ましくは90%以上、特に好ましくは95%以上が飽和されるまで、最も好ましくは100%が飽和されるまで、水素添加を継続することが望ましい。十分にβフェランドレン重合体に対して水素添加を行うことにより、耐熱性、耐光性に優れた重合体を得ることができる。
前記水素添加の前後の重合体におけるオレフィン性炭素−炭素二重結合の水素添加率を求める方法として、一般に、ヨウ素価滴定法、赤外分光スペクトル測定、核磁気共鳴スペクトル(H−NMRスペクトル)測定等の分析値から算出する方法が知られている。
本明細書及び特許請求の範囲において、βフェランドレン重合体のオレフィン性炭素−炭素二重結合に対する水素添加率は、重水素化クロロホルムを溶媒として用いた核磁気共鳴スペクトル(H−NMRスペクトル)の測定値を用いて算出している。具体的には、テトラメチルシランのプロトンを0ppmとして、δ=5.0〜6.0ppmに検出されるシグナルの積分値、即ちオレフィン性炭素−炭素二重結合のプロトンに由来するシグナルの積分値Aと、0.5〜2.5ppmに検出されるシグナルの積分値、即ち飽和炭化水素のプロトンに由来するシグナルの積分値Bとの比(A/B)を算出する。この比は、水素添加率が高くなるにつれて小さくなる。前記水素添加前の前記比(A/B(水添前))及び前記水素添加後の前記比(A/B(水添後))をそれぞれ算出し、下記式に代入することにより、水素添加率を求めることができる。
水素添加率(%)=
(比(A/B(水添前))−比(A/B(水添後))×100÷比(A/B(水添前))
βフェランドレン重合体に対して水素添加することにより得られる重合体のガラス転移温度Tgは、熱源(例えば熱を発する光源)に近い環境で使用することを想定した場合や、表面加工が容易になる等の観点から、高い方が好ましい。光源の熱による影響を低減する観点からは、Tgは100℃以上であることがより好ましい。本発明にかかる導光体について、その耐薬品性を向上させたり、帯電防止性を付与したり、導電性を付与したりするために公知の表面加工(表面処理)を行うことができる。これらの表面加工を容易に行うことができるため、水素添加したβフェランドレン重合体のTgは120℃以上であることが好ましい。Tgが200℃程度を超えると、βフェランドレン重合体の溶融粘度が高くなり、成形性が悪くなる恐れがある。一方、Tgが80℃未満であると、導光体の耐熱使用温度が低くなるために、好ましくない。
水素添加したβフェランドレン重合体のガラス転移温度Tgの測定方法は、水素添加していないβフェランドレン重合体のガラス転移温度Tgの測定方法と同じでよい。
本発明で使用されるβフェランドレン重合体の全光線透過率は、その用途に通常求められる性質として、高いほど好ましく、80%以上が好ましく、85%以上がより好ましく、90%以上がさらに好ましい。例えば、βフェランドレン重合体のみからなる厚さ約3.2mmの平板状試験片を測定した場合、その全光線透過率が80%以上であることが好ましく、85%以上であることがより好ましく、90%以上であることが更に好ましく、95%以上であることが最も好ましい。
ここで、上記全光線透過率は、JIS-K-7361 : 1997 (ISO13468-1:1996)に準拠して測定した数値である。
本発明で使用されるβフェランドレン重合体は、寸法安定性の観点から、吸水率が低い方が好ましい。βフェランドレン重合体の吸水率は、60℃、90%RH(相対湿度)雰囲気下に試験片を24時間置いたときの試験片の質量変化を飽和吸水率として測定したときに、0.2%以下が好ましく、0.1%以下がより好ましく、0.05%以下がさらに好ましい。
ここで、上記吸水率は、JIS-K-7209:2000に準拠して測定した数値である。この際、試験片の一例として、前記βフェランドレン重合体のみからなる厚さ約3.2mmの平板状試験片を使用することができる。
本発明で使用されるβフェランドレン重合体の比重は小さいため、軽い導光体を得ることができる。本発明で使用されるβフェランドレン重合体の比重は、0.85以上1.0未満であり、0.85〜0.98であることが好ましい。
上記比重が0.85よりも小さいβフェランドレン重合体を得ることは通常困難である。また、上記比重が1.0以上であると、軽量化の目的を充分に達成し得なくなる。
ここで、上記比重は、JIS-K-7112:1999のA法に準じて測定した数値である。
一般に、成形品を構成する樹脂の光弾性係数が、Tg以上の温度において大きい場合、得られる成形品の光学歪みが大きくなる問題がある。故に、光学歪みの小さい成形品を得ようとする場合、成形条件の選択できる範囲が狭くなるため、生産性が低くなってしまう問題がある。
したがって、本発明で使用されるβフェランドレン重合体の光弾性係数は小さいことが好ましく、ガラス転移温度Tg以上の温度においても、その光弾性係数が小さいことがより好ましい。光弾性が小さいβフェランドレン重合体を使用することにより、光学歪みの少ない導光体を得ることができる。
使用するβフェランドレン重合体のTg以上の温度(例えば、Tg+20℃)における好適な光弾性係数は、用途により一概に規定できないが、−3000×10−13〜3000×10−13cm/dynが好ましく、−1000×1000−13〜1000×10−13cm/dynがより好ましい。この範囲の光弾性係数を有することで、光学歪みの小さい導光体を、生産性良く得ることができる。なお、1dyn=10−5Nである。
本発明で使用されるβフェランドレン重合体の曲げ弾性率は、2500MPa以上が好ましく、2700MPa以上がより好ましい。この範囲の曲げ弾性率であると、撓みによる変形を抑制し、導光体の厚みを薄くすることができる。ここで、上記曲げ弾性率は、ASTM D790に準拠した方法により測定された数値である。この際、試験片として、上記βフェランドレン重合体を、例えば厚み約3.2mmの平板状試験片に成形したものを使用することができる。
本発明で使用されるβフェランドレン重合体の屈折率nD(25℃)は、1.450〜1.600の範囲であることが好ましい。この範囲の屈折率であると、導光体の厚みを薄くすることができる。ここで、上記屈折率nD(25℃)は、JIS−K−7142に準拠した方法により測定された数値である。この際、試験片として、上記βフェランドレン重合体を、例えば厚み100μmの平板状試験片に成形したものを使用することができる。また、測定装置として、例えば、アッベ屈折計 DR−M4(株式会社アタゴ製)を使用して測定することができる。
