JP2012184527A - Heat-treatment furnace, manufacturing method for flame-resistant fiber and manufacturing method for carbon fiber - Google Patents

Heat-treatment furnace, manufacturing method for flame-resistant fiber and manufacturing method for carbon fiber Download PDF

Info

Publication number
JP2012184527A
JP2012184527A JP2011048637A JP2011048637A JP2012184527A JP 2012184527 A JP2012184527 A JP 2012184527A JP 2011048637 A JP2011048637 A JP 2011048637A JP 2011048637 A JP2011048637 A JP 2011048637A JP 2012184527 A JP2012184527 A JP 2012184527A
Authority
JP
Japan
Prior art keywords
heat treatment
chamber
seal
gas
heated gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011048637A
Other languages
Japanese (ja)
Inventor
Yusuke Taono
宏明 垰野
Tatsuya Hanawa
達也 花輪
Hirotake Harada
裕丈 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2011048637A priority Critical patent/JP2012184527A/en
Publication of JP2012184527A publication Critical patent/JP2012184527A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a heat-treatment furnace for producing flame-resistant fiber which can prevent an outflow of toxic decomposition gas generated within the heat-treatment furnace as well as the entrance of an outside air into the furnace and which can reduce energy cost and have high quality.SOLUTION: A heat-treatment furnace is provided with a heat treatment chamber 2 having a heating gas introduction part and a heating gas discharge part, seal chambers 3 for suppressing the leakage of heating gas from the heat treatment chamber and seal buffer chambers 4 installed on the outside of the seal chambers. The seal chamber is capable of circulating heating gas in a vertical direction relative to a running direction of an object to be processed, and the seal buffer chamber has a discharge part for discharging heating gas on the side facing an introduction part for introducing heating gas. In the heat-treatment furnace, a channel is installed so that the gas discharged from the seal buffer chamber can be introduced out of the system without being circulated in the heat treatment chamber, the seal chamber and the seal buffer chamber and cannot come into contact with a line of thread again.

Description

本発明は、熱処理炉、およびその熱処理炉による耐炎化繊維の製造方法、ならびにその耐炎化繊維を用いた炭素繊維の製造方法に関する。   The present invention relates to a heat treatment furnace, a method for producing flame-resistant fibers using the heat treatment furnace, and a method for producing carbon fibers using the flame-resistant fibers.

従来の熱処理炉、特に炭素繊維の製造に用いられる熱処理炉としては、熱処理室に加熱気体を供給する加熱気体の導入部と、前記加熱気体を排出する加熱気体の排出部と、熱処理室の側壁に糸条出入口とを有し、熱処理室内で糸条を水平方向に走行させながら、その糸条に上方から加熱気体を吹き付けて熱処理するようにした熱処理炉が知られている(例えば、特許文献1参照)。   Conventional heat treatment furnaces, particularly heat treatment furnaces used for the production of carbon fibers, include a heating gas introduction section for supplying a heating gas to a heat treatment chamber, a heating gas discharge section for discharging the heating gas, and a side wall of the heat treatment chamber. There is known a heat treatment furnace that has a yarn inlet / outlet and heats the yarn by spraying a heated gas from above while causing the yarn to run horizontally in a heat treatment chamber (for example, Patent Documents). 1).

ここでいう水平方向とは、地面に対して略平行となる方向のことである。また、熱処理室の両側で糸条を支えるガイドローラーに段差があるなどの原因で、糸条の走行方向が地面に対して傾斜しても、糸条が熱処理室の向かい合う2側面に渡してあれば、略平行といえる。   Here, the horizontal direction is a direction substantially parallel to the ground. Also, even if the running direction of the yarn is inclined with respect to the ground due to a difference in the guide rollers that support the yarn on both sides of the heat treatment chamber, the yarn should be passed to the two opposite sides of the heat treatment chamber. In other words, it can be said to be substantially parallel.

このような熱処理炉において、例えばそれが耐炎化炉である場合、ポリアクリロニトリル系の前駆体繊維からなる糸条を、複数糸条の水平面内において所定のピッチを保ちながら並列させて熱処理室内に導入され、かつ、熱処理室の両側に設置されたローラーによって走行方向を反転されながら熱処理室内への出入を繰り返し、熱処理室の上下方向においても所定のピッチを保ちながら走行し、耐炎化処理される。   In such a heat treatment furnace, for example, if it is a flameproofing furnace, yarns made of polyacrylonitrile-based precursor fibers are introduced in parallel in a horizontal plane of a plurality of yarns while maintaining a predetermined pitch. In addition, the roller is installed on both sides of the heat treatment chamber, and the traveling direction is reversed while the traveling direction is reversed. The heat treatment chamber is repeatedly moved in the vertical direction of the heat treatment chamber while maintaining a predetermined pitch, and subjected to flame resistance treatment.

さらに特許文献1に開示されている熱処理炉においては、熱処理室側壁の糸条出入口の外側に隣接してシール室を設け、そのシール室に加熱気体を排出するための排出機構を備えることで、熱処理室から流出してきた加熱気体が作業者の居る炉外雰囲気に漏れ出すことを防止している。   Furthermore, in the heat treatment furnace disclosed in Patent Document 1, a seal chamber is provided adjacent to the outside of the yarn inlet / outlet on the side wall of the heat treatment chamber, and a discharge mechanism for discharging the heated gas into the seal chamber is provided. The heated gas flowing out of the heat treatment chamber is prevented from leaking into the atmosphere outside the furnace where the worker is.

しかしながら、特許文献1に開示された熱処理炉では、生産性を上げるための手段の一つとして熱処理室内を出入りする段数を増やす場合、加熱気体が糸条を通過する際に生じる抵抗が大きくなり、加熱気体の上流から下流に向けて生じる圧力低下が増大する。このため、熱処理室内と炉外雰囲気との圧力差も増大し、前記シール室だけでは熱処理室からの加熱気体の漏れ出しを防ぐことができなくなる。その結果、熱処理室の上方に設けた糸条出入口からは加熱気体が漏れ出し、熱処理室の下方に設けた糸条出入口からは外気が熱処理室内へ漏れ込むようになる。 前記耐炎化処理においてはポリアクリロニトリル系前駆体繊維の酸化反応により、シアン化合物やアンモニア、一酸化炭素等の有害な分解ガスが発生するため、上記のごとく熱処理炉上部において加熱気体が炉外に漏れ出すと、熱処理炉周辺の作業環境に悪影響を及ぼすことになる。一方、前記熱処理炉下部の低温領域においては、加熱気体中のタール成分等の分解生成物が凝縮し、耐炎化炉内の開口部等の各所に付着してしまう現象が発生し、これらの凝縮物が熱処理中の糸条に付着すると、糸切れや毛羽立ち等の操業性、品位悪化を誘発するという問題が発生した。また、室内への外気漏れ込みは熱処理炉のヒーター使用電力を増加させて、熱処理室内の温度ムラを引き起こす上、外気に含まれる不純物が炉内に流入することで製品の品質を低下させるという問題があった。さらに、前記外気の温度は熱処理室の温度に比べてかなり低いため、糸条の熱処理が進行せず生産性が低下してしまう問題があった。   However, in the heat treatment furnace disclosed in Patent Document 1, when increasing the number of stages entering and exiting the heat treatment chamber as one of the means for increasing the productivity, the resistance generated when the heated gas passes through the yarn becomes large, The pressure drop that occurs from upstream to downstream of the heated gas increases. For this reason, the pressure difference between the heat treatment chamber and the atmosphere outside the furnace also increases, and the leakage of the heated gas from the heat treatment chamber cannot be prevented only by the seal chamber. As a result, the heated gas leaks from the yarn entrance / exit provided above the heat treatment chamber, and the outside air leaks from the yarn entrance / exit provided below the heat treatment chamber. In the flameproofing treatment, harmful decomposition gases such as cyanide, ammonia and carbon monoxide are generated by the oxidation reaction of the polyacrylonitrile-based precursor fiber, so that the heated gas leaks outside the furnace as described above. Doing so will adversely affect the working environment around the heat treatment furnace. On the other hand, in the low temperature region at the lower part of the heat treatment furnace, decomposition products such as tar components in the heated gas condense and adhere to various places such as openings in the flameproofing furnace. When an object adheres to the yarn during heat treatment, problems such as thread breakage, fluffing, and other problems such as operability and quality deterioration occur. In addition, the leakage of outside air into the room increases the power used by the heater in the heat treatment furnace, causing temperature unevenness in the heat treatment room, and the impurities contained in the outside air flow into the furnace, reducing the quality of the product. was there. Furthermore, since the temperature of the outside air is considerably lower than the temperature of the heat treatment chamber, there is a problem that the heat treatment of the yarn does not proceed and the productivity is lowered.

