JP2015167463A - Rotary machine high speed driver - Google Patents

Rotary machine high speed driver Download PDF

Info

Publication number
JP2015167463A
JP2015167463A JP2014041832A JP2014041832A JP2015167463A JP 2015167463 A JP2015167463 A JP 2015167463A JP 2014041832 A JP2014041832 A JP 2014041832A JP 2014041832 A JP2014041832 A JP 2014041832A JP 2015167463 A JP2015167463 A JP 2015167463A
Authority
JP
Japan
Prior art keywords
phase
voltage
command
zero
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014041832A
Other languages
Japanese (ja)
Inventor
貴生 中間
Takao Nakama
貴生 中間
大森 洋一
Yoichi Omori
洋一 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2014041832A priority Critical patent/JP2015167463A/en
Publication of JP2015167463A publication Critical patent/JP2015167463A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To maximize the application voltage by controlling the output power of an inverter without being affected by the power factor or current of the motor, in a system for driving a motor having a separated neutral point, by means of two three-phase PWM inverters each having a DC power supply and a secondary battery capable of charging and discharging, as a power supply.SOLUTION: When controlling the output power of an inverter connected with a secondary battery, only by the inner product of the inverter output voltage and the motor current, the output voltage is affected by the power factor. When combining output power control by the 0-phase current, i.e., the sum of three-phase currents of the motor, the output voltage is not affected by the power factor, and the application voltage of motor can be maximized.

Description

本発明は、2台の3相電圧形PWMインバータで中性点が分離された巻線を有する交流電動機を高速駆動するシステムに関するものである。   The present invention relates to a system for high-speed driving of an AC motor having windings with neutral points separated by two three-phase voltage type PWM inverters.

図2における従来技術について以下に説明する。交流電動機1は中性点が分離した端子U1、U2のU相巻線と端子V1、V2のV相巻線と端子W1、W2のW相巻線が施されており、端子U1、V1、W1が第1の3相PWMインバータ2aに接続されていて、端子U2、V2、W2が第2の3相PWMインバータ2bに接続されている。3相PWMインバータ2aには直流電源3から電力が供給されていて、3相PWMインバータ2bにはキャパシタ12から電力が供給されている。前記U1、V1、W1端子から前記U2、V2、W2端子の方向を正として流れる前記交流電動機1の各相の電流iu、iv、iwは電流検出器24により検出され、UVW−dq座標変換器13により式1を用いてd軸成分の電流とそれに直交するq軸成分の電流に変換される。ここでθは、d軸とU相軸との位相差であり軸位置推定器23により出力される。   The prior art in FIG. 2 will be described below. The AC motor 1 is provided with a U-phase winding of terminals U1, U2 and a terminal V1, V2 windings of terminals U1 and U2, and W-phase windings of terminals W1, W2 separated from neutral points. W1 is connected to the first three-phase PWM inverter 2a, and terminals U2, V2, and W2 are connected to the second three-phase PWM inverter 2b. The three-phase PWM inverter 2a is supplied with power from the DC power source 3, and the three-phase PWM inverter 2b is supplied with power from the capacitor 12. Currents iu, iv, iw flowing in the AC motor 1 flowing from the U1, V1, W1 terminals as positive in the directions of the U2, V2, W2 terminals are detected by a current detector 24, and a UVW-dq coordinate converter 13 is converted into a d-axis component current and a q-axis component current orthogonal thereto using Equation 1. Here, θ is a phase difference between the d-axis and the U-phase axis, and is output by the shaft position estimator 23.

(数1)

