JP2015158863A - Heat insulation layer design method, heat insulation layer design apparatus, and heat insulation layer design program - Google Patents

Heat insulation layer design method, heat insulation layer design apparatus, and heat insulation layer design program Download PDF

Info

Publication number
JP2015158863A
JP2015158863A JP2014034293A JP2014034293A JP2015158863A JP 2015158863 A JP2015158863 A JP 2015158863A JP 2014034293 A JP2014034293 A JP 2014034293A JP 2014034293 A JP2014034293 A JP 2014034293A JP 2015158863 A JP2015158863 A JP 2015158863A
Authority
JP
Japan
Prior art keywords
thermal conductivity
insulation layer
value
heat insulating
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014034293A
Other languages
Japanese (ja)
Other versions
JP6136977B2 (en
Inventor
勇馬 宮内
Yuma Miyauchi
勇馬 宮内
青木 理
Osamu Aoki
理 青木
和男 市川
Kazuo Ichikawa
和男 市川
伸吾 甲斐
Shingo Kai
伸吾 甲斐
信司 角島
Shinji Kadoshima
信司 角島
貢 目良
Mitsugu Mera
貢 目良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2014034293A priority Critical patent/JP6136977B2/en
Publication of JP2015158863A publication Critical patent/JP2015158863A/en
Application granted granted Critical
Publication of JP6136977B2 publication Critical patent/JP6136977B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to efficiently and easily design a heat insulation layer containing hollow particles.SOLUTION: A control factor relating to the thermal conductivity of a heat insulation layer is determined; a thermal conductivity response surface indicating a relation between a value of the control factor and the thermal conductivity of the heat insulation layer is derived by a homogenization analysis deriving a physical value of the heat insulation layer from a microscopic structure model of the heat insulation layer; and the value of the control factor achieving a target value of the thermal conductivity of the heat insulation layer is derived on the basis of the derived thermal conductivity response surface.

Description

本発明は、断熱層の設計方法に関し、特に、中空粒子とバインダ材とを含む断熱層の設計方法、設計装置及び設計プログラムに関する。   The present invention relates to a heat insulation layer design method, and more particularly, to a heat insulation layer design method, design apparatus, and design program including hollow particles and a binder material.

従来から、エンジンの熱効率を向上するために熱損失を低減することが重要視されており、この熱損失の低減のためにエンジンの燃焼室を形成するシリンダヘッド、ピストン、バルブ等に断熱層を設けることが検討されている。特に、近年、断熱層の熱伝導率をより低減できるようにするために、例えば特許文献1に開示されているような中空粒子を含む断熱層も提案されている。   Conventionally, it has been regarded as important to reduce heat loss in order to improve the thermal efficiency of the engine, and in order to reduce this heat loss, a heat insulating layer is provided on the cylinder head, piston, valve, etc. that form the combustion chamber of the engine. Installation is under consideration. In particular, in recent years, in order to further reduce the thermal conductivity of the heat insulating layer, for example, a heat insulating layer including hollow particles as disclosed in Patent Document 1 has also been proposed.

一般に、所定の基材の表面に、例えば断熱層等の所望の塗膜を設ける場合、その塗膜の機能的性能や耐久性能を決定付ける材料の特性及び配合割合等は、実験を繰り返すことでその仕様を求めている。   In general, when a desired coating film such as a heat insulating layer is provided on the surface of a predetermined base material, the characteristics and blending ratios of materials that determine the functional performance and durability performance of the coating film are determined by repeating the experiment. We are seeking its specifications.

例えば、特許文献2には、塗工膜に酸化剤と水と光とを作用させて劣化させる工程と、劣化した塗工膜について機能性を評価する工程と、評価結果に基づいて塗工材料組成物の成分及び/又は組成を選択する工程とからなる塗工材料組成物を設計する方法が開示されている。特許文献2では、このような設計方法によって、短期間で耐候性等の機能を評価して塗工材料組成物を設計することが可能になるとしている。   For example, Patent Document 2 discloses a process in which an oxidant, water, and light are allowed to act on a coating film to cause deterioration, a process for evaluating functionality of the deteriorated coating film, and a coating material based on the evaluation result. A method of designing a coating material composition comprising a step of selecting components and / or composition of the composition is disclosed. According to Patent Document 2, such a design method enables a coating material composition to be designed by evaluating functions such as weather resistance in a short period of time.

再公表特許WO2009/020206号Republished patent WO2009 / 020206 特開2001−262071号公報Japanese Patent Laid-Open No. 2001-262071

しかしながら、上記特許文献2のような塗工材料組成物を設計する方法では、多くの試作品を準備する必要があり、さらに、比較的に長期に亘って機能評価をする必要もある。また、このような方法を用いてエンジン燃焼室における断熱層の設計をしようとすると、高価な試作エンジンを損傷するリスクがあるだけでなく、上記中空粒子を含むような試作断熱層における材料の特性や材料の配合割合のばらつき、及び塗膜形成時の膜厚のばらつき等も考慮すると、効率良く設計することが困難である。   However, in the method of designing the coating material composition as described in Patent Document 2, it is necessary to prepare many prototypes, and it is also necessary to evaluate the function for a relatively long period of time. In addition, if such a method is used to design a thermal insulation layer in the engine combustion chamber, there is not only a risk of damaging an expensive prototype engine, but also the characteristics of the material in the trial thermal insulation layer containing the hollow particles. In consideration of variations in the blending ratio of materials and materials, and variations in film thickness during coating film formation, it is difficult to design efficiently.

本発明は、前記の問題に鑑みてなされたものであり、その目的は、中空粒子を含む断熱層を効率良く且つ簡便に設計できるようにして、その設計に掛かる時間及びコストを低減できるようにすることにある。   The present invention has been made in view of the above problems, and its purpose is to be able to efficiently and easily design a heat insulating layer containing hollow particles so that the time and cost required for the design can be reduced. There is to do.

前記の目的を達成するために、本発明は、断熱層の熱伝導率に関わる制御因子の値と断熱層の熱伝導率との関係を示す熱伝導率応答曲面を、均質化法を用いた解析によって導出し、この応答曲面に基づいて所望の熱伝導率を有する断熱層を設計できるようにした。   In order to achieve the above object, the present invention uses a homogenization method for a thermal conductivity response surface showing a relationship between a value of a control factor related to the thermal conductivity of the heat insulation layer and the heat conductivity of the heat insulation layer. The heat insulating layer having a desired thermal conductivity can be designed based on the response curved surface.

具体的に、本発明に係る断熱層の設計方法は、エンジン部品の表面に設けられ、中空粒子とバインダ材とを含む断熱層を設計する方法であって、断熱層の熱伝導率に関わる制御因子を決定するステップと、断熱層のミクロ構造モデルから断熱層の物性値を導出する均質化解析によって、制御因子の値と断熱層の熱伝導率との関係を示す熱伝導率応答曲面を導出するステップと、導出された熱伝導率応答曲面に基づいて、断熱層の熱伝導率の目標値を達成する制御因子の値を導出するステップとを備えていることを特徴とする。   Specifically, the method for designing a heat insulation layer according to the present invention is a method for designing a heat insulation layer provided on the surface of an engine component and including hollow particles and a binder material, and is a control related to the thermal conductivity of the heat insulation layer. Determining the thermal conductivity response surface showing the relationship between the value of the control factor and the thermal conductivity of the thermal insulation layer by the step of determining the factor and the homogenization analysis that derives the physical property value of the thermal insulation layer from the microstructure model of the thermal insulation layer And a step of deriving a value of a control factor that achieves the target value of the thermal conductivity of the heat insulating layer based on the derived thermal conductivity response surface.