特許文献2に開示されている熱処理炉では、炉本体前後方向に2段以上のシール室を設置し、それらのシール室すべてに加熱気体排出機構を設け、炉本体からのガス漏れ出しおよび外気の漏れ込みを防いでいる。しかしながら、炉内への外気の流入を完全に阻止するまでには至らなかった。   In the heat treatment furnace disclosed in Patent Document 2, two or more stages of seal chambers are provided in the longitudinal direction of the furnace body, and a heating gas discharge mechanism is provided in all of the seal chambers to release gas from the furnace body and Prevents leaks. However, the inflow of outside air into the furnace was not completely prevented.

特許文献3に開示されている熱処理炉では、エアーカーテンによるシール性アップが提案されている。この方法を用いても外気の漏れ込みを完全に防止することはできなかった。また、この方法ではエアーノズル製造コストが高価な上、常温のエアーを浴びる度に糸温が低下し、ヒーター使用電力が増大する。さらに、耐炎化糸切れ時はエアーにより糸捌けが発生し巻付きが増大し、炉外にローラーを配設しても処置仕切れずに生産設備の停止を余儀なくされていた。   In the heat treatment furnace disclosed in Patent Document 3, an improvement in sealing performance with an air curtain has been proposed. Even if this method was used, leakage of outside air could not be completely prevented. In addition, this method is expensive in the air nozzle manufacturing cost, and the yarn temperature is lowered every time the air is exposed to room temperature, and the heater power consumption is increased. Further, when the flameproof yarn is cut, the yarn is wound by the air and the winding increases, and even if a roller is provided outside the furnace, the production facility is forced to stop without partitioning the treatment.

特許文献4では炉本体前後方向に1段以上のシール室を設置し、前記シール室の上部に加熱気体排出部および下部に加熱気体導入部を設け、熱処理室の上方の糸条出入口からシール室へ漏れ出してきた加熱気体をシール室の上部で吸入し、その吸入した加熱気体を循環させてシール室の下部に供給している。こうすることで、熱処理室の下方の糸条出入口では、高温のシール室で吸入した加熱気体が再度炉内へ漏れ込んでくるようになり、これにより熱処理室からの加熱気体の漏れ出しを大きく縮小すると共に、熱処理室内への低温の外気漏れ込みも抑制している。しかしながら、特許文献4に開示された熱処理炉では、加熱気体を循環させることでガス中のタール成分やシリカ等の不純物が濃縮してしまい、時間と共に被処理物の品質および品位が低下してしまう問題点があった。   In Patent Document 4, one or more seal chambers are installed in the longitudinal direction of the furnace body, a heated gas discharge unit is provided in the upper part of the seal chamber, and a heated gas introduction unit is provided in the lower part. The heated gas that has leaked out is sucked into the upper portion of the seal chamber, and the sucked heated gas is circulated and supplied to the lower portion of the seal chamber. By doing so, the heated gas sucked in the high-temperature seal chamber again leaks into the furnace at the yarn entry / exit below the heat treatment chamber, thereby greatly increasing the leakage of the heated gas from the heat treatment chamber. In addition to being reduced, the low temperature outside air leakage into the heat treatment chamber is also suppressed. However, in the heat treatment furnace disclosed in Patent Document 4, impurities such as tar components and silica in the gas are concentrated by circulating the heated gas, and the quality and quality of the object to be processed deteriorates with time. There was a problem.

特開平11−173761号公報Japanese Patent Laid-Open No. 11-173761 特開2001−194071号公報JP 2001-140771 A 特開2004−143647号公報JP 2004-143647 A 特開2007−284842号公報JP 2007-284842 A

本発明は、前記従来技術の問題点である熱処理炉内への外気漏れ込みによるヒーターの使用電力の増大、炉内温度ムラに伴う品質のバラツキ、外気に含まれる不純物が炉内に流入することで発生する品質悪化を、従来の設備と比較して簡略化された設備を用いて解決しようとするものであり、低コストで高品質の耐炎化繊維を製造するための熱処理炉、およびそれを用いた耐炎化繊維の製造方法、ならびにその耐炎化繊維を炭素化することによる炭素繊維の製造方法を提供するものである。   In the present invention, the problem of the prior art is that the power consumption of the heater increases due to leakage of the outside air into the heat treatment furnace, the quality varies due to the uneven temperature inside the furnace, and the impurities contained in the outside air flow into the furnace. Is a heat treatment furnace for producing high-quality flame-resistant fibers at a low cost, and is intended to solve the quality deterioration caused by the conventional equipment. The present invention provides a method for producing a flame-resistant fiber, and a method for producing a carbon fiber by carbonizing the flame-resistant fiber.

前記課題を解決するための本発明は、次の構成を有する。すなわち、
(1)対向する2つの側壁の上下方向に、シート状に引き揃えられた複数の線状の被処理物が出入りできる開口部を複数段有し、前記開口部を通して両外側に備えられた複数の折返しローラーを介して該被処理物が複数回熱処理されるように構成された熱処理炉であって、該熱処理炉には、
(i):前記被処理物の走行方向に対して垂直方向に加熱気体を供給する加熱気体導入部と、前記加熱気体導入部と対向する側に熱処理室内の加熱気体を排出する加熱気体排出部を有する熱処理室と、
(ii):前記熱処理室からの加熱気体の漏れ出しを抑制するために前記熱処理室の両外側に設けられたシール室と、
(iii):前記シール室の両外側に設けられ、気体を排出する排出部と前記排出部と対向する側に加熱気体導入部を有するシールバッファ室、
が設けられており、前記シール室は、前記被処理物の走行方向に対して垂直方向に加熱気体を循環させる機能を備え、前記シールバッファ室は、その排出部より気体を排ガス処理設備へ排出する排出手段を備え、前記排出手段によりシールバッファ室から排出された気体は、前記熱処理室、前記シール室、および前記シールバッファ室に循環されることなく、前記排ガス処理設備に導かれるように流路が設置され、再び前記被処理物に接触することがないように構成されていることを特徴とする熱処理炉。
The present invention for solving the above-described problems has the following configuration. That is,
(1) A plurality of openings that allow a plurality of linear workpieces arranged in a sheet shape to enter and exit in the vertical direction of two opposing side walls, and that are provided on both outer sides through the openings. A heat treatment furnace configured such that the object to be treated is heat-treated a plurality of times via the folding roller, and the heat treatment furnace includes:
(I): a heated gas introduction unit that supplies a heated gas in a direction perpendicular to the traveling direction of the workpiece, and a heated gas discharge unit that discharges the heated gas in the heat treatment chamber on the side facing the heated gas introduction unit A heat treatment chamber having
(Ii): seal chambers provided on both outer sides of the heat treatment chamber to suppress leakage of heated gas from the heat treatment chamber;
(Iii): a seal buffer chamber provided on both outer sides of the seal chamber, and having a discharge portion for discharging gas and a heated gas introduction portion on the side facing the discharge portion;
The seal chamber has a function of circulating the heated gas in a direction perpendicular to the traveling direction of the object to be processed, and the seal buffer chamber discharges gas from the discharge portion to the exhaust gas treatment facility. The gas discharged from the seal buffer chamber by the discharge means flows so as to be guided to the exhaust gas treatment facility without being circulated to the heat treatment chamber, the seal chamber, and the seal buffer chamber. A heat treatment furnace, characterized in that a path is installed so as not to contact the object to be treated again.

