JP6176663B2 - AC motor drive system - Google Patents

AC motor drive system Download PDF

Info

Publication number
JP6176663B2
JP6176663B2 JP2013207887A JP2013207887A JP6176663B2 JP 6176663 B2 JP6176663 B2 JP 6176663B2 JP 2013207887 A JP2013207887 A JP 2013207887A JP 2013207887 A JP2013207887 A JP 2013207887A JP 6176663 B2 JP6176663 B2 JP 6176663B2
Authority
JP
Japan
Prior art keywords
voltage
vector
phase
pwm inverter
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013207887A
Other languages
Japanese (ja)
Other versions
JP2015073373A (en
Inventor
大森 洋一
洋一 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2013207887A priority Critical patent/JP6176663B2/en
Publication of JP2015073373A publication Critical patent/JP2015073373A/en
Application granted granted Critical
Publication of JP6176663B2 publication Critical patent/JP6176663B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

本発明は、2台の3相電圧形PWMインバータで中性点が分離された巻線を有する交流電動機を駆動するシステムに関する。   The present invention relates to a system for driving an AC motor having a winding with a neutral point separated by two three-phase voltage type PWM inverters.

図2における従来技術について以下に説明する。交流電動機1は、中性点が分離した端子U1、U2のU相巻線と端子V1、V2のV相巻線と端子W1、W2のW相巻線が施されており、端子U1、V1、W1が3相PWMインバータ7の出力に接続されていて、端子U2、V2、W2が3相PWMインバータ8の出力に接続されている。3相PWMインバータ7には電圧E1の直流電圧源2から電力が供給されていて、3相PWMインバータ8には電圧E2のキャパシタ4から電力が供給されている。端子U1、V1、W1から端子U2、V2、W2へ流れる方向を正とする各相巻線iu、iv、iwの電流は、電流検出器5により検出され、座標変換器13で式1を用いて電流ベクトルIの各成分ia、ibとなり、式2で静止座標のa軸からの位相差θのd軸とそれに直交するq軸の成分に変換される。   The prior art in FIG. 2 will be described below. The AC motor 1 is provided with a U-phase winding of terminals U1 and U2, a terminal V1, a V-phase winding of V2, and a W-phase winding of terminals W1 and W2 separated from neutral points. , W1 are connected to the output of the three-phase PWM inverter 7, and the terminals U2, V2, W2 are connected to the output of the three-phase PWM inverter 8. The three-phase PWM inverter 7 is supplied with electric power from the DC voltage source 2 having the voltage E1, and the three-phase PWM inverter 8 is supplied with electric power from the capacitor 4 having the voltage E2. The current of each phase winding iu, iv, iw with the direction flowing from the terminals U1, V1, W1 to the terminals U2, V2, W2 as positive is detected by the current detector 5, and the coordinate converter 13 uses Equation 1 Thus, each component ia and ib of the current vector I is converted into a d-axis component of the phase difference θ from the a-axis of the stationary coordinates and a q-axis component orthogonal thereto by the equation (2).