本発明に係る断熱層の設計方法によると、断熱層の熱伝導率に関わる制御因子の値と断熱層の熱伝導率との関係を示す熱伝導率応答曲面を導出するため、該応答曲面から簡便に所望の熱伝導率を有する断熱層を製造するための制御因子の範囲を決定できる。その結果、多くの試作品を製造する必要なく、簡便に所望の熱伝導率を有する断熱層の設計が可能となる。また、本発明において上記熱伝導率応答曲面を導出するために用いられる上記均質化解析は、近年、種々の分野において用いられる解析手法であり、解析領域をミクロ構造とマクロ構造とに分けて考え、ミクロ構造の材料特性(物性値)を求めることによって、マクロ構造の材料特性を近似的に求めるものである。この均質化解析を用いることにより、中空粒子とバインダ材とを含む断熱層のマクロ構造における材料特性としての熱伝導率を上記制御因子の値から簡便に求めることができ、上記熱伝導率応答曲面を容易に作成することができる。   According to the method for designing a heat insulating layer according to the present invention, in order to derive a thermal conductivity response surface indicating the relationship between the value of the control factor related to the thermal conductivity of the heat insulating layer and the heat conductivity of the heat insulating layer, The range of the control factor for manufacturing the heat insulation layer which has desired heat conductivity simply can be determined. As a result, it is possible to easily design a heat insulating layer having a desired thermal conductivity without having to manufacture many prototypes. In addition, the homogenization analysis used to derive the thermal conductivity response surface in the present invention is an analysis technique used in various fields in recent years, and the analysis area is divided into a microstructure and a macro structure. By obtaining the material properties (physical property values) of the microstructure, the material properties of the macro structure are approximately obtained. By using this homogenization analysis, the thermal conductivity as a material property in the macro structure of the heat insulating layer containing the hollow particles and the binder material can be easily obtained from the value of the control factor, and the thermal conductivity response curved surface Can be easily created.

本発明に係る断熱層の製造方法は、制御因子がとり得る値の範囲を決定するステップをさらに備え、熱伝導率応答曲面を導出するステップにおいて、決定された制御因子のそれぞれの値の範囲内で熱伝導率応答曲面を導出することが好ましい。   The method for manufacturing a heat insulating layer according to the present invention further includes a step of determining a range of values that can be taken by the control factor, and in the step of deriving a thermal conductivity response surface, the range of each value of the determined control factor. It is preferable to derive a thermal conductivity response curved surface at

このようにすると、制御因子の値の範囲が限定されて応答曲面の導出をより簡便且つ迅速に行うことができる。   In this way, the range of the control factor value is limited, and the response surface can be derived more easily and quickly.

本発明に係る断熱層の製造方法において、制御因子としては、断熱層における中空粒子の配合割合、中空粒子の中空率及び熱伝導率、並びにバインダ材の熱伝導率とすることができる。   In the method for producing a heat insulating layer according to the present invention, the control factor can be the blending ratio of the hollow particles in the heat insulating layer, the hollow ratio and the thermal conductivity of the hollow particles, and the thermal conductivity of the binder material.

この場合、熱伝導率応答曲面を導出するステップにおいて、熱伝導率応答曲面は、断熱層の熱伝導率と、前記断熱層における前記中空粒子の配合割合と、中空粒子の中空率とを三軸とする座標空間に導出することが好ましい。   In this case, in the step of deriving the thermal conductivity response curved surface, the thermal conductivity response curved surface is triaxially expressed by the thermal conductivity of the heat insulating layer, the blending ratio of the hollow particles in the heat insulating layer, and the hollow ratio of the hollow particles. It is preferable to derive in the coordinate space.

このようにすると、所望の熱伝導率を有する断熱層を得るための中空粒子の配合割合及び中空粒子の中空率の範囲がわかり、上記断熱層を得るのに必要な中空粒子の特性を設定することができる。   In this way, the mixing ratio of the hollow particles for obtaining the heat insulating layer having a desired thermal conductivity and the range of the hollow ratio of the hollow particles can be understood, and the characteristics of the hollow particles necessary for obtaining the heat insulating layer are set. be able to.

さらに、この場合、中空粒子の中空率のばらつきを算出するステップをさらに備え、熱伝導率応答曲面を導出するステップにおいて、中空粒子の中空率のばらつきを考慮した応答曲面を導出することが好ましい。   Furthermore, in this case, it is preferable that the method further includes a step of calculating the variation in the hollow ratio of the hollow particles, and in the step of deriving the thermal conductivity response surface, it is preferable to derive a response surface in consideration of the variation in the hollow ratio of the hollow particles.

中空粒子は、その原料となる粒子の内部に空気が含まれるように膨張されて形成されるため、粒径のばらつきに従ってその中空率もばらついており、このばらつきを考慮して応答曲面を導出することにより、より正確な断熱層の設計が可能となる。   Since the hollow particles are formed by being expanded so that air is contained inside the particles as the raw material, the hollow ratio varies according to the variation in the particle size, and the response curved surface is derived in consideration of this variation. This makes it possible to design a more accurate heat insulating layer.

本発明に係る断熱層の設計方法は、均質化解析により得られた断熱層の物性値に基づいて、制御因子の値とエンジンの気筒内最大圧力(Pmax)時に断熱層にかかる応力との関係を表す応力応答曲面を導出するステップをさらに備え、断熱層の熱伝導率の目標値を達成する制御因子の値を導出するステップにおいて、熱伝導率応答曲面と、応力応答曲面とに基づいて、断熱層の熱伝導率の目標値及び安全率の目標値を共に達成する制御因子の値を導出することが好ましい。   The design method of the heat insulation layer according to the present invention is based on the physical property value of the heat insulation layer obtained by the homogenization analysis, and the relationship between the value of the control factor and the stress applied to the heat insulation layer at the maximum cylinder pressure (Pmax) of the engine. A step of deriving a stress response surface that represents, and in the step of deriving a value of a control factor that achieves the target value of the thermal conductivity of the heat insulating layer, based on the thermal conductivity response surface and the stress response surface, It is preferable to derive a value of a control factor that achieves both the target value of the thermal conductivity of the heat insulating layer and the target value of the safety factor.

エンジン燃焼室内では、その動作時に非常に大きい圧力が生じるため、エンジン燃焼室に設けられる断熱層に大きい応力が生じるので、断熱層にはその応力に耐えうる強度が必要となる。上記の方法によると、応力応答曲面を導出して所望の断熱層の熱伝導率と共に所望の安全率を有する断熱層を設計することができる。断熱層の安全率は、上記の断熱層の熱伝導率の解析のために行った均質化解析時に導出されたミクロ構造モデルの物性値を利用して導出することができるため、簡便に且つ効率良く所望の熱伝導率及び安全率を有する断熱層を設計することができる。   Since a very large pressure is generated in the engine combustion chamber during operation, a large stress is generated in the heat insulation layer provided in the engine combustion chamber. Therefore, the heat insulation layer needs to have a strength capable of withstanding the stress. According to the above method, it is possible to design a heat insulating layer having a desired safety factor together with a thermal conductivity of a desired heat insulating layer by deriving a stress response curved surface. The safety factor of the heat insulation layer can be derived using the physical property values of the microstructure model derived at the time of the homogenization analysis performed for the analysis of the thermal conductivity of the heat insulation layer. It is possible to design a heat insulating layer having a desired thermal conductivity and safety factor.

本発明に係る断熱層の設計方法は、断熱層の熱伝導率の目標値を達成する制御因子の値を導出するステップにおいて導出された制御因子の値に従って、断熱層の材料の特性を記憶するデータベースから断熱層の材料を決定するステップをさらに備えていてもよい。   The thermal insulation layer design method according to the present invention stores the characteristics of the material of the thermal insulation layer according to the value of the control factor derived in the step of deriving the value of the control factor that achieves the target value of the thermal conductivity of the thermal insulation layer. The method may further comprise the step of determining the material of the heat insulating layer from the database.

このようにすると、解析により導出された制御因子の値から、データベースに記憶された断熱層の材料の特性を参照して、コンピュータ等により自動的に所望の断熱層材料を選択することができて、断熱層の設計をより簡便にすることが可能となる。   In this way, the desired thermal insulation layer material can be automatically selected by a computer or the like by referring to the characteristics of the thermal insulation layer material stored in the database from the value of the control factor derived by the analysis. It becomes possible to design the heat insulation layer more easily.