Figure 2015167463
(Equation 1)
Figure 2015167463

電流指令生成器14はトルク指令Trを入力しd軸電流指令idrとq軸電流指令iqrを出力する。キャパシタ12の電圧e2がその指令e2rに追従するように電圧制御器15でキャパシタ電圧制御電流icが得られる。3相PWMインバータ2aのd軸電流指令idr1は、加算器17でキャパシタ電圧制御電流icとd軸電流指令idrとの和で得られ、q軸電流指令iqr1は、減算器16でq軸電流指令iqrからキャパシタ電圧制御電流icを引くことで得られる。また3相PWMインバータ2bのd軸電流指令idr2は、減算器18でキャパシタ電圧制御電流icからq軸電流指令iqrを引くことで得られ、q軸電流指令iqr2は加算器19でキャパシタ電圧制御電流icとd軸電流指令idrの和で得られる。電流指令idr1、iqr1にUVW−dq座標変換器13出力の電流id、iqが追従するようにdq軸電流制御器20aによって電圧指令vdr1、vqr1が出力され、非干渉補償器21aにより干渉成分を補償する項を足し合わせることで、3相PWMインバータ2aのd軸電圧指令vdrr1とq軸電圧指令vqrr1を得る。同様に、電流指令idr2、iqr2に前記電流id、iqが追従するようにdq軸電流制御器20bによって電圧指令vdr2、vqr2が出力され、非干渉補償器21bにより干渉成分を補償する項を足し合わせることで、3相PWMインバータ2bのd軸電圧指令vdrr2とq軸電圧指令vqrr2を得る。22aは、式2により直流電源3の中間電位を基準とした各相電圧指令vur1、vvr1、vwr1を求めて出力し、22bは、式3によりキャパシタ12の中間電位を基準とした各相電圧指令vur2、vvr2、vwr2を求めて出力する。3相PWMインバータ2aと2bは、入力した指令通りの電圧を出力する。   The current command generator 14 receives the torque command Tr and outputs a d-axis current command idr and a q-axis current command iqr. The voltage controller 15 obtains a capacitor voltage control current ic so that the voltage e2 of the capacitor 12 follows the command e2r. The d-axis current command idr1 of the three-phase PWM inverter 2a is obtained as the sum of the capacitor voltage control current ic and the d-axis current command idr by the adder 17, and the q-axis current command iqr1 is obtained by the subtractor 16 from the q-axis current command. It is obtained by subtracting the capacitor voltage control current ic from iqr. The d-axis current command idr2 of the three-phase PWM inverter 2b is obtained by subtracting the q-axis current command iqr from the capacitor voltage control current ic by the subtractor 18, and the q-axis current command iqr2 is obtained by the adder 19 using the capacitor voltage control current. It is obtained as the sum of ic and d-axis current command idr. The voltage commands vdr1 and vqr1 are output by the dq axis current controller 20a so that the current id and iq output from the UVW-dq coordinate converter 13 follow the current commands idr1 and iqr1, and the non-interference compensator 21a compensates the interference component. By adding these terms, the d-axis voltage command vdrr1 and the q-axis voltage command vqrr1 of the three-phase PWM inverter 2a are obtained. Similarly, the voltage commands vdr2 and vqr2 are output by the dq-axis current controller 20b so that the current id and iq follow the current commands idr2 and iqr2, and the term for compensating the interference component by the non-interference compensator 21b is added. Thus, the d-axis voltage command vdrr2 and the q-axis voltage command vqrr2 of the three-phase PWM inverter 2b are obtained. 22a obtains and outputs each phase voltage command vur1, vvr1, and vwr1 based on the intermediate potential of the DC power source 3 according to Equation 2, and 22b represents each phase voltage command based on the intermediate potential of the capacitor 12 according to Equation 3. vur2, vvr2, and vwr2 are obtained and output. The three-phase PWM inverters 2a and 2b output voltages according to the input command.

(数2)

Figure 2015167463
(数3)
Figure 2015167463
(Equation 2)
Figure 2015167463
(Equation 3)
Figure 2015167463

このように構成することで、力率条件によっては電源電圧以上の電圧を電動機に印加できる。また、交流電動機1の出力トルクを制御するとともに、キャパシタ12の電圧e2はその指令e2rに追従する。よって、交流電動機1が低い電圧しか必要としない低回転運転時は、キャパシタ電圧e2を0に制御し、回転速度の上昇に応じてキャパシタ電圧e2を挙げることで、交流電動機1の印加電圧の高調波成分を小さくすることができる。   With this configuration, a voltage higher than the power supply voltage can be applied to the motor depending on the power factor condition. Moreover, while controlling the output torque of the AC motor 1, the voltage e2 of the capacitor 12 follows the command e2r. Therefore, at the time of low rotation operation where the AC motor 1 requires only a low voltage, the capacitor voltage e2 is controlled to 0, and the capacitor voltage e2 is increased in accordance with the increase in the rotation speed, so that the harmonic of the applied voltage of the AC motor 1 is increased. Wave components can be reduced.

町屋孟、芳賀仁、近藤正示著、「キャパシタ電圧と一定電圧源で駆動するオープン巻線誘導機の可変速制御法」、電気学会全国大会論文集第4分冊、2013年、p.184Satoshi Machiya, Hitoshi Haga and Masami Kondo, “Variable Speed Control Method for Open Winding Induction Machines Driven by Capacitor Voltage and Constant Voltage Source”, Proceedings of the Annual Conference of the Institute of Electrical Engineers of Japan, 2013, p. 184

解決しようとする問題点は、インバータ2bの出力電力は交流電動機のU1、V1、W1端子からU2、V2、W2端子の方向を正として流れる電流ベクトルIとインバータ2bの出力電圧ベクトルVi2との内積なので、電流ベクトルIが0の時はキャパシタの電圧制御ができない点ある。   The problem to be solved is that the output power of the inverter 2b is the inner product of the current vector I flowing positively from the U1, V1, W1 terminals of the AC motor to the U2, V2, W2 terminals and the output voltage vector Vi2 of the inverter 2b. Therefore, when the current vector I is 0, the capacitor voltage cannot be controlled.

また、定常的にキャパシタの電圧を変化させる必要がない場合はインバータ2bの出力電力p2を0にしなければならない。インバータ2bの出力電力p2を0とするには、インバータ2bの出力電圧ベクトルVi2は電流ベクトルIに直交する必要がある。一方電動機電圧ベクトルVimはインバータ2aの出力電圧ベクトルVi1からインバータ2bの出力電圧ベクトルVi2を引いたものである。従って,例えば電動機の力率が1の場合は,VimとIは同一方向を向くので図3に示されるように|Vim|≦|Vi1|となる。つまり、電動機の力率が1の場合はキャパシタ12の電圧に関係なく電動機に印加可能電圧はインバータ2aの出力最大電圧以下に制限されてしまい、電源電圧以上の電圧を電動機に印加できるという特徴が無くなる点である。   When there is no need to constantly change the capacitor voltage, the output power p2 of the inverter 2b must be set to zero. In order to set the output power p2 of the inverter 2b to 0, the output voltage vector Vi2 of the inverter 2b needs to be orthogonal to the current vector I. On the other hand, the motor voltage vector Vim is obtained by subtracting the output voltage vector Vi2 of the inverter 2b from the output voltage vector Vi1 of the inverter 2a. Therefore, for example, when the power factor of the motor is 1, Vim and I are in the same direction, so | Vim | ≦ | Vi1 | as shown in FIG. That is, when the power factor of the motor is 1, regardless of the voltage of the capacitor 12, the voltage that can be applied to the motor is limited to the output maximum voltage of the inverter 2a or less, and a voltage higher than the power supply voltage can be applied to the motor. It is a point that disappears.