Figure 0006176663
Figure 0006176663
Figure 0006176663
Figure 0006176663

電流指令演算器11は、トルク指令Trと2次鎖交磁束の大きさ指令φ2rを入力し、交流電動機1の出力トルクTと2次鎖交磁束ベクトルの大きさφ2がそれぞれ前記指令に一致するように、前記d軸の電流の指令idrとq軸の電流指令iqrを求めて出力する。キャパシタ4の電圧とその指令E2rとの差が減算器38で求められ、比例積分増幅器24で増幅されてキャパシタ電圧制御電流icが得られる。3相PWMインバータ7用のd軸電流指令idr1は、加算器27でキャパシタ電圧制御電流icとd軸電流指令idrとの和で得られる。3相PWMインバータ7用のq軸電流指令iqr1は、減算器37でq軸電流指令iqrからキャパシタ電圧制御電流icを引くことで得られる。また3相PWMインバータ8用のd軸電流指令idr2は、減算器39でキャパシタ電圧制御電流icからq軸電流指令iqrを引くことで得られ、3相PWMインバータ8用のq軸電流指令iqr2は、加算器32でのキャパシタ電圧制御電流icとd軸電流指令idrとの和で得られる。電流指令idr1、iqr1と座標変換器13出力のid、iqとの偏差が減算器35、36で求められて、それぞれ比例積分増幅器20、21で増幅されて、非干渉制御器55の出力との和を加算器29、28で求めることで3相PWMインバータ7用のd軸電圧指令vdr1とq軸電圧指令vqr1となる。同様に電流指令idr2、iqr2と座標変換器13出力のid、iqとの偏差が減算器41、40で求められて、それぞれ比例積分増幅器22、23で増幅されて、非干渉制御器56の出力との和を加算器31、30で求めることで3相PWMインバータ8用のd軸電圧指令vdr2とq軸電圧指令vqr2となる。vdr1とvqr1は、座標変換器12により、静止座標の電圧成分を持つ電圧指令ベクトルVi1rに変換されて3相PWMインバータ7に出力される。3相PWMインバータ7は、入力した電圧指令ベクトル相当の電圧を出力する。vdr2とvqr2は、座標変換器14により、静止座標の電圧成分を持つ電圧指令ベクトルVi2rに変換されて3相PWMインバータ8に出力される。3相PWMインバータ8は、入力した電圧指令ベクトル相当の電圧を出力する。座標演算器57は、d軸位相θを求めて座標変換器12、13、14に出力する。   The current command calculator 11 receives the torque command Tr and the secondary linkage magnetic flux magnitude command φ2r, and the output torque T of the AC motor 1 and the secondary linkage flux vector magnitude φ2 respectively match the commands. Thus, the d-axis current command idr and the q-axis current command iqr are obtained and output. The difference between the voltage of the capacitor 4 and its command E2r is obtained by the subtractor 38 and amplified by the proportional-integral amplifier 24 to obtain the capacitor voltage control current ic. The d-axis current command idr1 for the three-phase PWM inverter 7 is obtained by the adder 27 as the sum of the capacitor voltage control current ic and the d-axis current command idr. The q-axis current command iqr1 for the three-phase PWM inverter 7 is obtained by subtracting the capacitor voltage control current ic from the q-axis current command iqr by the subtractor 37. The d-axis current command idr2 for the three-phase PWM inverter 8 is obtained by subtracting the q-axis current command iqr from the capacitor voltage control current ic by the subtractor 39, and the q-axis current command iqr2 for the three-phase PWM inverter 8 is The sum of the capacitor voltage control current ic and the d-axis current command idr in the adder 32 is obtained. Deviations between the current commands idr1 and iqr1 and the id and iq of the coordinate converter 13 are obtained by subtractors 35 and 36, amplified by proportional-integral amplifiers 20 and 21, respectively, and output from the non-interference controller 55. By obtaining the sum by the adders 29 and 28, the d-axis voltage command vdr1 and the q-axis voltage command vqr1 for the three-phase PWM inverter 7 are obtained. Similarly, deviations between the current commands idr2 and iqr2 and the id and iq of the coordinate converter 13 are obtained by the subtractors 41 and 40, amplified by the proportional-integral amplifiers 22 and 23, respectively, and output from the non-interference controller 56 Is obtained by the adders 31 and 30 to obtain the d-axis voltage command vdr2 and the q-axis voltage command vqr2 for the three-phase PWM inverter 8. The vdr1 and vqr1 are converted by the coordinate converter 12 into a voltage command vector Vi1r having a voltage component of stationary coordinates and output to the three-phase PWM inverter 7. The three-phase PWM inverter 7 outputs a voltage corresponding to the input voltage command vector. vdr2 and vqr2 are converted into a voltage command vector Vi2r having a voltage component of stationary coordinates by the coordinate converter 14 and output to the three-phase PWM inverter 8. The three-phase PWM inverter 8 outputs a voltage corresponding to the input voltage command vector. The coordinate calculator 57 calculates the d-axis phase θ and outputs it to the coordinate converters 12, 13, and 14.