(2)シールバッファ室に導入される加熱気体は、新鮮外気が加熱されたものであって、新鮮外気加熱装置の下流側に配置された熱処理炉に供給される新鮮外気から分枝された配管により供給される、(1)に記載の熱処理炉。   (2) The heated gas introduced into the seal buffer chamber is obtained by heating fresh outside air, and is a pipe branched from the fresh outside air supplied to a heat treatment furnace disposed downstream of the fresh outside air heating device. The heat treatment furnace according to (1), which is supplied by:

(3)シールバッファ室に導入される加熱気体は、熱処理室を循環する気体の一部が使用されるものであって、熱処理室を循環する気体の配管から分枝された配管から供給される、(1)に記載の熱処理炉。   (3) The heated gas introduced into the seal buffer chamber uses a part of the gas circulating in the heat treatment chamber, and is supplied from a pipe branched from the gas pipe circulating in the heat treatment chamber. The heat treatment furnace according to (1).

(4)シールバッファ室に導入される加熱気体は、シール室を循環する気体の一部が使用されるものであって、シール室を循環する気体の配管から分枝された配管から供給される、(1)に記載の熱処理炉。   (4) The heated gas introduced into the seal buffer chamber uses a part of the gas circulating in the seal chamber and is supplied from a pipe branched from the gas pipe circulating in the seal chamber. The heat treatment furnace according to (1).

(5)(1)〜(4)のいずれかに記載の熱処理炉を用い、ポリアクロニトリル系繊維束を酸化性の加熱気体中で耐炎化処理する耐炎化繊維の製造方法。   (5) A method for producing flame-resistant fibers, wherein the heat treatment furnace according to any one of (1) to (4) is used to flame-treat a polyacrylonitrile fiber bundle in an oxidizing heating gas.

(6)(5)に記載の耐炎化繊維を、不活性雰囲気中で炭素化処理する炭素繊維の製造方法。
である。
(6) A method for producing a carbon fiber, wherein the flame-resistant fiber according to (5) is carbonized in an inert atmosphere.
It is.

本発明によれば、熱処理炉内への外気の漏れ込みを防ぎ、品質安定化、操業安定化の確保と、エネルギー使用量および設備費の削減により炭素繊維生産コストダウンが可能となる。   According to the present invention, it is possible to prevent the leakage of outside air into the heat treatment furnace, to ensure quality stabilization and operational stability, and to reduce carbon fiber production costs by reducing energy consumption and equipment costs.

本発明に係る熱処理炉の一例の概略図であり、(a)が熱処理炉(フローを含む)の概略図、(b)が(a)の熱処理炉の立体構造を示す概略図である。It is the schematic of an example of the heat processing furnace which concerns on this invention, (a) is the schematic of a heat processing furnace (a flow is included), (b) is the schematic which shows the three-dimensional structure of the heat processing furnace of (a). 本発明の別の実施態様に係る熱処理炉(フローを含む)の概略図である。It is the schematic of the heat processing furnace (a flow is included) which concerns on another embodiment of this invention. 本発明のさらに別の実施態様に係る熱処理炉(フローを含む)の概略図である。It is the schematic of the heat processing furnace (a flow is included) which concerns on another embodiment of this invention. 従来の熱処理炉(フローを含む)の一般的な概略図である。It is a general schematic diagram of a conventional heat treatment furnace (including a flow).

従来の熱処理炉は、被処理物Aが熱処理炉を出入りする段数を上げるなどの手段によって、大型化した場合に、熱処理室の上方に設けた糸条出入り口からは加熱気体が漏れ出し、熱処理室の下方に設けた糸条出入り口からは、低温外気の漏れ込みが生じるが、本発明者らは、本発明に係る熱処理炉は、熱処理室の外側にシール室が設けられ、その外側にシールバッファ室が設けられているため、従来の熱処理炉が有する前記の問題が防止または緩和されることを見出した。   In the conventional heat treatment furnace, when the workpiece A is enlarged by means such as increasing the number of stages in and out of the heat treatment furnace, the heated gas leaks from the yarn entry / exit provided above the heat treatment chamber. Although the low temperature outside air leaks from the yarn entrance / exit provided below the heat treatment furnace, the present inventors have provided a seal chamber outside the heat treatment chamber and a seal buffer outside the heat treatment chamber. It has been found that since the chamber is provided, the above-mentioned problems of the conventional heat treatment furnace are prevented or alleviated.

シール室やシールバッファ室を2段以上設置してもシール性は向上するが、設備が複雑化する上、作業も繁雑になるので、通常は1段ずつ設置することが好ましい。ここで、シール室には加熱気体を循環させる機能が設けられており、シールバッファ室には加熱気体が供給される手段、および排出される手段が設けられており、シールバッファ室から排出された気体は、再び被処理物Aに接触させることなく、系外に排出させるように構成されていることが必要である。排出される気体は、排ガスの処理設備を通して、好ましくは新鮮給気と熱交換してから系外に排出される。   Even if two or more seal chambers or seal buffer chambers are installed, the sealing performance is improved. However, the equipment becomes complicated and the work becomes complicated. Here, the seal chamber is provided with a function of circulating the heated gas, and the seal buffer chamber is provided with a means for supplying the heated gas and a means for discharging it, and is discharged from the seal buffer chamber. The gas needs to be configured to be discharged out of the system without being brought into contact with the workpiece A again. The exhausted gas is discharged out of the system through an exhaust gas treatment facility, preferably after exchanging heat with fresh air supply.

以下、図面に示す実施例に基づいて本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail based on embodiments shown in the drawings.

図1は、本発明の一実施形態に係る熱処理炉の概略図である。   FIG. 1 is a schematic view of a heat treatment furnace according to an embodiment of the present invention.