本発明で使用されるβフェランドレン重合体のアッベ数は、55〜65の範囲であることが好ましく、57〜63の範囲であることがより好ましい。これら範囲のアッベ数であると色収差を低く抑制することができるとともに、前述の好適な屈折率の範囲に対するバランスを良好にすることができる。この際、試験片として、上記βフェランドレン重合体を、例えば厚み100μmの平板状試験片に成形したものを使用することができる。また、測定装置として、例えば、アッベ屈折計 DR−M4(株式会社アタゴ製)を使用して測定することができる。
本発明で使用されるβフェランドレン重合体を3.2mm厚の板状に成形したとき、そのフィルムの引張強度は、60MPa以上が好ましく、70MPa以上がより好ましく、80MPa以上が更に好ましい。引張強度の上限値は特に制限されず、その強度が大きい程好ましいが、通常100MPa程度が上限値となる。
ここで、前記引張強度は、ASTM D638に準拠した測定方法によって求められた数値である。
<導光体>
本発明の導光体は、上述したβフェランドレン重合体が、前記導光体の総質量に対して50〜100質量%含まれてなる導光体である。
前記導光体を構成するβフェランドレン重合体は、その比重が0.85以上1.0未満であり、且つそのガラス転移温度が100℃以上である。
また、前記導光体の厚みは0.01〜10mmである。
本発明の導光体に含まれる前記βフェランドレン重合体の含有量は、前記導光体の総質量に対して、60〜100質量%であってもよいし、70〜100質量%であってもよいし、80〜100質量%であってもよいし、90〜100質量%であってもよいし、95〜100質量%であってもよいし、98〜100質量%であってもよい。
本発明の導光体の機械的強度及び耐熱性を向上させるためには、前記導光体の主成分であるβフェランドレン重合体の機械的強度及び耐熱性を向上させればよい。βフェランドレン重合体の機械的強度及び耐熱性を向上させる観点から、好適なTgとしては、100〜350℃が好ましく、100〜250℃がより好ましく、100〜200℃が更に好ましい。また、同様の観点から、βフェランドレン重合体の好適な数平均分子量Mnは大きい程好ましく、6万以上が好ましく、8万以上が好ましく、10万以上がより好ましく、12万以上が更に好ましく、14万以上が更に一層好ましく、16万以上が特に好ましく、18万以上が最も好ましい。その数平均分子量Mnの上限値は特に限定されないが、成形性や加工性を向上させる観点から、通常、80万以下が好ましく、60万以下がより好ましく、40万以下が更に好ましい。
また、上記と同様の観点から、βフェランドレン重合体の好適な重量平均分子量Mwは大きい程好ましく、5万以上が好ましく、7万以上がより好ましく、9万以上が更に好ましく、11万以上が更に一層好ましく、13万以上が特に好ましく、15万以上が最も好ましい。その重量平均分子量Mwの上限値は特に限定されないが、成形性や加工性を向上させる観点から、通常、100万以下が好ましく、80万以下がより好ましく、60万以下が更に好ましい。重量平均分子量は数平均分子量と同様の方法で得た測定データから算出することができる。
また、上記と同様の観点から、βフェランドレン重合体のMw/Mnは、1〜25が好ましく、1.05〜20がより好ましく、1.1〜10がさらに好ましい。
本発明の導光体の比重は、前述したβフェランドレン重合体が当該導光体の総質量の50〜100質量%を構成している場合、通常、0.85〜1.0の範囲にすることができる。βフェランドレン重合体は、従来のアクリル系樹脂、PET樹脂、ポリ塩化ビニル樹脂等よりも比重が軽いため、βフェランドレン重合体を主成分として有する本発明に係る導光体は、これらの従来樹脂からなる導光体よりも軽量性に優れる。
本発明の導光体の耐熱性を向上させる観点から、本発明に使用されるβフェランドレン重合体が有するオレフィン性炭素−炭素二重結合の少なくとも一部が水素化されていることが好ましい。
本発明の導光体の全光線透過率は、その用途に通常求められる性質として、高いほど好ましく、80%以上が好ましく、85%以上がより好ましく、90%以上がさらに好ましい。例えば、本発明の導光体の一例として、厚さ約3.2mmの平板状試験片を測定した場合、その全光線透過率が80%以上であることが好ましく、85%以上であることがより好ましく、90%以上であることが更に好ましく、95%以上であることが最も好ましい。ここで、上記全光線透過率は、JIS-K-7361 : 1997 (ISO13468-1:1996)に準拠して測定した数値である。
本発明の導光体の吸水率は、前述したβフェランドレン重合体が当該導光体の総質量の70〜100質量%を構成している場合、60℃、90%RH(相対湿度)雰囲気下に導光体を24時間置いたときのその質量変化を飽和吸水率として測定したときに、0.2%以下が好ましく、0.1%以下がより好ましく、0.05%以下がさらに好ましい。ここで、上記吸水率は、JIS-K-7209:2000に準拠して測定した数値である。
βフェランドレン重合体は、従来のアクリル系樹脂よりも吸水性が低いため、βフェランドレン重合体を主成分として有する本発明の導光体は、従来のアクリル系樹脂からなる導光体よりも寸法安定性に優れる。
本発明の導光体の光弾性係数は、前述したβフェランドレン重合体が当該導光体の総質量の95〜100質量%を構成している場合、前述したβフェランドレン重合体の好適な光弾性係数と同等にすることができる。
本発明の導光体の曲げ弾性率は、前述したβフェランドレン重合体が当該導光体の総質量の95〜100質量%を構成している場合、前述したβフェランドレン重合体の好適な曲げ弾性率と同等にすることができる。
本発明の導光体の屈折率は、前述したβフェランドレン重合体が当該導光体の総質量の95〜100質量%を構成している場合、前述したβフェランドレン重合体の好適な屈折率と同等にすることができる。
本発明の導光体のアッベ数は、前述したβフェランドレン重合体が当該導光体の総質量の95〜100質量%を構成している場合、前述したβフェランドレン重合体の好適なアッベ数と同等にすることができる。