このような構成にすることで、交流電動機1の出力トルクがトルク指令Trに追従するようになり、キャパシタ4の電圧E2はその指令E2rに一致するようになる。よって、交流電動機1が低い電圧しか必要としない低い回転数の時は、キャパシタ4の電圧を低い値に制御し、回転速度に応じてキャパシタ電圧を上げることで、交流電動機1の印加電圧の高調波成分を小さくすることができる。   With such a configuration, the output torque of the AC motor 1 follows the torque command Tr, and the voltage E2 of the capacitor 4 matches the command E2r. Therefore, when the AC motor 1 has a low rotational speed that requires only a low voltage, the voltage of the capacitor 4 is controlled to a low value, and the capacitor voltage is increased in accordance with the rotational speed, whereby the harmonic of the applied voltage of the AC motor 1 is increased. Wave components can be reduced.

町屋孟、芳賀仁、近藤正示著、「キャパシタ電圧と一定電圧源で駆動するオープン巻線誘導機の可変速制御法」、電気学会全国大会論文集第4分冊、2013年、p.184Satoshi Machiya, Hitoshi Haga and Masami Kondo, “Variable Speed Control Method for Open Winding Induction Machines Driven by Capacitor Voltage and Constant Voltage Source”, Proceedings of the Annual Conference of the Institute of Electrical Engineers of Japan, 2013, p. 184

図2に示されている従来技術においては、キャパシタ4の電圧制御の為に、各軸の電流指令が補正されており、その電流指令に追従するように交流電動機1の電流を制御しているので、キャパシタ電圧制御によって電動機電流が変化し電動機制御特性が変化することとなる。つまり、電動機制御とキャパシタ電圧制御が分離されていないので、それぞれの制御が他方の制御に影響を及ぼすこととなり、比例積分増幅器24の調整が困難となる。また、例えばd軸電流を制御するために20と22の2つの比例積分増幅器を使用していることから両者が干渉しあって制御が不安定になる可能性がある。   In the prior art shown in FIG. 2, the current command of each axis is corrected for voltage control of the capacitor 4, and the current of the AC motor 1 is controlled so as to follow the current command. Therefore, the motor current changes due to the capacitor voltage control, and the motor control characteristics change. That is, since the motor control and the capacitor voltage control are not separated, each control affects the other control, and adjustment of the proportional-integral amplifier 24 becomes difficult. Further, for example, since two proportional integration amplifiers 20 and 22 are used to control the d-axis current, both may interfere with each other and control may become unstable.