この熱処理炉1は、シート状に引き揃えられた複数の線状の被処理物Aが出入りできる熱処理室2の前後にシール室3と、さらにその外側にシールバッファ室4が設置されている。
前記熱処理室2は、被処理物Aが出入りできる開口部を複数段有し、前記開口部を通して両外側に備えられた複数の折返しローラーを介して該被処理物が複数回熱処理されるように構成された熱処理炉であって、該熱処理炉には、前記被処理物の走行方向に対して垂直方向に加熱気体を供給する加熱気体導入部と、前記加熱気体導入部と対向する側に熱処理室内の加熱気体を排出する加熱気体排出部を有し、前記加熱気体排出部と加熱気体導入部は気体を加熱させるための電気ヒーター6および加熱気体を循環させるためのファン7を有する、熱処理室内を循環する加熱気体の流路5により連結され、前記加熱気体の循環流路5の途中には新鮮加熱気体導入のための導入部および循環加熱気体排出部が設けられている。
The heat treatment furnace 1 is provided with a seal chamber 3 before and after a heat treatment chamber 2 in which a plurality of linear workpieces A arranged in a sheet shape can enter and exit, and a seal buffer chamber 4 on the outside thereof.
The heat treatment chamber 2 has a plurality of openings through which the object A can enter and exit, and the object to be processed is heat-treated a plurality of times through a plurality of folding rollers provided on both outer sides through the opening. A heat treatment furnace configured, wherein the heat treatment furnace includes a heating gas introduction portion that supplies a heating gas in a direction perpendicular to a traveling direction of the workpiece, and a heat treatment on a side facing the heating gas introduction portion. A heat treatment chamber having a heated gas discharge section for discharging heated gas in the room, the heated gas discharge section and the heated gas introduction section having an electric heater 6 for heating the gas and a fan 7 for circulating the heated gas. Are connected by a heating gas flow path 5 that circulates through the heating gas, and an introduction section and a circulating heating gas discharge section for introducing fresh heating gas are provided in the middle of the heating gas circulation path 5.

前記新鮮加熱気体は排ガス処理設備13の廃熱を利用して熱交換器14を介して予備加熱され、新鮮加熱気体の導入流路15を通して前記熱処理室2に連結している、熱処理室内を循環する加熱気体の循環流路5へ導入される。この新鮮加熱気体の温度設定は、新鮮加熱気体と、熱処理室に循環される気体が混合されて、加熱気体循環ファンによって熱処理炉に導入されるときの温度が、熱処理の温度を超えない範囲で高温であるほど気体加熱のための電気ヒーター6の負荷を低減できる。また、新鮮加熱気体の導入流路15は分枝しており、前記熱処理室内を循環する加熱気体の流路5および後述するシールバッファ室4へ供給される加熱気体の流路に接続されている。また、熱処理室内を循環する加熱気体の循環流路5には、前記加熱気体を循環させることでガス中のタール成分やシリカ等の不純物の濃縮を防止するため、排ガス処理設備行き流路16が連結されており、循環する加熱気体の一部が排ガス処理設備13に送られている。   The freshly heated gas is preheated through the heat exchanger 14 using the waste heat of the exhaust gas treatment facility 13 and is circulated in the heat treatment chamber connected to the heat treatment chamber 2 through the freshly heated gas introduction passage 15. The heated gas is introduced into the circulation channel 5. The temperature setting of the freshly heated gas is such that the temperature when the freshly heated gas and the gas circulated in the heat treatment chamber are mixed and introduced into the heat treatment furnace by the heated gas circulation fan does not exceed the temperature of the heat treatment. The higher the temperature, the lower the load on the electric heater 6 for gas heating. The fresh heated gas introduction flow path 15 is branched and connected to a heated gas flow path 5 circulating in the heat treatment chamber and a heated gas flow path supplied to a seal buffer chamber 4 described later. . The heated gas circulation passage 5 circulating in the heat treatment chamber has a passage 16 for exhaust gas treatment equipment to prevent the concentration of impurities such as tar components and silica in the gas by circulating the heated gas. A part of the circulating heated gas is connected to the exhaust gas treatment facility 13.

シール室3も同様に、被処理物Aが出入りする開口部を複数段有し、前記被処理物Aの走行方向に対して垂直方向に加熱気体を供給する加熱気体導入部と、前記加熱気体導入部と対向する側に熱処理室内の加熱気体を排出する加熱気体排出部を有し、前記加熱気体排出部と加熱気体導入部は気体を加熱させるための電気ヒーター9および加熱気体を循環させるためのファン10を有する、シール室内を循環する加熱気体の流路8により連結されている。図示していないが、シール室内を循環する加熱気体の8の途中には新鮮加熱気体の導入のための導入部および循環する加熱気体を排出するため排出部を設けても良い。   Similarly, the seal chamber 3 has a plurality of openings through which the workpiece A enters and exits, a heating gas introduction portion that supplies a heating gas in a direction perpendicular to the traveling direction of the workpiece A, and the heating gas. There is a heated gas discharge portion for discharging the heated gas in the heat treatment chamber on the side facing the introduction portion, and the heated gas discharge portion and the heated gas introduction portion are for circulating the electric heater 9 and the heated gas for heating the gas. Are connected by a heated gas flow path 8 circulating in the seal chamber. Although not shown, an introduction portion for introducing fresh heating gas and a discharge portion for discharging the circulating heating gas may be provided in the middle of the heating gas 8 circulating in the seal chamber.

シールバッファ室4も同様に、被処理物Aが出入りする開口部を複数段有し、上部には室内の気体を排出するための排出部を有し、前記排出部と対向する側に加熱気体の導入部を有する。前記排出部には排気用流路11を連結し、前記排気用流路11に設置したファン12により室内の加熱気体を排ガス処理装置13へ送風する。熱処理室1を循環し加熱気体排出部から排出される加熱気体の排ガスと、シールバッファ室4の排出部から排出される加熱気体の排ガスの処理設備は必ずしも同一でなくても良いが、図1〜3に示すように、設備を簡略化、低コスト化するために単一の排ガス処理装置にて複数のプロセスからの排ガスが処理されることが好ましい。前記導入部にはシールバッファ室に導入される加熱気体の流路18を連結し、加熱気体を導入するが、前記シールバッファ室4の下部に供給する導入加熱気体は、熱処理室内の温度とほぼ同じでなければ熱処理室内の温度ムラを引き起こしやすくなる。従って、温度ムラ低減のため、前記新鮮加熱気体の導入流路15から分枝して供給される加熱気体と新鮮外気との混合気体が供給されることが好ましい。この混合気体の温度を制御する場合、加熱気体導入流路18に温度検出端を設け、該温度検出端により分岐した新鮮加熱気体流量およびまたは新鮮外気の流量を制御することが好ましい。これにより、シール室の気体流入量、および流入温度を一定に保つことができ、安定した耐炎化処理を行うことが可能となる。   Similarly, the seal buffer chamber 4 has a plurality of openings through which the workpiece A enters and exits, the upper portion has a discharge portion for discharging the gas in the chamber, and the heated gas on the side facing the discharge portion. It has an introduction part. An exhaust passage 11 is connected to the exhaust section, and heated air in the room is blown to the exhaust gas treatment device 13 by a fan 12 installed in the exhaust passage 11. The processing equipment for the exhaust gas of the heated gas that circulates through the heat treatment chamber 1 and is discharged from the discharge portion of the heated gas and the exhaust gas of the heated gas discharged from the discharge portion of the seal buffer chamber 4 are not necessarily the same. As shown in -3, it is preferable that exhaust gas from a plurality of processes is processed by a single exhaust gas processing apparatus in order to simplify the equipment and reduce the cost. A heating gas flow path 18 introduced into the seal buffer chamber is connected to the introduction portion to introduce the heating gas. The introduction heating gas supplied to the lower portion of the seal buffer chamber 4 is approximately equal to the temperature in the heat treatment chamber. If it is not the same, it becomes easy to cause temperature unevenness in the heat treatment chamber. Therefore, in order to reduce temperature unevenness, it is preferable to supply a mixed gas of the heated gas and the fresh outside air that is branched and supplied from the freshly heated gas introduction flow path 15. When controlling the temperature of this mixed gas, it is preferable to provide a temperature detection end in the heated gas introduction flow path 18 and to control the flow rate of fresh heated gas and / or the flow of fresh outside air branched by the temperature detection end. Thereby, the gas inflow amount and the inflow temperature of the seal chamber can be kept constant, and a stable flameproofing process can be performed.