本発明の導光体を成形するためのβフェランドレン重合体には、本発明の目的を損なわない範囲において、更に必要に応じて、公知の各種の配合剤が、単独で又は2種以上を組み合わせて、混合されても構わない。
前記配合剤としては、従来の樹脂工業で通常使用されるものであれば特に制限されず、例えば、酸化防止剤、紫外線吸収剤、光安定剤、近赤外線吸収剤、染料や顔料等の着色剤、滑剤、可塑剤(柔軟化剤)、帯電防止剤、蛍光増白剤、充填材等の配合剤を挙げることができる。
前記酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤等が挙げられる。これらの酸化防止剤の中でも、フェノール系酸化防止剤が好ましく、アルキル置換フェノール系酸化防止剤が特に好ましい。
前記フェノール系酸化防止剤としては、例えば、2−t−ブチル−6−(3−t−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェニルアクリレート、2,4−ジ−t−アミル−6−(1−(3,5−ジ−t−アミル−2−ヒドロキシフェニル)エチル)フェニルアクリレート等のアクリレート系化合物;オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2,2’−メチレン−ビス(4−メチル−6−t−ブチルフェノール)、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、テトラキス(メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニルプロピオネート)メタン[即ちペンタエリスリメチル−テトラキス(3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニルプロピオネート)]、トリエチレングリコールビス(3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート)等のアルキル置換フェノール系化合物;6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−2,4−ビスオクチルチオ−1,3,5−トリアジン、4−ビスオクチルチオ−1,3,5−トリアジン、2−オクチルチオ−4,6−ビス−(3,5−ジ−t−ブチル−4−オキシアニリノ)−1,3,5−トリアジン等のトリアジン基含有フェノール系化合物等が挙げられる。
前記リン系酸化防止剤としては、例えば、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、10−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド等のモノホスファイト系化合物;4,4’−ブチリデン−ビス(3−メチル−6−t−ブチルフェニル−ジ−トリデシルホスファイト)、4,4’−イソプロピリデン−ビス(フェニル−ジ−アルキル(C12〜C15)ホスファイト)等のジホスファイト系化合物等が挙げられる。これらの中でも、モノホスファイト系化合物が好ましく、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト等が特に好ましい。
前記イオウ系酸化防止剤としては、例えば、ジラウリル3,3−チオジプロピオネート、ジミリスチル3,3’−チオジプロピオネート、ジステアリル3,3−チオジプロピオネート、ラウリルステアリル3,3−チオジプロピオネート、ペンタエリスリトール−テトラキス−(β−ラウリル−チオプロピオネート)、3,9−ビス(2−ドデシルチオエチル)−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン等を挙げることができる。
前記酸化防止剤は、それぞれ単独で又は2種以上を組み合わせて、用いることができる。酸化防止剤の配合量は、本発明の目的が損なわれない範囲で適宜に決定されればよく、例えば、βフェランドレン重合体の100重量部に対して、0.001〜5重量部程度、好ましくは0.01〜1重量部の範囲で使用することができる。
前記紫外線吸収剤としては、例えば、2−(2−ヒドロキシ−5−メチルフェニル)2H−ベンゾトリアゾール、2−(3−t−ブチル−2−ヒドロキシ−5−メチルフェニル)−5−クロロ−2H−ベンゾトリアゾール、2−(3,5−ジ−t−ブチル−2−ヒドロキシフェニル)−5−クロロ−2H−ベンゾトリアゾール、2−(3,5−ジ−t−ブチル−2−ヒドロキシフェニル)−2H−ベンゾトリアゾール、5−クロロ−2−(3,5−ジ−t−ブチル−2−ヒドロキシフェニル)−2H−ベンゾトリアゾール、2−(3,5−ジ−t−アミル−2−ヒドロキシフェニル)−2H−ベンゾトリアゾール等のベンゾトリアゾール系紫外線吸収剤;4−t−ブチルフェニル−2−ヒドロキシベンゾエート、フェニル−2−ヒドロキシベンゾエート、2,4−ジ−t−ブチルフェニル−3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート、ヘキサデシル−3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート、2−(2H−ベンゾトリアゾール−2−イル)−4−メチル−6−(3,4,5,6−テトラヒドロフタルイミジルメチル)フェノール、2−(2−ヒドロキシ−5−t−オクチルフェニル)−2H−ベンゾトリアゾール、2−(2−ヒドロキシ−4−オクチルフェニル)−2H−ベンゾトリアゾール等のベンゾエート系紫外線吸収剤;2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン−5−スルホン酸3水和物、2−ヒドロキシ−4−オクチルオキシベンゾフェノン、4−ドデシルオキシ−2−ヒドロキシベンゾフェノン、4−ベンジルオキシ−2−ヒドロキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン等のベンゾフェノン系紫外線吸収剤;エチル−2−シアノ−3,3−ジフェニルアクリレート、2’−エチルヘキシル−2−シアノ−3,3−ジフェニルアクリレート等のアクリレート系紫外線吸収剤;[2,2’−チオビス(4−t−オクチルフェノレート)]−2−エチルヘキシルアミンニッケル等の金属錯体系紫外線吸収剤等を用いることができる。