本発明は上記問題点を解決するためになされたものであり、両端にそれぞれU1U2とV1V2とW1W2の端子を有して互いに電気的に分離した3相対称巻線を有する交流電動機の前記U1、V1、W1端子から成る第1の端子群を第1の3相電圧形PWMインバータに接続すると共に、前記U2、V2、W2端子から成る第2の端子群を第2の3相電圧形PWMインバータに接続し、前記第1の3相電圧形PWMインバータの直流電圧源と前記第2の3相電圧形PWMインバータの直流電圧源とを分離した交流電動機ドライブシステムにおいて、前記U1、V1、W1端子から前記U2、V2、W2端子の方向を正として流れる前記交流電動機の各相の電流を検出して3相2相変換して電流ベクトルIを出力する電流変換器と、前記U2、V2、W2端子からの前記U1、V1、W1端子の各電圧からなる前記交流電動機の各相電圧を3相2相変換した電圧ベクトルの電圧指令ベクトルVmrを出力する電動機電圧指令生成器と、前記第2の3相電圧形PWMインバータの出力電力である電力指令P2を出力する電力指令器と、前記電流ベクトルIと前記電圧指令ベクトルVmrと前記電力指令P2とを入力して、第1の電圧指令ベクトルVi1rと第2の電圧指令ベクトルVi2rとの差を前記電圧指令ベクトルVmrに一致させ、前記第2の電圧指令ベクトルVi2rと前記電流ベクトルIとの内積を前記電力指令P2の極性反転に一致させ、前記第2の電圧指令ベクトルVi2rの大きさを前記第2の3相電圧形PWMインバータが出力可能な最大電圧ベクトルの大きさに制限した上で前記第1の電圧指令ベクトルVi1rの大きさを最小とするような前記第1の電圧指令ベクトルVi1rと前記第2の電圧指令ベクトルVi2rとを出力するベクトル演算器とを具備し、前記第1の3相電圧形PWMインバータは前記第1の電圧指令ベクトルVi1rを出力するように動作させ、前記第2の3相電圧形PWMインバータは前記第2の電圧指令ベクトルVi2rを出力するように動作させることを特徴とする交流電動機ドライブシステム。 The present invention has been made in order to solve the above-mentioned problems, and the U1 of the AC motor having three-phase symmetrical windings having terminals U1U2, V1V2 and W1W2 at both ends and electrically separated from each other, A first terminal group consisting of V1 and W1 terminals is connected to a first three-phase voltage source PWM inverter, and a second terminal group consisting of U2, V2 and W2 terminals is connected to a second three-phase voltage source PWM inverter. In the AC motor drive system in which the DC voltage source of the first three-phase voltage source PWM inverter and the DC voltage source of the second three-phase voltage source PWM inverter are separated, the U1, V1, and W1 terminals A current converter for detecting a current of each phase of the AC motor flowing with the directions of the U2, V2, and W2 terminals being positive from each other and performing three-phase to two-phase conversion to output a current vector I; U2 A motor voltage command generator that outputs a voltage command vector Vmr of a voltage vector obtained by three-phase to two-phase conversion of each phase voltage of the AC motor consisting of voltages of the U1, V1, and W1 terminals from the V2 and W2 terminals; A power command device that outputs a power command P2 that is output power of the second three-phase voltage source PWM inverter, the current vector I, the voltage command vector Vmr, and the power command P2 are input, and the first voltage The difference between the command vector Vi1r and the second voltage command vector Vi2r is matched with the voltage command vector Vmr, and the inner product of the second voltage command vector Vi2r and the current vector I is matched with the polarity inversion of the power command P2. And the magnitude of the second voltage command vector Vi2r is the magnitude of the maximum voltage vector that can be output by the second three-phase voltage source PWM inverter. A vector calculator that outputs the first voltage command vector Vi1r and the second voltage command vector Vi2r so as to minimize the magnitude of the first voltage command vector Vi1r; The first three-phase voltage source PWM inverter is operated to output the first voltage command vector Vi1r, and the second three-phase voltage source PWM inverter is configured to output the second voltage command vector Vi2r. AC motor drive system characterized in that

本発明により、電圧指令生成器出力の電動機電圧指令ベクトルと第2の3相電圧形PWMインバータが出力する電力の指令から、ベクトル演算器により第1及び第2の3相電圧形PWMインバータの出力すべき電圧ベクトルを得ることができるので、電動機電圧制御とキャパシタ電圧制御を完全に切り離すことができ、電圧指令生成器に電動機制御機能を入れることで、電動機のトルク制御や電流制御からキャパシタ電圧制御を完全に切り離すことができる。   According to the present invention, from the motor voltage command vector output from the voltage command generator and the power command output from the second three-phase voltage source PWM inverter, the vector calculator outputs the first and second three-phase voltage source PWM inverters. Since the voltage vector to be obtained can be obtained, the motor voltage control and the capacitor voltage control can be completely separated, and by adding the motor control function to the voltage command generator, the capacitor voltage control from the torque control and current control of the motor Can be completely separated.

本発明の交流電動機ドライブシステムを示した説明図である。(実施例1)It is explanatory drawing which showed the alternating current motor drive system of this invention. Example 1 従来の交流電動機ドライブシステムを示した説明図である。It is explanatory drawing which showed the conventional alternating current motor drive system.