本発明の熱処理炉は、被処理物Aである繊維束を耐炎化するために用いられる場合、シール室およびシールバッファ室のシール作用によって耐炎化炉内から外気への有害ガスの漏れ出しおよび熱処理室内への低温外気の漏れ込みを効果的に抑制するものである。
熱処理炉1としては、熱処理室2、シール室3、シールバッファ室4、炉外のそれぞれの境界に設けられた開口部20を炉外に設けられたローラー21を複数個介して、酸化性の加熱気体を熱処理室2の上方に設けられた導入部より被処理物Aである糸条の走行方向に対して垂直方向に加熱気体を吹き付ける方法を採ることが好ましい。
When the heat treatment furnace of the present invention is used to make the fiber bundle as the workpiece A flameproof, leakage of harmful gas from the flameproofing furnace to the outside air and heat treatment by the sealing action of the seal chamber and the seal buffer chamber This effectively suppresses leakage of low-temperature outside air into the room.
As the heat treatment furnace 1, the heat treatment chamber 2, the seal chamber 3, the seal buffer chamber 4, and an opening 20 provided at each boundary of the outside of the furnace are provided with a plurality of rollers 21 provided outside the furnace. It is preferable to employ a method in which the heated gas is blown in a direction perpendicular to the traveling direction of the yarn that is the workpiece A from the introduction portion provided above the heat treatment chamber 2.

前記のように、熱処理炉1の外側にローラー21を配設することにより、熱処理炉1に人が入ることなく作業が可能であることから、スタート準備のし易さ、メンテナンスのし易さや、定常運転時に巻き付きや糸切れが発生した場合でも生産設備を停止することなく処置が可能であり、炉内にローラーを配設する耐炎化装置に対し生産性は優れている。一方、炉内のシール性やエネルギー効率の観点からは、熱処理炉内に糸条が出入りするための開口部が必要であり、また炉外に糸条が出たときに一度冷却されることから、炉内にローラーを配設する炉に対して熱処理効率は劣るが、長期連続運転、多糸条化、高糸条密度化が求められており、炉外にローラーが配設されている炉が優位である場合が多いと考えられる。   As described above, by disposing the roller 21 outside the heat treatment furnace 1, work can be performed without entering the heat treatment furnace 1, so that it is easy to prepare for start, easy to maintain, Even when winding or yarn breakage occurs during steady operation, it is possible to take measures without stopping the production equipment, and the productivity is superior to the flameproofing device in which a roller is provided in the furnace. On the other hand, from the viewpoint of sealing performance and energy efficiency in the furnace, an opening for the yarn to enter and exit from the heat treatment furnace is necessary, and when the yarn comes out of the furnace, it is cooled once. The heat treatment efficiency is inferior to a furnace in which rollers are arranged in the furnace, but long-term continuous operation, multiple yarns, high yarn density are required, and a furnace in which rollers are arranged outside the furnace Is considered to be dominant.

この熱処理炉においては被処理物Aの走行方向に対して垂直方向に加熱気体を吹き付ける方法を採ることが好ましい。こうすることで、被処理物Aの走行方向に対して並行方向に加熱気体を吹き付ける方法に対して酸化反応に伴う発熱を効果的に除くことができるため、高温、短時間での耐炎化処理が可能となる。   In this heat treatment furnace, it is preferable to employ a method of blowing heated gas in a direction perpendicular to the traveling direction of the workpiece A. By carrying out like this, since the heat_generation | fever accompanying an oxidation reaction can be effectively removed with respect to the method of spraying heated gas in the parallel direction with respect to the running direction of the to-be-processed object A, a flameproofing process in high temperature and a short time Is possible.

前記加熱気体導入は、機幅方向の加熱気体供給ムラを低減させるため、少なくとも2箇所以上から供給すれば、より好ましい。また、流入部や室内にパンチングメタル、邪魔板等を設けて整流作用を施しても良い。   The introduction of the heated gas is more preferable if it is supplied from at least two places in order to reduce uneven heating gas supply in the machine width direction. Further, a punching metal, a baffle plate or the like may be provided in the inflow portion or the room to perform the rectifying action.

シールバッファ室に導入される加熱気体の流路18への加熱気体供給手段は、図1に示すように排ガス処理設備13の廃熱を利用する熱交換器14を介して、熱処理室2への導入される加熱気体を分枝し、その一部を利用することが好ましい。こうすることで、新たな熱源を準備する必要がなくなる。また、作業環境中への被処理物由来のガスの暴露や加熱気体中のタール成分等の付着を防止するため、前記シールバッファ室下部において外側開口部外側に対して内側の圧力が負圧であることがより好ましい。好ましい圧力の範囲は、−0.50〜−0.01mmAqである。この場合、シールバッファ室下部に圧力検知機構を設け、導入される加熱気体の流路18に流量調整機構を設置し、両者を連動させて圧力制御することでより効果的にガスの暴露およびタール付着を防止できる。   The heating gas supply means to the heating gas flow path 18 introduced into the seal buffer chamber is supplied to the heat treatment chamber 2 via a heat exchanger 14 that uses waste heat of the exhaust gas treatment facility 13 as shown in FIG. It is preferable to branch the heated gas to be introduced and use a part thereof. This eliminates the need to prepare a new heat source. Further, in order to prevent the exposure of the gas derived from the object to be processed into the work environment and the adhesion of tar components in the heated gas, the inner pressure with respect to the outer side of the outer opening is negative in the lower part of the seal buffer chamber. More preferably. A preferred pressure range is -0.50 to -0.01 mmAq. In this case, a pressure detection mechanism is provided in the lower part of the seal buffer chamber, and a flow rate adjusting mechanism is installed in the flow path 18 of the heated gas to be introduced. Adhesion can be prevented.

図2は、本発明の別の実施態様に係る熱処理炉の概略図であり、シールバッファ室4に導入される加熱気体の流路18への加熱気体供給手段は、熱処理室内を循環する加熱気体の流路5を分枝し、循環加熱気体の一部を送還して用いている。分枝する位置としてはヒーター6を通った後の流路から分枝するのが好ましい。シールバッファ室内と熱処理室内の温度はほぼ同じであるため、図1の態様とは異なり独自の温度制御が省けその設備費および熱ロスを削減することができる。   FIG. 2 is a schematic view of a heat treatment furnace according to another embodiment of the present invention, in which the heated gas supply means to the flow path 18 of the heated gas introduced into the seal buffer chamber 4 is a heated gas circulating in the heat treated chamber. The flow path 5 is branched, and a part of the circulating heated gas is returned and used. The branching position is preferably branched from the flow path after passing through the heater 6. Since the temperatures in the seal buffer chamber and the heat treatment chamber are substantially the same, unlike the embodiment of FIG. 1, the unique temperature control can be omitted, and the equipment cost and heat loss can be reduced.

図3は、本発明のさらに別の実施態様に係る熱処理炉の概略図であるが、シールバッファ室4に導入される加熱気体の流路18への加熱気体供給手段は、シール室内を循環する加熱気体の流路8の一部を送還しても良い。かかる方法によっても図1よりも設備費および熱ロスを削減することができる。   FIG. 3 is a schematic view of a heat treatment furnace according to still another embodiment of the present invention. The heating gas supply means to the heating gas flow path 18 introduced into the seal buffer chamber 4 circulates in the seal chamber. A part of the heated gas flow path 8 may be returned. This method can also reduce the equipment cost and heat loss compared to FIG.