前記光安定剤としては、例えば、2,2,6,6−テトラメチル−4−ピペリジルベンゾエート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−2−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−2−n−ブチルマロネート、4−(3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ)−1−(2−(3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ)エチル)−2,2,6,6−テトラメチルピペリジン等のヒンダードアミン系光安定剤を挙げることができる。
前記近赤外線吸収剤としては、例えば、シアニン系近赤外線吸収剤;ピリリウム系近赤外線吸収剤;スクワリリウム系近赤外線吸収剤;クロコニウム系近赤外線吸収剤;アズレニウム系近赤外線吸収剤;フタロシアニン系近赤外線吸収剤;ジチオール金属錯体系近赤外線吸収剤;ナフトキノン系近赤外線吸収剤;アントラキノン系近赤外線吸収剤;インドフェノール系近赤外線吸収剤;アジ系近赤外線吸収剤等が挙げられる。また、市販品の近赤外線吸収剤として、SIR−103、SIR−114、SIR−128、SIR−130、SIR−132、SIR−152、SIR−159、SIR−162(以上、三井東圧染料株式会社製)、Kayasorb IR−750、Kayasorb IRG−002、Kayasorb IRG−003、Kayasorb IR−820B、Kayasorb IRG−022、Kayasorb IRG−023、Kayasorb CY−2、Kayasorb CY−4、Kayasorb CY−9(以上、日本化薬株式会社製)等を挙げることできる。
前記染料としては、用いられるβフェランドレン重合体に均一に分散又は溶解するものであれば特に限定されず、例えば、βフェランドレン重合体との相溶性が優れる油溶性染料(各種C.I.ソルベント染料)が挙げられる。この油溶性染料の具体例としては、例えば、The Society of Dyers and Colourists 社刊の「Color Index」、Vol.3に記載されている各種のC.I.ソルベント染料が、挙げられる。
前記顔料のうち、有機系顔料としては、例えば、ピグメントレッド38等のジアリリド系顔料;ピグメントレッド48:2、ピグメントレッド53、ピグメントレッド57:1等のアゾレーキ系顔料;ピグメントレッド144、ピグメントレッド166、ピグメントレッド220、ピグメントレッド221、ピグメントレッド248等の縮合アゾ系顔料;ピグメントレッド171、ピグメントレッド175、ピグメントレッド176、ピグメントレッド185、ピグメントレッド208等のベンズイミダゾロン系顔料;ピグメントレッド122等のキナクリドン系顔料;ピグメントレッド149、ピグメントレッド178、ピグメントレッド179等のペリレン系顔料;ピグメントレッド177等のアントラキノン系顔料が挙げられる。また、無機系顔料としては、例えば、酸化チタン、カーボンブラック、べんがら、クロムレッド、モリブデンレッド、リサージ、酸化鉄等が挙げられる。
本発明の導光体に着色が必要とされるときは、前記染料及び顔料の何れでも、本発明の目的の範囲内で使用することができる。例えば、ミクロな光学特性の考慮が必要な用途においては、染料による着色が好ましい。また、紫外線吸収剤が目視では黄色〜赤色の色を示すこともあり、近赤外線吸収剤が目視では黒色の色を示すこともあるため、これらの光吸収材と前記染料及び顔料とを厳密に区別して使用する必要は無い。また、これらの光吸収材と前記染料及び顔料を組み合わせて使用しても構わない。
前記滑剤としては、例えば、脂肪族アルコールのエステル、多価アルコールのエステル又は部分エステル等の有機化合物や無機微粒子等を用いることができる。
前記有機化合物としては、例えば、グリセリンモノステアレート、グリセリンモノラウレート、グリセリンジステアレート、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート等が挙げられる。
前記無機微粒子としては、周期律表の1族、2族、4族、6〜14族元素の酸化物、硫化物、水酸化物、窒化物、ハロゲン化物、炭酸塩、硫酸塩、酢酸塩、燐酸塩、亜燐酸塩、有機カルボン酸塩、珪酸塩、チタン酸塩、硼酸塩、及びそれらの含水化物、それらを中心とする複合化合物、天然化合物等の微粒子が挙げられる。
前記可塑剤としては、例えば、トリクレジルフォスフェート、トリキシレニルフォスフェート、トリフェニルフォスフェート、トリエチルフェニルフォスフェート、ジフェニルクレジルフォスフェート、モノフェニルジクレジルフォスフェート、ジフェニルモノキシレニルフォスフェート、モノフェニルジキシレニルフォスフェート、トリブチルフォスフェート、トリエチルフォスフェート等の燐酸トリエステル系可塑剤;フタル酸ジメチル、フタル酸ジブチル、フタル酸ジヘプチル、フタル酸ジ−n−オクチル、フタル酸ジ−2−エチルヘキシル、フタル酸ジイソノニル、フタル酸オクチルデシル、フタル酸ブチルベンジル等のフタル酸エステル系可塑剤;オレイン酸ブチル、グリセリンモノオレイン酸エステル等の脂肪酸一塩基酸エステル系可塑剤;二価アルコールエステル系可塑剤;オキシ酸エステル系可塑剤等が挙げられる。これらの中でも、燐酸トリエステル系可塑剤が好ましく、トリクレジルフォスフェート、トリキシレニルフォスフェートが特に好ましい。
前記可塑剤の他の具体例として、スクアラン(C30H62、Mw=422.8)、流動パラフィン(ホワイトオイル、JIS−K−2231に規定されるISO VG10、ISO VG15、ISO VG32、ISO VG68、ISO VG100、ISO VG8及びISO VG21等)、ポリイソブテン、水添ポリブタジエン、水添ポリイソプレン等が挙げられる。これらの中でも、スクアラン、流動パラフィン及びポリイソブテンが好ましい。
前記帯電防止剤としては、ステアリルアルコール、ベヘニルアルコール等の長鎖アルキルアルコール、グリセリンモノステアレート、ペンタエリスリトールモノステアレート等の多価アルコールの脂肪酸エステル等が挙げられるが、ステアリルアルコール、ベヘニルアルコールが特に好ましい。