図1は、本発明の交流電動機ドライブシステムを示した説明図であり、この図に基づいて実施例1の説明を以下に示す。電圧指令生成器70は、式3に示されるVma、Vmbを成分とする交流電動機1の電圧ベクトルVmの指令Vmrを出力する。電圧指令生成器70において、例えばV/f一定制御を行うのであればその結果としての電圧指令ベクトルを、または交流電動機1の出力トルク制御を行うのであればその為のベクトル制御演算結果としての電圧指令ベクトルを出力することとなる。電流検出器5で検出した交流電動機1の電流から電流ベクトル変換器66は、式1の演算でia、ibを成分とする電流ベクトルIを出力する。減算器45でキャパシタ4の電圧E2とその指令E2rとの偏差を求め、比例積分増幅器26で増幅して3相PWMインバータ8の出力電力の指令P2が得られる。つまり、3相PWMインバータ8の出力電力がP2に追従するならば、P2が正ならばキャパシタ4の電圧E2は減少し、P2が負ならばE2は増加することとなる。ベクトル演算器80は、電流ベクトルIと電圧指令ベクトルVmrと3相PWMインバータ8出力電力指令P2とを入力して以下の手順で3相PWMインバータ7の出力電圧ベクトルの指令Vi1rと3相PWMインバータ8の出力電圧ベクトルの指令Vi2rを出力する。   FIG. 1 is an explanatory view showing an AC motor drive system of the present invention, and a description of the first embodiment will be given below based on this figure. The voltage command generator 70 outputs a command Vmr of the voltage vector Vm of the AC motor 1 having Vma and Vmb shown in Equation 3 as components. In the voltage command generator 70, for example, if the V / f constant control is performed, the resulting voltage command vector, or if the output torque control of the AC motor 1 is performed, the voltage as the vector control calculation result therefor A command vector is output. From the current of the AC motor 1 detected by the current detector 5, the current vector converter 66 outputs a current vector I having ia and ib as components in the calculation of Equation 1. The subtracter 45 obtains the deviation between the voltage E2 of the capacitor 4 and its command E2r, and amplifies it by the proportional-integral amplifier 26 to obtain the command P2 of the output power of the three-phase PWM inverter 8. That is, if the output power of the three-phase PWM inverter 8 follows P2, the voltage E2 of the capacitor 4 decreases if P2 is positive, and E2 increases if P2 is negative. The vector calculator 80 receives the current vector I, the voltage command vector Vmr, and the three-phase PWM inverter 8 output power command P2, and outputs the output voltage vector command Vi1r of the three-phase PWM inverter 7 and the three-phase PWM inverter in the following procedure. 8 output voltage vector command Vi2r is output.

Figure 0006176663
Figure 0006176663

ベクトル演算器80において、電流ベクトルIと電圧指令ベクトルVmrとが原点Oを基準に描かれたベクトル図上で、電圧指令ベクトルVmrの頂点Aを通る電流ベクトルIに平行な線aを描き、該線a上で電流ベクトルIの逆向きを正として頂点Aからの距離を、電力指令P2を電流ベクトルIの大きさで除した値とした点Bをとり、点Bから前記線aに垂直な垂線bを描き、原点Oを通り電流ベクトルIに平行な線cと垂線bとの交点をCとし、3相電圧形PWMインバータ8が出力できる電圧ベクトルの最大の大きさVi2xを半径として頂点Aを中心とする円弧dと垂線bとの交点をDとし、交点Cと交点Dのなかで頂点Aからの距離が短い方を交点Eとし、頂点Aから交点Eに向くベクトルを電圧指令ベクトルVi2rとして出力し、原点Oから交点Eに向くベクトルを電圧指令ベクトルVi1rとして出力する。   In the vector computing unit 80, a line a parallel to the current vector I passing through the vertex A of the voltage command vector Vmr is drawn on the vector diagram in which the current vector I and the voltage command vector Vmr are drawn with the origin O as a reference. On the line a, the point B is defined as the value obtained by dividing the power command P2 by the magnitude of the current vector I with the reverse direction of the current vector I being positive and the distance from the vertex A being perpendicular to the line a. A perpendicular line b is drawn, the intersection point of the line c and the perpendicular line b passing through the origin O and parallel to the current vector I is defined as C, and the maximum voltage vector Vi2x that can be output by the three-phase voltage source PWM inverter 8 is defined as the radius A. The intersection point of the arc d and the perpendicular line b centered at is D, the shortest distance from the vertex A among the intersection points C and D is the intersection point E, and the vector from the vertex A toward the intersection point E is the voltage command vector Vi2r. As out , And it outputs a vector directed from the origin O at the intersection E as a voltage vector Vi1r.