本発明に係る断熱層の設計方法では、熱伝導率応答曲面を導出するステップにおいて、熱伝導率の均質化解析の結果から重回帰式を構築し、該重回帰式を利用して、熱伝導率応答曲面を導出してもよい。   In the design method of the heat insulation layer according to the present invention, in the step of deriving the thermal conductivity response surface, a multiple regression equation is constructed from the result of the homogenization analysis of the thermal conductivity, and the multiple regression equation is used to conduct heat conduction. A rate response surface may be derived.

このようにすると、熱伝導率応答曲面をより短時間で導出することができるため、断熱層の設計時間を短縮することができる。   In this way, since the thermal conductivity response curved surface can be derived in a shorter time, the design time of the heat insulation layer can be shortened.

本発明に係る断熱層の設計装置は、エンジン部品の表面に設けられ、中空粒子とバインダ材とを含む断熱層を設計するための装置であって、断熱層の熱伝導率に関わる所定の制御因子がとり得る値を入力する手段と、断熱層のミクロ構造モデルを生成する手段と、断熱層のミクロ構造モデルから断熱層の物性値を導出する均質化解析によって、制御因子の値と断熱層の熱伝導率との関係を示す関数を生成し、該関数に基づいて熱伝導率応答曲面を出力する手段とを備えていることを特徴とする。   A thermal insulation layer design apparatus according to the present invention is an apparatus for designing a thermal insulation layer that is provided on the surface of an engine component and includes hollow particles and a binder material, and is a predetermined control related to the thermal conductivity of the thermal insulation layer. The value of the control factor and the heat insulating layer are obtained by means of inputting the values that the factor can take, means for generating the micro structure model of the heat insulating layer, and homogenization analysis that derives the physical property value of the heat insulating layer from the micro structure model of the heat insulating layer. And a means for generating a function indicating a relationship with the thermal conductivity of the output and outputting a thermal conductivity response curved surface based on the function.

本発明に係る断熱層の設計装置によると、上記の方法を用いた場合と同様に、断熱層のミクロ構造モデルから断熱層の物性値を導出する均質化解析によって、断熱層の熱伝導率に関わる制御因子の値と断熱層の熱伝導率との関係を示す熱伝導率応答曲面を導出することができるため、該応答曲面から簡便に所望の熱伝導率を有する断熱層を製造するための制御因子の範囲を決定できる。その結果、多くの試作品を製造する必要なく、簡便に所望の熱伝導率を有する断熱層の設計をすることが可能となる。   According to the thermal insulation layer design apparatus according to the present invention, the thermal conductivity of the thermal insulation layer is obtained by homogenization analysis that derives the physical property value of the thermal insulation layer from the microstructure model of the thermal insulation layer, as in the case of using the above method. Since it is possible to derive a thermal conductivity response curved surface showing the relationship between the value of the control factor involved and the thermal conductivity of the thermal insulation layer, it is possible to easily produce a thermal insulation layer having a desired thermal conductivity from the response curved surface. A range of control factors can be determined. As a result, it is possible to easily design a heat insulating layer having a desired thermal conductivity without having to manufacture many prototypes.

本発明に係る断熱層の設計プログラムは、コンピュータに、断熱層の熱伝導率に関わる所定の制御因子がとり得る値の入力に基づいて、断熱層のミクロ構造モデルを生成し、断熱層のミクロ構造モデルから断熱層の物性値を導出する均質化解析によって、制御因子の値と断熱層の熱伝導率との関係を示す関数を算出し、算出された関数に基づいて熱伝導率応答曲面を出力する機能を実現させるための断熱層の設計プログラムである。   The thermal insulation layer design program according to the present invention generates a microstructure model of the thermal insulation layer based on an input of a value that can be taken by a predetermined control factor related to the thermal conductivity of the thermal insulation layer. Using a homogenization analysis that derives the physical properties of the thermal insulation layer from the structural model, a function indicating the relationship between the value of the control factor and the thermal conductivity of the thermal insulation layer is calculated, and the thermal conductivity response surface is calculated based on the calculated function. It is a thermal insulation layer design program for realizing the output function.

本発明に係る断熱層の設計プログラムによると、上記の方法を用いた場合と同様に、断熱層のミクロ構造モデルから断熱層の物性値を導出する均質化解析によって、断熱層の熱伝導率に関わる制御因子の値と断熱層の熱伝導率との関係を示す熱伝導率応答曲面を導出することができるため、該応答曲面から簡便に所望の熱伝導率を有する断熱層を製造するための制御因子の範囲を決定できる。その結果、多くの試作品を製造する必要なく、簡便に所望の熱伝導率を有する断熱層の設計をすることが可能となる。   According to the design program of the heat insulation layer according to the present invention, as in the case of using the above method, the heat conductivity of the heat insulation layer is obtained by the homogenization analysis that derives the physical property value of the heat insulation layer from the microstructure model of the heat insulation layer. Since it is possible to derive a thermal conductivity response curved surface showing the relationship between the value of the control factor involved and the thermal conductivity of the thermal insulation layer, it is possible to easily produce a thermal insulation layer having a desired thermal conductivity from the response curved surface. A range of control factors can be determined. As a result, it is possible to easily design a heat insulating layer having a desired thermal conductivity without having to manufacture many prototypes.

本発明に係る断熱層の設計方法、設計装置及び設計プログラムによると、中空粒子を含む断熱層を効率良く且つ簡便に設計することができて、その設計に掛かる時間及びコストを低減できる。   According to the heat insulation layer design method, design apparatus, and design program according to the present invention, the heat insulation layer containing hollow particles can be designed efficiently and simply, and the time and cost required for the design can be reduced.

本発明の実施形態に係る断熱層設計装置の構成を示すブロック図である。It is a block diagram which shows the structure of the heat insulation layer design apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る断熱層設計方法を示すフローチャート図である。It is a flowchart figure which shows the heat insulation layer design method which concerns on embodiment of this invention. 中空粒子の粒径分布を示すグラフ図である。It is a graph which shows the particle size distribution of a hollow particle. 図3の粒径分布をもつ中空粒子の中空率の分布を示すグラフ図である。It is a graph which shows distribution of the hollow rate of the hollow particle which has a particle size distribution of FIG. 本実施形態に係る制御因子の値と断熱層の熱伝導率との関係を示す熱伝導率応答曲面を示す図である。It is a figure which shows the heat conductivity response curved surface which shows the relationship between the value of the control factor which concerns on this embodiment, and the heat conductivity of a heat insulation layer. 本実施形態に係る中空粒子の中空率と断熱層の熱伝導率及び安全率との関係を示すグラフ図である。It is a graph which shows the relationship between the hollow rate of the hollow particle which concerns on this embodiment, the heat conductivity of a heat insulation layer, and a safety factor.

以下、本発明を実施するための形態を図面に基づいて説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものでない。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The following description of the preferred embodiments is merely exemplary in nature and is not intended to limit the invention, its application, or its application.

まず、本発明の一実施形態に係る断熱層設計装置について図1を参照しながら説明する。なお、本実施形態において設計される断熱層は、エンジンの燃焼室を構成するピストンの頂面に設けられ、中空粒子とバインダ材とを材料として含むものである。但し、中空粒子とバインダ材とを材料として含む断熱層であれば、エンジン燃焼室を構成する他のエンジン部品であるシリンダヘッド等の表面に設けられる断熱層にも適用可能である。   First, a heat insulation layer design apparatus according to an embodiment of the present invention will be described with reference to FIG. In addition, the heat insulation layer designed in this embodiment is provided on the top surface of the piston constituting the combustion chamber of the engine, and includes hollow particles and a binder material as materials. However, if it is a heat insulation layer containing hollow particles and a binder material as materials, it can also be applied to a heat insulation layer provided on the surface of a cylinder head or the like, which is another engine component constituting the engine combustion chamber.