前記配合剤は、単独で又は2種以上を混合して用いることができる。その混合割合は、本発明の目的を損なわない範囲で適宜に選択される。また、前記配合剤の個々の配合量は、本発明の目的を損なわない範囲で適宜に選択されるが、各配合剤につき、βフェランドレン重合体の100重量部に対して、通常、0.001〜5重量部程度、好ましくは0.01〜1重量部の範囲で使用することが好ましい。
本発明に係る導光体を成形するためのβフェランドレン重合体には、必要に応じて、本発明の目的を損なわない範囲において、その他のポリマー成分を配合することもできる。前記その他のポリマーとしては、例えば、ゴム質重合体があり、具体的には、天然ゴム、ポリブタジエンゴム、ポリイソプレンゴム、アクリロニトリル・ブタジエン共重合体ゴム等のジエン系ゴム;スチレン・ブタジエン共重合体ゴム、スチレン・イソプレン共重合体ゴム、スチレン・ブタジエン・イソプレン三元共重合体ゴム;ジエン系ゴムの水素添加物;エチレン・プロピレン共重合体等のエチレン・α−オレフィン共重合体、プロピレン・その他のα−オレフィンの共重合体等の飽和ポリオレフィンゴム;エチレン・プロピレン・ジエン共重合体、α−オレフィン・ジエン共重合体、イソブチレン・イソプレン共重合体、イソブチレン・ジエン共重合体等のα−オレフィン・ジエン系重合体ゴム;ウレタンゴム、シリコーンゴム、ポリエーテル系ゴム、アクリルゴム、プロピレンオキサイドゴム、エチレン・アクリルゴム等の特殊ゴム;スチレン・ブタジエン・スチレンブロック共重合体ゴム、スチレン・イソプレン・スチレンブロック共重合体ゴム等の熱可塑性エラストマー;水素添加熱可塑性エラストマー;ウレタン系熱可塑性エラストマー;ポリアミド系熱可塑性エラストマー;1,2−ポリブタジエン系熱可塑性エラストマーを挙げることができる。また、その配合量は、本発明の目的を損なわない範囲で、適宜に選択されるが、βフェランドレン重合体の100重量部に対して、例えば、3〜30重量部程度、好ましくは5〜20重量部の範囲で使用されることが好ましい。
本発明の導光体の形状は特に制限されず、導光体内において光を導くことが可能な形状であればよく、従来公知の導光体の形状が適用可能である。例えば、板状、ブロック状、ロッド状、屈曲形状、湾曲形状等の形状が挙げられる。また、導光体の少なくとも一部に、例えば片面に、スクリーン印刷法でドットを付けた形状も一例として挙げられる。また、導光体表面の少なくとも一部に、例えばV溝のような線状パターン、半球レンズ状の凹凸、シボパターンを形成した形状も一例として挙げられる。
実用上の成形性や強度を確保し、また軽量化の目的が充分に達成され得るように、本発明の導光体の厚みは、0.01mm〜10mmであることが好ましい。一方、本発明の導光体の幅及び長さは、導光体の用途に応じて適宜設計することができる。
本発明の導光体の一部又は全部の表面に、光反射処理、光拡散処理、集光処理等が施されていてもよい。これらの処理は従来公知の方法で行うことができる。例えば、導光体の一方の面に対して反射処理が施され、その反対側の面に対して光拡散処理又は集光処理が施された構成が挙げられる。これらの処理は、導光体の処理される面に対して、別体としての光反射シート、光拡散シート又は集光シートを設置する方法により施されていても構わない。これらのシートは公知の市販品等が適用可能である。
本発明の導光体は、各種表示装置に装着されるバックライトユニット等における光学部材の一つとして、従来の導光体と同様に使用され得る。例えば、エッジライト方式の面状光源装置においては、一般に、導光体の側端面から入射した光源からの光を長手方向に導きながら、所定の面より出射させるようにした導光体が使用されている。
このような導光体を備えた照明装置の構成の一例として、例えば、導光体の少なくとも一つの側端面に配置された光源と、その光源を囲むように配置され、導光体の前記側端面に直接入射しなかった光源光を導光体に効率良く導くためのリフレクターと、導光体の光出射面側に配置され、当該出射面から出射された光を拡散させる為の光拡散シート又は集光させるための集光シートと、導光体の光反射面側に配置され、導光体から漏れた光を再度導光体内に戻すための反射シートとを含む構成が挙げられる。
このような照明装置において、導光体の裏面(光反射面)には、導光体内に導入された光の輝度を上げたり、均一に拡散させたりするために、ドット模様、コーンカット、V溝等、様々な形状のパターンが形成されていてもよい。
<導光体の製造方法>
本発明に係る導光体を製造(成形)する方法は特に制限されず、従来の透明樹脂製の導光体を製造する公知方法、例えば、射出成形法、熱プレス成形法、押出成形法、切削加工法、活性エネルギー線硬化型樹脂を用いる方法等が適用可能である。これらの製法のうち、生産性を高める観点から、射出成形法、熱プレス成形法、押出成形法が好適である。
本発明の導光体は、光透過性、耐熱性、吸水性、耐光性、光弾性係数及び機械的強度等に関して、ポリオレフィン系樹脂、アクリル系樹脂、カーボネート系樹脂等の石油由来の従来樹脂と比べて、同等又はより優れた物性を有する。そのうえ、多くの従来樹脂よりも比重が軽いため、軽量性に優れる。
また、従来知られているβピネン重合体からなる導光体は、本発明の導光体と同等の優れた軽量性を有するが、曲げ強度等の機械的強度において本発明のβフェランドレン重合体によって構成された導光体の方が優れる。この要因の一つとして、βフェランドレンの方が、数平均分子量の大きい重合体を形成し易く、機械的強度に優れた導光体に成り易いことが考えられる。
したがって、前述のβフェランドレン重合体を使用することにより、同じ強度を有しながら薄くて軽量な導光体を製造することができる。
<照明装置>
本発明の第二態様の照明装置は、上述した第一態様の導光体と光源とを備えた照明装置である。この照明装置における導光体は、光源からの光が導光体の一つの導光面(例えば、一つの側端面)から導光体内に導入され、導光体内を導かれて、導光体の所定の光出射面から光が出射するように構成されている。
