JP2015168897A - Method for manufacturing carbon fiber - Google Patents

Method for manufacturing carbon fiber Download PDF

Info

Publication number
JP2015168897A
JP2015168897A JP2014043954A JP2014043954A JP2015168897A JP 2015168897 A JP2015168897 A JP 2015168897A JP 2014043954 A JP2014043954 A JP 2014043954A JP 2014043954 A JP2014043954 A JP 2014043954A JP 2015168897 A JP2015168897 A JP 2015168897A
Authority
JP
Japan
Prior art keywords
hot air
fiber bundle
carbon fiber
heat treatment
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014043954A
Other languages
Japanese (ja)
Other versions
JP6372095B2 (en
Inventor
崇暁 津田
Takaaki Tsuda
崇暁 津田
暁 加地
Akira Kachi
暁 加地
洋二 畑中
Yoji Hatanaka
洋二 畑中
未奈美 大原
Minami Ohara
未奈美 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2014043954A priority Critical patent/JP6372095B2/en
Publication of JP2015168897A publication Critical patent/JP2015168897A/en
Application granted granted Critical
Publication of JP6372095B2 publication Critical patent/JP6372095B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a carbon fiber bundle, capable of evenly sending hot wind to a carbon fiber precursor fiber bundle, and improving a wind velocity of hot wind to spray to each of the fiber bundles without increasing a total hot wind quantity to be supplied to a heat treatment furnace.SOLUTION: A method for manufacturing a carbon fiber bundle 8 includes subjecting the carbon fiber precursor fiber bundle 8 to flame-resistant treatment. The flame-resistant treatment satisfies (1)-(3) as follows: (1) folding the sheet-like carbon fiber precursor fiber bundle 8 a plurality of times followed by travelling in multiple stages in a heat treatment chamber 2, and applying hot wind in parallel to the longitudinal direction of the fiber bundle 8; (2) there are included between two adjacent sheets of the fiber bundles 8 in the heat treatment chamber 2, a first hot wind area 14 having a plurality of hot wind flows in a direction where the sheets are overlapped, and a second hot wind area 15 which is at the downstream of the first hot wind area 14, and where at least two of hot wind flows mixedly flow; and (3) a hot wind passage cross sectional area of the first hot wind area 14 is larger than a hot wind passage cross sectional area of the second hot wind area 15.

Description

本発明は、炭素繊維の製造方法に関する。   The present invention relates to a method for producing carbon fiber.

炭素繊維を製造する方法として、炭素繊維前駆体繊維束(以下、これを繊維束と称することがある)を耐炎化処理した後、炭素化処理する方法が広く知られている。   As a method for producing a carbon fiber, a method of carbonizing a carbon fiber precursor fiber bundle (hereinafter sometimes referred to as a fiber bundle) after being flame-resistant is widely known.

この炭素繊維の製造時の耐炎化処理としては、例えば、熱処理装置を用いて、空気等の酸化雰囲気下で、繊維束を熱風により熱処理する方法が採用されている。   As the flameproofing treatment at the time of producing the carbon fiber, for example, a method of heat-treating the fiber bundle with hot air in an oxidizing atmosphere such as air using a heat treatment apparatus is employed.

しかしながら、耐炎化処理は繊維束の発熱を伴う酸化反応であることから、熱処理炉内を循環させる熱風の風量や風速を上げて、繊維束の熱を速やかに除去することが重要である。さらに、熱処理室内の繊維束を均等に熱処理することが重要である。   However, since the flameproofing treatment is an oxidation reaction accompanied by heat generation of the fiber bundle, it is important to quickly remove the heat of the fiber bundle by increasing the amount and speed of hot air circulating in the heat treatment furnace. Furthermore, it is important to heat-treat the fiber bundle in the heat treatment chamber evenly.

上記課題を解決する方法として、例えば、特許文献1は、熱処理室内に熱風を吹き出す熱風吹出口と、熱処理室内の熱風を吸い込む熱風吸込口を備え、耐炎化炉の熱処理室が仕切り板によって区画され、熱風に対して前駆体繊維が、並流方向に走行する並流通路と、向流方向に走行する向流通路が、熱風吸込み口近傍にて連通している耐炎化炉が開示されている。   As a method for solving the above problem, for example, Patent Document 1 includes a hot air outlet for blowing hot air into the heat treatment chamber and a hot air inlet for sucking hot air in the heat treatment chamber, and the heat treatment chamber of the flameproofing furnace is partitioned by a partition plate. In addition, a flameproof furnace is disclosed in which a co-current passage in which precursor fibers travel in a co-current direction and a counter-current passage in a counter-current direction communicate with hot air in the vicinity of the hot air inlet. .

特開2008−231603号公報JP 2008-231603 A

しかし、特許文献1に記載された熱処理炉では、熱風を吹き出す吹出しノズルと、各仕切り板の位置関係を極めて精密に制御しない限り、熱風が各仕切り板の間に均等に流れ込まないため、各区画の間で熱風の風速斑が大きくなるおそれがある。そしてそのような精密な制御は、工業製品の加工においては実質的に実現困難である。   However, in the heat treatment furnace described in Patent Document 1, the hot air does not flow evenly between the partition plates unless the positional relationship between the blow nozzles for blowing hot air and the partition plates is very precisely controlled. There is a possibility that the wind speed spot of hot air becomes large. Such precise control is practically difficult to realize in the processing of industrial products.

上記課題を解決するために、本発明者らは検討を行い、本発明を完成するに至った。   In order to solve the above problems, the present inventors have studied and have completed the present invention.

本発明の要旨は、炭素繊維前駆体繊維束を耐炎化処理して耐炎化繊維束とし、前記耐炎化繊維束を炭素化処理して炭素繊維束を得る炭素繊維束の製造方法であって、
前記耐炎化処理が、下記の条件を満足する炭素繊維束の製造方法。
・シート状の炭素繊維前駆体繊維束を複数回折り返して、熱処理室内を多段で走行させ、前記炭素繊維前駆体繊維束の長手方向に対して平行に熱風を吹き付け、熱処理する。
・前記熱処理室内に、前記炭素繊維前駆体繊維束の長手方向において第一熱風区域と第二熱風区域とを設け、
前記第一熱風区域は、前記熱処理室の一端側にあって、隣り合う2シートの前記炭素繊維前駆体繊維束の間に、シートの重なる方向において複数の熱風の流れを有し、
前記第二熱風区域は、前記第一熱風区域の下流にあって、熱風の流れの2つ以上が混合して流れる。
・前記第一熱風区域の熱風流路断面積は、前記第二熱風区域の熱風流路断面積より大きい。
The gist of the present invention is a method for producing a carbon fiber bundle, wherein a carbon fiber precursor fiber bundle is flameproofed to obtain a flameproof fiber bundle, and the flameproof fiber bundle is carbonized to obtain a carbon fiber bundle,
A method for producing a carbon fiber bundle, wherein the flameproofing treatment satisfies the following conditions.
A plurality of sheet-like carbon fiber precursor fiber bundles are folded back and run in multiple stages in the heat treatment chamber, and hot air is blown in parallel to the longitudinal direction of the carbon fiber precursor fiber bundles to perform heat treatment.
In the heat treatment chamber, a first hot air zone and a second hot air zone are provided in the longitudinal direction of the carbon fiber precursor fiber bundle,
The first hot air section is on one end side of the heat treatment chamber, and has a plurality of hot air flows in the overlapping direction of the sheets between the two adjacent carbon fiber precursor fiber bundles,
The second hot air zone is downstream of the first hot air zone, and two or more hot air flows are mixed and flow.
-The hot air flow path cross-sectional area of said 1st hot air area is larger than the hot air flow path cross-sectional area of said 2nd hot air area.