本発明は前記問題点を解決するために成されたものであり、両端にそれぞれU1U2とV1V2とW1W2の端子を有して互いに電気的に分離した3相対称巻線を有する交流電動機の前記U1、V1、W1端子から成る第1の端子群を第1の3相電圧形PWMインバータに接続すると共に、前記U2、V2、W2端子から成る第2の端子群を第2の3相電圧形PWMインバータに接続し、前記第1の3相電圧形PWMインバータに第1の直流電圧源を接続し、前記第2の3相電圧形PWMインバータに第2の直流電圧源を接続し、前記第1の直流電圧源と前記第2の直流電圧源との負極同士または正極同士を共通電位で短絡し、前記U1、V1、W1端子から前記U2、V2、W2端子の方向を正として流れる前記交流電動機の各相の電流を検出して3相2相変換した電流ベクトルIと前記各相電流の和相当の0相電流izとを出力する電流変換器と、前記U2、V2、W2端子からの前記U1、V1、W1端子の各電圧からなる前記交流電動機の各相電圧を3相2相変換した電動機電圧ベクトルの電圧指令ベクトルVimrを出力する電動機制御器と、前記第2の3相電圧形PWMインバータの出力電力p2の指令p2rを出力する電力指令器と、前記0相電流の指令を生成する0相電流指令生成器と、該0相電流指令生成器出力の0相電流指令izrに前記0相電流が追従するように前記U1、V1、W1端子の各電位の和から前記U2、V2、W2端子の各電位の和を引いたものに相当する0相電圧の指令である0相電圧指令vzrを出力する0相電流制御器と、前記電流ベクトルIと前記0相電流izと前記電圧指令ベクトルVimrと前記電力指令p2rと前記0相電圧指令vzrと前記第1の直流電圧源電圧e1と前記第2の直流電圧源電圧e2を入力して、前記0相電圧が前記0相電圧指令vzrに一致し、前記電動機電圧ベクトルが前記電圧指令ベクトルVimrに一致するように、前記共通電位からみた前記U1、V1、W1端子と前記U2、V2、W2端子の電圧指令を求めて出力するとともに、前記出力電力p2とその指令p2rとの偏差相当の電力偏差信号を演算して出力するインバータ制御器とを具備し、前記0相電流指令生成器は前記電力偏差信号が小さくなるように0相電流指令izrを求め、前記第1の3相電圧形PWMインバータと前記第2の3相電圧形PWMインバータが前記インバータ制御器出力の電圧指令通りの電圧を出力する。   The present invention has been made to solve the above-mentioned problems, and the U1 of the AC motor has three-phase symmetrical windings that have terminals U1U2, V1V2, and W1W2 at both ends and are electrically separated from each other. , V1 and W1 terminals are connected to a first three-phase voltage source PWM inverter, and a second terminal group consisting of the U2, V2 and W2 terminals is connected to a second three-phase voltage source PWM. An inverter connected, a first DC voltage source connected to the first three-phase voltage source PWM inverter, a second DC voltage source connected to the second three-phase voltage source PWM inverter, and the first The AC motor is configured such that the negative electrodes or the positive electrodes of the DC voltage source and the second DC voltage source are short-circuited at a common potential, and flow from the U1, V1, and W1 terminals to the U2, V2, and W2 terminals as positive. Current of each phase of A current converter that outputs a current vector I obtained by three-phase and two-phase conversion and a zero-phase current iz corresponding to the sum of the respective phase currents, and the U1, V1, and W1 terminals from the U2, V2, and W2 terminals. A motor controller that outputs a voltage command vector Vimr of a motor voltage vector obtained by converting each phase voltage of the AC motor composed of each voltage into a three-phase to two-phase command, and a command for the output power p2 of the second three-phase voltage source PWM inverter A power command device that outputs p2r, a 0-phase current command generator that generates a command for the zero-phase current, and a zero-phase current that follows the zero-phase current command izr output from the zero-phase current command generator. A zero-phase current that outputs a zero-phase voltage command vzr that is a zero-phase voltage command corresponding to the sum of the potentials of the U1, V1, and W1 terminals minus the sum of the potentials of the U2, V2, and W2 terminals. A controller and the current base; Tol I, the zero phase current iz, the voltage command vector Vimr, the power command p2r, the zero phase voltage command vzr, the first DC voltage source voltage e1, and the second DC voltage source voltage e2 are input. The U1, V1, W1 terminals and the U2, V2, and the U1, V1, and W2 terminals as viewed from the common potential so that the zero-phase voltage matches the zero-phase voltage command vzr and the electric motor voltage vector matches the voltage command vector Vimr. An inverter controller that calculates and outputs a power deviation signal corresponding to a deviation between the output power p2 and the command p2r, and obtains and outputs a voltage command for the W2 terminal, and the zero-phase current command generator includes: The zero-phase current command izr is obtained so that the power deviation signal becomes small, and the first three-phase voltage source PWM inverter and the second three-phase voltage source PWM inverter are connected to the inverter. Output the voltage according to the voltage command of the controller output.