本発明の照明装置の一例として、図1に、画像表示装置用の照明装置の模式的な断面の分解説明図を示す。図1の照明装置においては、本発明の導光体である導光板2に対して、その側端面に対向するように延びる光源4が配置されている。導光板2の第一面には光反射シート6が配置されており、導光体2の第二面には2つの光拡散シート8a,8bが積層して配置されている。この構成において、光源4からの光が、図示しないリフレクターの補助を介して、導光板2の一つの側端面から導光板2内に導入される。導入された光は、導光板2内を板面方向に沿って導かれるとともに、光反射シート6によって導光板2の第一面からの出射が反射され、導光板2の第二面から出射される。出射された光は、光拡散シート8a,8bによって、所望のとおりに拡散が行なわれる。
上記構成の他に、2つの光源を導光板2の両側端面に配置した図2の構成も例示できる。また、光拡散シートに代えて集光シートを配置した構成も例示できる。
例示したような照明装置における導光板2の光出射面側に、公知の透過型表示素子10を設置することにより、画像表示装置を形成することができる。ここで、画像表示装置とは、前記照明装置と表示素子とを組み合わせた表示モジュール、及びこの表示モジュールを用いたテレビ、パソコンモニター等の少なくとも画像表示機能を有する機器をいう。透過型表示素子10の代表例として、公知の液晶パネルを挙げることができる。
次に、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。
[合成例1]
本発明に係る導光体の材料として、βフェランドレン重合体の水素添加物を以下の様に合成した。
[βフェランドレン重合体の製造]
乾燥させたガラス製フラスコに、ヘキサン(関東化学株式会社製)68重量部を入れ、0℃に冷却した。そこにルイス酸触媒のEtAlCl(エチルアルミニウムジクロリド)(17%ヘキサン溶液、約1mol/L、東京化成工業株式会社製)0.37重量部を投入し、よく分散させたのち、化学合成によって得たβフェランドレン(純度83.3%)5.1重量部をゆっくりと滴下投入した。1分後に、メタノール8重量部を加えて重合反応を停止した。反応溶液を分液ロートに移した後に1%水酸化ナトリウム溶液20重量部を加えて、よく撹拌した後、水溶液の相を分離除去した。次に、有機溶媒相をエバポレータによりゆっくりと蒸発させ、反応溶液を濃縮させた。濃縮した反応溶液約40重量部をメタノール240重量部にゆっくり滴下し、重合物を再沈させた。得られた沈殿物を溶液よりろ過分離し、十分乾燥させ、βフェランドレン重合体を得た。反応時のモノマーの反応率は100%であった。
得られたβフェランドレン重合体の数平均分子量は105,300、ガラス転移温度は85℃であった。
[水素添加]
十分窒素置換を行った圧力容器に、脱水したヘキサン61重量部および得られたβフェランドレン重合体4重量部を投入し十分溶解させた。ついで、パラジウム・アルミナ触媒(和光純薬製、Pd:5%)10重量部を添加し、8MPaの水素雰囲気下にて、120℃で10時間、水素添加反応を行った。テフロン(登録商標)からなる孔径1μmのフィルターを用いて反応液をろ過し、触媒を除去した後、メタノールにて再沈させ、沈殿を十分に乾燥させて、βフェランドレン重合体の水素添加物4.5重量部を得た。
得られたβフェランドレン重合体の水素添加率をH−NMRスペクトル測定により算出したところ、99.9%であった。また重合体の数平均分子量は104,000、ガラス転移温度は130℃、比重は0.93であった。
[合成例2]
合成例1の方法で、反応温度を−78℃に変更して、数平均分子量139,400のβフェランドレン重合体を作製した。さらに水素添加し、水素添加率99.9%、分子量が138,500で、ガラス転移温度が139℃、比重0.93の水素添加βフェランドレン重合体を作製した。
(反応収率)
o-ジクロロベンゼンを内部標準とする方法により、β-フェランドレンモノマーの共役二重結合に由来するシグナル5.5〜6.5ppmのシグナルの面積の減少率により算出した。
(数平均分子量)
標準ポリスチレン換算で測定した。装置として、島津製作所社製、LC-20AD送液ユニット、RID-10示差屈折率検出器を用いた。カラムは、昭和電工株式会社製のShodex KF803を2本用いた。溶媒は、THF(40℃)を用いた。
(水素添加率)
溶媒は重水素化クロロホルムを用いた。TMSで0ppm補正を行った。日本電子株式会社製のNMR装置、JNM-ECX400(400MHz)を使用して、H-NMRスペクトルを測定した。測定は室温で行った。
水素添加前のスペクトルの不飽和結合に起因する5.0〜6.0ppmのピークの減少率を求めた。この時、5.0〜6.0ppmのオレフィン性二重結合のプロトンに由来するシグナルの積分値Aと、0.5〜2.5ppmの飽和炭化水素のプロトンに由来するシグナルの積分値Bとの比 A/Bを用いた。水素添加率(%)は(A/B(Before)−A/B(After))x100/A/B(Before)で算出した。
(全光線透過率)
射出成形法により、上記で作製したβフェランドレン重合体水添物からなる厚さ3.2mmの試験片を成形して、これを測定試料として全光線透過率を測定した。
JIS-K-7361 : 1997 (ISO13468-1:1996)に準拠して全光線透過率を測定した。測定装置として、東京電色社製のヘーズメーターTC-H3DPK/IIを用いた。
(ガラス転移温度)
JIS-K-7121-1987「プラスチックの転移温度測定方法」により、上記で作製したβフェランドレン重合体水添物のガラス転移温度Tgを、示差熱測定装置を用いて測定した。装置は、島津製作所社製のDSC-60を用いた。
(吸水率)
上記で作製したβフェランドレン重合体水添物を使用して、長さ:140mm、幅:60mm、厚さ:0.8mmの板をプレス成形した。この板を、60℃、90%RHの雰囲気下に10日間置き、初期質量からの増加した質量の割合を下記式により算出し、その吸水率を求めた。
吸水率(%) = 質量増加分×100/初期質量
(耐光性)
溶融プレス成型法により、上記で作製したβフェランドレン重合体水添物からなる厚さ0.5mmの試験片を成形して、これを測定試料として耐光性を評価した。
上記試験片を紫外線暴露試験装置に入れ、100時間の促進暴露試験を行い、YI(イエローインデックス)の試験前と試験後における黄変度(ΔYI)を測定した。 YIの測定は、JIS-K-7103に準じて行い、以下の判定基準に従って評価した。