本発明の熱処理炉(例えば、図1〜3に示す熱処理炉)を用いることで、熱処理室内からの加熱気体の漏れ出しと熱処理室への不純物を含有した低温外気の漏れ込みを防ぎ、熱処理室内の温度ムラを小さくすることが可能である。したがって、前記熱処理炉を用いて、ポリアクロニトリル系繊維束を、好ましくは200〜300℃の酸化性の加熱気体中で耐炎化処理して耐熱性の高い構造へと変換させて製造した耐炎化繊維の品質、および、前記耐炎化繊維を、好ましくは300〜2000℃の不活性雰囲気中で炭素化処理して製造した炭素繊維の品質を向上させることができるとともに、前記耐炎化繊維および前記炭素繊維の製造における工程安定性の確保が実現できる。   By using the heat treatment furnace of the present invention (for example, the heat treatment furnace shown in FIGS. 1 to 3), leakage of heated gas from the heat treatment chamber and leakage of low-temperature outside air containing impurities into the heat treatment chamber can be prevented, and the heat treatment chamber can be prevented. It is possible to reduce the temperature unevenness. Therefore, using the heat treatment furnace, the polyacrylonitrile fiber bundle is preferably flame-resistant in a heat-oxidizing gas at 200 to 300 ° C. to be converted into a highly heat-resistant structure. The quality of the fiber and the quality of the carbon fiber produced by carbonizing the flame-resistant fiber, preferably in an inert atmosphere at 300 to 2000 ° C., can be improved, and the flame-resistant fiber and the carbon can be improved. Ensuring process stability in fiber production can be realized.

以下、本発明を実施例により本発明をさらに説明する。以下、本発明を実施例により本発明をさらに説明する。なお、表1に示す、熱処理室ヒーター使用電力、温度ムラ、熱処理汚れ状況、品質(強度)は、以下のとおりに評価、測定を行った。   Hereinafter, the present invention will be further described by way of examples. Hereinafter, the present invention will be further described by way of examples. In addition, the heat treatment chamber heater power consumption, temperature unevenness, heat treatment contamination status, and quality (strength) shown in Table 1 were evaluated and measured as follows.

<熱処理室ヒーター使用電力の測定>
ヒーター使用電力については外気温の影響を排除するために1日当たり使用した電力を、メーター値を読んで確認した。
<Measurement of heat treatment room heater power consumption>
The heater power consumption was confirmed by reading the meter value to determine the power consumed per day in order to eliminate the influence of outside air temperature.

<温度ムラの測定>
熱処理炉内の温度ムラについては、熱電対を所定の位置に15ヶ所配設し、1日間運転したときの最高温度と最低温度の差を確認した。具体的には糸条の幅方向に各3ヶ所設け、糸条走行方向には熱処理室最上段および最下段の糸条導出入口よりそれぞれ500mm離れた位置および熱処理室中段の中央に配置した。
<Measurement of temperature unevenness>
Regarding temperature unevenness in the heat treatment furnace, 15 thermocouples were arranged at predetermined positions, and the difference between the maximum temperature and the minimum temperature when operated for 1 day was confirmed. Specifically, three locations were provided in the width direction of the yarn, and in the running direction of the yarn, they were arranged 500 mm away from the uppermost and lowermost yarn outlet entrances in the heat treatment chamber and in the middle of the middle of the heat treatment chamber.

<熱処理汚れ状況の評価>
また、耐炎化炉の汚れ状況は官能評価によって判断した。観察位置は熱処理炉外側最上段から3枚の開口部へのタール成分の付着状況を確認した。
<Evaluation of heat treatment contamination>
Moreover, the contamination status of the flameproofing furnace was judged by sensory evaluation. The observation position confirmed the adhesion state of the tar component from the uppermost stage outside the heat treatment furnace to the three openings.

<品質(強度)測定>
強度はJIS R 7608試験法(2007)に準拠して測定した。
<Quality (strength) measurement>
The strength was measured according to JIS R 7608 test method (2007).

[実施例1]
図1に示す熱処理炉を用いて、250℃に加熱した空気250,000Nm/hrを熱処理室で循環させ、上方から垂直方向に加熱気体を吹き付けて、フィラメント数12,000本のポリアクリロニトリル系前駆体繊維群を耐炎化処理した。また、シール室内は250℃に加熱した空気を熱処理室の両側に各15,000Nm/hr循環させ、新鮮外気は、熱処理室の循環流量とシールバッファ部の供給流量を合わせて10,000Nm/hrとした。シールバッファ室排気流量は各々5,000Nm/hrとし、さらに、熱処理室への新鮮加熱気体を分枝し、新鮮外気と混合することで250℃に温度調整した加熱気体を各シールバッファ室の下方から2,000Nm/hrずつ供給した。この時のシールバッファ室下部の圧力は、外部圧力に対して−0.03mmHgであった。
[Example 1]
Using a heat treatment furnace shown in FIG. 1, 250,000 Nm 3 / hr of air heated to 250 ° C. is circulated in a heat treatment chamber, and a heated gas is blown vertically from above to form a polyacrylonitrile system having 12,000 filaments. The precursor fiber group was flameproofed. In the seal chamber, air heated to 250 ° C. is circulated at 15,000 Nm 3 / hr on both sides of the heat treatment chamber, and fresh outside air is 10,000 Nm 3 in combination with the circulation flow rate of the heat treatment chamber and the supply flow rate of the seal buffer section. / Hr. The exhaust flow rate of the seal buffer chamber is set to 5,000 Nm 3 / hr, respectively. Further, the freshly heated gas to the heat treatment chamber is branched and mixed with the fresh outside air so that the heated gas whose temperature is adjusted to 250 ° C. is supplied to each seal buffer chamber. 2,000 Nm 3 / hr was supplied from below. At this time, the pressure in the lower part of the seal buffer chamber was −0.03 mmHg with respect to the external pressure.

本熱処理炉の効果を確認するために、熱処理室内を循環する気体加熱用ヒーター使用電力、熱処理炉内の温度分布、加熱気体中のタール成分等による耐炎化炉汚れ状況、得られた耐炎化繊維を不活性雰囲気中で炭素化処理することで製造された炭素繊維の品質として樹脂含浸ストランド強度を測定した。結果を表1に示す。   In order to confirm the effect of this heat treatment furnace, the power used by the gas heating heater circulating in the heat treatment chamber, the temperature distribution in the heat treatment furnace, the flame resistance furnace contamination status due to tar components in the heated gas, the obtained flame resistant fiber The strength of the resin-impregnated strand was measured as the quality of the carbon fiber produced by carbonizing in an inert atmosphere. The results are shown in Table 1.

実施例1の熱処理炉を用いた耐炎化処理において、1週間連続して運転したあとの熱処理炉上部の開口部への汚れ付着はほとんどなく、それに起因した糸切れも起こらなかった。得られた耐炎化繊維を不活性雰囲気中で炭素化処理することで製造された炭素繊維の強度を評価した結果、高強度で良質な製品が得られた。   In the flameproofing treatment using the heat treatment furnace of Example 1, there was almost no dirt adhered to the opening in the upper part of the heat treatment furnace after continuous operation for one week, and no yarn breakage was caused. As a result of evaluating the strength of the carbon fiber produced by carbonizing the obtained flame-resistant fiber in an inert atmosphere, a high-strength and good-quality product was obtained.

[比較例1]
図4に示す耐炎化炉において、熱処理室への導入気体を分枝せず、各シールバッファ室の下方から加熱気体を供給せず、主循環への新鮮吸気は10,000Nm/hrに保って運転した。その他の条件は実施例1と同じにし、実施例1と同様の測定を行った。結果を表1に示す。
[Comparative Example 1]
In the flameproofing furnace shown in FIG. 4, the gas introduced into the heat treatment chamber is not branched, the heating gas is not supplied from below the seal buffer chambers, and the fresh intake air to the main circulation is kept at 10,000 Nm 3 / hr. Drove. The other conditions were the same as in Example 1, and the same measurement as in Example 1 was performed. The results are shown in Table 1.