第1の直流電圧源と第2の直流電圧源との負極同士を共通電位で短絡した場合で、共通電位からの端子U2、V2、W2の電圧の和相当であるインバータ2bの出力0相電圧v2zを用いて、インバータ2bの出力電力p2は式4で表される。   The output 0-phase voltage of the inverter 2b, which is equivalent to the sum of the voltages of the terminals U2, V2, and W2 from the common potential when the negative electrodes of the first DC voltage source and the second DC voltage source are short-circuited at a common potential The output power p2 of the inverter 2b is expressed by Expression 4 using v2z.

(数4)

Figure 2015167463
(Equation 4)
Figure 2015167463

ここで●はベクトル内積演算を意味する。電流ベクトルIが0の時において、0相電流izが0の場合では、式4よりp2=0となって指令通りの電力をインバータ2bは出力できないが、0相電流指令を増加させることで式4の第2項によってインバータ2bの出力電力を指令通りとすることが可能となる。従って、第2の直流電圧源がキャパシタの場合で電流ベクトルIが0の場合でもキャパシタの電圧制御が可能となる。式4に示されるように、p2=0であっても0相電流izを流すことでIとVi2を必ずしも直交させる必要なくなるので、例えば図4のように電圧ベクトルVi1とVi2を選択することで|Vi1|よりも大きな電圧ベクトルを電動機に印加することができる。   Here, ● means a vector dot product operation. When the current vector I is 0 and the 0-phase current iz is 0, p2 = 0 from Equation 4 and the inverter 2b cannot output the commanded power, but the equation can be increased by increasing the 0-phase current command. According to the second term of 4, the output power of the inverter 2b can be made as commanded. Therefore, even when the second DC voltage source is a capacitor and the current vector I is 0, the capacitor voltage can be controlled. As shown in Equation 4, even if p2 = 0, it is not always necessary to make I and Vi2 orthogonal by flowing the zero-phase current iz. For example, by selecting the voltage vectors Vi1 and Vi2 as shown in FIG. A voltage vector larger than | Vi1 | can be applied to the motor.

本発明の交流電動機ドライブシステムを示した説明図である。It is explanatory drawing which showed the alternating current motor drive system of this invention. 従来の交流電動機ドライブシステムを示した説明図である。It is explanatory drawing which showed the conventional alternating current motor drive system. 従来の交流電動機ドライブシステムの電圧電流ベクトル図である。It is a voltage-current vector diagram of the conventional AC motor drive system. 本発明の交流電動機ドライブシステムの電圧電流ベクトル図である。It is a voltage current vector diagram of the AC motor drive system of the present invention.

図1は本発明の交流電動機ドライブシステムを示した図であり、従来例と共通部分を除いてこの図に基づいて実施例1の説明を以下に示す。   FIG. 1 is a diagram showing an AC motor drive system according to the present invention, and a description of the first embodiment will be given below based on this figure, except for common parts with the conventional example.

インバータ制御器4は以下の処理を行う。まず、式5と式6でインバータ2aの出力0相電圧v1zとインバータ2bの出力0相電圧v2zを得る。ここでMINは()内の最小値を選択することを意味する。v1zは、第1の直流電圧源3aと第2の直流電圧源3bとの負極同士を共通電位で短絡した場合で、共通電位からの端子U1、V1、W1の電圧の和相当である。同様に、v2zは共通電位からの端子U2、V2、W2の電圧の和相当である。   The inverter controller 4 performs the following processing. First, the output 0-phase voltage v1z of the inverter 2a and the output 0-phase voltage v2z of the inverter 2b are obtained by Expressions 5 and 6. Here, MIN means that the minimum value in () is selected. v1z is a case where the negative electrodes of the first DC voltage source 3a and the second DC voltage source 3b are short-circuited at a common potential, and is equivalent to the sum of the voltages at the terminals U1, V1, and W1 from the common potential. Similarly, v2z is equivalent to the sum of the voltages at terminals U2, V2, and W2 from the common potential.

(数5)

Figure 2015167463
(数6)
Figure 2015167463
(Equation 5)
Figure 2015167463
(Equation 6)
Figure 2015167463

次に、インバータ2aの出力電圧ベクトルVi1とインバータ2bの出力電圧ベクトルVi2と電動機電圧ベクトルVimには式7の関係がある。この式を満たすVi1とVi2は無数にあるので例えば、式8、式9とする。   Next, the output voltage vector Vi1 of the inverter 2a, the output voltage vector Vi2 of the inverter 2b, and the motor voltage vector Vim have a relationship of Expression 7. Since there are innumerable Vi1 and Vi2 satisfying this expression, for example, Expression 8 and Expression 9 are used.