3相PWMインバータ7は、入力した電圧指令ベクトルVi1r通りの電圧を出力し、3相PWMインバータ8は、入力した電圧指令ベクトルVi2r通りの電圧を出力する。   The three-phase PWM inverter 7 outputs a voltage according to the input voltage command vector Vi1r, and the three-phase PWM inverter 8 outputs a voltage according to the input voltage command vector Vi2r.

以上の構成により、ベクトル演算器80において、Vi1r=Vmr+Vi2rの関係があり、3相PWMインバータ7の出力電圧ベクトルVi1と3相PWMインバータ8の出力電圧ベクトルVi2と交流電動機1の電圧ベクトルVmにはVi1=Vm+Vi2の関係があり、3相PWMインバータ7や3相PWMインバータ8はVi1=Vi1r、Vi2=Vi2rとするので、電圧指令ベクトルVmr通りの電圧が交流電動機1に印加されることとなる。また、ベクトル演算器80において、電流ベクトルIと電圧指令ベクトルVi2rとの内積が(−P2)と一致するようにしているので、3相PWMインバータ8の出力電力をP2とすることができる。しかも、交流電動機1の印加電圧ベクトルと3相PWMインバータ8の出力電力をそれぞれ指令通りとした上で、3相PWMインバータ7が出力する電圧指令ベクトルVi1の大きさを最小とすることができるため、3相PWMインバータ7の直流電圧源2の電圧E1を最小限にすることができる。   With the above configuration, the vector calculator 80 has a relationship of Vi1r = Vmr + Vi2r, and the output voltage vector Vi1 of the three-phase PWM inverter 7, the output voltage vector Vi2 of the three-phase PWM inverter 8, and the voltage vector Vm of the AC motor 1 are There is a relationship of Vi1 = Vm + Vi2, and the three-phase PWM inverter 7 and the three-phase PWM inverter 8 have Vi1 = Vi1r and Vi2 = Vi2r. Further, in the vector calculator 80, the inner product of the current vector I and the voltage command vector Vi2r is made to coincide with (−P2), so that the output power of the three-phase PWM inverter 8 can be P2. In addition, since the applied voltage vector of the AC motor 1 and the output power of the three-phase PWM inverter 8 are set as commanded, the magnitude of the voltage command vector Vi1 output from the three-phase PWM inverter 7 can be minimized. The voltage E1 of the DC voltage source 2 of the three-phase PWM inverter 7 can be minimized.

本発明により、電源が区別された2台の3相電圧形PWMインバータで中性点が分離された巻線を有する交流電動機を駆動するシステムにおいて、交流電動機制御とは無関係に片方の3相電圧形PWMインバータの出力電力制御が可能となる。これによって例えば片方の3相電圧形PWMインバータの電源を燃料電池とし、他方の3相電圧形PWMインバータの電源をキャパシタやバッテリとした電気自動車の交流電動機に適用した場合、交流電動機制御と独立してキャパシタやバッテリの充放電電力を制御できるようになるだけでなく、交流電動機には、燃料電池電圧とキャパシタやバッテリの電圧との和の電圧を印加できるようになり、交流電動機の高速運転が可能となる。   According to the present invention, in a system for driving an AC motor having windings with neutral points separated by two three-phase voltage type PWM inverters with different power sources, one of the three-phase voltages is independent of the AC motor control. The output power of the PWM inverter can be controlled. Thus, for example, when applied to an AC motor of an electric vehicle in which the power source of one of the three-phase voltage source PWM inverters is a fuel cell and the power source of the other three-phase voltage source PWM inverter is a capacitor or a battery, it is independent of the AC motor control. In addition to being able to control the charge / discharge power of the capacitor and battery, the AC motor can be applied with the sum of the fuel cell voltage and the voltage of the capacitor and battery, enabling high-speed operation of the AC motor. It becomes possible.