比較例1の熱処理炉を用いた耐炎化処理においては、熱処理炉上部の開口部への汚れ付着が目立ち、走行糸条に今にも滴下しそうな状況であった。さらに温度ムラも大きく、あわせ熱処理室ヒーター電力も大きく消耗している。   In the flameproofing treatment using the heat treatment furnace of Comparative Example 1, the adhesion of dirt to the opening at the top of the heat treatment furnace was conspicuous, and it seemed to be dripping on the running yarn. In addition, the temperature unevenness is large, and the heat treatment chamber heater power is greatly consumed.

[実施例2]
図2に示す熱処理炉を用いて、同様に耐炎化処理した。主循環への新鮮外気は10,000Nm/hrに保って、加熱気体導入流路18への加熱気体供給は、熱処理室内を循環する加熱気体の流路5の一部を分岐して送った。
[Example 2]
Using the heat treatment furnace shown in FIG. Fresh fresh air to the main circulation was maintained at 10,000 Nm 3 / hr, and the heated gas supply to the heated gas introduction flow path 18 was branched and sent through a part of the heated gas flow path 5 circulating in the heat treatment chamber. .

その他の条件は実施例1と同じにし、実施例1と同様の測定を行った。結果を表1に示す。   The other conditions were the same as in Example 1, and the same measurement as in Example 1 was performed. The results are shown in Table 1.

[実施例3]
図3に示す熱処理炉を用いて、耐炎化処理した。シールバッファ室に導入される加熱気体の流路18への加熱気体供給手段は、シール室内を循環する加熱気体の流路8の一部を送還している。
[Example 3]
Using a heat treatment furnace shown in FIG. The heated gas supply means to the heated gas flow path 18 introduced into the seal buffer chamber returns a part of the heated gas flow path 8 circulating in the sealed chamber.

その他の条件は実施例1と同じにし、実施例1と同様の測定を行った。結果を表1に示す。   The other conditions were the same as in Example 1, and the same measurement as in Example 1 was performed. The results are shown in Table 1.

実施例1は、熱処理室への導入気体を利用し各シールバッファ室にすることで、比較例1のプロセスに新たに熱源を追加することなく、加熱気体を供給できる。実施例2および3では、シールバッファ室内、シール室内および熱処理室内の温度はほぼ同じであるため、循環加熱気体の一部を利用することで、実施例1の態様とは異なり独自の温度制御が省けその設備費および熱ロスを削減することが出来る。また、実施例1〜3ではシールバッファ室の下方から加熱気体を導入することで外気の漏れ込みを遮断することにより、ヒーター使用電力は削減でき、熱処理炉内温度ムラが低減し、かつ走行糸条への不純物の付着が低減されるため、得られた炭素繊維の強度が向上し、外観品位も良質な製品が得られる。   In Example 1, the gas introduced into the heat treatment chamber is used as each seal buffer chamber, so that the heating gas can be supplied without adding a new heat source to the process of Comparative Example 1. In the second and third embodiments, the temperatures in the seal buffer chamber, the seal chamber, and the heat treatment chamber are substantially the same. Therefore, by using a part of the circulating heating gas, unique temperature control can be performed unlike the first embodiment. The equipment cost and heat loss can be reduced. Further, in Examples 1 to 3, by introducing heated gas from below the seal buffer chamber, the leakage of the outside air is cut off, so that the heater power consumption can be reduced, the temperature unevenness in the heat treatment furnace is reduced, and the running yarn Since the adhesion of impurities to the strip is reduced, the strength of the obtained carbon fiber is improved, and a product with a good appearance quality can be obtained.

このように、本発明によって、熱処理炉のシール室の外側のシールバッファ室に加熱気体を導入することで、熱処理炉内への外気の漏れ込みを遮断することができ、シールバッファ室の排気は系外に排出し、糸条との接触を防止することによって、品質安定化、操業安定化の確保と、エネルギー使用量および設備費の削減により炭素繊維生産コストダウンが可能となった。   Thus, according to the present invention, by introducing the heated gas into the seal buffer chamber outside the seal chamber of the heat treatment furnace, it is possible to block the leakage of outside air into the heat treatment furnace, and the exhaust of the seal buffer chamber is By discharging out of the system and preventing contact with the yarn, it became possible to reduce carbon fiber production costs by ensuring stable quality and stable operation, and reducing energy consumption and equipment costs.

Figure 2012184527
Figure 2012184527

1:熱処理炉
2:熱処理室
3:シール室
4:シールバッファ室
5:熱処理室内を循環する加熱気体の流路
6:熱処理室内を循環する気体を加熱させるためのヒーター
7:熱処理室内の加熱気体を循環させるためのファン
8:シール室内を循環する加熱気体の流路
9:シール室内を循環する気体を加熱させるためのヒーター
10:シール室内の加熱気体を循環させるためのファン
11:シールバッファ室から排気された加熱気体の流路
12:シールバッファ室から気体を排気するためのファン
13:排ガス処理設備
14:熱交換器
15:新鮮加熱気体の導入流路
16:排ガス処理設備行き流路
17:新鮮加熱気体導入用ファン
18:シールバッファ室に導入される加熱気体の流路
19:シールバッファ室に導入される加熱気体を希釈するための外気の流路
20:開口部
21:ローラー
A:被処理物
1: Heat treatment furnace 2: Heat treatment chamber 3: Seal chamber 4: Seal buffer chamber 5: Flow path of heated gas circulating in the heat treatment chamber 6: Heater for heating the gas circulating in the heat treatment chamber 7: Heated gas in the heat treatment chamber 8: Heating gas flow path circulating in the seal chamber 9: Heater for heating the gas circulating in the seal chamber 10: Fan for circulating the heating gas in the seal chamber 11: Seal buffer chamber Flow path of the heated gas exhausted from 12: Fan for exhausting gas from the seal buffer chamber 13: Exhaust gas treatment equipment 14: Heat exchanger 15: Introduction path of freshly heated gas 16: Flow path to the exhaust gas treatment equipment 17 : Fan for introducing fresh heated gas
18: Channel of heated gas introduced into seal buffer chamber 19: Channel of outside air for diluting heated gas introduced into seal buffer chamber 20: Opening 21: Roller A: Object to be processed

本発明における熱処理炉ならびに熱処理方法は、特に耐炎化処理を必要とする用途に適しており、中でも炭素繊維製造工程において好適なものである。   The heat treatment furnace and the heat treatment method in the present invention are particularly suitable for applications that require flameproofing treatment, and are particularly suitable for the carbon fiber production process.