図1は本実施形態に係る断熱層設計装置を構成するコンピュータのシステム構成の概略を示す図である。図1に示すように、本実施形態に係る断熱層設計装置10は、入力手段20、CPU30、記憶装置40及び出力装置50を備えている。   FIG. 1 is a diagram showing an outline of a system configuration of a computer constituting the heat insulation layer design apparatus according to the present embodiment. As shown in FIG. 1, the heat insulation layer design apparatus 10 according to the present embodiment includes an input unit 20, a CPU 30, a storage device 40, and an output device 50.

入力手段20は、各種のデータを入力するキーボードやマウスに相当する処理を実行するものである。入力手段20は、断熱層の材料となる中空粒子の熱伝導率や中空率、及びバインダ材の熱伝導率等の制御因子がとり得る値等の入力に用いられる。ここで、中空粒子の熱伝導率とは、中空粒子の外殻部分の熱伝導率のことをいう。また、中空粒子の中空率とは、中空粒子の体積当たりの空気が占める体積の割合のことをいう。   The input unit 20 executes processing corresponding to a keyboard or mouse for inputting various data. The input means 20 is used to input values that can be taken by control factors such as the thermal conductivity and hollow ratio of the hollow particles that are the material of the heat insulating layer, and the thermal conductivity of the binder material. Here, the thermal conductivity of the hollow particles refers to the thermal conductivity of the outer shell portion of the hollow particles. Further, the hollow ratio of the hollow particles refers to a volume ratio occupied by air per volume of the hollow particles.

CPU30は、記憶装置40に記憶されているデータ及び入力手段20から入力された数値及び指示に基づき、格納されているプログラムに従って、断熱層のミクロ構造モデルを生成するミクロ構造モデル生成手段31として機能する。また、格納されている演算プログラムに従って、生成された断熱層のミクロ構造モデルにおける上記制御因子の値と断熱層の熱伝導率との関係を示す関数を生成し、該関数に基づいて複数の制御因子の値と断熱層の熱伝導率の値との関係を示す応答曲面を生成する応答曲面生成手段32、及び生成された応答曲面から所望の断熱層材料の特性を決定する材料決定手段33として機能する。   The CPU 30 functions as a microstructure model generation means 31 that generates a microstructure model of the heat insulation layer according to the stored program based on the data stored in the storage device 40 and the numerical values and instructions input from the input means 20. To do. Further, according to a stored arithmetic program, a function indicating the relationship between the value of the control factor and the thermal conductivity of the heat insulating layer in the generated micro structure model of the heat insulating layer is generated, and a plurality of controls are performed based on the function. As response surface generation means 32 for generating a response surface indicating the relationship between the value of the factor and the value of thermal conductivity of the heat insulation layer, and material determination means 33 for determining the characteristics of the desired heat insulation layer material from the generated response surface Function.

記憶装置40は、種々の中空粒子の特性及びバインダ材の特性、並びに断熱層が形成される基材の構造及び特性等に関する種々のデータを記憶し、CPU30にそれらのデータを出力できる。また、記憶装置40は、上記CPU30を上記ミクロ構造モデル生成手段31、応答曲面生成手段32及び材料決定手段33として機能させるプログラムが記憶されている。記憶装置40としては、そのような機能を有するものであれば特に限定されず、例えばハードディスクドライブ(HDD)及びDVD−ROM等を用いることができる。   The storage device 40 can store various data regarding various hollow particle characteristics and binder material characteristics, and the structure and characteristics of the base material on which the heat insulating layer is formed, and can output the data to the CPU 30. The storage device 40 stores a program that causes the CPU 30 to function as the microstructure model generating unit 31, the response curved surface generating unit 32, and the material determining unit 33. The storage device 40 is not particularly limited as long as it has such a function. For example, a hard disk drive (HDD), a DVD-ROM, or the like can be used.

出力装置50は各種データを出力する処理を実行するものであり、出力装置50としては、例えばディスプレイやプリンタ等を用いることができる。   The output device 50 executes a process for outputting various data. As the output device 50, for example, a display, a printer, or the like can be used.

次に、本実施形態に係る断熱層を設計する方法について図2を参照しながら説明する。図2は本実施形態に係る断熱層設計方法を示すフローチャート図である。   Next, a method for designing the heat insulating layer according to the present embodiment will be described with reference to FIG. FIG. 2 is a flowchart showing the heat insulation layer design method according to this embodiment.

図2に示すように、本実施形態の断熱層設計方法では、まず、断熱層の熱伝導率に関わる制御因子を決定する(ステップS1)。本実施形態においては、断熱層の材料となる中空粒子の熱伝導率及び中空率、断熱層における中空粒子の配合割合、並びにバインダ材の熱伝導率を制御因子とする。   As shown in FIG. 2, in the heat insulation layer design method of this embodiment, first, a control factor related to the thermal conductivity of the heat insulation layer is determined (step S1). In the present embodiment, the thermal conductivity and hollow ratio of the hollow particles serving as the material of the heat insulating layer, the blending ratio of the hollow particles in the heat insulating layer, and the thermal conductivity of the binder material are used as control factors.

次に、上記制御因子が設計上とり得る値を決定する(ステップS2)。例えば、中空粒子の中空率は大きいほど熱伝導率を小さくできるが、その強度も小さくなるため、それらを考慮して本実施形態では、25vol%〜95vol%とした。また、中空粒子及びバインダ材の熱伝導率も所望の断熱層の熱伝導率を得るために低い範囲で設定し、本実施形態では中空粒子の熱伝導率の範囲として例えば0.3W/mK〜8.0W/mKと設定し、バインダ材の範囲として例えば0.2W/mK〜1.0W/mKと設定した。さらに、断熱層における中空粒子の配合割合としては、大きいほどに断熱層の熱伝導率を低減することができるが、中空粒子が体心立方格子状に充填されると最密充填で64vol%程度が最大であるため、本実施形態では、20vol%〜60vol%と設定した。   Next, a value that the control factor can take in design is determined (step S2). For example, although the thermal conductivity can be reduced as the hollow ratio of the hollow particles is increased, the strength thereof is also reduced. Therefore, in consideration of these, in the present embodiment, the volume is set to 25 vol% to 95 vol%. Further, the thermal conductivity of the hollow particles and the binder material is also set in a low range in order to obtain a desired thermal conductivity of the heat insulating layer. In this embodiment, the range of the thermal conductivity of the hollow particles is, for example, 0.3 W / mK to It was set to 8.0 W / mK, and the binder material range was set to, for example, 0.2 W / mK to 1.0 W / mK. Furthermore, as the mixing ratio of the hollow particles in the heat insulating layer, the heat conductivity of the heat insulating layer can be reduced as it is larger. However, when the hollow particles are packed in a body-centered cubic lattice, the closest packing is about 64 vol%. Therefore, in this embodiment, it is set to 20 vol% to 60 vol%.

ここで、中空粒子は、互いに粒径がほぼ均一な粒子を、その内部に空気が含まれるように膨張させることで得られるが、そのようにして得られた中空粒子のそれぞれの径は、所望の径を得るためにふるい等にかけてもばらつきが生じる。そのため、このばらつきに従って中空粒子の中空率がばらつくこととなる。例えば、粒径を30μmに調整された中空粒子の径の分布は、図3のようになる。また、中空率(ν)は、粒径(φ)と膨らます前の素材径(φ)から、次式で導かれる。 Here, the hollow particles are obtained by expanding particles having substantially uniform particle diameters so that air is contained therein, and the hollow particles thus obtained have a desired diameter. Variations occur even when sieving to obtain the diameter. Therefore, the hollow ratio of the hollow particles varies according to this variation. For example, the distribution of the diameters of the hollow particles whose particle diameter is adjusted to 30 μm is as shown in FIG. The hollowness ratio (ν) is derived from the particle diameter (φ) and the raw material diameter (φ 0 ) before swelling by the following equation.