本発明によると、熱処理室内の各繊維束に均等に熱風を送ることが可能となる。さらに熱処理炉に供給する総熱風量を増すことなく、各繊維束への熱風の風速を向上することが可能となる。その結果、熱処理炉の熱風循環ファンへの負荷を増すことなく、炭素繊維の生産性を向上することができる。   According to the present invention, it is possible to send hot air evenly to each fiber bundle in the heat treatment chamber. Furthermore, it becomes possible to improve the air velocity of the hot air to each fiber bundle without increasing the total amount of hot air supplied to the heat treatment furnace. As a result, the productivity of the carbon fiber can be improved without increasing the load on the hot air circulation fan of the heat treatment furnace.

本実施形態に係る代表的な熱処理炉1の構造を模式的に表す側断面図である。It is a sectional side view showing typically the structure of typical heat treatment furnace 1 concerning this embodiment. 本実施形態に係る熱処理炉1の構造の一例を模式的に表す側断面図であって、隣り合う2シートの炭素繊維前駆体繊維束の間にあって、一つの吹出しノズル3の出口に、複数のスリット状開口部が設けられている。FIG. 2 is a side sectional view schematically showing an example of the structure of the heat treatment furnace 1 according to the present embodiment, which is between two adjacent sheets of carbon fiber precursor fiber bundles, and has a plurality of outlets at one outlet nozzle 3. A slit-shaped opening is provided. 本実施形態に係る熱処理炉1の構造の一例を模式的に表す側断面図であって、隣り合う2シートの炭素繊維前駆体繊維束の間に、複数個の吹出しノズル3が設けられている。FIG. 2 is a side sectional view schematically showing an example of the structure of the heat treatment furnace 1 according to the present embodiment, and a plurality of blowing nozzles 3 are provided between two adjacent carbon fiber precursor fiber bundles. 本実施形態に係る仕切り板11の先端付近を拡大して模式的に表す側断面図である。FIG. 3 is a side cross-sectional view schematically showing an enlarged vicinity of a front end of a partition plate 11 according to the present embodiment. 図4の実施形態に係る熱処理炉1の構造を模式的に表す側断面図である。FIG. 5 is a side sectional view schematically showing the structure of the heat treatment furnace 1 according to the embodiment of FIG. 4.

以下、本発明の実施形態の一例について、図面を用いて詳細に説明する。   Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings.

本願発明は、耐炎化処理が、下記の条件を満足する。
・シート状の炭素繊維前駆体繊維束を複数回折り返して、熱処理室内を多段で走行させ、前記炭素繊維前駆体繊維束の長手方向に対して平行に熱風を吹き付け、熱処理する。
・前記熱処理室内に、前記炭素繊維前駆体繊維束の長手方向において第一熱風区域と第二熱風区域とを設け、
前記第一熱風区域は、前記熱処理室の一端側にあって、隣り合う2シートの前記炭素繊維前駆体繊維束の間に、シートの重なる方向において複数の熱風の流れを有し、
前記第二熱風区域は、前記第一熱風区域の下流にあって、熱風の流れの2つ以上が混合して流れる。
・前記第一熱風区域の熱風流路断面積は、前記第二熱風区域の熱風流路断面積より大きい。
In the present invention, the flameproofing treatment satisfies the following conditions.
A plurality of sheet-like carbon fiber precursor fiber bundles are folded back and run in multiple stages in the heat treatment chamber, and hot air is blown in parallel to the longitudinal direction of the carbon fiber precursor fiber bundles to perform heat treatment.
In the heat treatment chamber, a first hot air zone and a second hot air zone are provided in the longitudinal direction of the carbon fiber precursor fiber bundle,
The first hot air section is on one end side of the heat treatment chamber, and has a plurality of hot air flows in the overlapping direction of the sheets between the two adjacent carbon fiber precursor fiber bundles,
The second hot air zone is downstream of the first hot air zone, and two or more hot air flows are mixed and flow.
-The hot air flow path cross-sectional area of said 1st hot air area is larger than the hot air flow path cross-sectional area of said 2nd hot air area.

図1は本願発明に用いる熱処理炉の側断面図を模式的に示している。本実施形態の熱処理炉1は、熱処理室2、繊維束8の導出入口10及び10‘、熱処理室2の室内側に対向して配される複数の吹出しノズル3と、複数の吸込みノズル4を備える。吹出しノズル3と吸込みノズル4は、繊維束8を上下から挟むように配される。シート状の繊維束を複数回折り返して、かかる熱処理室内を多段で走行させ、前記繊維束の長手方向に対して平行に熱風をあて、熱処理する。熱処理室2の外部には、吹出しノズル3と吸込みノズル4との間で熱風を循環するための循環流路7を備える。循環流路7には、吸込みノズル4から送られてきた熱風を加熱する気体加熱手段5、及び加熱された熱風を吹出しノズル3に送る送風機6が配される。また、シート状の繊維束8は、多段に配されたガイドロール9に掛け回され、熱処理室1の導出入口10,10’を通して、熱処理室2の内部を複数回往復して走行する。   FIG. 1 schematically shows a side sectional view of a heat treatment furnace used in the present invention. The heat treatment furnace 1 of the present embodiment includes a heat treatment chamber 2, lead-out inlets 10 and 10 ′ of the fiber bundle 8, a plurality of blow nozzles 3 arranged facing the indoor side of the heat treatment chamber 2, and a plurality of suction nozzles 4. Prepare. The blowout nozzle 3 and the suction nozzle 4 are arranged so as to sandwich the fiber bundle 8 from above and below. A plurality of sheet-like fiber bundles are folded back and run in multiple stages in the heat treatment chamber, and heat treatment is performed by applying hot air parallel to the longitudinal direction of the fiber bundle. A circulation channel 7 for circulating hot air between the blowout nozzle 3 and the suction nozzle 4 is provided outside the heat treatment chamber 2. In the circulation channel 7, a gas heating means 5 for heating the hot air sent from the suction nozzle 4 and a blower 6 for sending the heated hot air to the blowing nozzle 3 are arranged. Further, the sheet-like fiber bundle 8 is wound around a guide roll 9 arranged in multiple stages, and travels through the inside of the heat treatment chamber 2 a plurality of times through the outlets 10 and 10 ′ of the heat treatment chamber 1.