(数7)

Figure 2015167463
(数8)
Figure 2015167463
(数9)
Figure 2015167463
(Equation 7)
Figure 2015167463
(Equation 8)
Figure 2015167463
(Equation 9)
Figure 2015167463

Vi1は直交するdq軸の各成分のv1drとv1qrに分解され、v1zとともに式10で共通電位からみたU1、V1、W1端子の電圧指令vur1、vvr1、vwr1を求めて出力する。Vi2は直交するdq軸の各成分のv2drとv2qrに分解され、v2zとともに式11で共通電位からみたU2、V2、W2端子の電圧指令vur2、vvr2、vwr2を求めて出力する。ここでθは、d軸とU相軸との位相差である。   Vi1 is decomposed into v1dr and v1qr of each component of the orthogonal dq axis, and the voltage commands vur1, vvr1, and vwr1 of the U1, V1, and W1 terminals as seen from the common potential are obtained together with v1z according to Equation 10 and output. Vi2 is decomposed into v2dr and v2qr of each component of the orthogonal dq axis, and obtains and outputs voltage commands vur2, vvr2 and vwr2 of the U2, V2 and W2 terminals as seen from the common potential together with v2z in Expression 11. Here, θ is a phase difference between the d-axis and the U-phase axis.

(数10)

Figure 2015167463
(数11)
Figure 2015167463
(Equation 10)
Figure 2015167463
(Equation 11)
Figure 2015167463

そして式4でインバータ2bの出力電力p2を求め、該指令p2rとの偏差を求めて電力偏差信号Sとして0相電流指令生成器9に出力する。0相電流指令生成器9は、例えば電力偏差信号Sを比例積分増幅して0相電流指令izrを出力する。   Then, the output power p2 of the inverter 2b is obtained by Expression 4, and the deviation from the command p2r is obtained and output to the 0-phase current command generator 9 as the power deviation signal S. The zero-phase current command generator 9 performs, for example, proportional integral amplification of the power deviation signal S and outputs a zero-phase current command izr.

実施例1では電動機に電流ベクトルIと0相電流izの和が流れるが、インバータや電動機の許容電流を考えると前記0相電流は0であることが好ましい。そこでVi1とVi2だけで電動機電圧Vimとインバータ2bの出力電力p2を指令通りとすることを原則とし、それができない時のみ0相電流izによるインバータ2bの出力電力p2の制御を行う実施例2の説明を以下に示す。   In the first embodiment, the sum of the current vector I and the zero-phase current iz flows through the motor. However, the zero-phase current is preferably zero considering the allowable current of the inverter and the motor. Therefore, in principle, the motor voltage Vim and the output power p2 of the inverter 2b are set as commanded only by Vi1 and Vi2, and the output power p2 of the inverter 2b is controlled by the 0-phase current iz only when this is not possible. The explanation is shown below.

インバータ制御器4は以下の処理を行う。まず、式5と式6でインバータ2aの出力0相電圧v1zとインバータ2bの出力0相電圧v2zを得る。また式12と式13でインバータ2aの出力可能最大電圧ベクトルの大きさv1mとインバータ2bの出力可能最大電圧ベクトルの大きさv2mを得る。   The inverter controller 4 performs the following processing. First, the output 0-phase voltage v1z of the inverter 2a and the output 0-phase voltage v2z of the inverter 2b are obtained by Expressions 5 and 6. Further, the magnitude v1m of the maximum voltage vector that can be output from the inverter 2a and the magnitude v2m of the maximum voltage vector that can be output from the inverter 2b are obtained by Expressions 12 and 13.

(数12)

Figure 2015167463
(数13)
Figure 2015167463
(Equation 12)
Figure 2015167463
(Equation 13)
Figure 2015167463

次に、式4と式7の関係式があり、p2をp2rに一致させVimをVimrに一致させるインバータ2aの出力電圧ベクトルVi1とインバータ2bの出力電圧ベクトルVi2は無数に存在する。そこで、Vi1の大きさが最小となるようにIとVi1との位相差を0と仮定して、p2をp2rに、VimをVimrに置き換えて式4に式7を代入すると式14となり、式15となり、IとVi1との位相差を0と仮定しているので式16でインバータ2aの仮の出力電圧ベクトルVi1’を得る。   Next, there is a relational expression of Expression 4 and Expression 7, and there are innumerable output voltage vectors Vi1 of the inverter 2a and output voltage vectors Vi2 of the inverter 2b that match p2 with p2r and Vim with Vimr. Therefore, assuming that the phase difference between I and Vi1 is 0 so that the size of Vi1 is minimized, substituting Equation 7 into Equation 4 by substituting p2 for p2r and Vim for Vimr, Equation 14 is obtained. 15 and the phase difference between I and Vi1 is assumed to be 0, so that a temporary output voltage vector Vi1 ′ of the inverter 2a is obtained by Expression 16.