上記数1の数式は以下のようにして導かれる。まず、膨張される前の中空粒子の素材となる粒子の半径をrとし、膨張後の中空粒子の外表面から中心までの半径(外半径)をroutとし、膨張後の中空粒子の内表面から中心までの半径(内半径)をrinとすると、中空粒子の固体部分の体積は膨張前後で変わらないため、下記数2の数式の関係が成り立つ。 The above mathematical formula 1 is derived as follows. First, let r be the radius of the particles that are the raw material of the hollow particles before expansion, and let r out be the radius (outer radius) from the outer surface to the center of the expanded hollow particles, and the inner surface of the hollow particles after expansion. the radius (inside radius) to the center When r in from the volume of the solid part of the hollow particles does not change before and after expansion, holds the relationship equation of following equation 2.

また、上記数2の数式から各半径の関係を下記数3の数式で表すことができる。   Further, the relationship between the radii can be expressed by the following mathematical formula 3 from the mathematical formula 2 above.

上記数3の数式から中空率νを下記数4の数式で表すことができ、この数式から上記数1の数式が導かれる。   The hollow ratio ν can be expressed by the following mathematical formula 4 from the mathematical formula 3 above, and the mathematical formula 1 above is derived from this mathematical formula.

図3に示す分布を有する中空粒子において、数1の数式からその中空粒子の中空率の分布を算出すると図4のようなグラフとなる。このように、中空率のばらつきを考慮して、断熱層の設計を行うことで、より正確な断熱層の設計が可能となる。中空率のばらつきを考慮した設計については後に説明する。   In the hollow particles having the distribution shown in FIG. 3, when the distribution of the hollow ratio of the hollow particles is calculated from the mathematical formula 1, a graph as shown in FIG. 4 is obtained. In this way, by designing the heat insulation layer in consideration of the variation in the hollow ratio, it is possible to design a more accurate heat insulation layer. The design considering the variation in the hollow ratio will be described later.

なお、上記のような制御因子の値の範囲や中空粒子の中空率のばらつきは、入力手段により入力されてもよいし、また、記憶装置に予めデータとして記憶させていてもよく、このようにすると、簡便にそのデータを後の解析に用いることができる。   In addition, the range of the value of the control factor as described above and the variation in the hollow ratio of the hollow particles may be input by an input unit, or may be stored in advance as data in a storage device. Then, the data can be easily used for later analysis.

次に、断熱層のミクロ構造モデルを生成し、該断熱層のミクロ構造モデルから断熱層の物性値(材料特性)を導出する均質化解析を行い、上記の制御因子の値と断熱層の熱伝導率との関係を示す熱伝導率応答曲面を導出する(ステップS3)。ここで、均質化解析とは、近年、種々の分野において用いられる解析手法であり、解析領域をミクロ構造とマクロ構造とに分けて考え、ミクロ構造の挙動や材料特性を求めることによって、マクロ構造の挙動や材料特性を近似的に求める解析である。従来、断熱層の材料特性は実験による計測からマクロ構造における材料特性に関する値を得ていたが、本実施形態における均質化解析では、中空粒子とバインダ材とを含む断熱層のミクロ構造モデルを生成し、そのミクロ構造モデルの断熱層の熱伝導率を上記制御因子の値から求め、そこからマクロ平均的な断熱層の熱伝導率を導出する。具体的に、本実施形態では、エンジン部品であるピストンの頂面に配設された断熱層のマクロ構造に対して、上記設定された範囲内の中空率を有する中空粒子が上記設定された範囲内の配合割合でバインダ材に含有された立方体状のミクロ構造モデルを生成する。そして、上記設定した制御因子の範囲内の値を与えて得られたミクロ構造モデルの材料特性(熱伝導率、ヤング率、ポアソン比等)を求め、それを例えばピストンの頂面に配設された断熱層のマクロ構造モデルの等価物性値、特にここでは等価熱伝導率とする。このような作業によって、制御因子の値と断熱層の熱伝導率との関係を示す関数を導出できる。   Next, a microstructure model of the heat insulation layer is generated, and a homogenization analysis is performed to derive the physical property values (material properties) of the heat insulation layer from the microstructure model of the heat insulation layer. A thermal conductivity response curved surface showing the relationship with the conductivity is derived (step S3). Here, homogenization analysis is an analysis technique used in various fields in recent years. By considering the analysis area into the microstructure and the macro structure, and determining the behavior and material characteristics of the microstructure, the macro structure This is an analysis that approximately obtains the behavior and material properties of the material. Conventionally, the material properties of the heat insulation layer have been obtained from experimental measurements, and values related to the material properties in the macro structure have been obtained. However, in the homogenization analysis in this embodiment, a microstructure model of the heat insulation layer containing hollow particles and a binder material is generated. Then, the thermal conductivity of the heat insulation layer of the microstructure model is obtained from the value of the control factor, and the macro average heat conductivity of the heat insulation layer is derived therefrom. Specifically, in the present embodiment, the hollow particles having the hollow ratio within the set range are set in the set range with respect to the macro structure of the heat insulating layer disposed on the top surface of the piston that is the engine component. A cubic microstructure model contained in the binder material at a blending ratio within the range is generated. Then, the material characteristics (thermal conductivity, Young's modulus, Poisson's ratio, etc.) of the microstructure model obtained by giving a value within the range of the set control factor are obtained, and it is arranged on the top surface of the piston, for example. The equivalent physical property value of the macro-structure model of the heat insulation layer, particularly here the equivalent thermal conductivity. By such an operation, a function indicating the relationship between the value of the control factor and the thermal conductivity of the heat insulating layer can be derived.

このステップS3においては、上記入力手段により入力された、又は記憶装置に記憶された制御因子の値に基づき、記憶装置に記憶されたプログラムとしての均質化解析ソフトによりCPUを熱伝導率応答曲面生成手段として機能させて、上記均質化解析を行うことで制御因子の値と断熱層の熱伝導率との関係を示す関数を導出する。さらに、生成された関数から図5に示すような熱伝導率応答曲面を生成する。なお、均質化解析ソフトとしては、例えばVOXELCON(株式会社くいんと)、又はANSYS Multiscale.sim(サイバネットシステム株式会社)等を用いることができる。   In this step S3, based on the value of the control factor input by the input means or stored in the storage device, the CPU generates the thermal conductivity response curved surface by the homogenization analysis software as a program stored in the storage device. A function indicating the relationship between the value of the control factor and the thermal conductivity of the heat insulation layer is derived by performing the above homogenization analysis by functioning as a means. Further, a thermal conductivity response curved surface as shown in FIG. 5 is generated from the generated function. As homogenization analysis software, for example, VOXELCON (Kuinto Co., Ltd.), ANSYS Multiscale.sim (Cybernet System Co., Ltd.) or the like can be used.

図5では、断熱層における中空粒子の配合割合と中空粒子の中空率と得られる断熱層の熱伝導率とを三軸とした座標空間に、バインダ材としてケイ酸ガラス(熱伝導率:0.628)を用いた場合、及びシリコーン樹脂(熱伝導率:0.229)を用いた場合の応答曲面を描いている。また、中空粒子の熱伝導率は1.1W/mKとしている。このような応答曲面を参照することで、断熱層の材料として熱伝導率が1.1W/mKの中空粒子と、ケイ酸ガラス又はシリコーン樹脂であるバインダ材とを用いた際に、所望の熱伝導率を有する断熱層を得るための中空粒子の中空率及び中空粒子の配合割合を推定することができる。なお、図5では、中空粒子の中空率のばらつきを考慮していない応答曲面を示しているが、上記中空粒子の中空率のばらつきを考慮して、期待値のみならず分散を表すように断熱層の熱伝導率を示す軸方向(図5の上下方向)に厚みがある応答曲面を描くこともできる。   In FIG. 5, silicate glass (thermal conductivity: 0. 0) is used as a binder material in a coordinate space with the mixing ratio of the hollow particles in the heat insulating layer, the hollow ratio of the hollow particles, and the thermal conductivity of the obtained heat insulating layer as three axes. 628) and a response curved surface when a silicone resin (thermal conductivity: 0.229) is used. The thermal conductivity of the hollow particles is 1.1 W / mK. By referring to such a response curved surface, when using hollow particles having a thermal conductivity of 1.1 W / mK as a material of the heat insulating layer and a binder material made of silicate glass or silicone resin, a desired heat is obtained. The hollow ratio of the hollow particles and the blending ratio of the hollow particles for obtaining a heat insulating layer having conductivity can be estimated. Note that FIG. 5 shows a response curved surface that does not take into account the variation in the hollow ratio of the hollow particles. It is also possible to draw a response curved surface having a thickness in the axial direction (vertical direction in FIG. 5) indicating the thermal conductivity of the layer.