この際、前記熱処理室内に、前記炭素繊維前駆体繊維束の長手方向において第一熱風区域14と第二熱風区域15とを設ける。   At this time, a first hot air zone 14 and a second hot air zone 15 are provided in the heat treatment chamber in the longitudinal direction of the carbon fiber precursor fiber bundle.

前記第一熱風区域は、前記熱処理室の一端側にあって、隣り合う2シートの前記炭素繊維前駆体繊維束の間に、シートの重なる方向において複数の熱風の流れを有する。   The first hot air section is located on one end side of the heat treatment chamber and has a plurality of hot air flows in the direction in which the sheets overlap between the adjacent two sheets of the carbon fiber precursor fiber bundle.

前記第一熱風区域14における複数の熱風の流れの形成手段は限定されない。図1の例においては、隣り合う2シートの前記炭素繊維前駆体繊維束の間に向かって吹出しノズル3を一つ設け、更に第一熱風区域14に、熱風の流れと平行な部材を設けて、吹出しノズル3から吹出される一つの熱風の流れを、複数に分割している。   A means for forming a plurality of hot air flows in the first hot air section 14 is not limited. In the example of FIG. 1, one blowing nozzle 3 is provided between the carbon fiber precursor fiber bundles of two adjacent sheets, and a member parallel to the flow of hot air is provided in the first hot air section 14 to blow out the air. The flow of one hot air blown out from the nozzle 3 is divided into a plurality of parts.

熱風の流れと平行な部材を設ける場合、吹出しノズル3と部材との間にある程度の空間を設けると、流れを複数に分割するにあたって、均一性を保ちやすくなる。この距離は50mm以上が好ましい。一方この距離が長すぎると、その分前記第二熱風区域15の長さが短くなる。従ってこの距離は1000mm以下が好ましい。   When a member parallel to the flow of hot air is provided, if a certain amount of space is provided between the blowing nozzle 3 and the member, uniformity can be easily maintained when the flow is divided into a plurality of portions. This distance is preferably 50 mm or more. On the other hand, if this distance is too long, the length of the second hot air section 15 is shortened accordingly. Therefore, this distance is preferably 1000 mm or less.

このほか、例えば一つの吹出しノズル3の出口に、複数のスリット状開口部16を設けて、隣り合う2シートの前記炭素繊維前駆体繊維束の間に複数の熱風の流れを作ってもよい(図2)。図2において、第一熱風区域14とは、1つの吹出しノズル3から吹出される、一つの熱風の流れが、複数のスリット状開口部16によって分割され、該繊維束の間に複数の流れを形成する区域のことを言う。   In addition, for example, a plurality of slit-like openings 16 may be provided at the outlet of one blowing nozzle 3 to create a plurality of hot air flows between the two adjacent carbon fiber precursor fiber bundles (FIG. 2). ). In FIG. 2, the first hot air section 14 is a flow of one hot air blown from one blowing nozzle 3 and is divided by a plurality of slit-like openings 16 to form a plurality of flows between the fiber bundles. Say the area.

また、隣り合う2シートの前記炭素繊維前駆体繊維束の間に吹出しノズル3を複数個設けて、複数の熱風の流れを作ってもよい(図3)。図3において、第一熱風区域14とは、該繊維束の間に設けられた複数個の吹出しノズル3から吹出される熱風が、該繊維束の間で複数の流れを形成し、流れる区域のことを言う。   Alternatively, a plurality of blowing nozzles 3 may be provided between the two adjacent carbon fiber precursor fiber bundles to create a plurality of hot air flows (FIG. 3). In FIG. 3, the first hot air zone 14 refers to a zone where hot air blown from a plurality of blowing nozzles 3 provided between the fiber bundles forms a plurality of flows between the fiber bundles and flows.

前記第二熱風区域15は、前記第一熱風区域14の下流にあって、熱風の流れの2つ以上が混合して流れる。   The second hot air section 15 is downstream of the first hot air section 14, and two or more hot air flows are mixed and flow.

そして、前記第一熱風区域14の熱風流路断面積は、前記第二熱風区域15の熱風流路断面積より大きい。なおここでいう熱風流路断面積とは、隣り合う繊維束2シートの間において、シートの重なる方向の断面積中で、熱風が流れることが可能な部分の面積の合計をいう。   The hot air flow path cross-sectional area of the first hot air area 14 is larger than the hot air flow path cross-sectional area of the second hot air area 15. In addition, a hot air flow path cross-sectional area here means the sum total of the area which a hot air can flow in the cross-sectional area of the direction where a sheet | seat overlaps between adjacent fiber bundle 2 sheets.

前記第二熱風区域15における混合された熱風の流れの形成手段は限定されない。図1の例においては、吹出しノズル3と吸込みノズル4の間であって、前記第一熱風区域14の下流側に、仕切り板11を繊維束長手方向と平行に設けている。この場合、前記第一熱風区域14からの複数の熱風の流れは、熱風流路断面積がより狭い前記第二熱風区域15に向かって流れる過程で混合され、各繊維束に均等に熱風を送ることが可能となる。更には供給する総熱風量を増すことなく、各繊維束への熱風の風速を向上することが可能となる。   The means for forming the mixed hot air flow in the second hot air section 15 is not limited. In the example of FIG. 1, a partition plate 11 is provided in parallel to the fiber bundle longitudinal direction between the blowout nozzle 3 and the suction nozzle 4 and downstream of the first hot air section 14. In this case, the plurality of hot air flows from the first hot air section 14 are mixed in the process of flowing toward the second hot air section 15 having a smaller hot air flow passage cross-sectional area, and the hot air is sent evenly to each fiber bundle. It becomes possible. Furthermore, it is possible to improve the wind speed of hot air to each fiber bundle without increasing the total amount of hot air supplied.

前記第二熱風区域15の熱風流路断面積は、前記第一熱風区域14の熱風流路断面積に対し、30%以上95%以下の範囲とすることが必要である。この範囲とすることで、熱風の急縮小による圧力損失の発生を抑制することができる。下限は、50%以上がより好ましく、60%以上がさらに好ましい。また上限は、85%以下がより好ましく、80%以下がさらに好ましい。   The hot air flow path cross-sectional area of the second hot air area 15 needs to be in the range of 30% to 95% with respect to the hot air flow path cross-sectional area of the first hot air area 14. By setting it as this range, generation | occurrence | production of the pressure loss by rapid contraction of a hot air can be suppressed. The lower limit is more preferably 50% or more, and still more preferably 60% or more. Further, the upper limit is more preferably 85% or less, and further preferably 80% or less.