(数14)

Figure 2015167463
(数15)
Figure 2015167463
(数16)
Figure 2015167463
(数17)
Figure 2015167463
(Equation 14)
Figure 2015167463
(Equation 15)
Figure 2015167463
(Equation 16)
Figure 2015167463
(Equation 17)
Figure 2015167463

Vi1’の大きさがv1m以下ならば、それを式17のVi1に代入して得られたVi2をインバータ2bの仮の出力電圧ベクトルVi2’として、Vi2’の大きさがv2m以下ならばVi1’やVi2’をそれぞれVi1とVi2とする。Vi2’の大きさがv2mを超過している場合は、|Vi2|=v2mと式4を満たすVi2の中でVi2’に近い方を選択して式17より得られたVi1をVi1”とする。このVi1”の大きさがv1m以下ならばVi1”をVi1とする。Vi1”の大きさがv1mを超過している場合は、|Vi2|=v2mで|Vi1|=v1mで式17を満たすVi1とVi2を選択する。   If the magnitude of Vi1 ′ is less than or equal to v1m, Vi2 obtained by substituting it into Vi1 in Equation 17 is used as the provisional output voltage vector Vi2 ′ of inverter 2b, and if the magnitude of Vi2 ′ is less than or equal to v2m, Vi1 ′. And Vi2 ′ are Vi1 and Vi2, respectively. When the magnitude of Vi2 ′ exceeds v2m, Vi1 that satisfies | Vi2 | = v2m and Expression 4 that is closer to Vi2 ′ is selected and Vi1 obtained from Expression 17 becomes Vi1 ″. If the size of Vi1 ″ is less than or equal to v1m, Vi1 ″ is set to Vi1. If the size of Vi1 ″ exceeds v1m, | Vi1 | = v2m and | Vi1 | = v1m satisfy Equation 17. Select Vi1 and Vi2.

Vi1’の大きさがv1mを超過している場合は、大きさをv1mでVi1’と同じ向きのベクトルをVi1とし、式17より得られたVi2をVi2”とする。このVi2”の大きさがv2m以下の場合はVi2”をVi2とする。Vi2”の大きさがv2mを超過している場合は、|Vi2|=v2mで|Vi1|=v1mで式17を満たすVi1とVi2を選択する。以上でインバータ2aの出力電圧ベクトルVi1とインバータ2bの出力電圧ベクトルVi2を決定できる。   When the size of Vi1 ′ exceeds v1m, the vector having the size v1m and the same direction as Vi1 ′ is Vi1, and Vi2 obtained from Expression 17 is Vi2 ″. The size of Vi2 ″ Vi2 ″ is set to Vi2 when V2m is less than or equal to v2m. When Vi2 ″ exceeds v2m, Vi1 | = v2m is satisfied, and | Vi1 | = v1m is selected to satisfy Vi1 and Vi2. . Thus, the output voltage vector Vi1 of the inverter 2a and the output voltage vector Vi2 of the inverter 2b can be determined.

式4よりインバータ2bの出力電力p2を求めて、p2r>p2の場合に電力偏差信号S=−1、p2r<p2の場合に電力偏差信号S=1、p2r=p2の場合に電力偏差信号S=0とする。Vi1は直交するdq軸の各成分のv1drとv1qrに分解され、v1zとともに式10で共通電位からみたU1、V1、W1端子の電圧指令vur1、vvr1、vwr1を求めて出力する。Vi2は直交するdq軸の各成分のv2drとv2qrに分解され、v2zとともに式11で共通電位からみたU2、V2、W2端子の電圧指令vur2、vvr2、vwr2を求めて出力する。0相電流指令生成器9は、例えば電力偏差信号Sを入力し、S=0の時は出力する0相電流指令izrを徐々に0に近づけて、S=1の時は0相電流指令izrを徐々に正に増加させ、S=−1の時は0相電流指令izrを徐々に負に増加させる。   The output power p2 of the inverter 2b is obtained from Equation 4, and the power deviation signal S = −1 when p2r> p2, the power deviation signal S = 1 when p2r <p2, and the power deviation signal S when p2r = p2. = 0. Vi1 is decomposed into v1dr and v1qr of each component of the orthogonal dq axis, and the voltage commands vur1, vvr1, and vwr1 of the U1, V1, and W1 terminals as seen from the common potential are obtained together with v1z according to Equation 10 and output. Vi2 is decomposed into v2dr and v2qr of each component of the orthogonal dq axis, and obtains and outputs voltage commands vur2, vvr2 and vwr2 of the U2, V2 and W2 terminals as seen from the common potential together with v2z in Expression 11. The zero-phase current command generator 9 receives, for example, the power deviation signal S. When S = 0, the zero-phase current command izr is gradually brought closer to 0, and when S = 1, the zero-phase current command izr Is gradually increased to positive, and when S = −1, the zero-phase current command izr is gradually increased to negative.

第1の3相PWMインバータの電源として放電のみが可能な直流電源と、第2の3相PWMインバータの電源として充放電が可能な2次電池が接続された、中性点が分離された巻線を有する交流電動機を駆動するシステムにおいて、交流電動機制御とは個別に2次電池の充放電電力を制御できるとともに、交流電動機の力率に関係なく印加できる電圧を上昇させることが可能となる。たとえば第1の3相PWMインバータの直流電源を燃料電池またはエンジン発電機とし、第2の3相PWMインバータの2次電池をキャパシタやバッテリとした電気自動車に適応した場合、交流電動機制御とバッテリの充放電を個別に制御できるだけでなく、電気自動車の最高速度を高めることができる。   A neutrally separated winding in which a DC power source that can only be discharged is connected as a power source for the first three-phase PWM inverter, and a secondary battery that can be charged and discharged is connected as a power source for the second three-phase PWM inverter. In a system for driving an AC motor having a line, the charge / discharge power of the secondary battery can be controlled separately from the AC motor control, and the voltage that can be applied regardless of the power factor of the AC motor can be increased. For example, when the DC power source of the first three-phase PWM inverter is a fuel cell or an engine generator, and the secondary battery of the second three-phase PWM inverter is a capacitor or battery, the AC motor control and the battery Not only can charging and discharging be individually controlled, but also the maximum speed of the electric vehicle can be increased.