1 交流電動機
2、3 直流電圧源
4 キャパシタ
5 電流検出器
7、8 3相PWMインバータ
11 電流指令演算器
12〜14 座標変換器
20〜24、26 比例積分増幅器
27〜32 加算器
35〜41、45 減算器
55、56 非干渉制御器
57 座標演算器
66 電流ベクトル変換器
70 電圧指令生成器
80 ベクトル演算器
DESCRIPTION OF SYMBOLS 1 AC motor 2, 3 DC voltage source 4 Capacitor 5 Current detector 7, 8 Three-phase PWM inverter 11 Current command calculator 12-14 Coordinate converter 20-24, 26 Proportional integral amplifier 27-32 Adder 35-41, 45 Subtractor 55, 56 Non-interference controller 57 Coordinate calculator 66 Current vector converter 70 Voltage command generator 80 Vector calculator

Claims (1)

両端にそれぞれU1U2とV1V2とW1W2の端子を有して互いに電気的に分離した3相対称巻線を有する交流電動機の前記U1、V1、W1端子から成る第1の端子群を第1の3相電圧形PWMインバータに接続すると共に、前記U2、V2、W2端子から成る第2の端子群を第2の3相電圧形PWMインバータに接続し、前記第1の3相電圧形PWMインバータの直流電圧源と前記第2の3相電圧形PWMインバータの直流電圧源とを分離した交流電動機ドライブシステムにおいて、
前記U1、V1、W1端子から前記U2、V2、W2端子の方向を正として流れる前記交流電動機の各相の電流を検出して3相2相変換して電流ベクトルIを出力する電流変換器と、前記U2、V2、W2端子からの前記U1、V1、W1端子の各電圧からなる前記交流電動機の各相電圧を3相2相変換した電圧ベクトルの電圧指令ベクトルVmrを出力する電動機電圧指令生成器と、前記第2の3相電圧形PWMインバータの出力電力である電力指令P2を出力する電力指令器と、前記電流ベクトルIと前記電圧指令ベクトルVmrと前記電力指令P2とを入力して、第1の電圧指令ベクトルVi1rと第2の電圧指令ベクトルVi2rとの差を前記電圧指令ベクトルVmrに一致させ、前記第2の電圧指令ベクトルVi2rと前記電流ベクトルIとの内積を前記電力指令P2の極性反転に一致させ、前記第2の電圧指令ベクトルVi2rの大きさを前記第2の3相電圧形PWMインバータが出力可能な最大電圧ベクトルの大きさに制限した上で前記第1の電圧指令ベクトルVi1rの大きさを最小とするような前記第1の電圧指令ベクトルVi1rと前記第2の電圧指令ベクトルVi2rとを出力するベクトル演算器とを具備し、前記第1の3相電圧形PWMインバータは前記第1の電圧指令ベクトルVi1rを出力するように動作させ、前記第2の3相電圧形PWMインバータは前記第2の電圧指令ベクトルVi2rを出力するように動作させることを特徴とする交流電動機ドライブシステム。

A first terminal group consisting of the U1, V1, and W1 terminals of an AC motor having three-phase symmetrical windings that have U1U2, V1V2, and W1W2 terminals at both ends and electrically separated from each other is defined as a first three-phase. A DC voltage of the first three-phase voltage source PWM inverter is connected to a voltage type PWM inverter and a second terminal group consisting of the U2, V2 and W2 terminals is connected to a second three-phase voltage source PWM inverter. AC motor drive system in which a power source and a DC voltage source of the second three-phase voltage source PWM inverter are separated,
A current converter for detecting a current of each phase of the AC motor flowing from the U1, V1, W1 terminals as positive in the direction of the U2, V2, W2 terminals, converting the current into three phases and two phases, and outputting a current vector I; Motor voltage command generation that outputs a voltage command vector Vmr of a voltage vector obtained by three-phase to two-phase conversion of each phase voltage of the AC motor composed of the voltages of the U1, V1, and W1 terminals from the U2, V2, and W2 terminals A power command device that outputs a power command P2 that is output power of the second three-phase voltage source PWM inverter, the current vector I, the voltage command vector Vmr, and the power command P2. The difference between the first voltage command vector Vi1r and the second voltage command vector Vi2r is made to coincide with the voltage command vector Vmr, and the second voltage command vector Vi2r and the current vector are matched. The inner product with the torque I coincides with the polarity inversion of the power command P2, and the magnitude of the second voltage command vector Vi2r is set to the magnitude of the maximum voltage vector that can be output by the second three-phase voltage source PWM inverter. A vector calculator that outputs the first voltage command vector Vi1r and the second voltage command vector Vi2r so as to minimize the magnitude of the first voltage command vector Vi1r; The first three-phase voltage source PWM inverter is operated to output the first voltage command vector Vi1r, and the second three-phase voltage source PWM inverter is configured to output the second voltage command vector Vi2r. AC motor drive system characterized in that