前記第二熱風区域15の長さは、単純に熱処理の効率のみを考えるのであれば、長いほど好ましいのであるが、熱風の流れの均一性を達成するにあたっては、その他区域との長さのバランスをとることが必要となる。従って前記第二熱風区域の長さは、熱処理室2内の熱風の流れる距離(吹出しノズル3と吸込みノズル4の間の距離)に対し、70%以上90%以下の範囲であることが好ましい。   The length of the second hot air section 15 is preferably as long as only the efficiency of the heat treatment is considered. However, in achieving the uniformity of the flow of hot air, the length balance with other sections is preferable. It is necessary to take Therefore, the length of the second hot air section is preferably in the range of 70% or more and 90% or less with respect to the distance (the distance between the blowing nozzle 3 and the suction nozzle 4) through which the hot air flows in the heat treatment chamber 2.

前記第一熱風区域14の長さ(注;多孔板を含まない長さ)は、前述のバランスを考慮すると、熱処理室2内の熱風の流れる距離(吹出しノズル3と吸込みノズル4の間の距離)に対し、3%以上15%以下の範囲であることが好ましい。   The length of the first hot air section 14 (note: length not including the perforated plate) is the distance that the hot air flows in the heat treatment chamber 2 (the distance between the blowing nozzle 3 and the suction nozzle 4), considering the balance described above. ) Is preferably in the range of 3% to 15%.

図1の例においては、仕切り板11は、前記第二熱風区域15を、1枚の前記炭素繊維前駆体繊維束に熱風をあてる区域と、別の1枚の前記炭素繊維前駆体繊維束に熱風をあてる区域とに分割している。従って仕切り板11の体積の分だけ、熱風が流れることが可能な部分の体積が減少する。即ち本願発明における上記要件を、簡便な構成で達成することが可能となる。   In the example of FIG. 1, the partition plate 11 divides the second hot air section 15 into an area where hot air is applied to one carbon fiber precursor fiber bundle and another carbon fiber precursor fiber bundle. Divided into hot air areas. Therefore, the volume of the part where hot air can flow is reduced by the volume of the partition plate 11. In other words, the above requirements in the present invention can be achieved with a simple configuration.

そのほか、例えば前記第二熱風区域15の入口においてスリット状の流路を有する整流部材を配置しても、類似の効果を得ることができる。   In addition, for example, a similar effect can be obtained by arranging a rectifying member having a slit-like flow path at the entrance of the second hot air section 15.

上記のような構成を採用することにより、ある隣り合う3シートの繊維束において、一つの隣り合う2シートの繊維束の間、及びもう一つの隣り合う2シートの繊維束の間において、それぞれ別の前記第一熱風区域14で形成された流れを、繊維束を通して、1シートの繊維束の一方側、他方側のそれぞれにおいて合流させることが可能となる。このため更に均一性を向上させることができる。   By adopting the configuration as described above, in one adjacent three-sheet fiber bundle, between the one adjacent two-sheet fiber bundle and another adjacent two-sheet fiber bundle, the first The flow formed in the hot air section 14 can be merged on one side and the other side of the fiber bundle of one sheet through the fiber bundle. For this reason, the uniformity can be further improved.

前記第一熱風区域14からの複数の熱風の流れの混合は、前記第一熱風区域14と前記第二熱風区域15との間に、熱風混合区域17を設けることによって、更に均一性を向上させることができる。   The mixing of a plurality of hot air streams from the first hot air zone 14 further improves uniformity by providing a hot air mixing zone 17 between the first hot air zone 14 and the second hot air zone 15. be able to.

この際、前記熱風混合区域17に、熱風の流れと平行な孔開き部材を設けて、前記孔開き部材の一方側と他方側とで熱風の流れを連通させると、前記第一熱風区域からの複数の熱風の流れを、記第二熱風区域15に向かってスムーズに流すことができる。   At this time, if the hot air mixing section 17 is provided with a perforated member parallel to the flow of hot air, and the hot air flow is communicated between one side and the other side of the perforated member, A plurality of hot air flows can smoothly flow toward the second hot air area 15.

なお、最初に熱処理室内に入る繊維束、及び最後に熱処理室外に出る繊維束については、図1に示すように、繊維束と熱処理室の内壁との間において、前述の要件を満足する第一熱風区域14と第二熱風区域15とを設けることが好ましい。この場合、「熱処理室の内壁と、当該炭素繊維前駆体繊維束の間」が、前述の「隣り合う2シートの前記炭素繊維前駆体繊維束の間」に相当する。   As for the fiber bundle that first enters the heat treatment chamber and the fiber bundle that finally exits the heat treatment chamber, as shown in FIG. 1, the first that satisfies the above-mentioned requirements is provided between the fiber bundle and the inner wall of the heat treatment chamber. It is preferable to provide the hot air area 14 and the second hot air area 15. In this case, “between the inner wall of the heat treatment chamber and the carbon fiber precursor fiber bundle” corresponds to “between the two adjacent sheets of the carbon fiber precursor fiber bundle”.

前記第一熱風区域14に流入する熱風の線速は、隣り合う2シートの前記炭素繊維前駆体繊維束の間のそれぞれについて同じであることが好ましい。また、繊維束シートの幅方向の熱風の線速のばらつきを、極力小さくすることが好ましい。   It is preferable that the linear velocity of the hot air flowing into the first hot air section 14 is the same for each of the two adjacent sheets of the carbon fiber precursor fiber bundle. Moreover, it is preferable to minimize the variation in the linear velocity of the hot air in the width direction of the fiber bundle sheet.

前記第二熱風区域における、吹出しノズル3から下流2mの地点(安定した線速を計測可能な地点)における各区画間の線速斑は、平均線速に対し10%以内に収めることが好ましい。さらに好ましくは7%以内である。   In the second hot air section, it is preferable that the linear velocity spot between the sections at a point 2 m downstream from the blowout nozzle 3 (a point where stable linear velocity can be measured) is within 10% of the average linear velocity. More preferably, it is within 7%.

図4は、本願発明の第一熱風区域14、熱風混合区域15、第二熱風区域16の構成の一部を模式的に示した側断面図である。また、図5は、図4の実施形態に係る熱処理炉1の構造を模式的に表す側断面図である。図4の左から順に、薄板部13a、多孔板13b、厚板12で構成されている。   FIG. 4 is a side sectional view schematically showing a part of the configuration of the first hot air section 14, the hot air mixing section 15, and the second hot air section 16 of the present invention. FIG. 5 is a side sectional view schematically showing the structure of the heat treatment furnace 1 according to the embodiment of FIG. In order from the left in FIG. 4, the thin plate portion 13 a, the porous plate 13 b, and the thick plate 12 are included.

薄板部13aは、第一熱風区域14において熱風の流れと平行に配される部材である。多孔板13bは、熱風混合区域17において熱風の流れと平行に配される孔開き部材である。厚板12は、第二熱風区域15を、1枚の前記炭素繊維前駆体繊維束に熱風を吹き付ける区域と、別の1枚の前記炭素繊維前駆体繊維束に熱風を吹き付ける区域とに分割する。   The thin plate portion 13a is a member arranged in parallel with the flow of hot air in the first hot air section 14. The perforated plate 13 b is a perforated member arranged in parallel with the flow of hot air in the hot air mixing area 17. The plank 12 divides the second hot air area 15 into an area in which hot air is blown to one carbon fiber precursor fiber bundle and an area in which hot air is blown to another carbon fiber precursor fiber bundle. .