ΔYI =(紫外線暴露100時間後のYI)−(紫外線暴露前のYI)
A: ΔYI ≦ 1 …長期の耐光性が非常に良好
B: 1 < ΔYI …長期の耐光性が不良
(光弾性係数)
射出成型法により、上記で作製したβフェランドレン重合体水添物からなる厚さ3.2mmの試験片を成形して、これを測定試料として光弾性係数を評価した。
上記試験片を、Tgよりも20℃低い温度で、一晩アニールした後、Tgよりも20℃高い温度で、長軸方向に引っ張り応力をかけ、その際のレターデーションを、エリプソメーターM220(日本分光株式会社製)で測定し、応力に対するレターデーションの変化量から、光弾性係数を算出した。算出した変化量を以下の基準に従って分類した。
A:1000未満 …変化量が小さく、非常に良好である。
B:1000以上3000未満 …変化量が許容範囲内であり、良好である。
C: 3000以上 …変化量が大きく、不良である。
変化量の単位は[×10−13cm/dyn]
(曲げ弾性率)
ASTM D790に準拠し、各試料の曲げ弾性率を測定した。結果を以下の基準で判定した。試料の厚みは3.2mmとした。
A: 2500MPa以上 …良好
B: 2500MPa未満 …不良
(屈折率(nD))
上記で作製したβフェランドレン重合体水添物からなる厚さ100μmの試験片を成形して、その屈折率(nD)を、JIS−K−7142に準拠して、25℃で測定した。測定装置としてアッベ屈折計 DR−M4(株式会社アタゴ製)を使用した。
(アッベ数)
上記で作製したβフェランドレン重合体水添物からなる厚さ100μmの試験片を成形して、そのアッベ数を、25℃で測定した。測定装置としてアッベ屈折計 DR−M4(株式会社アタゴ製)を使用した。得られた測定値を以下の基準で判定した。
A:アッベ数≧57 …良好
B:57>アッベ数≧55 …普通
C:55>アッベ数 …不良
(比重)
後述する方法で作製した導光体の比重を、JIS-K-7112:1999のA法に準じて測定し、以下の判定基準に従って評価した。
A: 比重<1.0 …比重が軽く、良好である。
B: 1.0≦比重<1.1 …比重が重く、不良である。
C: 1.1≦比重 …比重が更に重く、不良である。
(耐湿性)
後述する方法で作製した導光体について、80℃、90%RHの条件下で、1000時間の耐久試験を行い、その外観変化を目視で観察した。以下の基準で判定した。
A:目視で変化はなく、良好な外観を保った。
B:白濁または変形が見られ、外観が劣化した。
(変形量)
後述する方法で作製した板厚が3mm、縦200mm、横150mmの板状の導光体を、平板上の金属板の上に置き、導光体の四隅の平板状との隙間を、隙間ゲージを用いて測定した。次に、恒温恒湿槽内で50℃、80%RHの雰囲気下に300時間置いた。導光体を恒温室から取り出し、平板上の金属板と導光体の4隅の隙間を、隙間ゲージを用いて測定した。恒温恒湿槽に置いた後に変化した隙間の長さの平均を算出して、変形量とした。
(輝度)
後述する方法で作製した導光体の面内の縦3か所×横3か所の位置(計9箇所)の輝度を測定し、平均輝度、均斉度を評価した。測定にはコニカミノルタ社製輝度計LS-100を使用した。
<導光体の製造>
[実施例1]
合成例1で得られたβフェランドレン重合体の水素添加物(以下、βフェランドレン重合体水添物と呼ぶことがある。)100重量部に対して、紫外線吸収剤としてベンゾトリアゾール系紫外線吸収剤TINVIN P326(BASF社製)0.1重量部、光安定剤としてCHIMASSORB 944 FDL(BASF社製)0.1重量部および酸化防止剤として、ヒンダードフェノール系酸化防止剤IRGANOX 1010(BASF社製)0.1重量部を粉体ブレンダ―により混合した後、2軸押出機(TEX33、日本製鋼所製)を用いて溶融混練し、ペレット状のβフェランドレン重合体水添物を含む混合組成物を得た。直径3mm程度のβフェランドレン重合体のペレットを射出成形機に導入し、射出速度480mm/s、シリンダー温度250℃、金型温度80℃、保圧350MPa、冷却時間90秒の設定で、板厚が3mm、縦200mm、横150mmの板状の導光体を製造した。その評価結果を下記表に示す。
[実施例2]
合成例2で得た水素添加したβフェランドレン重合体を材料として、実施例1と同様の方法で導光体を製造した。その評価結果を下記表に示す。
[比較例1]
脂環式ポリオレフィン系樹脂(日本ゼオン株式会社製ZEONEX480R、ガラス転移温度:138℃)のペレットに対して、熱風乾燥機を用いて、80℃、4時間の乾燥を行なった。次いで、実施例1と同様な装置を用いて、乾燥したペレットをシリンダー温度260℃、金型温度90℃で射出成形して導光体を成形した。作製した導光体の各物性を実施例1と同様に測定した。その評価結果を下記表に示す。
[比較例2]
ポリメチルメタクリレート樹脂(三菱レイヨン社製、アクリペットTF-8)のペレットに対して、熱布乾燥機を用いて、85℃、6時間乾燥を行った。次いで、実施例1と同様な装置を用いて、乾燥したペレットをシリンダー温度220℃、金型温度70℃で射出成形して導光体を成形した。作製した導光体の各物性を実施例1と同様に測定した。その評価結果を下記表に示す。
[比較例3]
ポリカーボネート樹脂(三菱エンジニアリングプラスチックス社製、ユーピロンH-3000)
をシリンダー温度280℃、金型温度90℃で射出成形して導光体を成形した。作製した導光体の各物性を実施例1と同様に測定した。その評価結果を下記表に示す。
Figure 2015185341
以上の結果から、実施例1〜2の導光体は、光透過性、耐熱性、耐光性及び引張強度が高く、吸水性が低く、軽量性に優れた導光体であることが明らかである。実施例1〜2の導光体は、比較例1〜3の導光体に比べて、各物性のバランスが優れており、導光体の用途において有利であることが理解される。
Figure 2015185341
以上の結果から、実施例1〜2の導光体は、導光体として成形後の変形量が少なく、寸法安定性に優れかつ、平均輝度が高く、光透過性の優れた導光体であることが明らかである。実施例1の導光体は、比較例1〜3の導光体に比べて、各物性のバランスが優れており、導光体の用途において有利であることが理解される。