Claims (6)

対向する2つの側壁の上下方向に、シート状に引き揃えられた複数の線状の被処理物が出入りできる開口部を複数段有し、前記開口部を通して両外側に備えられた複数の折返しローラーを介して該被処理物が複数回熱処理されるように構成された熱処理炉であって、該熱処理炉には、
(i):前記被処理物の走行方向に対して垂直方向に加熱気体を供給する加熱気体導入部と、前記加熱気体導入部と対向する側に熱処理室内の加熱気体を排出する加熱気体排出部を有する熱処理室と、
(ii):前記熱処理室からの加熱気体の漏れ出しを抑制するために前記熱処理室の両外側に設けられたシール室と、
(iii):前記シール室の両外側に設けられ、気体を排出する排出部と前記排出部と対向する側に加熱気体導入部を有するシールバッファ室、
が設けられており、前記シール室は、前記被処理物の走行方向に対して垂直方向に加熱気体を循環させる機能を備え、前記シールバッファ室は、その排出部より気体を排ガス処理設備へ排出する排出手段を備え、前記排出手段によりシールバッファ室から排出された気体は、前記熱処理室、前記シール室、および前記シールバッファ室に循環されることなく、前記排ガス処理設備に導かれるように流路が設置され、再び前記被処理物に接触することがないように構成されていることを特徴とする熱処理炉。
A plurality of folding rollers having a plurality of openings through which the plurality of linear workpieces arranged in a sheet shape can enter and exit in the vertical direction of two opposing side walls, and are provided on both outer sides through the openings. A heat treatment furnace configured such that the workpiece is heat-treated a plurality of times via the heat treatment furnace,
(I): a heated gas introduction unit that supplies a heated gas in a direction perpendicular to the traveling direction of the workpiece, and a heated gas discharge unit that discharges the heated gas in the heat treatment chamber on the side facing the heated gas introduction unit A heat treatment chamber having
(Ii): seal chambers provided on both outer sides of the heat treatment chamber to suppress leakage of heated gas from the heat treatment chamber;
(Iii): a seal buffer chamber provided on both outer sides of the seal chamber, and having a discharge portion for discharging gas and a heated gas introduction portion on the side facing the discharge portion;
The seal chamber has a function of circulating the heated gas in a direction perpendicular to the traveling direction of the object to be processed, and the seal buffer chamber discharges gas from the discharge portion to the exhaust gas treatment facility. The gas discharged from the seal buffer chamber by the discharge means flows so as to be guided to the exhaust gas treatment facility without being circulated to the heat treatment chamber, the seal chamber, and the seal buffer chamber. A heat treatment furnace, characterized in that a path is installed so as not to contact the object to be treated again.
シールバッファ室に導入される加熱気体は、新鮮外気が加熱されたものであって、新鮮外気加熱装置の下流側に配置された熱処理炉に供給される新鮮外気から分枝された配管により供給される、請求項1に記載の熱処理炉。 The heated gas introduced into the seal buffer chamber is obtained by heating fresh outside air, and is supplied by a pipe branched from the fresh outside air supplied to a heat treatment furnace disposed downstream of the fresh outside air heating device. The heat treatment furnace according to claim 1. シールバッファ室に導入される加熱気体は、熱処理室を循環する気体の一部が使用されるものであって、熱処理室を循環する気体の配管から分枝された配管から供給される、請求項1に記載の熱処理炉。 The heated gas introduced into the seal buffer chamber uses a part of the gas circulating in the heat treatment chamber, and is supplied from a pipe branched from a gas pipe circulating in the heat treatment chamber. The heat treatment furnace according to 1. シールバッファ室に導入される加熱気体は、シール室を循環する気体の一部が使用されるものであって、シール室を循環する気体の配管から分枝された配管から供給される、請求項1に記載の熱処理炉。 The heated gas introduced into the seal buffer chamber uses a part of the gas circulating in the seal chamber, and is supplied from a pipe branched from a gas pipe circulating in the seal chamber. The heat treatment furnace according to 1. 請求項1〜4のいずれかに記載の熱処理炉を用い、ポリアクロニトリル系繊維束を酸化性の加熱気体中で耐炎化処理する耐炎化繊維の製造方法。 A method for producing flame-resistant fibers, wherein the heat treatment furnace according to any one of claims 1 to 4 is used to flame-treat a polyacrylonitrile fiber bundle in an oxidizing heating gas. 請求項5に記載の耐炎化繊維を、不活性雰囲気中で炭素化処理する炭素繊維の製造方法。 The manufacturing method of the carbon fiber which carbonizes the flameproof fiber of Claim 5 in inert atmosphere.
JP2011048637A 2011-03-07 2011-03-07 Heat-treatment furnace, manufacturing method for flame-resistant fiber and manufacturing method for carbon fiber Withdrawn JP2012184527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011048637A JP2012184527A (en) 2011-03-07 2011-03-07 Heat-treatment furnace, manufacturing method for flame-resistant fiber and manufacturing method for carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011048637A JP2012184527A (en) 2011-03-07 2011-03-07 Heat-treatment furnace, manufacturing method for flame-resistant fiber and manufacturing method for carbon fiber

Publications (1)

Publication Number Publication Date
JP2012184527A true JP2012184527A (en) 2012-09-27

Family

ID=47014826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011048637A Withdrawn JP2012184527A (en) 2011-03-07 2011-03-07 Heat-treatment furnace, manufacturing method for flame-resistant fiber and manufacturing method for carbon fiber

Country Status (1)

Country Link
JP (1) JP2012184527A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017082309A1 (en) * 2015-11-10 2017-05-18 東邦テナックス株式会社 Production method for carbon fiber and production method for flame-resistant fiber
WO2022244912A1 (en) * 2021-05-21 2022-11-24 주식회사 삼환티에프 Yarn hot-air heat treatment device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017082309A1 (en) * 2015-11-10 2017-05-18 東邦テナックス株式会社 Production method for carbon fiber and production method for flame-resistant fiber
WO2022244912A1 (en) * 2021-05-21 2022-11-24 주식회사 삼환티에프 Yarn hot-air heat treatment device

Similar Documents

Publication Publication Date Title
JP2010100967A (en) Heat-treatment furnace, flame retardant fiber bundle, and method for producing carbon fiber
JP5487662B2 (en) Heat treatment furnace, flameproof fiber bundle, and method for producing carbon fiber
JP5682626B2 (en) Flameproof heat treatment furnace
EP2868785B1 (en) Carbonization furnace for manufacturing carbon fiber bundles and method for manufacturing carbon fiber bundles
US10222122B2 (en) Oxidation furnace
JP5716872B1 (en) Horizontal heat treatment apparatus and carbon fiber manufacturing method using the horizontal heat treatment apparatus
US10087558B2 (en) Carbon fiber manufacturing method
JP2007247130A (en) Heat-treating furnace and method for producing carbon fiber
JPH07118933A (en) Sealing of continuous kiln for carbon fiber
JP2012184527A (en) Heat-treatment furnace, manufacturing method for flame-resistant fiber and manufacturing method for carbon fiber
JP2009242962A (en) Flameproofing apparatus and method for flameproofing precursor fiber bundle
JPWO2020100714A1 (en) Manufacturing method of flame-resistant fiber bundle and carbon fiber bundle, and flame-resistant furnace
JP2009174078A (en) Carbon fiber production apparatus and method for producing carbon fiber
JP2001194071A (en) Horizontal heat treatment apparatus for thread and heat treatment method therefor
WO2015012311A1 (en) Gas supply blowout nozzle and method for producing carbon fibers and flameproofed fibers using same
JP2014221956A (en) Heat treatment apparatus, and method for producing flame-resistant fiber by using the same
JP2014159658A (en) Heat treatment furnace, and heat treatment method using the same
JP2002194627A (en) Heat-treating oven and method for producing carbon fiber by use of the same
JP2012153987A (en) Heat treatment furnace, and method for producing flameproof fiber bundle and carbon fiber
JP2001288623A (en) Hot air-circulating type convective oven and method for producing flameproof fiber
JP5037977B2 (en) Flameproofing furnace and method for producing flameproofed fiber
JP2007132657A (en) Horizontal heat treatment furnace and heat treatment method
JP2002115125A (en) Heat treatment oven and method for producing carbon fiber using the same
KR101211738B1 (en) Heat treatment apparatus for oxidation of carbon fiber with additional heating fan
JP2008045227A (en) Carbonization furnace and method for producing carbonized fiber

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513