薄板部13aと多孔板部13bとは一体化されて薄板13をなし、上下に2枚配される。薄板13は、シートが重なる方向の外寸が厚板12の厚さと同じとなる位置で、厚板12と一体化されている。薄板部13、厚板12の外寸、厚さは全領域で一定である。   The thin plate portion 13a and the perforated plate portion 13b are integrated to form the thin plate 13, and two pieces are arranged vertically. The thin plate 13 is integrated with the thick plate 12 at a position where the outer dimension in the direction in which the sheets overlap is the same as the thickness of the thick plate 12. The outer dimensions and thicknesses of the thin plate portion 13 and the thick plate 12 are constant in the entire region.

なお、薄板部13a、多孔板部13b、厚板12は、この例においては一体化されているが、別々の部材として設置しても構わない。   The thin plate portion 13a, the porous plate portion 13b, and the thick plate 12 are integrated in this example, but may be installed as separate members.

吹出しノズル3から吹出され、第一熱風区域14に吹き込まれる熱風は、一方の薄板部13aの上と、他方の薄板部13aの下と、及び両者の間とを、3つの流れとして熱風の直進性が保持された状態で進んだ後、多孔板部13bの孔から、厚板12の上側及び下側の第二熱風区域15に、混合された状態で流れ出る。   The hot air blown out from the blow-out nozzle 3 and blown into the first hot air section 14 travels straight through the hot air as three flows on one thin plate portion 13a, on the other thin plate portion 13a, and between them. After proceeding in a state in which the property is maintained, it flows out from the holes of the perforated plate portion 13b to the second hot air section 15 on the upper side and the lower side of the thick plate 12 in a mixed state.

厚板12及び薄板13のシート幅方向の長さは、熱処理室の内部の同方向長さと等しくすると、各繊維束走行区間のシート幅方向の風速斑を抑制できるため好ましい。   It is preferable that the length in the sheet width direction of the thick plate 12 and the thin plate 13 is equal to the length in the same direction inside the heat treatment chamber because wind speed spots in the sheet width direction in each fiber bundle traveling section can be suppressed.

薄板部13a、多孔板13b、厚板12は、これら部材の自重、熱処理室内の温度変化による歪等によって、許容範囲を超えて変形しない材質とする。コストと性能のバランスを考慮すると、鉄、ステンレスが好ましい。また厚板12の内部に空洞を有しても構わない。   The thin plate portion 13a, the perforated plate 13b, and the thick plate 12 are made of a material that does not deform beyond an allowable range due to the weight of these members, strain due to a temperature change in the heat treatment chamber, or the like. Considering the balance between cost and performance, iron and stainless steel are preferable. Further, the thick plate 12 may have a cavity.

多孔板部13bの開孔率は、10%以上50%以下が好ましい。ここでいう開孔率とは、多孔板の全面積に対する貫通孔の合計面積の比率をいう。10%未満になると圧損が大きくなるため、薄板13における上下2枚の平板の間を通過する熱風の流量が減少し、糸条走行区間に直接流れる熱風の流量が増加する。この際、当該吹出しノズルと、その上側及び/又は下側の吹出しノズルとの間で、吹き出し圧力に僅かな圧力差があれば、誘因効果により前記各区画に流入する流量に差が生じ、その結果、各区画間の風速斑が増加する。また、開孔率が50%より大きくなると、厚板12の上側と下側の繊維束走行区間の僅かな圧力差によって、それぞれの区画に多孔板から送出される熱風の風量に差が生じ、各繊維束走行区間の間の熱風の風速斑が増加する。開孔率は20%以上30%以下がより好ましい。   The porosity of the porous plate portion 13b is preferably 10% or more and 50% or less. Here, the open area ratio is the ratio of the total area of the through holes to the total area of the perforated plate. If it is less than 10%, the pressure loss increases, so the flow rate of hot air passing between the two upper and lower flat plates in the thin plate 13 decreases, and the flow rate of hot air flowing directly into the yarn traveling section increases. At this time, if there is a slight pressure difference in the blowing pressure between the blowing nozzle and the upper and / or lower blowing nozzle, a difference occurs in the flow rate flowing into each section due to the incentive effect. As a result, wind speed spots between the sections increase. Further, when the hole area ratio is larger than 50%, a slight pressure difference between the upper and lower fiber bundle traveling sections of the thick plate 12 causes a difference in the amount of hot air sent from the porous plate to each section, Wind speed spots of hot air between the fiber bundle traveling sections increase. The porosity is more preferably 20% or more and 30% or less.

多孔板部13bの形態は、圧損により熱風を整流化する作用を有していれば、特に限定されず、例えばメッシュ、エキスパンドメタル等を用いればよい。また材質についても特に限定されず、例えばステンレスを用いればよい。   The form of the perforated plate portion 13b is not particularly limited as long as it has an effect of rectifying hot air due to pressure loss. For example, a mesh, an expanded metal, or the like may be used. The material is not particularly limited, and for example, stainless steel may be used.

多孔板部13bの面積は、開孔率と、前記第一熱風区域14の熱風流路断面積とを考慮して適宜調整すればよい。これは若干の試行錯誤により決定できる事項である。   The area of the perforated plate portion 13b may be appropriately adjusted in consideration of the open area ratio and the hot air flow path cross-sectional area of the first hot air section 14. This is a matter that can be determined by some trial and error.

仕切り板11の設置方法は、例えば、熱処理室2のシート幅方向にレールを設置し、そのレール上に仕切り板を敷き詰めれば、仕切り板の設置と取り外しを容易に行うことができる。また、仕切り板11の厚みを適宜選ぶことによって、各糸条走行区間の断面積を変更して、同区間内の熱風の風速を所望の値とできる。   The partition plate 11 can be installed and removed easily by installing a rail in the sheet width direction of the heat treatment chamber 2 and laying the partition plate on the rail, for example. Further, by appropriately selecting the thickness of the partition plate 11, the cross-sectional area of each yarn traveling section can be changed, and the wind speed of the hot air in the section can be set to a desired value.

以上説明したように、本発明によれば、均等に熱風を送り、熱処理炉に供給する総熱風量を増すことなく、熱風の風速を向上することが可能となる。この効果により、熱処理炉の熱風循環ファンへの負荷を増すことなく、炭素繊維の生産性を向上することができる。   As described above, according to the present invention, it is possible to improve the wind speed of hot air without evenly sending hot air and increasing the total amount of hot air supplied to the heat treatment furnace. This effect can improve the productivity of carbon fiber without increasing the load on the hot air circulation fan of the heat treatment furnace.