以上で説明した各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は各実施形態によって限定されることはなく、請求項(クレーム)の範囲によってのみ限定される。
本発明は、光学素子、画像表示デバイス等の分野で広く利用可能である。
2…導光板、4…光源、6…光反射シート、8a…光拡散シート、8b…光拡散シート、10…透過型表示素子

Claims (8)

  1. 厚みが0.01mm〜10mmである導光体であって、
    比重が0.85以上、1.0未満であり、ガラス転移温度が100℃以上であるβフェランドレン重合体が、前記導光体の総質量に対して50〜100質量%含まれることを特徴とする導光体。
  2. 前記βフェランドレン重合体が、下記化学式(I)及び(II)で表されるβフェランドレンの少なくとも何れか一方が重合してなることを特徴とする請求項1に記載の導光体。
    Figure 2015185341
  3. 前記βフェランドレン重合体に、下記化学式(I−1)、(I−2)、(II−1)及び(II−2)で表されるβフェランドレン単位が合計50質量%以上含有されていることを特徴とする請求項1又は2に記載の導光体。
    Figure 2015185341
  4. 前記βフェランドレン重合体の数平均分子量Mnが4万以上であることを特徴とする請求項1〜3の何れか一項に記載の導光体。
  5. 前記βフェランドレン重合体が有するオレフィン性炭素−炭素二重結合の少なくとも一部が水素化されていることを特徴とする請求項1〜4の何れか一項に記載の導光体。
  6. 前記βフェランドレン重合体の水素添加率が、70%以上であることを特徴とする請求項5に記載の導光体。
  7. 前記導光体の一部又は全部の表面に、光反射処理、光拡散処理又は集光処理が施されていることを特徴とする請求項1〜6の何れか一項に記載の導光体。
  8. 光源と、請求項1〜7の何れか一項に記載の導光体とを備えることを特徴とする照明装置。
JP2014060271A 2014-03-24 2014-03-24 導光体及び照明装置 Pending JP2015185341A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014060271A JP2015185341A (ja) 2014-03-24 2014-03-24 導光体及び照明装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014060271A JP2015185341A (ja) 2014-03-24 2014-03-24 導光体及び照明装置

Publications (1)

Publication Number Publication Date
JP2015185341A true JP2015185341A (ja) 2015-10-22

Family

ID=54351669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014060271A Pending JP2015185341A (ja) 2014-03-24 2014-03-24 導光体及び照明装置

Country Status (1)

Country Link
JP (1) JP2015185341A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047335A1 (ja) * 2015-09-16 2017-03-23 株式会社カネカ (メタ)アクリロイル末端ポリイソブチレン系重合体の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047335A1 (ja) * 2015-09-16 2017-03-23 株式会社カネカ (メタ)アクリロイル末端ポリイソブチレン系重合体の製造方法

Similar Documents

Publication Publication Date Title
KR101961675B1 (ko) 광학용 스티렌계 수지조성물, 성형품 및 도광판
JPWO2008133342A1 (ja) ポリカーボネート樹脂組成物
JP2022090115A (ja) 光学用スチレン系樹脂組成物、成形品および導光体
JP2015185341A (ja) 導光体及び照明装置
JP3781110B2 (ja) ビニル脂環式炭化水素重合体組成物の成形方法及び成形体
JP2015184450A (ja) 光拡散性成形体、照明装置及び画像表示装置
JP2015184449A (ja) プラスチックレンズ
JP2015184451A (ja) レンズシート及び画像表示装置
JP5149030B2 (ja) 車両灯具用透明材及びそれを用いた車両灯具
JP4860643B2 (ja) レンズシート及びそれを含む画像表示装置
JP4951548B2 (ja) 耐久性透明板状部材
KR101956832B1 (ko) 폴리카보네이트 수지 조성물 및 이로 이루어진 광학 성형품
JP5430858B2 (ja) 重合体組成物及びそれを用いて得られる成形体
JP2015183073A (ja) 耐久性透明板状部材
JP2008217004A (ja) プラスチックレンズ
JP5238277B2 (ja) 光拡散性成形体及び画像表示装置
JP5372387B2 (ja) 重合体組成物及びそれを用いて得られる成形体
JP5043705B2 (ja) 導光体及び画像表示装置用照明装置
JP2015182785A (ja) 食品包装体
JP2015183072A (ja) 光学用プラスチックフィルム、偏光フィルム、表面保護フィルム、位相差フィルム、反射防止フィルム、拡散フィルム、透明導電性フィルム、画像表示デバイスの基板フィルム、輝度向上フィルム、及び画像表示デバイス
US10007029B2 (en) β-phellandrene polymer, production method for same, and molded article
JP2015185186A (ja) 光ディスク基板及び光ディスク
JP2015183074A (ja) 積層体及び画像表示デバイス
JP6524760B2 (ja) 熱可塑性透明樹脂組成物
JP2015183075A (ja) 灯具用透明材及び灯具