JP2013207887A 2013-10-03 2013-10-03 AC motor drive system Active JP6176663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013207887A JP6176663B2 (en) 2013-10-03 2013-10-03 AC motor drive system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013207887A JP6176663B2 (en) 2013-10-03 2013-10-03 AC motor drive system

Publications (2)

Publication Number Publication Date
JP2015073373A JP2015073373A (en) 2015-04-16
JP6176663B2 true JP6176663B2 (en) 2017-08-09

Family

ID=53015383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013207887A Active JP6176663B2 (en) 2013-10-03 2013-10-03 AC motor drive system

Country Status (1)

Country Link
JP (1) JP6176663B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6488192B2 (en) * 2015-05-25 2019-03-20 日立オートモティブシステムズ株式会社 Inverter control device
JP7074144B2 (en) * 2018-01-18 2022-05-24 株式会社アイシン Rotating electric machine control device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000125411A (en) * 1998-10-13 2000-04-28 Toyota Motor Corp Motor driving equipment
US7800331B2 (en) * 2007-11-27 2010-09-21 Gm Global Technology Operations, Inc. Method and system for operating an electric motor coupled to multiple power supplies
JP5200628B2 (en) * 2008-03-31 2013-06-05 株式会社ジェイテクト Motor control device and electric power steering device
US8648562B2 (en) * 2010-08-09 2014-02-11 Thomas A. Lipo Single power supply dual converter open-winding machine drive

Also Published As

Publication number Publication date
JP2015073373A (en) 2015-04-16

Similar Documents

Publication Publication Date Title
JP4082444B1 (en) Vector controller for permanent magnet synchronous motor
JP6279211B2 (en) Control device for synchronous motor for electric vehicle
US9374033B2 (en) Three-level power conversion apparatus
JP4901517B2 (en) AC motor controller
WO2017221339A1 (en) Power conversion device
US8441225B2 (en) Direct-current to three-phase alternating-current inverter system
WO2008004294A1 (en) Induction motor vector control device, induction motor vector control method, and induction motor drive control device
JPS59169369A (en) Ac current controller
US10432123B2 (en) Control apparatus for AC motor
US9935568B2 (en) Control apparatus of rotary electric machine
US8736221B2 (en) Direct-current to three-phase alternating-current inverter system
JP5104721B2 (en) Field winding type synchronous machine controller and control system
Ito et al. Independent control of two permanent-magnet synchronous motors fed by a four-leg inverter
JP2008278577A (en) Rolling stock drive control system
JP5204463B2 (en) Motor control device
JP6176663B2 (en) AC motor drive system
US9231514B2 (en) Motor control apparatus and motor control method
CN113454907A (en) Rotating electric machine control system
JP2015080290A (en) Motor control system
JP6682313B2 (en) Motor control device
JP2014176135A (en) Motor drive device, inverter controller, and inverter control method
JP2018050427A (en) Drive apparatus
JP2019161854A (en) Motor control method and motor control apparatus
RU2463699C1 (en) Power conversion device for electric motor excitation
JP2019009968A (en) Polyphase motor drive device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170705

R150 Certificate of patent or registration of utility model

Ref document number: 6176663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150