以下、本発明の具体的な構成を実施例に基づいて説明するが、本発明の構成はこれらに限定されるものではない。   Hereinafter, although the concrete structure of this invention is demonstrated based on an Example, the structure of this invention is not limited to these.

[風速及び風速斑の測定]
熱処理室2において、吹出しノズルと吸込みノズルの間の間隔を5000mm、繊維束の導出入口(10、10‘)の間隔を220mmとし、熱処理室2の外側左右両端に、それぞれ1台のガイドロールを配設して、熱処理室内を、繊維束を3回往復走行させた。吹出しノズル3の吹き出し口端面の位置をゼロ点として、熱処理室2の内部において、繊維束の走行方向に向かって2000mmの位置で、繊維束の導出入口の中間点の高さで、熱風の線速測定を実施した。すなわち線速測定は、繊維束が走行する3ケ所で実施した。線速測定には、多点風速計SYSTEM6243 MODEL1560(KANOMAX社製)と0965−04プローブ(同)を用いた。1回/秒の頻度で30秒間測定を行い、その平均を線速とした。上記3ケ所で測定した線速の最大線速から最小線速を引いた値を、上記3ケ所で測定した線速の平均値で割った値を線速斑とした。
[Measurement of wind speed and wind speed spots]
In the heat treatment chamber 2, the distance between the blow nozzle and the suction nozzle is 5000 mm, the distance between the fiber bundle outlets (10, 10 ′) is 220 mm, and one guide roll is provided at each of the outer left and right ends of the heat treatment chamber 2. The fiber bundle was reciprocated three times in the heat treatment chamber. The position of the blower nozzle end face of the blowout nozzle 3 is defined as a zero point, and in the heat treatment chamber 2 at a position of 2000 mm toward the traveling direction of the fiber bundle at the height of the intermediate point of the fiber bundle outlet, A speed measurement was performed. That is, the linear velocity measurement was performed at three places where the fiber bundles travel. For the linear velocity measurement, a multipoint anemometer SYSTEM6243 MODEL 1560 (manufactured by KANOMAX) and a 0965-04 probe (the same) were used. Measurement was performed at a frequency of once / second for 30 seconds, and the average was taken as the linear velocity. A value obtained by subtracting the minimum linear velocity from the maximum linear velocity measured at the three locations and dividing the value by the average value of the linear velocities measured at the three locations was defined as a linear velocity spot.

仕切り板を設置する前の熱風の線速は1.5m/s、線速斑は15%であった。表1に参考例として示す。   The linear velocity of the hot air before installing the partition plate was 1.5 m / s, and the linear velocity spot was 15%. Table 1 shows a reference example.

[実施例1]
高さH=155mmの吹出しノズルからx=100mmの位置に、長さa=265mm、厚さc=1.0mmの平板と、長さb=265mm、厚さc=1.0mm、開孔率30%の多孔板と、厚さT=55mmの厚板をこの順で設置した。薄板部を構成する多孔板と平板の垂直方向の内寸は53mmとなる。
第一熱風区域断面積に対する第二熱風区域断面積は76%であり、熱処理室の長さに対する第一熱風区域長さは5.3%である。また、厚板の末端と吸込みノズルの間の間隔は300mmのため、熱処理室の長さに対する第二熱風区域長さは81%である。
[Example 1]
A flat plate having a length a = 265 mm and a thickness c = 1.0 mm, a length b = 265 mm, a thickness c = 1.0 mm, and an aperture ratio at a position x = 100 mm from a blow nozzle having a height H = 155 mm A 30% perforated plate and a thick plate with a thickness T = 55 mm were installed in this order. The inner dimension in the vertical direction of the porous plate and the flat plate constituting the thin plate portion is 53 mm.
The second hot air area cross-sectional area with respect to the first hot air area cross-sectional area is 76%, and the first hot air area length with respect to the length of the heat treatment chamber is 5.3%. Further, since the distance between the end of the thick plate and the suction nozzle is 300 mm, the length of the second hot air section with respect to the length of the heat treatment chamber is 81%.

その結果、熱風の線速は2.0m/sに増加し、表1に示す通り、線速斑は7.0%で良好であった。
[実施例2]
厚板の厚さをT=155mmとした以外は、実施例1と同様として熱風の線速と線速斑の測定を行った。結果を表1に示す。
[実施例3]
吹出しノズルと平板の距離をx=0mm(吹出しノズルと平板が接触)とした以外は、実施例1と同様として風速測定を行った。結果を表1に示す。
[実施例4]
吹出しノズルと平板の距離をx=600mmとした以外は、実施例1と同様として風速測定を行った。結果を表1に示す。
[実施例5]
多孔板の開孔率を10%にした以外は、実施例1と同様として風速測定を行った。結果を表1に示す。
As a result, the linear velocity of the hot air increased to 2.0 m / s, and as shown in Table 1, the linear velocity irregularity was good at 7.0%.
[Example 2]
Except that the thickness of the thick plate was T = 155 mm, the linear velocity of the hot air and the linear velocity spot were measured in the same manner as in Example 1. The results are shown in Table 1.
[Example 3]
The wind speed was measured in the same manner as in Example 1 except that the distance between the blowing nozzle and the flat plate was set to x = 0 mm (the blowing nozzle and the flat plate were in contact). The results are shown in Table 1.
[Example 4]
The wind speed was measured in the same manner as in Example 1 except that the distance between the blowing nozzle and the flat plate was set to x = 600 mm. The results are shown in Table 1.
[Example 5]
The wind speed was measured in the same manner as in Example 1 except that the aperture ratio of the porous plate was 10%. The results are shown in Table 1.

[実施例6]
多孔板の開孔率を50%にした以外は、実施例1と同様として風速測定を行った。結果を表1に示す。
[実施例7]
多孔板の長さをa=530mmとした以外は、実施例1と同様として風速測定を行った。結果を表1に示す。
[実施例8]
平板の長さをb=530mmとした以外は、実施例1と同様として風速測定を行った。結果を表1に示す。
[実施例9]
薄板部を構成する多孔板と平板の厚さをc=10mmとした以外は、実施例1と同様として風速測定を行った。結果を表1に示す。
[Example 6]
The wind speed was measured in the same manner as in Example 1 except that the aperture ratio of the perforated plate was 50%. The results are shown in Table 1.
[Example 7]
The wind speed was measured in the same manner as in Example 1 except that the length of the porous plate was set to a = 530 mm. The results are shown in Table 1.
[Example 8]
The wind speed was measured in the same manner as in Example 1 except that the length of the flat plate was set to b = 530 mm. The results are shown in Table 1.
[Example 9]
The wind speed was measured in the same manner as in Example 1 except that the thickness of the porous plate and the flat plate constituting the thin plate portion was set to c = 10 mm. The results are shown in Table 1.