1 交流電動機
2a、2b 3相PWMインバータ
3、3a、3b 直流電源
4 インバータ制御器
5、24 電流検出器
6 電流変換器
7 電力指令器
8 電動機制御器
9 0相電流指令生成器
10 0相電流制御器
11a、11b 電圧検出器
12 キャパシタ
13 UVW−dq座標変換器
14 電流指令生成器
15 電圧制御器
16、18 減算器
17、19 加算器
20a、20b dq軸電流制御器
21a、21b 非干渉補償器
22a、22b dq−UVW座標変換器
23 軸位置推定器
DESCRIPTION OF SYMBOLS 1 AC motor 2a, 2b 3 phase PWM inverter 3, 3a, 3b DC power supply 4 Inverter controller 5, 24 Current detector 6 Current converter 7 Power command device 8 Motor controller 9 0 phase current command generator 10 0 phase current Controller 11a, 11b Voltage detector 12 Capacitor 13 UVW-dq coordinate converter 14 Current command generator 15 Voltage controller 16, 18 Subtractor 17, 19 Adder 20a, 20b dq axis current controller 21a, 21b Non-interference compensation 22a, 22b dq-UVW coordinate converter 23 Axis position estimator

Claims (1)

両端にそれぞれU1U2とV1V2とW1W2の端子を有して互いに電気的に分離した3相対称巻線を有する交流電動機の前記U1、V1、W1端子から成る第1の端子群を第1の3相電圧形PWMインバータに接続すると共に、前記U2、V2、W2端子から成る第2の端子群を第2の3相電圧形PWMインバータに接続し、前記第1の3相電圧形PWMインバータに第1の直流電圧源を接続し、前記第2の3相電圧形PWMインバータに第2の直流電圧源を接続し、前記第1の直流電圧源と前記第2の直流電圧源との負極同士または正極同士を共通電位で短絡し、前記U1、V1、W1端子から前記U2、V2、W2端子の方向を正として流れる前記交流電動機の各相の電流を検出して3相2相変換した電流ベクトルIと前記各相電流の和相当の0相電流izとを出力する電流変換器と、前記U2、V2、W2端子からの前記U1、V1、W1端子の各電圧からなる前記交流電動機の各相電圧を3相2相変換した電動機電圧ベクトルの電圧指令ベクトルVimrを出力する電動機制御器と、前記第2の3相電圧形PWMインバータの出力電力p2の指令p2rを出力する電力指令器と、前記0相電流の指令を生成する0相電流指令生成器と、該0相電流指令生成器出力の0相電流指令izrに前記0相電流が追従するように前記U1、V1、W1端子の各電位の和から前記U2、V2、W2端子の各電位の和を引いたものに相当する0相電圧の指令である0相電圧指令vzrを出力する0相電流制御器と、前記電流ベクトルIと前記0相電流izと前記電圧指令ベクトルVimrと前記電力指令p2rと前記0相電圧指令vzrと前記第1の直流電圧源電圧e1と前記第2の直流電圧源電圧e2を入力して、前記0相電圧が前記0相電圧指令vzrに一致し、前記電動機電圧ベクトルが前記電圧指令ベクトルVimrに一致するように、前記共通電位からみた前記U1、V1、W1端子と前記U2、V2、W2端子の電圧指令を求めて出力するとともに、前記出力電力p2とその指令p2rとの偏差相当の電力偏差信号を演算して出力するインバータ制御器とを具備し、前記0相電流指令生成器は前記電力偏差信号が小さくなるように0相電流指令izrを求め、前記第1の3相電圧形PWMインバータと前記第2の3相電圧形PWMインバータが前記インバータ制御器出力の電圧指令通りの電圧を出力する回転機高速駆動装置。
A first terminal group consisting of the U1, V1 and W1 terminals of an AC motor having three-phase symmetrical windings that are electrically separated from each other with terminals of U1U2, V1V2, and W1W2 at both ends is a first three-phase. The second terminal group consisting of the U2, V2, and W2 terminals is connected to a second three-phase voltage source PWM inverter and connected to the first three-phase voltage source PWM inverter. And a second DC voltage source is connected to the second three-phase voltage source PWM inverter, and the negative or positive electrodes of the first DC voltage source and the second DC voltage source are connected to each other. A current vector I obtained by short-circuiting each other at a common potential, detecting a current of each phase of the AC motor flowing from the U1, V1, and W1 terminals in the positive direction of the U2, V2, and W2 terminals and performing a three-phase to two-phase conversion. And for each phase current Three-phase to two-phase conversion is performed on each phase voltage of the AC motor including the current converter that outputs a corresponding zero-phase current iz and the voltages of the U1, V1, and W1 terminals from the U2, V2, and W2 terminals. A motor controller that outputs a voltage command vector Vimr of the motor voltage vector, a power commander that outputs a command p2r of output power p2 of the second three-phase voltage source PWM inverter, and a command for the zero-phase current are generated. From the sum of the potentials of the U1, V1, and W1 terminals, the U2, V2, and the zero phase current command generator and the zero phase current command izr of the zero phase current command generator output are followed by the zero phase current command izr. A zero-phase current controller that outputs a zero-phase voltage command vzr that is a zero-phase voltage command corresponding to a value obtained by subtracting the sum of the potentials of the W2 terminal, the current vector I, the zero-phase current iz, and the voltage command Vector Vim And the power command p2r, the zero-phase voltage command vzr, the first DC voltage source voltage e1, and the second DC voltage source voltage e2, and the zero-phase voltage is equal to the zero-phase voltage command vzr. Then, the voltage command of the U1, V1, W1 terminal and the U2, V2, W2 terminal viewed from the common potential is obtained and output so that the motor voltage vector matches the voltage command vector Vimr, and the output An inverter controller that calculates and outputs a power deviation signal corresponding to a deviation between the power p2 and the command p2r, and the zero-phase current command generator generates a zero-phase current command izr so that the power deviation signal becomes small. The first three-phase voltage source PWM inverter and the second three-phase voltage source PWM inverter output a voltage according to the voltage command of the inverter controller output. Drive device.
JP2014041832A 2014-03-04 2014-03-04 Rotary machine high speed driver Pending JP2015167463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014041832A JP2015167463A (en) 2014-03-04 2014-03-04 Rotary machine high speed driver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014041832A JP2015167463A (en) 2014-03-04 2014-03-04 Rotary machine high speed driver

Publications (1)

Publication Number Publication Date
JP2015167463A true JP2015167463A (en) 2015-09-24

Family

ID=54258088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014041832A Pending JP2015167463A (en) 2014-03-04 2014-03-04 Rotary machine high speed driver

Country Status (1)

Country Link
JP (1) JP2015167463A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135797A (en) * 1993-11-09 1995-05-23 Takao Kawabata Inverter device
JP2000125411A (en) * 1998-10-13 2000-04-28 Toyota Motor Corp Motor driving equipment
JP2000324871A (en) * 1999-04-30 2000-11-24 Toyota Motor Corp Power conversion system
JP2006211891A (en) * 2005-01-26 2006-08-10 General Motors Corp <Gm> Method of controlling integrated power in double-ended inverter drive system for hybrid vehicle
JP2006238686A (en) * 2005-01-26 2006-09-07 General Motors Corp <Gm> Double-ended inverter drive system topology for hybrid vehicle
US20090134828A1 (en) * 2007-11-27 2009-05-28 Gm Global Technology Operations, Inc. Method and system for operating an electric motor coupled to multiple power supplies

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135797A (en) * 1993-11-09 1995-05-23 Takao Kawabata Inverter device
JP2000125411A (en) * 1998-10-13 2000-04-28 Toyota Motor Corp Motor driving equipment
JP2000324871A (en) * 1999-04-30 2000-11-24 Toyota Motor Corp Power conversion system
JP2006211891A (en) * 2005-01-26 2006-08-10 General Motors Corp <Gm> Method of controlling integrated power in double-ended inverter drive system for hybrid vehicle
JP2006238686A (en) * 2005-01-26 2006-09-07 General Motors Corp <Gm> Double-ended inverter drive system topology for hybrid vehicle
US20090134828A1 (en) * 2007-11-27 2009-05-28 Gm Global Technology Operations, Inc. Method and system for operating an electric motor coupled to multiple power supplies

Similar Documents

Publication Publication Date Title
US9374033B2 (en) Three-level power conversion apparatus
JP4883151B2 (en) Rotating machine control device
US8441225B2 (en) Direct-current to three-phase alternating-current inverter system
JP2009232531A (en) Controller for rotating machine, and control system for rotating machine
JP2016208668A (en) Controller of three-phase rotary machine
JP6308180B2 (en) Control device for rotating electrical machine
JP5104721B2 (en) Field winding type synchronous machine controller and control system
US8736221B2 (en) Direct-current to three-phase alternating-current inverter system
US20190052211A1 (en) Control apparatus for ac motor
JP6459783B2 (en) Control device for rotating electrical machine
Ito et al. Independent control of two permanent-magnet synchronous motors fed by a four-leg inverter
Lee et al. Power enhancement of dual inverter for open-end permanent magnet synchronous motor
Foti et al. Asymmetrical hybrid unidirectional T-type rectifier for high-speed gen-set applications
JP2016054594A (en) Motor control device
WO2019102539A1 (en) Rotating electric machine control device and electric vehicle
WO2018116668A1 (en) Motor control device and electric vehicle
JP6176663B2 (en) AC motor drive system
JP2015167463A (en) Rotary machine high speed driver
Vivek et al. A five-level inverter topology with extended linear modulation range till full base speed irrespective of load power factor
JP2012016234A (en) Control device for rotating device
JP5525747B2 (en) Converter control device
JP2016052167A (en) Power conversion device
JP2017017947A (en) Power conversion device
WO2024095475A1 (en) Motor control method and motor control device
JP2017093007A (en) Motor controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180214