また、熱伝導率応答曲面を導出する際に、重回帰式を用いることもできる。上記均質化解析により導出された数点の結果に基づいて、以下の数5のような重回帰式を構築し、用いることにより応答曲面の導出をより短時間に行うことができる。   Moreover, when deriving the thermal conductivity response curved surface, a multiple regression equation can be used. Based on the results of several points derived by the homogenization analysis, a multiple regression equation such as the following Equation 5 is constructed and used, whereby the response surface can be derived in a shorter time.

なお、上記数式において、λaは中空粒子の熱伝導率であり、λbはバインダ材の熱伝導率であり、λgは中空粒子内の気体の熱伝導率であり、γは中空粒子配合割合であり、νは中空粒子の中空率であり、Cjは補正定数である。   In the above formula, λa is the thermal conductivity of the hollow particles, λb is the thermal conductivity of the binder material, λg is the thermal conductivity of the gas in the hollow particles, and γ is the mixing ratio of the hollow particles. , Ν is the hollow ratio of the hollow particles, and Cj is a correction constant.

また、上記のような断熱層の熱伝導率の解析のみならず、断熱層の応力解析も行うことにより、上記制御因子に対する安全率を導出する(ステップS4)ことが好ましい。このステップを行うことで、所望の熱伝導率のみならず所望の安全率を有する断熱層を得るための制御因子の値の範囲を得ることができる。具体的に、熱伝導率応答曲面の導出と同様に、上記制御因子の値と前記エンジンの気筒内最大圧力(Pmax)時に断熱層にかかる応力との関係を表す応力応答曲面を導出して、その応力応答曲面から所望の安全率を満たす制御因子の値を推定することができる。応力応答曲面は、断熱層の熱伝導率の解析のために行った均質化解析で得られたミクロ構造モデルのヤング率やポアソン比といった物性値(材料特性)の等価値を利用して導出することができる。このため、簡便に応力応答曲面を生成することができる。ここでは、ミクロ構造モデルにおいて、得られた上記ヤング率等の材料特性の等価値をマクロ構造に適用し、マクロ構造における最も応力が掛かる部分、本実施形態では、ピストン頂面のキャビティの周縁部に設けられた断熱層に掛かる応力を算出する。すなわち、材料特性の等価値をマクロ構造に適用した(均質化)後に、上記ピストン頂面のキャビティの周縁部における断熱層に掛かる局所的な応力を算出する、所謂、局所化を行う。   Moreover, it is preferable to derive the safety factor for the control factor by performing not only the analysis of the thermal conductivity of the heat insulation layer as described above but also the stress analysis of the heat insulation layer (step S4). By performing this step, it is possible to obtain a range of control factor values for obtaining a heat insulating layer having a desired safety factor as well as a desired thermal conductivity. Specifically, similarly to the derivation of the thermal conductivity response surface, a stress response surface representing the relationship between the value of the control factor and the stress applied to the heat insulation layer at the maximum cylinder pressure (Pmax) of the engine is derived. The value of the control factor that satisfies the desired safety factor can be estimated from the stress response surface. The stress response surface is derived using the equivalence of physical property values (material properties) such as Young's modulus and Poisson's ratio of the microstructure model obtained by the homogenization analysis performed for the analysis of the thermal conductivity of the heat insulation layer. be able to. For this reason, a stress response curved surface can be easily generated. Here, in the microstructure model, the equivalent value of the obtained material properties such as Young's modulus is applied to the macro structure, and the most stressed part in the macro structure, in this embodiment, the peripheral part of the cavity of the piston top surface The stress applied to the heat insulating layer provided in is calculated. That is, after applying the equivalent value of the material property to the macro structure (homogenization), so-called localization is performed in which the local stress applied to the heat insulating layer at the peripheral edge of the cavity on the piston top surface is calculated.

なお、バインダ材は疲労破壊を起こさないため、特に中空粒子のみを応力評価の対象とすることによって、より簡便に応力の算出をすることもできる。   In addition, since the binder material does not cause fatigue failure, the stress can be more easily calculated by using only hollow particles as the object of stress evaluation.

上述のようにして、導出した熱伝導率応答曲面及び応力応答曲面から、所望の熱伝導率及び安全率を有する断熱層を得るための断熱層の材料の特性値の範囲を導出する(ステップS5)。例えば、上記の各応答曲面から、図6に示すような横軸に中空粒子の中空率、縦軸にエンジンの気筒内最大圧力(Pmax)時に断熱層にかかる応力、及び断熱層の熱伝導率をとったグラフを導くことにより、所望の熱伝導率及び安全率を有する断熱層を得るための中空粒子の中空率の範囲がわかる。ここでは、熱伝導率が1.1の中空粒子を用い、バインダ材がケイ酸ガラス(熱伝導率:0.628W/mK)であり、断熱層における中空粒子の配合割合が60vol%の場合を示している。また、図6では、Pmaxを13.5とし、中空粒子の疲労限を168MPaとしたときの安全率1.2、すなわち140MPa以下、及び断熱層の熱伝導率を0.28W/mK以下をそれぞれ目標値とした場合の、中空粒子の中空率の範囲を示している(図6のグレーの領域)。図6から、その範囲は86〜91vol%程度である。また、図6では実線で示された期待値の周辺に中空粒子の中空率のばらつきによる分散を網かけで示しており、その上限を破線で示している。所望の断熱層の熱伝導率及び安全率を満たす中空粒子の中空率の範囲を、中空率のばらつきを考慮して破線で示すばらつきの上限値から導出した場合では、88.5〜90.5vol%程度となる(図6の太線で囲まれた領域)。   As described above, from the derived thermal conductivity response curved surface and stress response curved surface, the range of the characteristic value of the material of the thermal insulation layer for obtaining the thermal insulation layer having the desired thermal conductivity and safety factor is derived (step S5). ). For example, from each of the response curved surfaces, the horizontal axis as shown in FIG. 6 indicates the hollow particle hollow ratio, the vertical axis indicates the stress applied to the heat insulating layer at the maximum cylinder pressure (Pmax) of the engine, and the heat conductivity of the heat insulating layer. The range of the hollow ratio of the hollow particles for obtaining a heat insulating layer having a desired thermal conductivity and safety factor can be found by deriving a graph having the following formula. Here, hollow particles having a thermal conductivity of 1.1 are used, the binder material is silicate glass (thermal conductivity: 0.628 W / mK), and the blending ratio of the hollow particles in the heat insulating layer is 60 vol%. Show. In FIG. 6, safety factor 1.2 when Pmax is 13.5, fatigue limit of hollow particles is 168 MPa, that is, 140 MPa or less, and thermal conductivity of the heat insulating layer is 0.28 W / mK or less, respectively. The range of the hollow ratio of the hollow particles when the target value is set is shown (gray area in FIG. 6). From FIG. 6, the range is about 86 to 91 vol%. In FIG. 6, the dispersion due to the variation in the hollow ratio of the hollow particles is shown by shading around the expected value indicated by the solid line, and the upper limit thereof is indicated by the broken line. In the case where the range of the hollow ratio of the hollow particles satisfying the thermal conductivity and safety factor of the desired heat insulating layer is derived from the upper limit value of the variation indicated by the broken line in consideration of the variation of the hollow rate, 88.5-90.5 vol. % (Region surrounded by a thick line in FIG. 6).

このようにして、所望の熱伝導率及び安全率を満たす断熱層を得るための制御因子の値の範囲を導出した後に、その範囲を満たすような中空粒子を選定する(ステップS6)。中空粒子の選定は、カタログに記載された値を参照することにより行うことができる。また、そのようなカタログ値をデータベースとして記憶装置等に記憶させておき、そのデータベースと、熱伝導率及び応力の目標値及び生成された上記応答曲面の結果とを参照して、記憶装置に記憶されたプログラムにより材料決定手段として機能されたCPUが自動的に選出するようにすることも可能である。   In this way, after deriving a range of control factor values for obtaining a heat insulating layer that satisfies the desired thermal conductivity and safety factor, hollow particles that satisfy the range are selected (step S6). The selection of the hollow particles can be performed by referring to the values described in the catalog. Further, such catalog values are stored in a storage device or the like as a database, and stored in the storage device with reference to the database, the target values of thermal conductivity and stress, and the generated response surface result. It is also possible to automatically select the CPU functioning as the material determining means by the programmed program.

上記のような本実施形態に係る断熱層の設計方法によって、多くの試作品を作製し、多くの実験による計測を行うことが無く、簡便に、所望の熱伝導率及び安全率を備えた断熱層を設計することが可能となって、設計のためのコスト及び時間を低減することができる。   By the method for designing a heat insulating layer according to the present embodiment as described above, many prototypes are manufactured, and measurement by many experiments is not performed, and heat insulation having a desired thermal conductivity and safety factor is simply performed. Layers can be designed, reducing the cost and time for design.

10 断熱層設計装置
20 入力手段
30 CPU
31 ミクロ構造モデル生成手段
32 応答曲面生成手段
33 材料決定手段
40 記憶装置
50 出力装置
10 heat insulation layer design apparatus 20 input means 30 CPU
31 Microstructure model generation means 32 Response surface generation means 33 Material determination means 40 Storage device 50 Output device

Claims (10)

エンジン部品の表面に設けられ、中空粒子とバインダ材とを含む断熱層を設計する方法であって、
前記断熱層の熱伝導率に関わる制御因子を決定するステップと、
前記断熱層のミクロ構造モデルから断熱層の物性値を導出する均質化解析によって、前記制御因子の値と前記断熱層の熱伝導率との関係を示す熱伝導率応答曲面を導出するステップと、
前記導出された熱伝導率応答曲面に基づいて、前記断熱層の熱伝導率の目標値を達成する前記制御因子の値を導出するステップとを備えていることを特徴とする断熱層の設計方法。
A method of designing a heat insulating layer provided on the surface of an engine component and including hollow particles and a binder material,
Determining a control factor related to the thermal conductivity of the thermal insulation layer;
Deriving a thermal conductivity response surface indicating the relationship between the value of the control factor and the thermal conductivity of the thermal insulation layer by homogenization analysis to derive the physical property value of the thermal insulation layer from the microstructure model of the thermal insulation layer;
Deriving a value of the control factor that achieves a target value of the thermal conductivity of the thermal insulation layer based on the derived thermal conductivity response surface. .
前記制御因子がとり得る値の範囲を決定するステップをさらに備え、
前記熱伝導率応答曲面を導出するステップにおいて、前記決定された制御因子のそれぞれの値の範囲内で前記熱伝導率応答曲面を導出することを特徴とする請求項1に記載の断熱層の設計方法。
Determining a range of possible values for the control factor;
The design of the heat insulation layer according to claim 1, wherein in the step of deriving the thermal conductivity response surface, the thermal conductivity response surface is derived within a range of each value of the determined control factor. Method.
前記制御因子を決定するステップにおいて、前記制御因子を前記断熱層における前記中空粒子の配合割合、前記中空粒子の中空率及び熱伝導率、並びに前記バインダ材の熱伝導率とすることを特徴とする請求項1又は2に記載の断熱層の設計方法。   In the step of determining the control factor, the control factor is a mixing ratio of the hollow particles in the heat insulating layer, a hollow rate and a thermal conductivity of the hollow particles, and a thermal conductivity of the binder material. The design method of the heat insulation layer of Claim 1 or 2. 前記熱伝導率応答曲面を導出するステップにおいて、前記熱伝導率応答曲面は、前記断熱層の熱伝導率と、前記断熱層における前記中空粒子の配合割合と、前記中空粒子の中空率とを三軸とする座標空間に導出することを特徴とする請求項3に記載の断熱層の設計方法。   In the step of deriving the thermal conductivity response curved surface, the thermal conductivity response curved surface is obtained by dividing the thermal conductivity of the heat insulating layer, the mixing ratio of the hollow particles in the heat insulating layer, and the hollow ratio of the hollow particles. The heat insulation layer design method according to claim 3, wherein the heat insulation layer is derived in a coordinate space as an axis. 前記中空粒子の中空率のばらつきを算出するステップをさらに備え、
前記熱伝導率応答曲面を導出するステップにおいて、前記中空粒子の中空率のばらつきを考慮した応答曲面を導出することを特徴とする請求項3又は4に記載の断熱層の設計方法。
Further comprising calculating a variation in the hollow ratio of the hollow particles,
The method for designing a heat insulating layer according to claim 3 or 4, wherein, in the step of deriving the thermal conductivity response curved surface, a response curved surface is derived in consideration of variation in hollow ratio of the hollow particles.
前記均質化解析により得られた前記断熱層の物性値に基づいて、前記制御因子の値と前記エンジンの気筒内最大圧力(Pmax)時に前記断熱層にかかる応力との関係を表す応力応答曲面を導出するステップをさらに備え、
前記断熱層の熱伝導率の目標値を達成する前記制御因子の値を導出するステップにおいて、前記熱伝導率応答曲面と、前記応力応答曲面とに基づいて、前記断熱層の熱伝導率の目標値及び安全率の目標値を共に達成する前記制御因子の値を導出することを特徴とする請求項1〜5のいずれか1項に記載の断熱層の設計方法。
Based on the physical property value of the heat insulation layer obtained by the homogenization analysis, a stress response curved surface representing the relationship between the value of the control factor and the stress applied to the heat insulation layer at the maximum cylinder pressure (Pmax) of the engine. A derivation step,
In the step of deriving the value of the control factor that achieves the target value of the thermal conductivity of the heat insulating layer, the target of the thermal conductivity of the heat insulating layer is based on the thermal conductivity response surface and the stress response surface. The method for designing a heat insulation layer according to any one of claims 1 to 5, wherein a value of the control factor that achieves both the value and the target value of the safety factor is derived.
前記断熱層の熱伝導率の目標値を達成する前記制御因子の値を導出するステップにおいて導出された前記制御因子の値に従って、前記断熱層の材料の特性を記憶するデータベースから前記断熱層の材料を決定するステップをさらに備えていることを特徴とする請求項1〜6のいずれか1項に記載の断熱層の設計方法。   The material of the thermal insulation layer from a database that stores the characteristics of the material of the thermal insulation layer according to the value of the control factor derived in the step of deriving the value of the control factor that achieves the target value of the thermal conductivity of the thermal insulation layer The method for designing a heat insulation layer according to any one of claims 1 to 6, further comprising a step of determining the thermal insulation layer. 前記熱伝導率応答曲面を導出するステップにおいて、前記熱伝導率の均質化解析の結果から重回帰式を構築し、該重回帰式を利用して前記熱伝導率応答曲面を導出することを特徴とする請求項1〜7のいずれか1項に記載の断熱層の設計方法。   In the step of deriving the thermal conductivity response curved surface, a multiple regression equation is constructed from the result of the homogenization analysis of the thermal conductivity, and the thermal conductivity response curved surface is derived using the multiple regression equation. The design method of the heat insulation layer of any one of Claims 1-7. エンジン部品の表面に設けられ、中空粒子とバインダ材とを含む断熱層を設計するための装置であって、
前記断熱層の熱伝導率に関わる所定の制御因子がとり得る値を入力する手段と、
前記断熱層のミクロ構造モデルを生成する手段と、
前記断熱層のミクロ構造モデルから前記断熱層の物性値を導出する均質化解析によって、前記制御因子の値と前記断熱層の熱伝導率との関係を示す関数を生成し、該関数に基づいて熱伝導率応答曲面を出力する手段とを備えていることを特徴とする断熱層の設計装置。
An apparatus for designing a heat insulating layer provided on the surface of an engine component and including hollow particles and a binder material,
Means for inputting a value that can be taken by a predetermined control factor related to the thermal conductivity of the heat insulating layer;
Means for generating a microstructure model of the thermal insulation layer;
By a homogenization analysis that derives the physical property value of the heat insulating layer from the microstructure model of the heat insulating layer, a function indicating the relationship between the value of the control factor and the thermal conductivity of the heat insulating layer is generated, and based on the function A heat insulation layer design apparatus comprising: means for outputting a thermal conductivity response curved surface.
エンジン部品の表面に設けられ、中空粒子とバインダ材とを含む断熱層を設計するためのプログラムであって、
コンピュータに、
前記断熱層の熱伝導率に関わる所定の制御因子がとり得る値の入力に基づいて、前記断熱層のミクロ構造モデルを生成し、前記断熱層のミクロ構造から断熱層の物性値を導出する均質化解析によって、前記制御因子の値と前記断熱層の熱伝導率との関係を示す関数を算出し、該関数に基づいて熱伝導率応答曲面を出力する機能を実現させるための断熱層の設計プログラム。
A program for designing a heat insulating layer provided on the surface of an engine component and including hollow particles and a binder material,
On the computer,
Based on the input of a value that can be taken by a predetermined control factor related to the thermal conductivity of the heat insulating layer, a microstructure model of the heat insulating layer is generated, and a physical property value of the heat insulating layer is derived from the microstructure of the heat insulating layer. By design analysis, a function indicating the relationship between the value of the control factor and the thermal conductivity of the heat insulation layer is calculated, and the design of the heat insulation layer for realizing the function of outputting a thermal conductivity response curved surface based on the function program.
JP2014034293A 2014-02-25 2014-02-25 Thermal insulation layer design method, design apparatus, and design program Active JP6136977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014034293A JP6136977B2 (en) 2014-02-25 2014-02-25 Thermal insulation layer design method, design apparatus, and design program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014034293A JP6136977B2 (en) 2014-02-25 2014-02-25 Thermal insulation layer design method, design apparatus, and design program

Publications (2)

Publication Number Publication Date
JP2015158863A true JP2015158863A (en) 2015-09-03
JP6136977B2 JP6136977B2 (en) 2017-05-31

Family

ID=54182789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014034293A Active JP6136977B2 (en) 2014-02-25 2014-02-25 Thermal insulation layer design method, design apparatus, and design program

Country Status (1)

Country Link
JP (1) JP6136977B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188941A1 (en) * 2018-03-27 2019-10-03 日本製鉄株式会社 Analysis system, analysis method, and program
CN112035924A (en) * 2020-08-26 2020-12-04 西安建筑科技大学 Method for optimizing thickness of insulation layer of facing differentiation building envelope

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005202515A (en) * 2004-01-13 2005-07-28 Toshiba Corp Reliability analysis device, reliability analysis method, and reliability analysis program
JP2007122242A (en) * 2005-10-26 2007-05-17 Toyota Motor Corp Structural analysis method using homogenization method, structural analysis device using homogenization method and structural analysis program using homogenization method
JP2008033380A (en) * 2006-07-26 2008-02-14 Hitachi Appliances Inc Method and program for analyzing heat insulation performance of product
JP2010052110A (en) * 2008-08-29 2010-03-11 Shimane Prefecture Sintered body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005202515A (en) * 2004-01-13 2005-07-28 Toshiba Corp Reliability analysis device, reliability analysis method, and reliability analysis program
JP2007122242A (en) * 2005-10-26 2007-05-17 Toyota Motor Corp Structural analysis method using homogenization method, structural analysis device using homogenization method and structural analysis program using homogenization method
JP2008033380A (en) * 2006-07-26 2008-02-14 Hitachi Appliances Inc Method and program for analyzing heat insulation performance of product
JP2010052110A (en) * 2008-08-29 2010-03-11 Shimane Prefecture Sintered body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
渡邊育夢 外1名: "非線形均質化理論における2変数境界値問題のミクロ−マクロ非連成近似解法", 応用力学論文集 [ONLINE], vol. 8, JPN6017011292, August 2005 (2005-08-01), pages 277 - 285, ISSN: 0003530348 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188941A1 (en) * 2018-03-27 2019-10-03 日本製鉄株式会社 Analysis system, analysis method, and program
JPWO2019188941A1 (en) * 2018-03-27 2020-04-30 日本製鉄株式会社 Analysis system, analysis method, and program
US11170146B2 (en) 2018-03-27 2021-11-09 Nippon Steel Corporation Analysis system, analysis method, and program
CN112035924A (en) * 2020-08-26 2020-12-04 西安建筑科技大学 Method for optimizing thickness of insulation layer of facing differentiation building envelope
CN112035924B (en) * 2020-08-26 2023-09-29 西安建筑科技大学 Method for optimizing thickness of insulation layer of orientation-differentiated building enclosure

Also Published As

Publication number Publication date
JP6136977B2 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
Saadlaoui et al. Topology optimization and additive manufacturing: Comparison of conception methods using industrial codes
US11003807B2 (en) Techniques for generating materials to satisfy design criteria
Khan et al. Compressive behaviour of Neovius Triply Periodic Minimal Surface cellular structure manufactured by fused deposition modelling
Bertolino et al. Multi-scale shape optimisation of lattice structures: an evolutionary-based approach
JP2019535987A (en) Structural heat exchanger
CN108883468B (en) Method and computer-readable medium for determining an orientation of a component to be additively manufactured
JP4852420B2 (en) Tool and process design in molding technology
JP6136977B2 (en) Thermal insulation layer design method, design apparatus, and design program
Meng et al. Effect of groove textures on the performances of gaseous bubble in the lubricant of journal bearing
CN108153928B (en) Method for predicting crack initiation life of high-temperature alloy containing inclusion powder
Porziani et al. Automatic shape optimization of structural components with manufacturing constraints
Luo et al. Effects of process parameters on deformation and temperature uniformity of forged Ti-6Al-4V turbine blade
Keshavarz et al. Genetic algorithm-based numerical optimization of powder compaction process with temperature-dependent cap plasticity model
CN113792420B (en) Interface-considered unidirectional random fiber composite microstructure generation method
JP5169278B2 (en) Operation method of composite material model creating apparatus, operation method of simulation apparatus for deformation behavior of composite material, and composite material simulation apparatus
Yuan et al. Novel frame model for mistuning analysis of bladed disk systems
US20190146457A1 (en) System and method for finite element analysis of parts having variable spatial density graded regions produced via 3d printers
Chatterjee et al. Finite element based parametric study of elastic-plastic contact of fractal surfaces
JP2014193596A (en) Coefficient of thermal conductivity prediction method of reinforcement resin, and apparatus of the same
Miladi et al. A parametric study on inelastic buckling in steel cylindrical shells with circular cutouts
JP4404655B2 (en) Structure analysis method of cell structure and cell structure
Han et al. Creep of closed-cell aluminum foams: Effects of imperfections and predictive modeling
JP2010197150A (en) Device and method for evaluating damage
Abrinia et al. Investigation of process parameters for the backward extrusion of arbitrary-shaped tubes from round billets using finite element analysis
JP5946628B2 (en) Device for designing cross-sectional shape of viscoelastic body structure, method and program thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170417

R150 Certificate of patent or registration of utility model

Ref document number: 6136977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150