実施例1〜9では、仕切り板の設置と、平板と多孔板の適正化によって、各区画の風速は増加し、風速斑は良好であった。
[比較例1]
薄板部を設けずに、吹出しノズルからx=100mmの位置に、厚さT=55mmの厚板を設置した以外は、実施例1と同様として風速測定を行った。その結果、風速は2.0m/s、風速斑は18%であった。
In Examples 1-9, the wind speed of each division increased and the wind speed spot was favorable by installation of a partition plate and optimization of a flat plate and a perforated plate.
[Comparative Example 1]
The wind speed was measured in the same manner as in Example 1 except that a thick plate with a thickness T = 55 mm was installed at a position x = 100 mm from the blowing nozzle without providing a thin plate portion. As a result, the wind speed was 2.0 m / s and the wind speed spot was 18%.

仕切り板に薄板部が設けられていないため、吹出しノズルから吹き出した熱風の流れは、厚板先端部で各区画に流量が均等となるように分配されず、その結果、風速斑が増加した。
[比較例2]
薄板部において、平板を設けず、吹出しノズルからx=100mmの位置に、多孔板と厚板を順に設置した以外は、実施例1と同様として風速測定を行った。結果を表1に示す。
Since the partition plate is not provided with a thin plate portion, the flow of hot air blown from the blow-out nozzle is not distributed so that the flow rate is evenly distributed to each section at the tip end portion of the thick plate, and as a result, wind speed spots increase.
[Comparative Example 2]
In the thin plate portion, the wind speed was measured in the same manner as in Example 1 except that a flat plate was not provided and a perforated plate and a thick plate were sequentially installed at a position of x = 100 mm from the blowing nozzle. The results are shown in Table 1.

仕切り板に平板が設けられていないため、熱風は、多孔板を通して拡がりながら糸条走行区画に流れ出す。その際、上下ノズルとの圧力差に起因した誘因効果により、各区画間に流れ出す熱風の流量に差が発生し、風速斑が大きくなる。
[比較例3]
薄板部において、多孔板部を設けず、吹出しノズルからx=100mmの位置に、平板と厚板を順に設置した以外は、実施例1と同様として風速測定を行った。結果を表1に示す。
Since the partition plate is not provided with a flat plate, the hot air flows out to the yarn traveling section while spreading through the perforated plate. At that time, due to the incentive effect caused by the pressure difference between the upper and lower nozzles, a difference occurs in the flow rate of the hot air flowing out between the sections, and the wind speed spot becomes larger.
[Comparative Example 3]
In the thin plate portion, the perforated plate portion was not provided, and the wind speed was measured in the same manner as in Example 1 except that a flat plate and a thick plate were sequentially installed at a position of x = 100 mm from the blowing nozzle. The results are shown in Table 1.

仕切り板に多孔板が設けられていないため、吹出しノズルの熱風は、薄板部内を通過せず、糸条走行区画に直接流入する。その際、熱風は、仕切り板先端部で各区画に流量が均等となるように分配されず、風速斑が増加した。   Since the partition plate is not provided with a porous plate, the hot air from the blow-out nozzle does not pass through the thin plate portion but directly flows into the yarn traveling section. At that time, the hot air was not distributed so that the flow rate was equal to each partition at the front end of the partition plate, and the wind speed spots increased.

1 熱処理炉
2 熱処理室
3 吹出しノズル
4 吸込みノズル
5 気体加熱手段
6 送風機
7 循環流路
8 繊維束
9 ガイドロール
10 繊維束の導出入口
10‘ 繊維束の導出入口
11 仕切り板
12 厚板
13 薄板
13a 薄板部
13b 多孔板部
14 第一熱風区域
15 第二熱風区域
16 スリット状開口部
17 熱風混合区域
DESCRIPTION OF SYMBOLS 1 Heat treatment furnace 2 Heat treatment chamber 3 Blowing nozzle 4 Suction nozzle 5 Gas heating means 6 Blower 7 Circulation flow path 8 Fiber bundle 9 Guide roll 10 Fiber bundle outlet 10 'Fiber bundle outlet 11 Partition plate 12 Thick plate 13 Thin plate 13a Thin plate portion 13b Perforated plate portion 14 First hot air zone 15 Second hot air zone 16 Slit-shaped opening 17 Hot air mixing zone

Claims (4)

炭素繊維前駆体繊維束を耐炎化処理して耐炎化繊維束とし、前記耐炎化繊維束を炭素化処理して炭素繊維束を得る炭素繊維束の製造方法であって、
前記耐炎化処理が、下記の条件を満足する炭素繊維束の製造方法。
・シート状の炭素繊維前駆体繊維束を複数回折り返して、熱処理室内を多段で走行させ、前記炭素繊維前駆体繊維束の長手方向に対して平行に熱風をあて、熱処理する。
・前記熱処理室内に、前記炭素繊維前駆体繊維束の長手方向において第一熱風区域と第二熱風区域とを設け、
前記第一熱風区域は、前記熱処理室の一端側にあって、隣り合う2シートの前記炭素繊維前駆体繊維束の間に、シートの重なる方向において複数の熱風の流れを有し、
前記第二熱風区域は、前記第一熱風区域の下流にあって、熱風の流れの2つ以上が混合して流れる。
・前記第一熱風区域の熱風流路断面積は、前記第二熱風区域の熱風流路断面積より大きい。
A method for producing a carbon fiber bundle, wherein a carbon fiber precursor fiber bundle is subjected to flame resistance treatment to form a flame resistant fiber bundle, and the flame resistant fiber bundle is carbonized to obtain a carbon fiber bundle,
A method for producing a carbon fiber bundle, wherein the flameproofing treatment satisfies the following conditions.
A plurality of sheet-like carbon fiber precursor fiber bundles are folded back and run in multiple stages in the heat treatment chamber, and heat treatment is performed by applying hot air parallel to the longitudinal direction of the carbon fiber precursor fiber bundle.
In the heat treatment chamber, a first hot air zone and a second hot air zone are provided in the longitudinal direction of the carbon fiber precursor fiber bundle,
The first hot air section is on one end side of the heat treatment chamber, and has a plurality of hot air flows in the overlapping direction of the sheets between the two adjacent carbon fiber precursor fiber bundles,
The second hot air zone is downstream of the first hot air zone, and two or more hot air flows are mixed and flow.
-The hot air flow path cross-sectional area of said 1st hot air area is larger than the hot air flow path cross-sectional area of said 2nd hot air area.
下記の条件を満足する請求項1に記載の炭素繊維束の製造方法。
・前記第一熱風区域と前記第二熱風区域との間に、熱風混合区域を有する。
The manufacturing method of the carbon fiber bundle of Claim 1 which satisfies the following conditions.
A hot air mixing section is provided between the first hot air section and the second hot air section.
下記の条件を満足する請求項1又は2記載の炭素繊維束の製造方法。
・隣り合う2シートの前記炭素繊維前駆体繊維束の間に、その長手方向と平行に仕切板を設け、前記第二熱風区域を、1枚の前記炭素繊維前駆体繊維束に熱風をあてる区域と、別の1枚の前記炭素繊維前駆体繊維束に熱風をあてる区域とに分割する。
The manufacturing method of the carbon fiber bundle of Claim 1 or 2 which satisfies the following conditions.
-A partition plate is provided in parallel with the longitudinal direction between the two adjacent carbon fiber precursor fiber bundles, and the second hot air area is applied to one carbon fiber precursor fiber bundle. The carbon fiber precursor fiber bundle is divided into another area where hot air is applied to the bundle.
下記の条件を満足する請求項3記載の炭素繊維束の製造方法。
・熱風混合区域に、熱風の流れと平行な孔開き部材を設けて、前記孔開き部材の一方側と他方側とで熱風の流れを連通させる。
The manufacturing method of the carbon fiber bundle of Claim 3 which satisfies the following conditions.
A perforated member parallel to the hot air flow is provided in the hot air mixing area, and the hot air flow is communicated between one side and the other side of the perforated member.
JP2014043954A 2014-03-06 2014-03-06 Carbon fiber manufacturing method Expired - Fee Related JP6372095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014043954A JP6372095B2 (en) 2014-03-06 2014-03-06 Carbon fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014043954A JP6372095B2 (en) 2014-03-06 2014-03-06 Carbon fiber manufacturing method

Publications (2)

Publication Number Publication Date
JP2015168897A true JP2015168897A (en) 2015-09-28
JP6372095B2 JP6372095B2 (en) 2018-08-15

Family

ID=54201905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014043954A Expired - Fee Related JP6372095B2 (en) 2014-03-06 2014-03-06 Carbon fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP6372095B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112710160A (en) * 2019-10-25 2021-04-27 中冶长天国际工程有限责任公司 Control method and device for hot air fan during cold start of analysis tower
TWI746379B (en) * 2021-02-20 2021-11-11 吳浩嘉 Carbon fiber splitting method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228867A (en) * 1986-03-31 1987-10-07 三菱レイヨン株式会社 Horizontal type heat treating furnace for manufacturing carbon fiber
JPS62228865A (en) * 1986-03-31 1987-10-07 三菱レイヨン株式会社 Horizontal type heat treating furnace
JPH10237723A (en) * 1996-12-16 1998-09-08 Toray Ind Inc The treatment furnace and production of carbon fiber
JPH10266023A (en) * 1997-03-24 1998-10-06 Toho Rayon Co Ltd Production of polyacrylonitrile-based flame resistant fiber and apparatus therefor
US5908290A (en) * 1996-12-16 1999-06-01 Toray Industries, Inc. Heat treatment furnace for fiber
JP2000212839A (en) * 1999-01-12 2000-08-02 Mitsubishi Rayon Co Ltd Horizontal thermal treatment oven and thermal treatment
JP2008231603A (en) * 2007-03-19 2008-10-02 Mitsubishi Rayon Co Ltd Flame-resistant treatment oven
JP2008231611A (en) * 2007-03-20 2008-10-02 Mitsubishi Rayon Co Ltd Flame-resistance treatment oven and method for producing carbon fiber
JP2010133059A (en) * 2008-12-05 2010-06-17 Mitsubishi Rayon Co Ltd Flameproofing furnace, and method for producing carbon fiber using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228867A (en) * 1986-03-31 1987-10-07 三菱レイヨン株式会社 Horizontal type heat treating furnace for manufacturing carbon fiber
JPS62228865A (en) * 1986-03-31 1987-10-07 三菱レイヨン株式会社 Horizontal type heat treating furnace
JPH10237723A (en) * 1996-12-16 1998-09-08 Toray Ind Inc The treatment furnace and production of carbon fiber
US5908290A (en) * 1996-12-16 1999-06-01 Toray Industries, Inc. Heat treatment furnace for fiber
JPH10266023A (en) * 1997-03-24 1998-10-06 Toho Rayon Co Ltd Production of polyacrylonitrile-based flame resistant fiber and apparatus therefor
JP2000212839A (en) * 1999-01-12 2000-08-02 Mitsubishi Rayon Co Ltd Horizontal thermal treatment oven and thermal treatment
JP2008231603A (en) * 2007-03-19 2008-10-02 Mitsubishi Rayon Co Ltd Flame-resistant treatment oven
JP2008231611A (en) * 2007-03-20 2008-10-02 Mitsubishi Rayon Co Ltd Flame-resistance treatment oven and method for producing carbon fiber
JP2010133059A (en) * 2008-12-05 2010-06-17 Mitsubishi Rayon Co Ltd Flameproofing furnace, and method for producing carbon fiber using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112710160A (en) * 2019-10-25 2021-04-27 中冶长天国际工程有限责任公司 Control method and device for hot air fan during cold start of analysis tower
CN112710160B (en) * 2019-10-25 2023-06-23 中冶长天国际工程有限责任公司 Control method and device for hot air blower during cold start of analytical tower
TWI746379B (en) * 2021-02-20 2021-11-11 吳浩嘉 Carbon fiber splitting method

Also Published As

Publication number Publication date
JP6372095B2 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
WO2013015343A1 (en) Flame-retardant heat treatment furnace
JP5856082B2 (en) Oxidation furnace
JP3868907B2 (en) Flameproof heat treatment apparatus and method of operating the apparatus
JP6372095B2 (en) Carbon fiber manufacturing method
JP2019532191A (en) Oxidation furnace
JP2010100967A (en) Heat-treatment furnace, flame retardant fiber bundle, and method for producing carbon fiber
WO2015002202A1 (en) Horizontal heat treatment device and method for producing carbon fibers using horizontal heat treatment device
JP2017524834A (en) Oxidation furnace
EP0110557B1 (en) Apparatus for producing oxidized filaments
TWI507579B (en) Method for manufacturing carbon fiber bundle and heating furnace for carbon fiber precursor fiber bundle
US10472738B2 (en) Gas supply blowout nozzle and method of producing flame-proofed fiber and carbon fiber
KR102435113B1 (en) Oven and method of operating the oven comprising an exhaust nozzle plate for distribution of gas through the oven
JP4961256B2 (en) Flameproof heat treatment equipment
JP2014221956A (en) Heat treatment apparatus, and method for producing flame-resistant fiber by using the same
JP2018502227A (en) Improved supply plenum for center-to-end fiber oxidation furnace
JP7249274B2 (en) Furnace with discharge nozzle plate for distributing gas through the furnace and method of operating the same
JP4276669B2 (en) Flameproof heat treatment apparatus and method of operating the apparatus
JP2012184527A (en) Heat-treatment furnace, manufacturing method for flame-resistant fiber and manufacturing method for carbon fiber
JP2003183975A (en) Heat treating oven
JP4437427B2 (en) Heat treatment furnace
JP2013091863A (en) Heat treatment furnace of fiber sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180702

R151 Written notification of patent or utility model registration

Ref document number: 6372095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees